
TLBO-based Algorithms for Minimalization of

Multi-Ray Path Lengths in Voxel Object

Representations on the GPU

Thomas Hudcovic

May 23, 2022

Fachbereich 3 - Mathematik / Informatik

Computer Graphics and Virtual Reality group (CGVR)
https://cgvr.cs.uni-bremen.de/

Master Thesis

TLBO-based Algorithms for Minimalization of
Multi-Ray Path Lengths in Voxel Object

Representations on the GPU

Thomas Hudcovic

Examiner 1 Prof. Dr. Gabriel Zachmann
Fachbereich 3 - Mathematik / Informatik
Universität Bremen

Examiner 2 Prof. Dr. Ron Kikinis
Harvard Medical School, Department of Radiology
Harvard University

Advisors Prof. Dr. Gabriel Zachmann
Dr. René Weller

May 23, 2022

https://cgvr.cs.uni-bremen.de/

Thomas Hudcovic

TLBO-based Algorithms for Minimalization of Multi-Ray Path Lengths in Voxel Object Represen-

tations on the GPU

Master Thesis, May 23, 2022

Examiners: Prof. Dr. Gabriel Zachmann and Prof. Dr. Ron Kikinis

Advisors: Prof. Dr. Gabriel Zachmann and Dr. René Weller

Universität Bremen

Computer Graphics and Virtual Reality group (CGVR)

https: // cgvr. cs. uni-bremen. de/

Fachbereich 3 - Mathematik / Informatik

Bibliothekstraße 5

28359 Bremen

https://cgvr.cs.uni-bremen.de/

Abstract

This master thesis presents an approach, implemented as a usable system, to solve a
subproblem found in the area of ray tracing in heterogeneous media: Determining
the "shortest path", where the definition of "shortest" is dependent on the application
domain. For example, in nuclear physics, "shortest" can mean the least amount of
energy required for a particle/wave to traverse a volume from point A to B. The
application domain chosen for this thesis is radiation therapy with charged particles,
specifically radiation therapy with protons and how to determine the best beam
angles depending constraints and the media given.
This is done by firstly ray tracing through a CT, or similar discretized spatial data in
form of a 3D grid, using the appropriate beam model to build a solution space or
"cost map".This is then used, along with the domain-specific constraints, to form a
binary multidimensional knapsack problem (0/1-MKP). This is then solved using a
more recent metaheuristic called "Teaching-Learning-Based Optimization" (TLBO)
over a initially generated population of solution candidates. All of this is attempted
to be solved with performance in mind: Major components of every step ("cost map
generation", "initial population generation", "evaluation", "repair operation") are
utilizing the GPU.
In fact, utilizing the GPU to solve TLBO-specific steps is generally not widely explored
and to the best of the author’s knowledge, one specific operation of this variation
of the TLBO-algorithm, the repair operator, has no well-documented GPU-based
implementation. Furthermore, to the best of the author’s knowledge, the utilization
of TLBO as a metaheuristic within the application domain of radiation therapy has
also not been widely explored.
The quality of the results as well as the time required for computation indicate that
the system developed in this thesis can be usable as a suggestive indicator for a
domain expert to include in further considerations.

v

List of Figures

2.1 Ray tracing a simple scene, only using primary and (secondary) shadow
rays with one light source. 10

2.2 Voxel traversal during ray tracing as described by Amanatides et al.[AW87]
(Figure adapted from Xiao et al.[Xia+12]) 13

2.3 Juxtaposition of the idea of ray tracing using beam models 17

2.4 Relative dose distributions in water for common radiation modalities.
The Bragg-curve with the corresponding Bragg-peak can be seen for
protons (red) and carbon ions (blue). Taken from [Kai+19]. 20

2.5 Visualization of the water equivalent thickness twater and a correspond-
ing material tmaterial for proton radiation. 25

2.6 Top: A CT scan consists of slices of volumetric data; here slices along
the longitudinal axis. Bottom: A sample slice of a CT scan of a patient’s
head. Images taken from [Can17]. 28

2.7 Left: Schematic overview of volume concepts. Right: Example of
segmented volumes in CT scan slice (longitudinal axis) of the upper
torso region. 29

2.8 High-level overview of the principal steps included in radiation therapy,
with beam angle selection/optimization (marked in red) being the step
this thesis focuses on. 31

2.9 Dose volume histogram (DVH) produced by matRad for the dosimetry
in the example shown in figure 2.10. 32

2.10 Main screen of matRad (matRadGUI) with example session. 33

2.11 Stork et al’s taxonomy of optimization algortihms and metaheuristics
categorized in classes according the respective techniques used. Taken
from [SEB20]. 37

3.1 High-level visualization of the main steps of the proposed ray path
optimization pipeline. 41

3.2 High-level visualization of the system and its major components. Note
that MEX is a specific Matlab format, utilizing a C++ Matlab library
to allow for access to the Matlab C++ API(MRPO = Multi-Ray Path
Optimization) . 42

3.3 A cuboid surface object consists of the hull voxels of a cuboid laid out
sequentially as an array to reduce cache misses. 45

vii

3.4 Structure of the main component of cost map generation. 47
3.5 A selection of space-filling curves in 2D space, their linear indexing

scheme (middle) and their respective binary encoding. 49
3.6 2D example of the Z-order (or Z space-filling) curve and its indexing

scheme. 49
3.7 2D slice showing how the modified algorithm based on Xiao et al.’s

work[Xia+12] is working in parallel. 50
3.8 Visualization of the evaluation operation and its parallelization scheme. 63
3.9 High-level visualization of the main steps repair operation. 67
3.10 Visualization of the drop operation. 72
3.11 Visualization of the add operation. 75

4.1 Top: A theoretical ideal cumulative DVH (cDVH). Bottom: A theoretical
ideal differential DVH (dDVH). 82

4.2 CostMap (ray Tracing) timings. 85
4.3 Initial population generation timing visualizations. 87
4.4 TLBO timing visualizations. 89
4.5 "Head And Neck" results. 92
4.6 "Prostate" results. 93
4.7 "TG119" results. 94
4.8 "Alderson-Phantom" results. 95
4.9 "Box-Phantom" results. 96
4.10 "Liver" results. 97

viii

List of Tables

2.1 Overview of nuclear interaction types of ionizing photon radiation
occurring in radiation therapy. 15

2.2 Overview of the significant radiation types used in radiation therapy
with typical energy ranges used. 18

2.3 Overview of nuclear interaction types of ionizing proton radiation oc-
curring in radiation therapy. 21

2.4 A selection of fitted values for α and P for water. Valid for the proton
energy range of 50 to 300 MeV (therapeutic range). 24

4.1 Test system specifications. 83
4.2 Overview of data set scenarios. 84
4.3 Initial population generation timings of 50 runs. 88
4.4 TLBO timings of 50 main loop iterations. 90

ix

List of Algorithms

1 Xiao et al.’s description of the original DDA-based ray-tracing algorithm
by Amanatides et al.[AW87], edited for clarity. 12

2 Basic structure of an optimization algorithm according to Stork et
al.[SEB20] . 34

3 The TLBO variation as described by Kern et al.[KLV20]. 38

4 High-level description of steps inside Matlab/matRad with inputs origi-
nating from a DICOM-file . 44

5 Xiao et al.’s description of the optimized version of the original DDA-
based ray-tracing algorithm by Amanatides et al.[AW87]. 51

6 The TLBO variation as described by Kern et al.[KLV20]. 54

7 Initialize population algorithm. Generates unique, feasible solutions
according to a given population size. 56

8 Outline of the generalized dot product kernel, which performs a partial
reduction operation as well. 65

9 Algorithm to compute the surrogate multipliers. 70

10 Algorithm to use the computed surrogate multipliers to compute the
utility ratios. 71

11 Algorithm to sort a solution candidate according to the computed
utility ratios. It uses a custom sort iterator, permuting (sorting) an
input range according to a permutation vector 71

xi

Erklärung

Ich erkläre eidesstattlich, dass ich die vorliegende Arbeit selbstständig und ohne
fremde Hilfe verfasst, andere als die angegebenen Quellen nicht benutzt und die
den benutzten Quellen entnommenen Stellen als solche gekennzeichnet habe. Die
Arbeit wurde bisher in gleicher oder ähnlicher Form keiner anderen Prüfungsbehörde
vorgelegt.

Desweiteren habe ich keine Informatik-Masterprüfung in dem gleichen oder einem
fachlich entsprechenden Studiengang an einer wissenschaftlichen Hochschule in
der Bundesrepubilk Deutschland endgültig bestanden oder nicht bestanden oder
befinde mich in einem entsprechenden Prüfungsverfahren. Ich habe nicht den
Prüfungsanspruch durch entgültiges Nichtbestehen einer Prüfung verloren.

Bremen, May 23, 2022

Thomas Hudcovic

Contents

1 Introduction 1

1.1 Motivation And Problem Statement 1

1.1.1 Contribution And Goal . 3

1.2 Related Work . 4

1.3 Thesis Structure . 8

2 Preliminaries 9

2.1 Ray Tracing And Beam Models . 9

2.1.1 Ray Tracing . 10

2.1.2 Photon Radiation Physics . 14

2.2 Proton Radiation Physics . 18

2.2.1 Bethe-Bloch Equation . 22

2.2.2 Bragg-Kleeman . 23

2.2.3 Water Equivalent Thickness And Composite Materials 25

2.3 Proton Radiation Therapy . 27

2.3.1 CT Scans . 27

2.3.2 Geometric Volume Concepts 29

2.3.3 Treatment Planning Systems 31

2.4 Mathematical Optimization And Metaheuristics 34

2.4.1 The 0/1 Multidimensional Knapsack Problem 35

2.4.2 Metaheuristics And Teaching-Learning-Based Optimization . . 35

3 System And Methods 41

3.1 Overview . 41

3.2 Input . 43

3.3 Cuboid And Cuboid Surface . 44

3.4 Cost Map Generation . 47

3.4.1 Branch-Optimized 3D DDA Kernel 50

3.4.2 On The Beam Model . 52

3.5 Optimizing Paths . 53

3.5.1 Initial Population Generation 56

3.5.1.1 Complexity . 59

3.5.2 Evaluation Operator . 60

3.5.2.1 Complexity . 64

xv

3.5.3 Repair Operator . 67
3.5.3.1 Utility Ratios . 68
3.5.3.2 Drop . 72
3.5.3.3 Add . 74
3.5.3.4 Complexity . 76

3.5.4 Result And Initial Energy Of The Ray/Beam 79

4 Evaluation And Discussion 81
4.1 Dose-Volume Histograms (DVH) . 82
4.2 Evaluation . 83

4.2.1 Cost Map . 84
4.2.2 TLBO . 85

4.2.2.1 Initial Population Generation Timings 87
4.2.2.2 Optimization (Main Loop) Timings 89
4.2.2.3 Optimization (TLBO) Results 91

4.3 Discussion . 98
4.3.1 Limitations And Future Work 100

Bibliography 103

xvi

1Introduction

1.1 Motivation And Problem Statement

In 1525, Albrecht Dürer described a technique to help draw (render) perspective
geometry on a flat surface. Utilizing a string (ray) going from the object to be drawn
through a frame simulating the flat surface[Hug+13]. By marking the position
within the frame where the string intersects (tracing the ray), a perspectively correct
corresponding point can be drawn on the flat surface. This principle of tracing a ray
to render 3D scenes on a 2D surface has been one of the foundational principles of
computer graphics[Hug+13], with the first simple ray tracer described by Arthur
Appel in 1968[App68].
A natural evolution of the problem of tracing rays for rendering purposes in homoge-
neous media like air, and only considering opaque or fully reflective objects, is the
consideration of different possible compositions of the medium the rays are traced
through. Specifically, ray tracing through a volume with possible sub-volumes of
different densities and nuclear reaction characteristics, influencing photons along
the path, including objects with varying transparency and/or photon refraction and
reflection attributes (e.g. rendering of clouds, fog, windows, water, "thin objects"
like leaves or paper).

