

René Weller

University of Bremen cgvr.cs.uni-bremen.de

Workshop on Haptic Methods and Technologies for Virtual Assembly Simulations

IEEE World Haptics, June 2017

Motivation

Benchmarking

Theory

Applications

Eenclusions

Bremen

Motivation: Collision Detection

Motivation

ISTs

Benchmarking

Theory

Applications

Conclusions

Penetration Measures

Continuous collision detection

Penetration volume - "the most complicated yet accurate method" [Fisher and Lin, 2001]

Translational penetration depth

BVHs vs Voxels

- BVHs
 - Easy to build
 - Fast, robust and exact
 - Complicated to compute penetration depth
 - Not fast enough for haptic applications [Mendoza et al, 2006], [Zhang et al, 2007], ...

Voxel based algorithms

- Fast enough for haptic interactions
- Independent of object complexity
- Memory consuming
- Aliasing artifacts

[McNeely et al., 1999]

Goal: Keep the Best of Both Worlds

CG VR

- Keep a single consistent data structures for moving and fixed objects
- Near constant running time and independency of objects complexity
- Stable model to compute continuous feedback forces
 - Keep the high accuracy of BVH algorithms
 - Avoid aliasing

CCG CCG

- Fill the object
 - from the inside
 - with non-overlapping spheres
- Build sphere hierarchy on inner spheres

Generating Spheres

- Requirements:
 - Space-filling sphere packing
 => polydispersity
 - Support of arbitrary objects
- Protosphere
 - Basic idea:
 - Prototype-based approximation of Voronoi diagram
 - Greedy insertion of spheres
 - Massively-parallel implementation on the GPU

Bounding Volume Hierarchy for Inner Spheres

- Construction: massively parallel Batch Neural Gas on the GPU
- SIMD-accelerated traversal

Bremen

Benchmarking

Applications

- Performance and quality benchmarks
- Performance benchmark:
 - Cover large variety of different objects
 - and interesting contact scenarios
- Requirements quality benchmark:
 - Ground truth via analytical model
 - Typical contact configurations in force feedback or physically-based simulations

Benchmarking

Theory

Applications

Conclusion

Results: Quality Benchmark

Benchmarking

Results: Quality Benchmark

 Color coded intensity of frequency (dark blue represents intensity of zero)

Results: Performance Benchmark

Considerations on Complexity

 $O(n^2)$

Motivation

ISTs

Benchmarking

Theory

Applications

Conclusions

Considerations on Complexity

Motivation

Bremen

ISTs

Benchmarking

Theory

Applications

Conclusior

Considerations on Complexity

Theoretical Fundament

- Lemma: A single sphere s can intersect only a constant number of disjoint spheres A that have at least the same radius.
- Theorem: The maximum number of intersecting pairs of spheres of two polydisperse sphere packings A and B with n spheres is in O(n).
 - Proof:

Theory

Applications: A Multi-User Haptic Workspace

- Two user bi-manual interaction
- >12 dynamic objects, triangle count > 2 Millions
- Stable 1000Hz simulation rate on normal consumer PC
- Game to evaluate the influence of the degrees of freedom in haptics

Theory

Applications

Applications: KNPTIK

 The first competitive 3D multiplayer game for both sighted and blind people

Benchmarking

Theory

Applications

Conclusions

6-DOF Haptics for Streaming Point Clouds

Motivation

ISTs

Benchmarking

Theory

Applications

Conclusior

Applications: Collision Avoidance in Robotics

Conclusions and Future Challenges

- First algorithm to compute the penetration volume efficiently
- Independent of object complexity
- Worst case O(n) overlapping spheres
 - O(1) parallel time complexity
- <1 msec for > 200k spheres
- Continuous forces and torques
- Future works
 - Thin sheets
 - Deformable objects
 - Rendering
 - Application to other problems
 - Segmentation, Reconstruction,...

Thank You!

KINIPTIK

Protosphere

René Weller

weller@cs.uni-bremen.de http://cgvr.cs.uni-bremen.de

Motivation

IST

Benchmarking

Theory

Applicatio

Conclu

CG

Motivation

ISTs

Benchmarking

Theory

Applicatio

Conclusior