

Haptic virtual assembly testing: what are the requirements for the physics engine?

Dr. Jerome Perret, HAPTION

Dr. Jerome Perret, 49

- Engineering degree in aerospace
- PhD in robotics and artificial intelligence
- Co-founder of Haption SA, CEO (France)
- Founder of Haption GmbH (Germany), CEO
- Executive Committee member of EuroVR (European Association for Virtual Reality and Augmented Reality)
- Executive Committee member of the EuroHaptics Society
- Leader of the "EuroVR Initiative", lobbying action at the European Commission

Examples of complex physics simulation

 J. Barbič & D. James, "Six-DoF Haptic Rendering of Contact between Geometrically Complex Reduced Deformable Models", IEEE Transactions on Haptics, 2008

Examples of complex physics simulation

 G. Cirio et al., "The Virtual Crepe Factory: 6DoF Haptic Interaction with Fluids", SIGGRAPH 2010

- L. Glondu et al., "Evaluation of physical simulation libraries for haptic rendering of contacts between rigid bodies", WINVR 2010
 - Compared engines: Havok, PhysX, Bullet, Open Tissue
 - Test benches:

• You can do amazing things with physics simulation

- You can do amazing things with physics simulation
- It's easy to set up real naughty traps for physics engines

- You can do amazing things with physics simulation
- It's easy to set up real naughty traps for physics engines
- But

- You can do amazing things with physics simulation
- It's easy to set up real naughty traps for physics engines
- But
 - It doesn't help a bit when trying to solve real assembly problems

- You can do amazing things with physics simulation
- It's easy to set up real naughty traps for physics engines
- But
 - It doesn't help a bit when trying to solve real assembly problems

Research demo

Industrial assembly

- You can do amazing things with physics simulation
- It's easy to set up real naughty traps for physics engines
- But
 - It doesn't help a bit when trying to solve real assembly problems

Research demo	Industrial assembly
X Months to prepare	5 minutes max to start

- You can do amazing things with physics simulation
- It's easy to set up real naughty traps for physics engines
- But
 - It doesn't help a bit when trying to solve real assembly problems

Research demo	Industrial assembly
X Months to prepare	5 minutes max to start
Controlled environment	Unknown data set

- You can do amazing things with physics simulation
- It's easy to set up real naughty traps for physics engines
- But
 - It doesn't help a bit when trying to solve real assembly problems

Research demo	Industrial assembly
X Months to prepare	5 minutes max to start
Controlled environment	Unknown data set
5 minutes x 100s users	2 minutes x 1 user

- You can do amazing things with physics simulation
- It's easy to set up real naughty traps for physics engines
- But
 - It doesn't help a bit when trying to solve real assembly problems

Research demo	Industrial assembly
X Months to prepare	5 minutes max to start
Controlled environment	Unknown data set
5 minutes x 100s users	2 minutes x 1 user
Main criteria: it's fun	Main criteria: the result is dependable

- You can do amazing things with physics simulation
- It's easy to set up real naughty traps for physics engines
- But
 - It doesn't help a bit when trying to solve real assembly problems

Research demo	Industrial assembly
X Months to prepare	5 minutes max to start
Controlled environment	Unknown data set
5 minutes x 100s users	2 minutes x 1 user
Main criteria: it's fun	Main criteria: the result is dependable
Crashes are to be expected	Crashes are not acceptable

Haption's long path to success

- 2002: First prototype of the Virtuose 6D
 - Simple demo using primitives
 - Based on Vortex[™]
 - Demonstration to industry (PSA, Airbus, Renault)

Haption's long path to success

- 2002: First prototype of the Virtuose 6D
 - Simple demo using primitives
 - Based on Vortex[™]
 - Demonstration to industry (PSA, Airbus, Renault)
- 2003: Project with Renault
 - Test bench: car door
 - Use with VPSTM (Voxmap PointShell)

- 2002: First prototype of the Virtuose 6D
 - Simple demo using primitives
 - Based on Vortex[™]
 - Demonstration to industry (PSA, Airbus, Renault)
- 2003: Project with Renault
 - Test bench: car door
 - Use with VPS[™] (Voxmap PointShell)
- 2004: Partnership with Dassault Systemes
 - Access to CAA API (plug-in development)

- 2002: First prototype of the Virtuose 6D
 - Simple demo using primitives
 - Based on Vortex[™]
 - Demonstration to industry (PSA, Airbus, Renault)
- 2003: Project with Renault
 - Test bench: car door
 - Use with VPS[™] (Voxmap PointShell)
- 2004: Partnership with Dassault Systemes
 - Access to CAA API (plug-in development)
- 2005: Start of the RIVAGE project
 - End-users: PSA, Renault, Dassault Aviation

PSA PEUGEOT CITROËN

Haption's long path to success (ced)

- 2006: First prototype of IFC (Interactive Fitting for Catia)
 - Physics solver developed by CEA LIST
 - Acquisition of a VPS license from BOEING
 - Extensive tests by RIVAGE end-users

Haption's long path to success (ced)

- 2006: First prototype of IFC (Interactive Fitting for Catia)
 - Physics solver developed by CEA LIST
 - Acquisition of a VPS license from BOEING
 - Extensive tests by RIVAGE end-users
- 2007: Integration of virtual humans
 - Full-body tracking by ART
 - New plug-in for Delmia V5[™]
 - First official release of IFC

Haption's long path to success (ced)

- 2006: First prototype of IFC (Interactive Fitting for Catia)
 - Physics solver developed by CEA LIST
 - Acquisition of a VPS license from BOEING
 - Extensive tests by RIVAGE end-users
- 2007: Integration of virtual humans
 - Full-body tracking by ART
 - New plug-in for Delmia V5[™]
 - First official release of IFC
- 2008: Final version of IPSI
 - IPSI: Haption's physics engine (Interactive Physics Simulation Intf)
 - Still using VPS today (2017)

• Why no new version of IPSI in 9 years?