An occurring subproblem of ray tracing heterogeneous media is determining the
"shortest path", where the definition of "shortest" is dependent on the application
domain. For example, in nuclear physics, "shortest" can mean the least amount of
energy required for a particle/ray to traverse through the volume. In geophysics/-
seismology, it can be interpreted as the part of the path of a seismic wave losing
the least amount of energy, i.e. where the seismic wave has the longest reach (or
the inverse!). Both examples depend on the density and composition of the volume.
Looking at the literature, beam positioning in medial physics within the context
of radiation therapy for cancer treatment is a very popular topic. The motivation
thereof is easily found:
In 2020, the World Health Organization (WHO) reported cancer as a leading cause
of death world wide, with approximately 10 million deaths globally in 2020 alone
and with lung and breast cancer sharing the ”top spot” for the most reported cancer
types[WHO20]. Official reported numbers of cancer cases and types for the United
States alone, beginning from the early 1930s until today, show either a rapid growth

1

or at least steady growth of cancer cases[Glo18]. Naturally, cancer and the therapy
thereof has become one of the key areas of medical research, with one of the earliest
reported descriptions made by Hippocrates in 460-370 BCE [WC08]. With the advent
of physical advancements, especially in nuclear and particle physics, development
and research of possible therapy/treatment forms for cancer, incorporating these
new discoveries and developments, has been growing rapidly since the late 19th
century[WC08].
Today, the common treatment modalities for cancer can be categorized into surgery,
chemotherapy and radiation therapy, with the possibility of incorporating all modali-
ties into a therapy plan for a patient. Radiation therapy specifically has been a focus
of medical research for cancer therapy as it promises a non-invasive and localized
form of treatment, with the main trade-off being the cost and acquisition of the
equipment and trained personnel required[Zie15].

This thesis focuses on external (particle) radiation treatment as an application do-
main of presenting a method for attaining shortest paths in a heterogeneous medium,
where carefully positioned beams around a patient are aimed at a therapeutic vol-
ume including the tumor and emitting radiation in such a way that the maximum
energy dose of the radiation hits the tumor, while sparing non-cancerous tissue. The
main differentiating factor of external radiation treatment procedures is the beam
modality, i.e. the type of radiation emitted. The most used and researched being
high-energy photon radiation, while ion particles (Protons, Carbon Ions, ...) still
remain a niche in clinical practice despite favourable physical attributes making
them more suited for treating deeper situated tumors[NZ15]. Especially for tumors
situated in more critical areas like the brain, the neck or the lungs, where maximizing
the amount of healthy tissues spared is, in theory, easier to achieve than with high-
energy photons[NZ15]. Over/under-shooting the target being an especially critical
issue with charged particles, because of their nature in delivering the maximum
amount of dosage at a specific point (Bragg-Peak) as opposed to broader area of
delivery for photons[NZ15]. The favourable attributes of charged particle radiation
being the reason as to why proton radiation as beam modality has been chosen for
this work.

The shortest path here is defined by the path through the body requiring the least
amount of initial energy and proton fluence (influencing the number of nuclear
interactions along the way, e.g. irradiation) required to hit the target while travel-
ling through the body (heterogeneous media), sparing healthy tissue as much as
possible.

2 Chapter 1 Introduction

1.1.1 Contribution And Goal

The goal of this thesis is to describe and provide a fast method for selecting the
shortest direct paths in heterogeneous media, using the application domain of proton
radiation therapy. This translates to the problem of selecting optimal beam angle
orientations for intensity-modulated proton therapy in an automatic manner, more
broadly known as "Beam Angle Optimization".
The DKFZ’s open-source matRad-tool[Wie+17], which is a treatment planning
system for radiation therapy, will be used as basis for communicating with the
system presented, as well as Matlab[MAT21] itself, in which matRad was written in.
With performance as one of the key goals, a lower level of control of memory and
computational paths is required. Thus, the system itself will be implemented in C++
and will also utilize the GPU, using nVidia’s CUDA[Nic+08] for parallelization. This
thesis strives to contribute the following:

• A fully implemented system to determine shortest direct paths through het-
erogeneous media using ray tracing and teaching-learning-based optimization
(TLBO) using the GPU.

• A new approach to parallelizing the repair- and evaluation operations of TLBO
on the GPU.

• A fast method to generate an initial population of unique, viable solution
candidates for TLBO, using the isomorphic mapping between factoriadic and
k-combinations.

• An approach to the beam angle optimization problem in proton radiation
therapy, implemented for an open-source treatment planning system (matRad).

• To best of the author’s knowledge the first application of TLBO to optimize
multi-ray path lengths over a heterogeneous voxel grid.

Regarding the second item: A thorough search of the related literature yielded
only one other approach to utilize the GPU for the purpose of parallizing TLBO,
developed by Rico-Garcia et al.[Ric+19]. However, the method by Rico-Garcia et
al. does not really document or describe in detail how the evaluation operation is
being computed on the GPU, nor does it utilize a repair operator as described in the
approach of Kern et al.[KLV20], which serves as the basis for the method developed
in this thesis.

1.1 Motivation And Problem Statement 3

1.2 Related Work

The problem of attaining shortest direct paths through a voxel grid describing
heterogeneous media/volumes can be observed from two perspectives: From a
specific application area (e.g. beam positions in medical physics or drill/boring paths
for gas or oil extraction in geophysics) or as a system of two major components: Ray
tracing and optimization algorithms.

For the first perspective, as this thesis focuses on the application area of proton
radiation therapy within medical physics, related work/research has proven to be
abundant:

Beam angle optimization is part of a bigger pipeline of algorithms and methods to
compute target doses from input CT data, known as treatment planning systems
(TPS). Selecting optimal beam angles automatically has been a long-researched
problem in photon-based radiation therapy and the general nature of beam angle
optimization can be seen as invariant to the radiation modality. However, because
of the nature of charged particles, solutions for photon-based beams often aren’t
directly applicable, so research for proton-based beam angle optimization is not
as numerous in comparison. And of that research done on beam angle selection,
there is a significant amount concentrating on the robustness of beam angles against
uncertainties, since it is a more critical factor in proton therapy[LCM14]. Generally,
beam angle optimization is a optimization problem on a concave and usually at least
C0-continuous manifold or search space[BS93]. The newer approach to proton ther-
apy, known as intensity-modulated proton therapy (IMPT), is considered here, with
pencil-beam scanning (PBS) as active delivery method, where the target volume is
discretized into spots shot at by a proton beam with varying initial energy[Pag17].

A common approach to the problem of beam angle optimization is to use candidate
angles, either by using a form of sampling on a spherical surface or by just consider-
ing equidistantly placed angles or by candidate angles based on clinical heuristics.
Out of this candidate set of beam angles, an optimization technique is applied on to
get the angles most suited to given clinical objectives to optimize against.
Kiely et al. have considered two common metrics as criteria for optimizing beam
angles. They considered the geometric depth or geometric path length and the
variation of Hounsfield units along the path, for lower pelvis targets. Comparison
of impact of these two metrics found that the shortest geometric path length is still
more impactful on overall dose distribution of the patient than HU variation and
therefore more important to consider when optimizing beam angles[KWB15].

4 Chapter 1 Introduction

Significant work has been done by Gu et al. Also using a given set of candidate
angles, comprised of equidistantly placed angles around a sphere, then for every
candidate beam angle, the scanning spots covering the target volume were calculated
and optimal beams were chosen by formulation of three constraints: Sparsity of
spots, group sparsity of beams and dose fidelity to penalize variation of set clinical
target doses for organs-at-risk and the target volume. Optimization was done by
applying the Fast Iterative Shrinkage-Thresholding algorithm[Gu+18]. Building on
this, Gu et al. have considered the heterogeneity of the tissue and incorporated it into
the group sparsity constraint. A heterogeneity index evaluates tissue heterogeneity
lateral to the beams, with the goal being to choose tissue with less heterogeneity,
such that beams and beam angles are more robust to geometric variations/uncer-
tainties[Gu+19]. A newer approach by Gu et al. considered the inter-fractional
variation of beam angles to optimize for dosages by choosing from a pool of up to 800
non-coplanar candidate beams, with a varying beam amount of 1 to 4. These beams
are then compared to treatment plans with fixed beams between fractions[Gu+20].
For both, similar number of beams were chosen to have a common basis to compare
on. It was found that variation of beam angles between fractions spare organs-at-risk
better and even allow for less applied number of beams while delivering the same
dose.

A hybrid approach to selecting optimal beam angles without the need for a set of
candidate angles beforehand was investigated by Bertsimas et al. They used simu-
lated annealing to search over a beam heuristic together with gradient information
to solve quickly for local minima, which are then used to solve globally for optimal
beam angles[Ber+13].
Taasti et al. considered Bayesian optimization to select optimal beam angles out of
an initial set of candidate beams. They argue that Bayesian optimization works well
on smooth manifolds, i.e. if the objective function has little variation for each point’s
epsilon-environment within the function’s range[Taa+20]. The resulting treatment
plans were then evaluated by a score-function that rates the quality of the generated
angles/plan by clinical criteria.

One approach, also used by this thesis, was described by Kim et al. They transform
all the volumes of interest (including the target volume and organs-at-risk) into a
common coordinate space, where the different tissue densities and heterogeneities
are described by a common metric known as water-equivalent path length (WEPL).
WEPL describes the corresponding thickness in water of a tissue according to a radia-
tion modality chosen (here proton radiation) and respective energy-levels[Kim+20].
However, their approach was to optimize beam angles for robustness: Using WEPL,
they formulated a metric upon which range variations, for example due to setup error
or changes in the structure of surrounding tissue in the patient, and their impact

1.2 Related Work 5

on therapeutic effects can be measured. Beam angles being the most susceptible
to range variations were discarded while angles being more robust against range
variations were suggested. Range variations were calculated by considering the
angular variation of calculated WEPLs for beams, equidistantly in 5 degree intervals
between 0 and 180 degrees.
Another, more disputed [Pag17][JMP18][Lüh+18], metric to evaluate beam angle
orientations and general effectiveness of a treatment plan is relative biological ef-
fectiveness (RBE). RBE describes the ratio of physical doses between two different
types of radiation required to produce the same biological endpoint[Pag17], usually
in comparison to photon-based radiation. Protons have an RBE of 1.1, i.e. proton
radiation is considered to be 10% more effective[Pag17].

