Force Feedback in Virtual Assembly Scenarios: A Human Factors Evaluation

Bernhard Weber

German Aerospace Center

Institute of Robotics and Mechatronics

Content

- Motivation Virtual Environment (VE) Training for Space Application
- The Effects of Haptic Feedback in VE
 - 1. A Virtual Assembly User Study
 - 2. A Meta-Analysis
- Outlook: VE and Teleoperation in Space
- Discussion

Motivation: VE Training for Space Applications

Canadarm 2

All pictures by courtesy of the Canadian Space Agency, CSA

Input Devices onboard the ISS

VR Canadarm Training Simulator

Motivation: VE Training for Space Applications

VR simulator for Extra-Vehicular Activities (EVAs)

Motivation: VE Training for Space Applications

Sagardia et al. 2013

DLR's VE Training Simulator for On-Orbit Servicing (e.g. Repair, Maintenance) Force Feedback is provided by DLR's "HUG" Interface

Human Performance in VE

Human Performance in VE: Haptic Feedback

Force Feedback in Virtual Environments Haptic Feedback

Vibrotactile Systems
The second secon
Pros:
- Small, light-weight, larger workspaces
Cons:
- Substitution of kinesthetic with tactile
- Information - Information density and complexity

Force Feedback in Virtual Environments Visual Feedback

- Color changes (e.g. Cheng et al. 1996)
- Symbolic Arrows or bar graphs (e.g. Lécuyer et al. 2002)
- "Ghost" Objects

(e.g. Zachmann et al. 1999)

Pros:

- Low-cost alternative
- Unambiguous, directional information

Cons:

- Sensory substitution
- Visual clutter
- Increased workload

Zachmann et al., 1999

A Virtual Assembly User Study

To what extent are **task performance**, **mental workload and spatial orientation** negatively affected when **substituting force feedback** with **vibrotactile** or **visual** feedback of collisions?

Apparatus: "HUG"

Specifications			
Dynamic mass	2 x 14 kg		
Peak force	2 x 150N		
Number of DoF	2 x 7 revolute joints		
Sensors in each joint	two position sensors one torque sensor		
Additional Sensors	2 x 6DoF FT-Sensor		
Sampling rates	40 kHz current control 3 kHz joint internal 1 kHz Cartesian		

Apparatus: VibroTac

Specifications				
Vibration Segments	6 DC vibration motors			
Wireless Communication	XBee Interface			
Vibration Frequency	up to 180 Hz			

in the category Healthcare

2012 UT

CUP

41200

Category: Healthcare & Wellnes

SENSODRIVE

Experimental Conditions

1. Visual Feedback

2. Vibrotactile Feedback

Sample, Experimental Design, Procedure

Sample: N = 42 subjects ($M_{Age} = 30.3$ yrs.)

Within-subject design (random condition order):

Procedure

- Instruction
- 3 Feedback Conditions
- Peg-in-hole: Small vs. large peg

Completion Time - Peg-in-hole

<u>ANOVA</u> Feedback main effect: F(2, 39) = 1.0; ns.

Difficulty main effect: *F* (1, 40) = 27.8; *p* < .001

Feedback x Difficulty interaction F (2, 39) = 8.5; *p* = .001

Collision Forces - Peg-in-hole

<u>ANOVA</u> Feedback main effect: F (2, 39) = 23.6; **p < .001**

Difficulty main effect: *F*(1, 40) = 7.8; *p* < .001

Feedback x Difficulty interaction F (2, 39) = 2.5; **p < .10**

Mental Workload

NASA-TLX weighted sum score (Hart & Staveland, 1988)

Spatial Orientation

"I had a good overview of the spatial configuration, even in situations with restricted view or occlusions" (1 = "fully disagree"; 7 = "fully agree")

Discussion

Visual feedback potentially overloads the visual channel

Vibrotactile feedback is too difficult to distinguish

Force feedback is **intuitive**, **easy to interpret**, allowing a **high degree of manipulation precision** and **spatial awareness**

A Meta-Analysis: Aggregating all findings in the field

The overall performance effects when using vibrotactile vs. kinesthetic force feedback

Methods

1. Literature research

→Identification of 128 primary studies on the effect of haptic feedback in the teleoperation domains.

