Computergraphik - WS 17/18

Diese Vorlesung soll eine Einführung in die theoretischen und methodischen Grundlagen der Computergraphik geben, als auch die Grundlagen für die praktische Implementierung von computergraphischen Systemen legen.

Der Schwerpunkt liegt auf Algorithmen und Konzepten zur Repräsentation und Visualisierung von polygonalen, 3-dimensionalen graphischen Szenen. Die Übungsaufgaben werden teils theoretisch, teils praktisch sein, wobei die praktischen Aufgaben gewisse Programmierfähigkeiten in C++ verlangen. Ich empfehle den Besuch des "Propädeutikums C/C++" vor der Computergraphik-Vorlesung. Die theoretischen Aufgaben setzen teilweise einfache Matrix-Vektor-Rechnung voraus.

Bemerkung: in der Vorlesung wird nicht die Benutzung von fertiger Software zur Modellierung, Animation, oder Bildbearbeitung (z.B. Photoshop, Blender, Maya, Cinema4D, etc.) behandelt! Wir beschäftigen uns mit den Algorithmen, die hinter diesen Programmen stecken.

Aus dem Inhalt:

  1. Gerätetechnische Grundlagen
  2. Mathematische Grundlagen
  3. OpenGL 3 and C++
  4. 2D Algorithmen der Computergraphik (Scan Conversion, Visibility Computations, etc.)
  5. Theorie der Farben und Farbräume
  6. 3D Algorithmen der Computergraphik (Rendering Pipeline, Transformationen, Beleuchtung, etc.)
  7. Techniken zum Echtzeit-Rendering
  8. Shader
  9. Texturierung

Aktuelles

Datum der Klausur: 5. März 2018, 11:00 , Raum: GW1 H0070

Folien

Die folgende Tabelle wird die behandelten Themen und die dazugehörigen Folien enthalten.

Woche Thema Folien Übungsaufgaben Frameworks
1. Organisation, Einführung, Geschichte, Raster- und Vektor-Graphik, Critical Flicker Frequency, PDF1 PDF2 Blatt1 OpenGL-"Hello World"
Sphere-Flake
2. Buffering-Varianten (double buffering, triple buffering), Synchronisation-Verfahren( VSYNC et al.), Display-Technologien, Gammakorrektur PDF
3. Feiertag (500 Jahre Reformation)
C++ CrashCourse (TicTacToe)
PDF
4. Geometrie: geometrische Bedeutung des Skalar- und Kreuzproduktes, Koordinatensysteme, Flächeninhalt von Dreieck und Polygonen, geometrische Prädikate, lineare Interpolation, Ebenen und Dreiecke.
PDF Blatt2 Vector
5. Übersicht über die Graphik-Pipeline, verschiedene Sichtweisen der Pipeline.
Einführung in OpenGL: programmable Pipeline, Shader, immediate mode versus retained mode, vertex array objects, vertex buffer objects.
PDF
6. Rasterisierung von Linien: Midpoint-Algorithmus, Span-basierter Algorithmus; Anwendung auf Raycasting zum Terrain-Rendering; scan conversion of circles. PDF Blatt3
7. Baryzentrische Koordinaten: affine Kombination, affine Abbildungen, konvexe Hülle, baryzentrische Koordinaten im Dreieck, baryzentrische Interpolation
Polygon Scan Conversion: Rasterisierung von Dreiecken, Algorithmus von Pineda, Interpolation von Farben im Dreieck, Parallelisierung (und die Pixel-Planes-Story).
Füllen nicht-einfacher Polygone, Odd-Even-Rule, Winding-Number-Rule, Triangulation
PDF1 PDF2 Blatt4 Pineda
8. Triangulation 2: ein O(n log n)-Triangulations-Algorithmus, Art Gallery Theorem, Flood Fill,
Font-Rendering: Begriffe, Outlines mittels Bezier-Kurven, Flag-Fill-Algorithmus von Ackland, Hinting.
Alpha blending.
Visibility Computations: Painter's Algorithm, Z-Buffer, Z-Fighting, Depth-of-Field, Depth Complexity & Overdraw, Hierarchischer Z-Buffer, Implementierung in Hardware, Object-Space & Image-Space-Algorithmen, BSP-Tree,
PDF1 PDF2 PDF3 Blatt5 BSP
9. Visibility Computations 2: Warnock's Algorithmus & Quadtree, Stencil buffer, Rendering planar reflections using the stencil buffer, Schatten-Rendering mittels Shadow Volumes.
Clipping: Problemstellung, Motivation für Clipping vor der Projektion.
Transformationen 1: Koordinatensysteme in der Pipeline, elementare Rotation, Skalierung, Scherung, Spiegelung,
PDF1 PDF2 PDF3
10. Concatenation, Euler-Winkel, Gimbal Lock, Rotation um beliebige Achse mittels Basiswechsel, Zerlegung einer Rotationsmatrix, Quaternionen, Darstellung und Durchführung von Rotationen mittels Quaternionen, Interpolation von Orientierungen mittels Quaternionen, virtueller Trackball, affine Abbildungen, homogene Koordinaten, Translation, Anatomie einer Matrix, starre Transformationen, Berechnung einer Rot.matrix für beliebige Achse+Winkel im Raum, Klassifikation aller Transformationen, Matrizen in OpenGL, relative/hierarchische Transformationen, Objekthierarchien und Matrix-Stack.
PDF Blatt6
11. Projektionen & Perspektive: Kamera-Transformation, orthographische Projektion, perspektivische Projektion, Eigenschaften der perspektivischen Projektion, allgemeine projektive Abbildungen, Projektion in OpenGL
Farben 1: Licht & Lichtquellen, Chromatizität, Reflectance spectrum, das Auge, Human Spectral Sensitivity, wahrgenommener Stimulus, Metamere,
PDF1 PDF2 Blatt7 Billiard Framework
12. Farben 2: Grassmann'sche Experimente und Gesetze, Linearkombination und Gleichheit von Spektren, die "Sensor-Abbildung", Farb-Basis-Wechsel, Definition des Begriffes "Farbe", Farb-Basiswechsel, CIEXYZ-Farbraum, matching curves, Chromatizitätsdiagramm, Gegenfarbenmodell, Farbmodelle RGB, CMY, HSV, Interpolation von Farben, uniforme Farbräume, CIE Lab-Farbraum, Gamut, Farbtransfer.
Lighting & Shading 1: Arten von Lichtquellen, diffuse Reflexion,
PDF1 PDF2 Blatt 8
13. Lighting & Shading 2: spiegelnde Reflexion, Phong-Beleuchtungsmodell, Blinn-Phong-Modell, BRDF's, Lafortune-Modell, Flat-/Gouraud-/Phong-Shading, Mach-Bänder, Per-Pixel-Shading,
Shader Programming: fixed-function pipeline, programmable pipeline, vertex processor, fragment processor,
PDF1 PDF2