The second perspective, observing the problem as a composition of ray tracing and
optimization, also delivered an abundance of related work/research:

From the first conceptualization and implementation of a simple ray tracing algo-
rithm in 1968 by Arthur Appel[App68], to the efforts of Purcell et al. of utilizing
the GPU as an accelerator for ray tracing via massive parallelization[Pur+05], ray
tracing has been a perennial topic of research throughout the whole existence of
computer graphics as a field of research. And now with GPU manufacturers pushing
real-time ray tracing capabilities as a selling point for consumer-grade GPUs, recent
research has been more active again. As part of this thesis’ method is to ray trace
heterogeneous voxel grids on the GPU, research on ray tracing and related data
structures on the GPU were the main topics when looking through related research.
Due to the nature of the streaming multiprocessors applied on the GPU, hierarchical
sptial data structures employing trees or other recursive hierarchies have been very
hard to implement on the GPU without sacrificing a lot of performance in compari-
son to CPU implementations[Kel+19][Mei+21]. Commonly, suitable spatial data
structures to accelerate object rendering are constructed and initialized "offline",
i.e. on the CPU, and then sent over to the GPU for processing and rendering. Each
update to the data structure is again done on the CPU and again sent over to the
GPU.[Mei+21].
It can be observed that a lot of somewhat recent worked focuses on paralleliz-
ing either the foundational DDA algorithms by Siddon et al.[Sid85] and Ama-
natides et al.[AW87] (and others) or driving-axis methods, like Joseph’s projection
method[Jos82]of ray tracing for usage on the GPU, where the "compuitational direc-
tion" of sampling is determined by the biggest component of the direction vector, i.e.
the driving-axis. The focus there lies often in optimizing memory consumption and
layout, as done by Heinrich et al.[Hei+14] (for Siddon et al’s algorithm), by cleverly
overlapping host-device memory transfers as well as laying out data for concurrent
access in (pinned) page memory. Or by reducing branch divergence, as described by
Xiao et al.[Xia+12] for Amanatides et al’s algorithm (this will be used as the basis

6 Chapter 1 Introduction

for the ray tracing algorithm used in this thesis), or a branch-divergence reduction
for the algorithm developed by Graetz[Gra20] of the Joseph-projection algorithm.
Both of the approaches by Xiao et al. and Graetz for reducing branch-divergence
their respective progenitor algorithms are essentially a combination of reformulating
if-conditionals as Boolean equations and shifting calculations from within the loop
to the outside and only updating fragmental information instead. Ongoing research
has also specifically targeted heterogeneous (or rather transparent/translucent vol-
umes) data, as presented by Zhang[Tan21], wherein a GPU-based ray tracer was
developed utilizing Vulkan and showing the major trade-off: Accuracy (of the light
refracted/absorbed/reflected) vs. speed. Or a special grid to discretize a scene
to encode relative distances called (Euclidean) distance fields[FH12], to encode
translucency. These distance fields can also be used as a data structure to accelerate
ray tracing[KM19] (which served as an inspiration for the "CostMap"-approach
discussed in chapter 3) and are used in the current version of Unreal Engine for
calculating soft shadows[Epi20b] or ambient occlusion[Epi20a].

Akin to ray tracing, mathematical optimization is also a perennial topic of research
with an especially wide application area. Optimization algorithms and more specif-
ically metaheuristics are usually found when dealing with problems in NP. Thus,
metaheuristics tend to have non-deterministic components, often related, but not
limited to, generating random (usually with a specific direction or bias, i.e. not
completely random) solutions as a basis or combining solutions to form new ones
with a certain (directed/biased) randomness. As such, they don’t guarantee to
deliver the best solution for a given problem but attempt to converge towards the
(global) optimum, i.e. delivering solutions that are "good enough". As one specific
NP-complete optimization problem, known as 0/1 Multidimensional Knapsack Prob-
lem (MKP, refer to chapter 2 for a more detailed explanation), is attempted to be
solved in this thesis as part of the overall problem statement, the focus will be on
related research pertaining to MKP.
A common and proven approach to solving (smaller) MKP-problems is to encode
them as a linear programming problem and then applying a relaxation scheme
(usually relaxing the binary 0/1 constraint to the real number space, i.e. providing
more "wiggle room")[Dye+17]. Another popular approach is to apply evolutionary
algorithms, which usually utilize biologically inspired combination operations of
two solutions in a population with a certain degree of randomness to form new
ones[AMA19]. The most popular algorithm of this category is known as Genetic
Algorithm, with seminal (and often cited) work done by Chu at al.[CB98]. Utilizing
the GPU for parallelization, population-based metaheuristics like the aforementioned
genetic algorithm, have been a recent focus of research as well: Another type of these
metaheuristics are particle swarm optimization (PSO), with Hung et al. utilizing the
GPU for acceleration via a thread-pool model and step-wise memory access patterns
inbetween work-steps[HW12]. Another kind of population-based algorithms that

1.2 Related Work 7

profit from GPU acceleration to solve (among others) the MKP problem is known as
ant colony optimization (ACO), with Huang et al. surveying and discussing various
approaches made to parallelize ACO on the GPU[HLY19], with general message of
ACO receiving a significant performance boost as well.
However, many metaheuristic methods require other parameters in addition to the
problem input as well. And depending on the values of these required parameters,
the algorithms may only deliver sub-optimal solutions or fail entirely. This has
resulted in the advent of a sub-problem as a dedicated area of research: Parameter
tuning, often utilizing domain-specific knowledge by an expert of the problem do-
main wherein the algorithms are applied or, more recently, using neural networks to
learn parameters from past data and applying it to similar problems[MD19].
For this thesis, another category of metaheuristics has been chosen that require very
little to no parameter tuning as the author has not enough domain specific knowl-
edge in either medicine nor medical physics to rule out "bad parameter tuning" as a
possible cause for sub-optimal results. The area of operations research has delivered
a fairly recent metaheuristic described by Rao et al., called "Teaching-Learning-based
optimization" (TLBO)[RSV11], consisting of two phases where one phase globally
optimizes the set ("Teaching phase") and a second phase locally optimizing the
solutions ("Learner phase"). A newer variation on it has been described by Kern et
al.[KLV20], adding the repair operator and combination methods used in the work
done by Chu et al. for genetic algorithms. The approach by Kern et al. has also been
chosen for this thesis as a basis and will be more thoroughly discussed in chapter 3.
Rico et al.[Ric+19] described a parallelized version of TLBO utilizing the GPU and
compared it with a similar algorithm called Jaya, also parallelized using the GPU,
and is to the best of the author’s knowledge the only sufficently described method of
using TLBO on the GPU.

1.3 Thesis Structure

Following this chapter, in which motivations, goals, contributions and related work
is discussed, an overview and explanation of used technologies and methods will be
given.

Chapter 3 presents an overview of the system itself and its components, as well as
providing detailed explanations of algorithms and methods developed.

Chapter 4 concludes by discussing and evaluating results, as well as describing
the used data sets; and concluding by discussing limitations, suggesting possible
improvements and giving an outlook for future developments.

8 Chapter 1 Introduction

2Preliminaries

This chapter discusses all relevant preliminaries necessary to understand the method
developed and evaluated in the following chapters. It is assumed that the reader is
familiar with general computer science concepts but not necessarily familiar with
concepts used in radiation therapy and related particle physics. The relevant concepts
will be introduced here as well as an attempt will be made to build an analogy from
concepts of computer science, especially computer graphics, to radiation therapy,
hopefully to support understanding.
This is also the reason why, although a fundamental concept in computer graphics,
ray tracing will be discussed very briefly. It is assumed the reader is familiar with
GPUs and parallelization on GPUs (implemented via CUDA).

2.1 Ray Tracing And Beam Models

When approaching the topic of medical physics, specifically radiation physics and
proton radiation therapy as an application area for the system/set of algorithms
developed in this thesis from a computer science point of view, it has proven helpful
to identify analogous connections that help translate already familiar structures (here
from a viewpoint of rendering) to unfamiliar structures (particle physics, radiation
physics).
The spectrum of electromagnetic waves largely comprises photons of different energy
levels (i.e. wave lengths), under which also the visible light spectrum as well as
higher energy photons can be found (x-rays, γ-rays). Computer graphics has since
its inception aspired to depict the visual phenomena that can be perceived by
humans as accurately as possible but always with respect to computability in general
and computability within time constraints (e.g. for real-time rendering), and thus
diverged from directly applying (quantum)-physical models for computation: Many
of the physical models have proven to be not of closed form and thus, approximations
have been developed, often using lower dimensional and/or simplified domains,
forgoing certain phenomena considered irrelevant for the problem at hand (e.g. the
famous rendering equation by [Kaj86], mostly focusing on phenomena related to
geometric optics in homogeneous media related to photon traversal).

9

Ray tracing, the popular and foundational principle of rendering a (3D) scene on
an image plane by tracing the path of a ray of photons and tracking reflectance and
radiance behaviour[PJH16] can also be used with other "beam models", i.e. with
other particles than photons of the visible light spectrum and in other media than
air. This idea will be referred to as beam model or beam modality henceforth. As ray
tracing in its core principles essentially remains the same regardless of beam model
used, it will be briefly recalled next.

2.1.1 Ray Tracing

In 1968, Arthur Appel formally introduced and described the first simple ray
tracer[App68] and has become one of the foundational ideas of rendering in the
computer graphics community[Hug+13]. The idea however, can be traced back
hundreds of years earlier to 1525 and Albrecht Dürer, describing a technique to help
draw (render) perspective geometry on a flat surface. Utilizing a string (ray) going
from the object to be drawn through a frame simulating the flat surface. By marking
the position within the frame where the string intersects (tracing the ray), a perspec-
tively correct corresponding point can be drawn on the flat surface[Hug+13].

Primary
Ray

Light
Source

Camera /
View point

Image
Projection

Plane

Shadow
Ray

Fig. 2.1: Ray tracing a simple scene, only using primary and (secondary) shadow rays with
one light source.

As depicted in figure 2.1, from a view point or camera, (primary) rays are shot at the
scene until they collide with an object (determines visibility) or a scene boundary.
From the point of impact, a secondary ray to all the light sources in the scene

10 Chapter 2 Preliminaries

is traced to determine the coloring and shading. The corresponding pixel on the
discretized image projection plane (often a computer display) intersecting with the
corresponding ray is receiving the accumulated color of the tracing.
Depending on the properties of the objects and the beam model given, a beam
might go through an object, losing energy in the process (and/or emitting new light
to simulate emission in more complex beam models), might scatter off in another
direction, is reflected or is absorbed. Often, in more advanced ray tracers, additions
are made to simulate more complex visual phenomena. E.g. depicting soft shadows
often use more rays than just one shadow ray shot out in a specific way (called
sampling scheme)[PJH16]. Or introducing additional conceptual planes in the
scene used for computational purposes like a focal plane together with a Gaussian
convolution of the rays traversing through it to simulate depth-of-field[PJH16].