• Why no new version of IPSI in 9 years?

- IPSI is the result of the industry-funded project RIVAGE: between 2005 and 2007, 1 man-year spent by the end-users to write specs, generate validation benches, and perform intensive tests
- Old wisdom: "if it ain't broke, don't fix it"

Obvious mandatory requirements

- Time performance
 - Fixed-time-stepping
 - Frame-rate above 200 Hz
 - No long pre-processing time (more than a few minutes)

Obvious mandatory requirements

- Time performance
 - Fixed-time-stepping
 - Frame-rate above 200 Hz
 - No long pre-processing time (more than a few minutes)
- Geometry
 - Stable collision detection
 - Non-convex objects
 - Support for triangle meshes

Obvious mandatory requirements

- Time performance
 - Fixed-time-stepping
 - Frame-rate above 200 Hz
 - No long pre-processing time (more than a few minutes)
- Geometry
 - Stable collision detection
 - Non-convex objects
 - Support for triangle meshes
- System
 - Running on Microsoft Windows 64 bits
 - No need for special hardware (aside from a professional GPU)

Application-specific requirements

- Positive clearance
 - Reason 1: no false positives, i.e. assembly succeeds in virtual but fails in reality!
 - Reason 2: absorb tolerances

Application-specific requirements

- Positive clearance
 - Reason 1: no false positives, i.e. assembly succeeds in virtual but fails in reality!
 - Reason 2: absorb tolerances
- Support for zero-volume objects
 - Reason 1: most assembly problems are dealing with metal sheets
 - Reason 2: many CAD systems generate objects with holes

Application-specific requirements

- Positive clearance
 - Reason 1: no false positives, i.e. assembly succeeds in virtual but fails in reality!
 - Reason 2: absorb tolerances
- Support for zero-volume objects
 - Reason 1: most assembly problems are dealing with metal sheets
 - Reason 2: many CAD systems generate objects with holes
- Bilateral constraints (i.e. joints)
 - Reason 1: many assembly problems involve such constraints (e.g. screws, tools, weight-lifting mechanisms)
 - Reason 2: virtual humans are modeled as poly-articulated systems in CAD software

Key requirement for success

- Fool-proof
 - No manual operation needed for data preparation
 - No mandatory parameter settings required
 - Reason: the user is a specialist of product assembly, not an expert in physics simulation!

"Nice to have" requirements

- Support for deformable bodies
 - ID: cables
 - ID+: rubber hoses, rubber seals
 - 2D: thin plastic sheets, leather/cloth covers
 - 3D: padding, rubber foam

"Nice to have" requirements

- Support for deformable bodies
 - ID: cables
 - 1D+: rubber hoses, rubber seals
 - 2D: thin plastic sheets, leather/cloth covers
 - 3D: padding, rubber foam
- Support for static friction
 - For intuitive manipulation of objects

Examples of wrong requirements

- Support for very large 3D models
 - No need to load a complete car/airplane/ship
 - Every assembly is performed in a small volume of space, so the complexity can easily be reduced by setting boundaries
- Support for dynamic-loading of 3D data
 - No need to modify the scene on the fly
 - The people performing assembly simulation work on static datasets, which they are not allowed to modify

Examples of haptic assembly simulation using IPSI

Conclusion

- The requirements for haptic assembly validation are not physics-related
- Most of the development effort for Haption's IPSI was spent on finding fool-proof parameters and intensive testing
- IPSI is getting old and urgently needs an upgrade, especially
 - Parametric joints (for the human spine)
 - Static friction (for fine manipulation with the force-feedback glove)
- Do you want to help us? You're very welcome!

Haption company profile

Core business

Interactive solutions based on 6D haptics/force-feedback

- Founded in 2001
- Located in Laval, France
- Technology developed by CEA LIST (Research Center for Atomic Energy)
- Dassault Systemes CAAV5 partner since 2004
- Siemens PLM Partner since 2013
- Resellers in
 - France, Germany, Russia
 - USA, Canada, Brazil
 - China, Japan, South Korea
 - Australia, Singapore
- Office in Germany (Aachen)

Haption products

Virtuose 6D Desktop

Virtuose 6D

Virtuose 6D TAO

Inca 6D

Able 7D

Commercial references

- Industry
 - France: Airbus , Areva, Dassault Aviation, PSA Peugeot Citroën, Renault
 - Europe: Airbus, BMW, Volkswagen, Daimler (Germany), Airbus (UK), Alstom Transport (Spain), Thales Alenia Space (Italy)
 - USA: Boeing, Lockheed Martin, NASA Marshall, Sikorsky, Tesla Motors, United Space Alliance
 - Asia: Mitsubishi Motors, Toyota, Daihatsu (Japan), AVIC 132/601/611 (China), ADD (South Korea), ADA (India)

Academic

- France: CEA LIST, CNRS/LIMSI, ENISE, ENIT, INP Grenoble, IRISA, ISIR
- Europe: Univ Hannover, Univ Karlsruhe (Germany), IIT, Politecnico di Milano (Italy), DIFFER (Netherlands)
- USA: Iowa State University, Univ Arkansas, Univ Connecticut
- Asia: Univ Beihang, Univ Shangaï (China), Univ Deakin (Australia), DMI (South Korea)

Thank you for your attention!

www.haption.com