2. Inclusion criteria

Content:

- Comparison of conditions with and without haptic feedback for the same task and system (omitting studies on haptic training)

Methods:

- Basic descriptives or statistics reported
- Methodological control of time effects (e.g. counterbalancing)
- → 58 primary studies with k = 171 comparisons and N = 1104 subjects → 30 VE studies

Methods

3. Effect Size Calculation

- Outcome Variables
 - 1. Task success (task-dependent, e.g. collisions avoided)
 - 2. Task accuracy (task-dependent, e.g. tissue damage)
 - 3. Average and peak forces
 - 4. Completion times
- Calculation of Effect Sizes

Hedges's $g = \frac{\bar{x}_{No \ Haptics} - \bar{x}_{Haptics}}{S \ pooled}$

- Effect Size Classification

g > .20 =small; g > .50 =medium; g > .80 =large effect

Effect Size Aggregation – Force Feedback in All Setups

Outcome Variable	k	Effect Size (g)	95% CI (<i>g</i>)	Q
Task Success	45	0.75***	0.64 – 0.85	200.4***
Task Accuracy	26	0.69***	0.53 – 0.85	46.4**
Detection Rates	5	0.62***	0.32 – 0.92	21.5***
Average Force	19	0.78***	0.60 – 0.96	169.2***
Peak Force	22	0.64***	0.46 – 0.82	132.9***
Completion Time	79	0.22***	0.13 – 0.30	331.0***

Note. ***p* <. 01; ****p* <. 001

g > .20 = small; *g* > .50 = medium; *g* > .80 = large effect

Effect Size Aggregation - Force Feedback in VE Setups

Outcome Variable	k	Effect Size (g)	95% CI (g)	Q
Task Success	38	0.68***	0.57 – 0.80	187.3***
Task Accuracy	12	0.67***	0.47 – 0.87	19.6
Detection Rates				
Average Force				
Peak Force				
Completion Time	52	0.18***	0.09 – 0.28	246.4***
Note. ** <i>n</i> <. 01: *** <i>n</i> <. 001				

g > .20 = small; *g* > .50 = medium; *g* > .80 = large effect

Differences between Force Feedback and Vibrotactile Substitution?

Results – Feedback Modality Moderation

Outcome Variable	Q _b	k	g	95% CI (g)	Q		
Task Accuracy							
Force Feedback	34.2***	45	0.75***	0.64-0.85	200.4***		
Vibrotactile Feedback		19	0.21**	0.07-0.36	33.6*		
Average Force							
Force Feedback	29.3***	19	0.78***	0.60 - 0.96	169.2***		
Vibrotactile Feedback		13	-0.13	-0.41-0.15	105.3***		
Peak Force							
Force Feedback	0.1	22	0.64***	0.46 - 0.82	132.9***		
Vibrotactile Feedback		5	0.60***	0.31- 0.89	11.3**		
Completion Time							
Force Feedback	4.8*	79	0.22***	0.13- 0.30	331***		
Vibrotactile Feedback		18	0.03	-0.11- 0.18	85.4***		

Note. **p* <. 05; ***p* <. 01; ****p* <. 001

Discussion

- **Substantial overall effects** of additional force feedback on task performance and force application
- The benefits of force feedback are **attenuated when force feedback** is substituted with vibrotactile stimuli
 - \rightarrow Still a positive, small effect on task accuracy
 - \rightarrow Vibrotactile information as a warning function

Outlook: VE and Teleoperation in Space

Human performance when using

passive force feedback (e.g. spring stiffness) in space

Outlook: VE and Teleoperation in Space

Outlook: VE and Teleoperation in Space

Main Research Question:

What are the optimal mechanical parameters (stiffness, damping, mass) of a Force Feedback Joystick under terrestrial conditions and microgravity?

Sample:

N = 3 cosmonauts

Pre-Mission Session 3 Mission Sessions 2 months before launch

2 Post-Mission Session(s) 1) 12 days after landing 2) + 6 months (after reha.)

Experimental Aiming Task

"Match static target ring as quickly as possible"

ISS Sessions November + December 2016

The Effects of Damping on Gross Motion Time

There are **different optimal damping values for 1G and \muG in the first weeks**! \rightarrow Moderate damping supports gross motion in μ G (speed information)

The Effects of Stiffness on Fine Motion Time

There are different optimal stiffness values for 1G and µG!