Even more advanced is to generalize the concept of ray tracing to a method called
"Path Tracing", where, after shooting the primary rays, stochastic methods (Monte
Carlo methods) are applied to determine a hemisphere of randomly shot out sec-
ondary rays, which in turn will shoot out also tertiary rays randomly from their
point of impact (often with certain biases depending on the material of the object)
to sample light and simulate "indirect illumination" from light bouncing off from
other objects to ultimately simulate an effect called global illumination (among other
things)[PJH16].

As ray tracing is part of the implementation of the system and method developed in
this thesis, it is helpful to list the algorithmic basis on which that part is developed:
The seminal work by Amanatides et al[AW87], describing a fast method of ray
tracing through a scene or volume discretized by a grid.

2.1 Ray Tracing And Beam Models 11

Algorithm 1: Xiao et al.’s description of the original DDA-based ray-tracing
algorithm by Amanatides et al.[AW87], edited for clarity. The traversal part
relating to figure 2.2 is colored in orange.

1 initialize ray information(source point S, direction
−→
d);

2 initialize voxel information(voxel size vsize);
3 initialize Vcurrent as indices of the voxel where S is;

4 if ∃di ∈
−→
d : di 6= 0 then

5 step = {si|∀di ∈
−→
d : si = ternary_op((di < 0),−1, 1)};

6
−−→
dinv = 1−→

d
;

7 t = ||S−"nearest boundary intersection with ray from S"||2;

8 else

9
−−→
dinv ="a large value for each component";

10 t ="a large value for each component";

11 ∆ = vsize ·
−−→
dinv;

12 while Vcurrent is inside traversal region do
13 if tx < ty then
14 if tx < tz then
15 tx+ = ∆x;
16 Vcurrentx += stepx;

17 else
18 tz+ = ∆z;
19 Vcurrentz += stepz;

20 else
21 if ty < tz then
22 ty+ = ∆y;
23 Vcurrenty += stepy;

24 else
25 tz+ = ∆z;
26 Vcurrentz += stepz;

12 Chapter 2 Preliminaries

S

Ray

GridVcurrent

Vcurrent.x += stepx Vcurrent.y += stepy

t.x t.y t.x += Δx

Fig. 2.2: Voxel traversal during ray tracing as described by Amanatides et al.[AW87] (Figure
adapted from Xiao et al.[Xia+12])

The key part here is the while-loop: Depending on which component of t is the
smallest, i.e. the nearest intersection boundary with the grid, Vcurrent components
are accordingly incremented by step. The idea is to view the grid as equidistant
hyperplanes of each coordinate axis and using the equidistant attribute to compute
the distances to the next intersection boundary (i.e. the next hyperplane) in relation
to the ray. Vcurrent is incremented this way along the ray direction

−→
d as long as

it is inside the grid. Consequently, this approach does not work on irregular grids
(e.g. meshes), ray marching might be a better approach in such cases. However, this
method will be used later in a parallelized context using Xiao et al.’s contribution,
explained in detail in chapter 3.

The purpose for this explanation is to show and familiarize the reader with the
idea that regardless the beam model being used, several things about any particle
can be "traced" as long as a model exists. So in theory, rendering any scene in any
heterogeneous or homogeneous media for any particle phenomenon is possible and
applicable via ray tracing (or variations thereof). While it may not be as simple
as "plug and play", the general principle can be summarized as such. And tracing
protons through a human body is essentially the same category of problem, just with
a different model with more considerations.

2.1 Ray Tracing And Beam Models 13

2.1.2 Photon Radiation Physics

Described in the following are the four main nuclear interaction types of ionizing
photon radiation:

Coherent Scattering

e-

If the dual nature of electromagnetic radia-
tion is considered, coherent scattering of high-
energetic photons can be viewed as an incident
electromagnetic wave passing near an orbital
electron and oscillating it. The oscillation of
the electron generates electromagnetic radi-
ation of the same frequency as the incident
wave. Since no absorption or attenuation of
energy takes place, coherent scattering doesn’t
have much clinical significance[KG14]. The
generated wave is scattered at usually small
angles relative to the incident wave and has
the highest occurrence probability in lower-
energy photons[KG14].

Compton Effect

Photon

e-

Compton electron

The Compton Effect describes an interaction of
an incident high-energy photon with an orbital
electron, where the energy of the incident pho-
ton is much higher than the binding energy
of the electron to its atomic orbit. This colli-
sion causes the orbital electron to absorb some
of the incident photon’s energy and therefore
to be emitted from its orbit (Compton elec-
tron). The incident photon is scattered (Scat-
tered photon) with a lower energy-level as a
result.[KG14] This interaction is the most cru-
cial in photon-based radiation therapy.

14 Chapter 2 Preliminaries

Pair Production

Photon (> 1.02 MeV)

electron

positron

Pair Production occurs when an incident high-
energetic photon passes near the nucleus of an
atom, disappearing and creating an electron
and its antimatter (positron). Both particles
inherit the kinetic energy of the incident pho-
ton. The positron annihilates upon losing all
of its energy[KG14].

Photoelectric Effect

e-

Photoelectron

Auger electrons
e-

e-

X-Rays

The photoelectric effect describes a phe-
nomenon in which an incident high-energetic
photon’s energy is close to the binding energy
of an orbital electron. The photon hits the or-
bital electron, transferring all its energy, caus-
ing the electron to be ejected from its orbit
with the kinetic energy equal to the incident
photon’s energy minus the electron’s binding
energy (Photoelectron)[KG14]. The vacant
spot can be filled by one of the outer shell
electrons, which radiate X-Rays during the pro-
cess of jumping to another shell. There is also
a possibility of emitting Auger electrons dur-
ing the jump, when the energy released by
one of the outer shell electrons hits one of the
other outer shell electrons, causing them to be
ejected[KG14].

Tab. 2.1: Overview of nuclear interaction types of ionizing photon radiation occurring in
radiation therapy.

Ionizing photon radiation in the form of a beam of x-rays or γ-rays passing through
a medium is transferring energy to the absorber medium (the human tissue) by
ejecting orbital electrons from the medium’s atoms. The ejected electrons then
transfer their energy to other atoms in their paths, ionizing them in turn via inelastic
collisions. The energy resulting from this process destroys enough of the tissue’s cell
components (DNA) such that the cells get destroyed or inhibited in their cell division
cycle[KG14]. Because of the indirect nature of ionizing photon radiation, where

2.1 Ray Tracing And Beam Models 15

x-rays or γ-rays are just responsible for ejecting particles that directly ionize their
surroundings, ionizing photon radiation falls into the category of indirect ionizing
radiation[KG14].
Of the 4 main nuclear interaction types for high-energetic photons listed, coherent
scattering has no practical effect on ionizing the surrounding tissue for therapeutic
or diagnostic purposes, as no energy is absorbed by the absorber medium/tissue
and no significant attenuation of the incident beam’s energy occurs. For the remain-
ing three types, significant energy absorption and beam attenuation occurs; which
interaction type predominates in its occurrence depends on the incident photon
beam’s energy[KG14]. Diagnostic x-rays, usually in the keV energy range, interact
predominantly via the photoelectric effect, whereas therapeutic γ-rays, usually in
the MeV range, interact predominantly via the Compton effect and via pair produc-
tion[KG14]. In the lower MeV range (≤24MeV)[KG14], the Compton effect has the
highest occurrence probability. Pair production predominates in its occurrence in the
higher MeV ranges (>24MeV)[KG14].

Thus, familiar rendering equation by Kajiya is an approximation of the "classical"
electromagnetic wave models described by Maxwell and known as Maxwell equa-
tions, which were phenomenological models from a macroscopic observation point,
where a special focus was given to approximate of the famous rendering equation by
Kajiya[Kaj86], given here in its directional form[PJH16]:

L(x,−→ω0) = Le(x,−→ω0) +
∫

Ω
fr(x,−→ωi,−→ω0)Li(x,−→ωi) |cos θi| d−→ωi (2.1)

With:
ω0 := initial direction, x := position,
fr(x,−→ωi,−→ω0) := bidirectional reflectance distribution function (BRDF),
|cos θi| := the angle of the incoming/incident beam from direction ωi and the
normal vector of position x, essentially equal to −→n · ωi,∫

Ω := hemisphere of incident directions of other rays denoted by i, rho(−→ω ,
−→
ω′) :=

phase function.

The rendering equation presents a model for rendering radiation of photons of
energies within the visible light spectrum and is widely used. However, as stated
by Kajiya himself, it is an approximation of selected phenomena of the classical
(macroscopic) electromagnetic wave model based on Maxwell’s equations, mainly
relating to geometrical optics (movement through homogeneous media, reflectance
of radiance, averaged transport loss of radiance)[Kaj86]. Maxwell’s models in turn
are also not accounting for every phenomenon observed from a quantum mechanical
point of view[KG14]. In truth, this model cannot be applied prima facie, since it
is not of closed form either. In fact, it can be argued that the whole approach of

16 Chapter 2 Preliminaries

rasterization to rendering is a series of composed methods that try to approximate
this equation.

Primary
Ray

Light
Source

Camera /
View point

Image
Projection

Plane

Shadow
Ray

Camera /
View point

Primary
Beam /Ray

Radiation
Projection

Plane

Primary
Beam /Ray

Radiation
Projection

Plane

Fig. 2.3: Left: Ray Tracing, i.e. tracing a particle on a linear path (ray) through a medium
(here the scene in air and the objects being fully opaque) using the model given by
equation 2.1
Right: Ray Tracing here works by the same principle, i.e. tracing a particle on a
linear path (ray) through a medium (here the scene in air and the sphere being
fully absorbing and the tetrahedron being of different density than air) using a
different model, e.g. for protons as described by equation 2.5.
The overall method remains the same but the physical constraints and calculations
changed.

A more detailed model (but an approximation as well) approximating the listed
photon interactions better is the radiative transfer equation for electromagnetic
waves, such as photons with energies of the visible light spectrum.[Jak+10]:

(−→ω ,−→∇)L(x,−→ω) = −(σa + σs)L(x,−→ω) +Q(x,−→ω) + σs

∫
Ω
L(x,−→ω)ρ(−→ω ,

−→
ω′)d
−→
ω′

(2.2)

With:
ω := direction, x := position, (−→ω ,−→∇) :=differential change,
σa := absorption coefficient, σs := scattering coefficient, Q(x,−→ω) := emission,∫

Ω := all directions in a sphere, rho(−→ω ,
−→
ω′ := phase function.

As Jakob et al. have processed into a computable form (equation 2.2) to help render
anisotropic materials, since the original is not of closed form for three-dimensional
space. Again, an (popular) example of a used beam model[PJH16].

2.1 Ray Tracing And Beam Models 17

2.2 Proton Radiation Physics

Selecting beam angles, which is just one of several optimization problems related
to radiation therapy, depends heavily on the modality of radiation chosen as the
underlying physics are different enough to make methods not applicable (at least
not directly) from one type of radiation to another. The most common modality of
radiation used is high-energy photon radiation, also known as gamma radiation.
Another increasingly popular type of radiation is using particles, of which protons
are this thesis’ focus. Generally, there are two broad categories of radiation: Electro-
magnetic and particle radiation. In radiation therapy however, only the ionizing part
of the electromagnetic spectrum is relevant, i.e. wave energies of 1keV and higher.
It is still common practice in the clinical application of proton therapy to manually
select possible beam emitter angles by trial-and-error together with the experience
of the planner and clinical lookup-tables[Gu+19].