Die Aufzeichnung der Vorlesung findet ihr am Ende des Semesters hier
Das Passwort ist "cg1718".

Literatur

Folgende Literatur eignet sich als begleitende Literatur:

Falls Sie sich diese Bücher anschaffen möchten sollten Sie vielleicht überlegen, gebrauchte Exemplare zu erwerben -- oft gibt es diese zu einem Bruchteil des Neupreises. Zwei gute Internetadressen sind Abebooks und BookButler.

Übungsbetrieb

Die Übungsblätter werden jeweils am Dienstag Abend auf der Homepage der VL (also hier) ins Netz gestellt.

Die Abgabe der Lösungen ist jeweils am Montag bzw. Dienstag eine Woche später direkt in der Vorlesung bzw. in der Übung. Theoretische Aufgaben werden schriftlich abgeliefert, praktische Aufgaben werden in der Übung am Rechner vorgeführt.

Hinweise zur Klausur

Die Klausur ist "closed book, open notes", d.h., während der Klausur sind erlaubt:

Außer diesen Dingen darf sich sonst nichts auf dem Tisch befinden, insbesondere nicht erlaubt sind:

Hier findet Ihr einige Probeklausuren. (Etliche sind auf Englisch, die richtige Klausur wird natürlich auf Deutsch sein.) Der ZIP-File ist Passwort-geschützt -- Ihr bekommt das Passwort von Eurem Tutor oder Professor.
Bitte lasst euch nicht von einer eventuell leicht abweichenden Terminologie irritieren. Es gilt in der Klausur immer die Terminologie, die ich eingeführt habe. Lasst Euch bitte auch nicht von der Fülle der Probeklausuren einschüchtern. Ihr müsst sicherlich nicht alle durchrechnen, um fit zu werden.

Online Literatur und Links zum Programmieren in C/C++ und in OpenGL

Online Literatur und Resources zu Computergraphik

Literatur und Infos, die nichts mit Computergraphik zu tun haben

Philipp Dittmann
Last modified: Wed Oct 03 21:49:59 CEST 2018