 \rightarrow Stiffness has to be reduced in μ G

Summary

Degraded human performance in space:

Slower, more sluggish movement profiles when matching a static target, probably due to distorted proprioception

- → Specific mechanical properties provide crucial kinematic information, allowing for more precise and faster movements
- → There are optimal mechnical configurations for space (moderate damping, moderate stiffness)

General Discussion

- **Kinesthetic Force Feedback is indispensable** for teleoperation/ VE setups:
 - → substantially improved accuracy, better force regulation (gs > .60)
 - \rightarrow small effects on completion time
 - \rightarrow lower workload, better spatial orientation
- Vibrotactile substitution still has a positive effect on task performance, but is better suited for warning/ collision detection
- Haptic assistance seems to be indispensable for maintaining high task performance in space

DLR.de • Chart 37 > Bernhard Weber • Human Factors in VE Applications > 06/06/17

Thanks a lot for your attention!

References

Barfield, W., Sheridan, T., Zeltzer, D., & Slater, M. (1995). Presence and performance within virtual environments. In W. Barfield & T.A. Furness (Eds.), Virtual environments and advanced interface design, pp. 473-513. Oxford, England: Oxford University Press.

Burdea, G. C., & Coiffet, P. (2003). Virtual reality technology. John Wiley & Sons.

Cheng, L.-T., Kazman, R. & Robinson, J. (1996). Vibrotactile Feedback in Delicate Virtual Reality Operations. In: ACM *Multimedia*, pp. 243-251.

Lécuyer, A., Megard, C., Burkhardt, J.-M., Lim, T., Coquillart, S., Coiffet, P., et al. (2002). *The effect of haptic, visual and auditory feedback on an insertion task on a 2-screen work-bench.* Proceedings of the Immersive Projection Technology (IPT) Symposium.

Nash, E. B., Edwards, G. W., Thompson, J. A., & Barfield, W. (2000). A review of presence and performance in virtual environments. *International Journal of Human-Computer Interaction*, *12*(1), 1-41.

Sagardia, M., Hertkorn, K., Hulin, T., Wolff, R., Hummel, J., Dodiya, J., Gerndt, A.: *An Interactive Virtual Reality System for On-Orbit Servicing (Video)*, IEEE VR 2013, Mar. 2013, Orlando, Florida, USA

Stanney, K. M., Mourant, R. R., & Kennedy, R. S. (1998). Human factors issues in virtual environments: A review of the literature. *Presence: Teleoperators and Virtual Environments*, 7(4), 327-351.

Steuer, J. (1992). Defining virtual reality: Dimensions determining telepresence. Journal of Communication, 42(4), 73-93.

Weber, B., Sagardia, M., Hulin, T. & Preusche, C. (2013). *Visual, Vibrotactile and Force Feedback of Collisions in Virtual Environments: Effects on Performance, Mental Workload and Spatial Orientation.* In: R. Shumaker (Ed.): Virtual, Augmented and Mixed Reality /HCII 2013, Part I, LNCS 8021, pp. 241-250. Heidelberg: Springer.

Weber, B. & Eichberger, C. (2015). The Benefits of Haptic Feedback in Telesurgery and other Teleoperation Systems: A Meta-Analysis. In: M. Antona and C. Stephanidis (Eds.): *Universal Access in Human-Computer Interaction. Access to Learning, Health and Well-Being.* Part III, LNCS 9177, pp. 394-405, 2015, Switzerland: Springer. Invited Paper.

Weber, B., Schätzle, S., Riecke, C., Brunner, B., Tarassenko, S., Artigas, J., Balachandran, R., and Albu-Schäffer, A. (2016). Weight and Weightlessness Effects on Sensorimotor Performance During Manual Tracking. In: F. Bello, H. Kajimoto and Y. Visell (Eds.).: *Haptics: Perception, Devices, Control, and Applications*, LNCS 9774, pp. 111-121. Springer International Publishing.

Witmer, B. G., & Singer, M. J. (1998). Measuring presence in virtual environments: A presence questionnaire. *Presence: Teleoperators and virtual environments*, 7(3), 225-240.

Zachmann, G., Gomes de Sa, A., Jakob, U. (1999). Virtual Reality as a Tool for Verification of Assembly and Maintenance Processes. *Computers and Graphics* (1999), 23(3), pp.389-403.