Electromagnetic Particle

X-Rays (0.12keV - 50keV[NAS14]) Electrons
Gamma Rays (>50keV[NAS14]) Neutrons

Protons(50MeV - 250MeV for RT[NZ15])
Heavy Ions (Such as carbon ions)

Tab. 2.2: Overview of the significant radiation types used in radiation therapy with typical
energy ranges used.

With common units used in literature regarding radiation therapy being:
eV denoting electron-volt, which quantifies the kinetic energy gained by an electron
accelerating through voltage difference, i.e. potential difference, of a volt with 1eV
≈ 1.602 · 10−19J[NIS20].
Gy denoting Gray, which quantifies ionizing radiation dose absorbed by matter,
with 1Gy= 1 J

kg [BB11]. As an example, 7 · 10−4Gy is the absorbed dose of an X-Ray,
6 · 10−4 to 1.4 · 10−4Gy is the absorbed dose for a CT-Scan. For a mild case of acute
radiation sickness a absorbed dose of 0.8 to 2.1Gy is required over a period minutes
on sufficient body surface area[BB11].
RBE denoting Relative Biological Effectiveness, defined as the ratio of dose re-
quired to produce the same biological effect between a applied radiation modality
to a reference radiation modality (usually high-energy photons)[KG14]. With high-
energy photons having a RBE of 1 and protons having a RBE of 1.1[NZ15].

The main two differences between these radiation modalities being that high-
energetic photons carry no charge and were observed to only possess mass while
moving, thus adhering to the famous E = mc2 equation. Particles, such as protons,

18 Chapter 2 Preliminaries

have a resting mass and can carry charge; positive charge in the case of protons,
facilitated by their quark configuration[KG14]. These observed attributes heavily
influence the interaction of the radiation modality with the target medium and thus
influence treatment planning parameters and methods themselves.
The therapeutic target radiation is usually delivered in small doses over a period of
one or two months, depending on the parameters of the tumor[KG14] as delivering
the target dosage in one sitting would significantly damage surrounding healthy
tissue as well.
In figure 2.4, the curve describing the relative dose distributions for photons (at
18MeV) shows that 100% of energy is transferred right at the beginning of interaction
with an absorber medium (here water) and monotonically decreases as the photons
travel further. This is one main disadvantages of photon radiation: A target volume
at depth cannot be hit by 100% of the emitted energy, unless it is very close to the
beam’s entry point, meaning that healthy tissue will get hit by unnecessary radiation
dose if it is between the target volume and the beam’s entry point. Furthermore,
after the target volume has been hit by the beam, there is still significant dose being
delivered to healthy tissue ”behind” the target volume (called exit dose) due to the
almost linear nature of the monotonic decrease. In comparison with the Bragg curve
for hadrons, the maximum dose is delivered with almost pinpoint precision at depth
with the curve stopping right after (Bragg peak), meaning that there is no "trail"
of radiation dose delivered to healthy tissue ”behind” the target volume. However,
due to the Bragg-peak denoting the maximum dose delivered, the slight bit of the
graph right after the peak, falling sharply off is still a factor and a problem in proton
therapy, called "(distal) fall-off dose"[KG14].

2.2 Proton Radiation Physics 19

Fig. 2.4: Relative dose distributions in water for common radiation modalities. The Bragg-
curve with the corresponding Bragg-peak can be seen for protons (red) and carbon
ions (blue). Taken from [Kai+19].

Figure 2.4 visualizes the relative dose delivered for certain energies at a certain
depth, this also describes the stopping power S(E) or energy loss rate of particles
(here protons) as they travel through matter. It encodes the average energy loss per
unit distance[NZ15].

S(E)
ρ

= − δE
ρδx

(2.3)

With ρ denoting the mass density, E denoting the particle’s energy in eV and x

denoting the range in the particle’s path. Because this thesis will use water as the
reference frame for all subsequent calculations, ρ can be omitted as it behaves like a
constant.

S(E) = −δE
δx

(2.4)

Several models have been developed to calculate this value. For protons, two of the
most frequent approaches are presented in sections 2.2.1 and 2.2.2.

Described in the following are the three main nuclear interaction types of ionizing
proton radiation:

20 Chapter 2 Preliminaries

Elastic Coulomb Scattering

Proton

Elastic Coulomb scattering describes a process
whereby a incident proton is scattered at an
angle, while passing near an atomic nucleus.
Due to the proton’s positive charge, it is scat-
tered by the positive charge and much higher
mass of the nucleus[NZ15]. No significant ab-
sorption or attenuation occurs, the scattered
proton continues to travel in its new direc-
tion[NZ15].

Inelastic Coulomb Scattering

electron

Proton

If an incident proton hits an orbital electron
along its path, the electron is ejected from its
orbit. Due to the proton’s mass, which is 1832
electron masses, the proton is not scattered (an
important attribute for radiation therapy) and
a small loss in its kinetic energy occurs[NZ15].
This process is the main contributor to lim-
iting the proton’s range according to its ini-
tial energy. Most electrons ejected in this pro-
cess are absorbed locally in a radius less than
1mm[NZ15].

Nuclear Scattering

γ-Ray

Proton

Recoil nucleus

Neutron

Nuclear scattering occurs if an incident pro-
ton directly hits a nucleus and its kinetic en-
ergy is higher than the energy deflecting equal
charged particles. The proton enters the nu-
cleus and either one or more neutrons or a
proton, deuteron, triton or heavier ions (here
described as recoil nucleus) are emitted, also
generating γ-Rays[NZ15].

Tab. 2.3: Overview of nuclear interaction types of ionizing proton radiation occurring in
radiation therapy.

2.2 Proton Radiation Physics 21

In contrast to ionizing photon radiation, ionizing hadron radiation (here protons) is
categorized as direct ionizing radiation, as collision with the incident beam’s pro-
tons causes ejection of the absorber medium’s oribtal electrons. Protons, like other
hadrons, possess a resting mass. For protons it is 1832 electron masses, carrying a
positive charge due to their quark configuration[NZ15]. The advantage of proton
radiation over photon radiation comes from both the three interaction types as listed
above, due to their mass and charge.
Due to their resting mass, protons of an incident beam carry kinetic energy, which
they mainly lose via inelastic Coulomb scattering as this is the interaction type
occurring most frequently and directly influencing the depth at which the Bragg peak
(see figure 2.4) occurs[NZ15], their mass is also responsible for their travel path,
i.e. they aren’t deflected significantly during collisions with orbital electrons[NZ15].
However, cumulative deflections can alter the path significantly. The Bragg peak is
the result of the energy transferred during the nuclear interactions being inversely
proportional to the velocity of the proton. The more the proton slows down, the
more energy it transfers per unit path length, the more energy is absorbed by the
target medium/tissue per unit path length, i.e. its interaction cross-section (the
probability of having interactions per unit area) increases as it slows down.[Pag17].
Protons can undergo nuclear scattering, which occurs less frequently and mostly in
the entry region of an absorbing medium[Pag17], producing secondary particles.
Lastly, protons can also undergo elastic Coulomb scattering but this interaction
doesn’t have a significant ionizing effect but contributes to the alteration of a pro-
ton’s path.
1% of the protons experience a nuclear interaction event per 1cm range in wa-
ter[NZ15]. This is important to consider for the Bragg peak. One single proton
may have a very sharp Bragg peak slightly before or after the target dose due to
the interactions, this is called range straggling. However, when considering a beam
consisting of many protons, all having statistically slightly different ranges (range
straggling), results in the Bragg peak with a width of a few millimeters[NZ15].

Two main approaches to model ranges in terms of stopping power of mono-energetic
proton radiation and the corresponding Bragg curve(see fig 2.4) can be commonly
found in literature: The Bragg-Kleeman model and more exact models based on the
Bethe-Bloch equation.

2.2.1 Bethe-Bloch Equation

The Bethe-Bloch equation describes the quantum-relativistic model of hadron move-
ment through an absorbing medium, modelling the Bragg curve as seen in figure 2.4.
This equation is an exact but not a closed-form expression, i.e., it requires numerical
methods to solve[Mar+19]. One of the reasons for this complexity of the model lies

22 Chapter 2 Preliminaries

in the relativistic behavior of the movement of electrons, which macroscopically can
be described by an ellipsoidal orbit around an atom but microscopically adhere to an
uncertainty in their exact position[KG14]. The relativistic version of the Bethe-Bloch
Equation as reported by [GWP17] is:

−δE
δx

= 4πnz2

mec2β2

(
e2

4πε0

)(
ln

(
2mec

2β2

I(1− β2)

)
− β2

)
(2.5)

With n denoting the electron density of the absorbing material, e denoting the
electron charge, me denoting the electron mass, I denoting the mean excitation
potential of the target material, z denoting the multiple of the electron charge of the
projectile (proton), β = u

c being the ratio of the projectile velocity u and the speed
of light in a vacuum c. ε0 encodes the vacuum permittivity.

Several approaches to approximate the Bethe-Bloch equation have been developed.
The main trade-off of each approach lying between computation time and precision.
A more popular approach to approximating the equation is to utilize a series approx-
imation. Ulmer et al. have developed a series of exponential terms to approximate
the equation (mainly for range calculations), with corresponding parameters fitted
to the Bragg curve.[UM10]. Grimes et al. have shifted the ”non-closed form problem”
by reformulating the equation using the inverse exponential integral function, which
itself is a non-closed form expression but is tabularized or can be easily approx-
imated, e.g. via ln(xln(xln(xknx)))[GWP17]. Martinez et al. have built on this
and developed a Taylor series-based approximation of the Bethe-Bloch equation to
calculate the stopping power[Mar+19]. The approach by Ulmer et al. will be used
and is discussed in section 3.5.4.

2.2.2 Bragg-Kleeman

The Bragg-Kleeman model is a phenomenological model, based two empirical
parameters, α and P , fitted such that the equation models the Bragg curve as close
as possible, depending on the material traversed[Pet+18]. The exponent P is a
scalar value, depending on the proton energy and α approximates the square root
of the effective atomic mass of the absorbing medium the hadron (here proton)
traverses[Bor97].

R− x = αE(x)P (2.6)

Where R denotes the residual range after having traversed to x, denoting a point
on the traversed path from which the residual range should be calculated from. Of
special interest in this thesis is the residual range from the beginning, i.e. x = 0.
E(x) denotes the energy of the proton at point x.

2.2 Proton Radiation Physics 23

Contrary to the Bethe-Bloch Equation, this model is not only a closed-form expression
but an analytical one. However, this comes with the cost of being imprecise by
definition as it is an empirical model of the Bragg curve/hadron stopping powers
modelling mainly non-elastic nuclear interactions of hadrons (in this case protons).
Incidentally, this is exactly the main nuclear interaction of protons as they collide
with orbital electrons of atoms in the tissues[NZ15].
As the focus of this work also lies on computation times, Bragg-Kleeman has been
chosen as the underlying model for calculations. The main disadvantage of this
models lies in the two parameters α and P and the related imprecisions. However, a
lot of work has been done to fit those parameters and, so far, a clear trend can be
observed: For water, P seems to converge around 1.735 and α can be computed
from P or taken from various stopping power tables, like SRIM[ZZB10] or PSTAR,
the latter of which is based on the official ICRU reported values and methods(ICRU
Report 49)[Ber+93].

R− x = αEP ⇔ E(x) =
(
R− x
α

) 1
P

(2.7)

Differentiating the energy E with respect to x yields the stopping power − δE
δx .

−δE
δx

= E(x)1−P

αP
⇒ (R− x)

1−P
P

α
1
P P

(2.8)

Several works have been published to fit α and P for different materials. Of special
interest for this thesis is water as reference medium as everything is transformed
with respect to water to have a common metric space from which to calculate from.
Since water is also a very good tissue equivalent, many methods exist to convert from
one medium to another, with the usual trade-off between precision and computation
time[NZ15].

Model α in MeV
cm P

Bortfeld 1997[Bor97] 0.0022 1.77
Boon 1998[Pet+18] 0.00256 1.77
Newhauser et al. 2015[NZ15] 0.002633 1.735
Pettersen et al. 2018[Pet+18] 0.00262 1.736

Tab. 2.4: A selection of fitted values for α and P for water. Valid for the proton energy
range of 50 to 300 MeV (therapeutic range).

24 Chapter 2 Preliminaries

EProton

EProton

tmaterial

twater

ΔR0

Fig. 2.5: Visualization of the water equivalent thickness twater and a corresponding ma-
terial tmaterial for proton radiation. The green line models the dose curve for
protons as seen in figure 2.4. twater scales accordingly depending on the electron
density/thickness of the material traversed, also affecting ∆R0.

2.2.3 Water Equivalent Thickness And Composite Materials

The (electron) density of the absorbing target material/tissue of a proton beam
in radiation therapy directly affects the kinetic energy required for the proton to
reach a certain depth, i.e. the frequency at which inelastic Coulomb scattering
occurs[NZ15]. As humans do not consist of homogeneous tissue but rather of
different types of tissues (skin, muscles, fat, organs, bones, ...) with different
material properties, like density, it is an important factor to consider. This thesis
uses water as a common calculation space on which other calculations are based
on. This requires a transformation of material thicknesses for every material type
in a proton beam’s path into thicknesses relative to water and the derivation of the
relative stopping powers, i.e. the thickness of a material tmaterial and it’s stopping
power per unit length is transformed into a corresponding thickness twater and its
according stopping power relative to water[NZ15]; this is visualized in figure 2.5.
This also allows calculation of the range of a proton in composite tissues via the
summation of the relative stopping powers of all the tissues in the proton beam’s
path[NZ15]:

R(E) =
∫ E0

0

(
δE

δx i

)−1
δE ≈

E0∑
0

(
δE

δx i

)−1
∆E (2.9)

Where − δE
δx i

is the relative stopping power of the i-th material in the beam’s path. To
calculate the range, the reciprocal is required (because the function of E according
to distance x is required) and integrated to yield the distance/range travelled.

2.2 Proton Radiation Physics 25

The discrete summation is a good enough approximation of the range in clinical
contexts[NZ15] and does not require an integrator, like Runge-Kutta or Verlet
integration, speeding up calculations.

26 Chapter 2 Preliminaries

2.3 Proton Radiation Therapy

As documented in figure 2.8, (proton) radiation therapy is comprised of several
sequential steps from the initial diagnostic work to the actual treatment of the
patient. The first step is also the most important one: Applying various imaging
techniques to determine location, extent and scale of the tumor as well as the
situation of its surroundings. The accuracy of the treatment parameters directly rely
on the accuracy of the imaging techniques used. CT scans are the most frequently
used imaging technique to determine spatial parameters. If necessary, other imaging
modalities are used in tandem, like MRI or ultrasound-based imaging[KG14].
After imaging, the collected spatial data is used to segment and register the tumor
volume and surrounding volumes of interest or organs that shouldn’t be hit by
radiation. Then, together with the diagnosis, clinical objectives are defined, i.e. how
much dose should the tumor be hit with, if radiation therapy should be used and
what type of radiation modality should be used (depending on the tumor position),
additional medication that should be administered for chemotherapy, etc.
Based on the clinical objectives and the imaging data, a treatment plan is generated,
also with the help of a treatment planning system (TPS), which is a collection of
methods and algorithms situated in a pipeline to calculate patient dosimetry based
on input parameters (see section 2.3.3). The plan also incorporates how much
energy is required for the radiation modality used to achieve the defined dose and
what (and how many) beam angles to use and how many fractions/sessions at what
interval the patient needs to undergo.[KG14]
Lastly, the generated plan is verified by medical personal and computer programs
(usually part of a TPS) and evaluated against the defined clinical objectives for
the treatment. If the clinical objectives are achieved by the current plan, patient
treatment can begin. Otherwise a new plan needs to be generated.

2.3.1 CT Scans

The basis for all further treatment modalities and parameters, including beam angles,
is accurate patient data. For radiation treatment planning, spatial and visual data of
the tumor volume, its location and situation, segmentation and registration of it and
surrounding volumes of interest (e.g. organs-at-risk) constitute the foundations on
which all further calculations are performed on[KG14].
There are different imaging modalities to acquire such data. For 3-dimensional/volumetric
data, computed tomography (CT) and magnetic resonance imaging (MRI) are the
most commonly chosen ones[KG14]. This thesis focuses on the former as CT data sets
are readily available and many decisions made can be directly derived from the struc-
ture of the CT data. Contouring and segmentation has been and still is usually done

2.3 Proton Radiation Therapy 27

manually by an expert, using patient CT and/or MRI data[KG14]. However, the appli-
cation of convolutional neural networks to partially or fully automate these tasks has
already been the focus of research and is still ongoing[Lus+18][Don+19][Li+20].
A CT scan effectively consists of a grid of voxels with resolutions up to 0.5mm for each
axis[Can17].

Fig. 2.6: Top: A CT scan consists of
slices of volumetric data;
here slices along the lon-
gitudinal axis.
Bottom: A sample slice of
a CT scan of a patient’s
head. Images taken from
[Can17].

Commonly, such as in CT scans done by a tunnel
or gantry scanner, the three canonical axes are
used, where one slice forms a 2-dimensional grid
of voxels along the chosen height- and width-
axes with a fixed slice depth. A CT scan data
set consists sequence of slices towards the cho-
sen depth-axis. For one slice, photon radiation
within the x-ray energy spectrum is emitted in a
cone-like field towards to target volume, with the
emitter doing one or more revolutions. Depend-
ing on the density of the tissue traversed, the
x-ray beams are attenuated differently and hit
the corresponding diametrically opposed detec-
tors in the tube with different residual energies,
forming a set of attenuation coefficients[KG14].
This is done either slice-by-slice or in a contin-
uous movement, where the emitter effectively
follows a helical path along the tube. The atten-
uation coefficients are then used to calculate a
visual representation for each voxel, called ”CT
numbers”, which are then normalized against
water attenuation to form Hounsfield units (HU),
according to the formula reported by Khan et
al.[KG14]:

HU = µtissue − µwater
µwater

× 1000 (2.10)

with µ denoting the attenuation coefficient for a corresponding material. These
Hounsfield units are then used to calculate stopping power values for each voxel,
usually via Hounsfield lookup tables (HLUT)[Woh+17]. However, CT scans and
the corresponding conversion into stopping powers suffer from inaccuracies, which
can significantly impact accuracy of treatment planning[Woh+17]. These range
from inaccuracies due to patient positioning changes, patient movement during scan-
ning (even respiratory movement is a factor for lung-related treatment[Sar+06])
to inaccuracies due to different tissue heterogeneities along the path of an x-ray
resulting in the same attenuation measured by a detector for different tissue com-
positions[Woh+17]. To counter the latter issue, Wohlfahrt et al. have suggested a

28 Chapter 2 Preliminaries

dual-energy approach to CT scans (DECT), effectively using two different energy
ranges of x-rays and then calculate the difference between attenuation of these
x-rays along the same path to determine tissue heterogeneities otherwise not seen
by the single-energy approach[Woh+17].

2.3.2 Geometric Volume Concepts

After acquisition of spatial data of the treatment region and subsequent image regis-
tration, contouring and segmentation of volumes of interest (VOI) is done[KG14],
either manually by an expert or (partially) automatic via convolutional neural
networks[JKH19] and/or edge (like Canny edge detection, Houghs transforms or
watershed algorithms) or feature detection algorithms (like SIFT, ORB or Harris-
Corner-Detection). These concepts are then used as input for further processing
in treatment planning in order to determine possible treatment modalities and pa-
rameters, including the determination of possible beam angles. Figure 2.7 shows
a schematic representation of the commonly used clinical and geometric volume
concepts as defined by ICRU Reports 50[Lan+93] and 62[Lan+99].

Fig. 2.7: Left: Schematic overview of volume concepts.
Right: Example of segmented volumes in CT scan slice (longitudinal axis) of the
upper torso region.

• Gross Tumor Volume (GTV): Visible extents of the tumor volume after image
registration. This is a clinical concept, independent of treatment modalities.

• Clinical Target Volume (CTV): GTV + subclinical, i.e. not directly visible,
malignant tissue at certain probability levels depending on the tumor tissue
and location. This is a clinical concept, independent of treatment modalities.

• Planned Target Volume (PTV): The union of two subsets/volumes: PTVIM
and PTVSM . PTVIM , also referred to as Internal Target Volume (ITV), is

2.3 Proton Radiation Therapy 29

defined as CTV + internal margins for motion of the CTV, depending on its
location and situation, to compensate for inaccuracies. PTVSM is defined as
PTVIM + heuristical uncertainty margins according to treatment modalities.
Around 2.5% to 3.5% of volume extents are added for pencil beam scanning
used in intensity-modulated proton therapy (IMPT) to account for range strag-
gling and statistical spread of protons due to Coloumb interactions[Tho06].

• Organs-At-Risk (OAR): Regions or organs that are defined to be the least
desirable to hit or to completely avoid to hit, i.e. region or organs that have
a clinically defined penalty associated with them to avoid intersection with
radiation beam paths. The extents of OARs is dependent of the beam modality
used; for proton beams, lateral and angular spread of the beam is taken into
account[Tho06].

30 Chapter 2 Preliminaries

2.3.3 Treatment Planning Systems

Clinical objectives
achieved?

Patient imaging (CT /
MRI /…)

Volume segmentation
and registration

Treatment plan
generation

Patient treatment

Treatment plan
verification

Yes

No

Diagnosis

Definition of clinical
objectives

• Beam angle selection/
optimization

• Dose deposition matrix
calculation

• Radiation fluence
optimization

Fig. 2.8: High-level overview of the principal steps included in radiation therapy, with beam
angle selection/optimization (marked in red) being the step this thesis focuses on.

Treatment planning systems (TPS) are an integral part of radiation therapy in the
current medical context and describe a pipeline of algorithms and methods to com-
pute/simulate radiation dosimetry on a patient’s tumor and surrounding tissues
while applying clinical and physical constraints.
Since the initial proposition of utilizing protons as beam modality to treat cancer
in 1946[Tia+18], advancements have been made in developing methods and algo-
rithms for radiation therapy, predominantly for photon-based radiation.
During the early 90s till earlier 2000s, research and development of proton therapy
in general and TPS in particular experienced rapid advances, which were made in
tandem with the technological development of computers, spearheaded by dedicated
medical research facilities and specialized clinics. The current landscape of TPS
and their related research and development has largely been shifted to commercial
closed-source systems, naturally only with very limited open documentation on
algorithms and methods used[BJB18]. Among the more well-known manufacturers
of closed-source TPS are Elektra, Philips, RaySearch and Varian [ITN13], whereas
among the open-source solutions, Slicer3D with the SlicerRT-plugin[Pin+12] for
radiation therapy is one popular tool. Most other treatment planning systems, or
certain subsets thereof, are implemented based on Matlab, and are primarily research
and educational tools. Among open-source TPS, FoCa[Sán+14], CERR[DBC03] and
DKFZ’s matRad[Wie+17] (used in this thesis) are the more popular and still active
choices.

After the acquisition of treatment relevant volumetric patient data, treatment pa-
rameters are defined according to clinical objectives and input into a TPS. A TPS
can be categorized by how its pipeline is laid out: Forward planning or inverse
planning[KG14]. The former requires all relevant parameters (desired dose levels,
radiation modality, beam delivery modality, radiation energy levels, beam angles, ...)
to be known and input beforehand in order to simulate patient dosimetry[KG14].

2.3 Proton Radiation Therapy 31

The latter can infer or suggest at least one of these parameters from a smaller or
incomplete set of input parameters[KG14] within the constraints given by the clinical
objectives, which, from an abstract point of view, is essentially solving a constraint
satisfaction problem. This thesis focuses on beam angles to be inferred in a fast
manner.

Fi
g.

2.
9:

D
os

e
vo

lu
m

e
hi

st
og

ra
m

(D
V

H
)

pr
od

uc
ed

by
m

at
R

ad
fo

r
th

e
do

si
m

et
ry

in
th

e
ex

am
pl

e
sh

ow
n

in
fig

ur
e

2.
10

.

32 Chapter 2 Preliminaries

Fi
g.

2.
10

:
M

ai
n

sc
re

en
of

m
at

R
ad

(m
at

R
ad

G
U

I)
af

te
r

ca
lc

ul
a-

ti
on

of
th

re
e

co
pl

an
ar

pr
ot

on
be

am
s

on
a

PT
V

w
it

h
ph

ys
ic

al
do

se
s

as
co

lo
re

d
is

os
ur

fa
ce

s.
B

el
ow

on
th

e
le

ft
ar

e
sh

ow
n

th
e

gr
ap

h
di

sp
la

yi
ng

th
e

flu
en

ce
op

-
ti

m
iz

at
io

n
st

ep
s

un
ti

l
a

gi
ve

n
th

re
sh

ol
d

is
re

ac
he

d
an

d
ne

xt
to

it
a

3D
vi

ew
of

th
e

ge
om

et
ri

c
ex

te
nt

s
of

th
e

vo
lu

m
es

of
in

te
re

st
,i

nc
lu

di
ng

or
ga

ns
-a

t-
ri

sk
,a

s
w

el
la

s
th

e
th

re
e

pr
ot

on
be

am
s.

2.3 Proton Radiation Therapy 33

2.4 Mathematical Optimization And
Metaheuristics

An optimization problem has in its most basic form the following structure:

minimize f(x) (2.11)

subject to {g1(x)�1b1,

g2(x)�2b2,

...,

gi(x)�ibi,

...,

gm(x)�mbm, }

where �i ∈ {<,≤,=,≥, >}, i = 1, ...,m.

With f(x) being referred to as the "objective function" and gi(x)�ibi referred to
as constraints with bi being "bounds" or "boundaries". Note that f(x) can also be
maximized since maximize f(x)⇔ minimize −f(x). In words: "Minimize/Maximize
(i.e. get the lowest/highest possible objective function score) f(x) such that the con-
straints gi(x)�ibi are still valid." According to Stork et al., any optimization algorithm
attempting to solve such a problem, or variations thereof, can be decomposed into
four major parts: Initialization, generation, selection and control (control being
optional, depending on the type of optimization algorithm applied)[SEB20].

Algorithm 2: Basic structure of an optimization algorithm according to Stork et
al.[SEB20]

1 set initial control parameters;
2 t = 0;
3 initialize candidates;
4 evaluate initialize candidates;
5 while termination condition is not reached do
6 t = t + 1;
7 generate new candidates;
8 evaluate newly generated candidates;
9 select solution(s) for the next iteration;

10 optional: update control parameters;

34 Chapter 2 Preliminaries

2.4.1 The 0/1 Multidimensional Knapsack Problem

A subclass of optimization problems are known as combinatorial optimization prob-
lems. And arguably the most popular problem type of that class is the in(famous)
"Knapsack Problem", first formally described in 1896 by Mathews[Mat96]. Infor-
mally, true to its given name, the objective is to pack a knapsack with as many items
pj as possible while still keeping the constraint valid; in this example, a constraint
could be the weight or size aj for each corresponding item pj , xj would then serves
as a "selector", as the value of xj effectively determines whether item pj is put into
the bag (xj ∈ [0, 1]) and subsequently the corresponding aj is considered. Formally,
the knapsack problem is described below on the left-hand side.
On the right-hand side, a variation of the knapsack problem can be seen, known
as the "0/1 Multidimensional Knapsack Problem" (0/1-MKP)[Laa+18]. The main
difference is that the number of allowed constraints is relaxed; it is arbitrary (i.e.
"multidimensional"), in contrast to just one constraint for the regular knapsack
problem. Note that in the 0/1-MKP, the "selector" values are constraint to xj ∈ {0, 1}.
The 0/1-MKP is also one example of a NP-hard problem[Laa+18], just as the regular
knapsack problem[Cac+22].

maximize
n∑
j=1

pjxj

subject to
n∑
j=1

ajxj�b,

where � ∈ {<,≤,=,≥, >}, xj ∈ {0, 1}
and j = 1, ..., n.

maximize
n∑
j=1

pjxj

subject to {
n∑
j=1

ai1xj�1b1,

n∑
j=1

ai2xj�2b2,

...,
n∑
j=1

aijxj�ibi,

...,
n∑
j=1

amjxj�mbm}

where �i ∈ {<,≤,=,≥, >}, xj ∈ {0, 1},
i = 1, ...,m and j = 1, ..., n.

2.4.2 Metaheuristics And Teaching-Learning-Based
Optimization

Solving optimization problems of any kind is a large and popular area of research
with wide application domains. Just the above introduced 0/1-MKP can be found

2.4 Mathematical Optimization And Metaheuristics 35

within the area of operations research regarding scheduling problems or loading
problems, in the financial industry regarding stock-related problems or capital bud-
geting, or within the more familiar area of scheduling processes for multi-core
processors[Laa+18], to name a few. In fact, Laabadi et al. recalled a study carried
out in 1998 wherein the MKP was found to be the 18th most popular and the 4th
most needed problem[Laa+18].
As many optimization problems, including combinatorial optimization problems such
as the knapsack problem, fall into NP, solving them is not trivial. And due to variety
of actual use cases, a lot of research over the centuries yielded a lot of different
techniques. At the most basic level, optimization algorithms fall into two broad
categories: Exact and heuristical approaches, where the latter do not guarantee to
always obtain the globally optimal (i.e. exact) solution but attempt to converge
towards an (global) optimum that can be considered "good enough".
The gain for the sacrifice of global optima as solution(s) heuristical optimization
algorithms make is requiring less computational effort (relatively, of course. It is
still NP) or even actual computability[SG13] in comparison to exact optimization
algorithms. Bluntly put, heuristic approaches tackle "harder" problems that may
not be computable otherwise. Optimization algorithms utilizing heuristics and/or
a stochastic approach are often categorized as "Metaheuristics". Sorensen et al.
have a succinct definition: "A metaheuristic is a high-level problem-independent
algorithmic framework that provides a set of guidelines or strategies to develop
heuristic optimization algorithms"[SG13, Chapter 1, p. 1].
Stork et al. have recently described a new taxonomy of currently relevant optimiza-
tion algorithms by using the underlying techniques and methods these algorithms
apply as criteria for categorization, depicted in figure 2.11.

36 Chapter 2 Preliminaries

Fig. 2.11: Stork et al’s taxonomy of optimization algortihms and metaheuristics categorized
in classes according the respective techniques used. Taken from [SEB20].

Notable examples of metaheuristics include genetic/evolutionary algorithms, tabu
search, simulated annealing, and ant colony optimization, among others[SG13][SEB20].
However, many of these metaheuristics require, in addition to the actual problem
input, control parameters to control various (converging) behaviours, as stated in
the beginning of this chapter. And for metaheuristics, they can be considered to be
even more important than for exact algorithms.
Among the main sources of error and sub-optimally converging results to the desired
optimum, are badly tuned (control) parameters. In fact, there is dedicated sub-
branch of research dedicated to control parameters, the tuning and "optimization"
thereof[]. This fact and the relatively easy implementation are the main reasons why
a class of metaheuristics has been chosen, to be used in the system developed in this
thesis, able to work without or only with a minimal amount of control parameters.
Additionally, to eliminate possible bad results due to the inexperience of the author
in the application field (proton radiation therapy), general badly tuned parameters
and to make the whole system more robust for a variety of application domains.
Going by Stork et al.’s taxonomy (see figure 2.11), one fairly recent representative of
the class of population-based metaheuristics is known as "Teaching-Learning-based
Optimization" (TLBO) by Rao et al.[RSV11]. More specifically, a variation on it by
Kern et al. has been chosen as basis for this thesis’ system[KLV20] and only requires
parameters that all other metaheuristics require at minimum as well: Termination
criterion and population size. Kern et al. have utilized some techniques mainly found

2.4 Mathematical Optimization And Metaheuristics 37

in evolutionary algorithms, like Chu et al’s version of the genetic algorithm[CB98],
to control the candidate generation, thereby achieving better convergence towards
the global optimum:

Algorithm 3: The TLBO variation as described by Kern et al.[KLV20].

1 g = 0;
2 X = initialize population(sizepop);
3 evaluate(X);
4 repeat
5 X = sort(X);

// from minimum objective function score to maximum

6 for i = 1 to sizepop do
// Teacher Phase

7 tf = round to nearest integer(1 + rand(0, 1));
8 xmean = xb |X|2 c

∈ X;

9 xteacher = x1 ∈ X;
10 xi,new = xi + rand(0, 1) · (xteacher − (tf · xmean));// xi ∈ X

11 evaluate(X);
// If the objective function score of xi,new is better than the score of

xi

12 if xi,new > xi then
13 xi = xi,new;

// LearnerPhase

14 ii = rand(1, sizepop){ii 6= i};
15 if xi > xii then
16 xi,new = xi + rand(0, 1) · (xii − xi);
17 else
18 xi,new = xi + rand(0, 1) · (xi − xii);

19 evaluate(X);
20 if xi,new > xi then
21 xi = xi,new;

22 g = g + 1;

23 until g 6= generationsmax

The key idea behind TLBO, which also gave it its name, is that the population of
candidates goes through two phases as the algorithm iterates to find better solution
candidates (converges toward the optimum): The "Teacher-Phase" and the "Learner-
Phase". The algorithm adheres to the structure documented in algorithm 2: Both
phases can be found inside the main loop and both phases "generate" new candi-

38 Chapter 2 Preliminaries

dates. In the teacher-phase, the current best (i.e. highest objective score) candidate
influences the generation of a new solution candidate, i.e. "teaches the class room".
In the learner-phase, the overall mean of the population (i.e. the "students") is raised
letting the "students teach each other", i.e. a candidate of the current iteration i and
a randomly selected candidate are influencing the generation of a new candidate.
Thus, the teacher-phase raises the mean quality of candidates by essentially "pulling
the population" closer to the current teacher’s objective score and can be considered
to be a global search phase, while the learner-phase is akin to a local search, where
"students"/candidates may or may not improve by using other "students"/candidates
for the generation operation (i.e. to "learn from").
As already stated, these phases occur inside the main loop. But more specifically, as
can be seen in algorithm 3, they happen in another loop (the for-loop), iterating i
through the whole population size. Each loop has therefore an "active" candidate
through the index i. The main loop iterates through a specified amount of "genera-
tions" and sorts the set of candidates before another for-loop iteration of teaching
and learning begins, so that the teacher candidate is always up-to-date as well as the
population mean. Kern et al’s variant is special in the sense that it takes care that
after what is coined an "transformation operation" (lines 11, 16 and 18) has taken
place, newly generated candidates are "repaired". I.e. if they are invalid, they will
be made valid by changing the corresponding xj values seen in the definition of the
MKP such that all constraints are valid again. These transformation operations are
essentially identical in their structure:

xi,new =

xi + r · (xi − xj), if score(xi) < score(xj)

xi + r · (xj − xi), else
(2.12)

With a special variation of it being in the teacher-phase (line 10). This operation
generates a new candidate by adding to the selected candidate xi a randomized
version of the difference of it and another selected candidate xj , the difference
depending on whether the objective score of xi or xj is better. Note that the solution
candidates are essentially n-dimensional vectors. A newly generated candidate can
be invalid. Instead of trying to generate a new one until a valid one is found, it is
"repaired" instead.
However, while Kern et al. describe approaches (and how to "binarize") to generating
an initial population as well as the repair operator, they remain on a high-level and
leave it to the reader to figure it out in detail. One of the contributions of this
thesis will be methods for initial population generation, which doesn’t resemble the
high-level descriptions of Kern et al. at all anymore, and the parallelization of the
repair and evaluation operations, utilizing the GPU. These are presented in detail in
chapter 3.

2.4 Mathematical Optimization And Metaheuristics 39

3System And Methods

This chapter gives an overview of the system that has been implemented for this
thesis as well as details on certain aspects of the implementation and reasoning
behind its structure. After giving an overview of the system as a whole, each major
component will be described in detail and the rationale behind it.

3.1 Overview

Construct approximate
solution space

Optimize for global optima

Fig. 3.1: High-level visualization of the main steps of the proposed ray path optimization
pipeline. Beginning with the (patient) volume data including the target volume (in
pink), the organs at risk (in red) and the rest of the surrounding tissue. After the
construction of a solution space on which search for minima is performed, three
beam angles have been suggested.

The system/method(s) developed in this thesis can be broadly categorized into two
parts: Generation of a solution space and optimizing for a global optimum, utilizing
the solution space (see figure 3.1. The generation of a solution space is more aptly
termed "Cost Map" within the system and will be used henceforth. Roughly, the main
task of the first part is to generate a space in which solutions can be generated in
(similar to how an image of a function lies within the codomain) and later optimized.
The solution space itself consists of accumulated relative path lengths from a voxel
of interest inside a grid of voxels (henceforth called "Cuboid") to a corresponding
surface voxel. I.e each surface voxel of a cuboid carries the relative path length
value. The path lengths are relative in the sense that, depending on the beam model
used (here protons) for ray tracing, material densities according to the beam model
are accumulated along the ray, in an inside-out manner.
The last step of the first part is to transform the cuboid from a grid of voxels to a
"hull" of voxels, i.e. removing every voxel that is not on the surface of the cuboid.
This "hull" of voxels is henceforth called "Cuboid Surface" and serves as the input for

41

the second part. The main reasoning behind this transformation is to save memory,
which can be quite the substantial amount (GBs to MBs).
The second part is taking the surface voxels with the accumulated relative path
lengths to form solution candidates, with a solution essentially akin to the solution of
the 0/1-multidimensional knapsack problem (0/1-MKP), i.e. −→x ∈ 0, 1n (see 2.4.1).
Then optimizing the generated candidates of the solution population such that a set
of (global) minimal relative path lengths (according to the beam model) has been
found. Lastly, these solutions are translated into a 4-tuple: (E0, ρ, θ, φ), denoting the
inital energy E0 (in MeV) required, and the spherical coordinates (with the voxel of
interest as the center).

matRad

Cuboid

Cost Map

Cuboid Surface

Optimization

Cuboid
MEX

Cost
Map
MEX

Cuboid
Surface

MEX

Optim.
MEX

MRPO.m

“CUDA-
Variant”

Thread Pool

Matlab Matlab-MEX MRPO.so/.lib
External
libraries

CUDA

Eigen

Fig. 3.2: High-level visualization of the system and its major components. Note that MEX is
a specific Matlab format, utilizing a C++ Matlab library to allow for access to the
Matlab C++ API(MRPO = Multi-Ray Path Optimization)

The system itself is largely implemented as a static library, being then loaded into
Matlab using the MEX-API; an API to call in C++ code within Matlab’s environment,
using C++17 and CUDA (version 11.6, devices supporting at least compute capabil-
ity 7[nVi22a] or higher). The major components as well as how they are connected
to Matlab can be seen in figure 3.2. Each major component (Cuboid, Cost Map,
Cuboid Surface, Optimization) is essentially isolated in the sense that they can be
composed separately but may require data input from previous components. During
development, other libraries than CUDA were used: "CUDA-Variant" by Bryan Can-
tanzaro, an nVidia employee[Can15], implementing a lighter version of std::variant,
i.e. variant type (heterogeneous sum type), also usable on GPUs, the venerable
"Eigen"-library used for linear algebra[GJ+10] and "Thread Pool", a library by Barak
Shoshany for an easy-to-use thread pool implementation using std::thread behind
the scenes[Sho21].
The MEX-files are separately compiled C++ components requiring Matlab as a

42 Chapter 3 System And Methods

dependency. "MRPO" is the main Matlab file that has the actual Matlab-functions to
call from within Matlab/matRad.

3.2 Input

The input data of the system developed in this thesis requires discussion as well. Mat-
lab[MAT21] is the chosen "client" application for the system, due to matRad[Wie+17]
being implemented in Matlab and it being the only real viable open-source and
openly available treatment planning system (at least to the author’s knowledge).
Thus, the data is loaded from Matlab (and its formats) into the system. However,
the data itself originates from a composed data format known as "DICOM"[Nat17],
which has been established as one of the common data exchange formats within the
medical community.
Beside patient data and medical treatment information, it also allows storing of
CT data as well as meta data related to patient geometry, which will be the main
source for the system’s input. More specifically the CT data, already converted into
Hounsfield units (see section 2.3.1). Also a penalty map, which is an overlay the
same CT grid, giving each voxel a penalty determined by an expert. The penalty
serves to include a medical perspective into the radiation planning, i.e. giving a
medical reason as to why a certain volume of voxels should be avoided, although
from a purely physical point of view, an optimal path might be considered going
through them.
Additionally, other relevant inputs from the DICOM-file are the origin coordinate
of the CT, the coordinates for each voxel, the voxel dimensions (a CT can be an
non-uniform grid!), the number of voxels for each dimension and contour or volume
information, i.e. the PTV, the OARs, etc., together with the isocenters of these
geometric volumes.

3.2 Input 43

The scheme described in algorithm 4 outlines the steps with the DICOM-related
structs for input. The structs of interest from the DICOM-file that Matlab/matRad
extracts are the CT struct and the CST struct, containing the data described before.

Algorithm 4: High-level description of steps inside Matlab/matRad with inputs
originating from a DICOM-file

1 load ’path/to/dataset (DICOM)’ // Generates CT and CST Matlab-structs

2 ... // other matRad related steps

3 C = Cuboid(CT, CST, ...)
4 Cmap = costMap(C, vof_interest)
5 Cs = CuboidSurface(Cmap)
6 [(E0, ρ, θ, φ)] = OptimizeSolutions(Cs, sizepop, ...)
7 ... // matRad now uses the suggested beam angles for further calculation

Note that, according to the DICOM-standard, the origin of a CT is the center point
of the upper left voxel and the data is laid out in row-major order: From left to
right, from top to bottom, from first acquired slice to the last (z-axis). Each voxel
coordinate also is that of the voxel’s center.

3.3 Cuboid And Cuboid Surface

In order to work with data given from the outside in a uniform and deterministic
manner, it seems advisable to fit it into a common structure/format. This is the
purpose of the existence of both the "Cuboid" and "Cuboid Surface" components. A
cuboid object is the main input (alongside other parameters) for the calculation of
the aforementioned solution space or "Cost Map", whereas a cuboid surface object,
derived from a cuboid object, is the main input for the optimization component, as
can be seen in algorithm 4.

A cuboid object is, in its essence, a 3D array, linearized into 1D, adhering to the
common i1D = x+ y ∗ xdim+ z ∗ dimx ∗ dimy indexing scheme, where dimx, dimy

and dimz are denoting the number of voxels for each dimension respectively.

The more interesting object is a cuboid surface, warranting more detailed expla-
nation. In its essence, a cuboid surface object is derived from a cuboid object by
"hollowing it out", i.e. by only considering the hull voxels. The main reason for
the existence of a cuboid surface object is two-fold: Firstly, the solution space is
essentially only required to be a 2D-manifold, which the surface of a cuboid or any
volume homeomorphic to a sphere is[BBT20, Chapter 1 and 2]. Secondly, consider a
3D voxel grid of size m ∗ n ∗ k voxels. At worst, the required space complexity in

44 Chapter 3 System And Methods

this example would be determined by the cuboid "side"/dimension with the most
amount of cells, i.e. max(m, , n, k). For the purpose of argument, let this be n. Then
O(n3) would be the required space in the worst case. CTs can have a fairly high, i.e.
sub-millimeter, resolutions[Can17]. Thereby resulting in a CT with a large amount
of voxels. For the purpose of argument, let n = 1024. Then 10243 = 1073741824
voxels á 8 bytes (if they each hold a double value)⇒ 1073741824 ·8 byte ≈ 8.59GB.
Since utilizing the GPU for parallelization, the available memory on the graphics
card need to be considered. Although recent very high-end cards can store up to
24 GB of memory[Wal22], it should be apparent that memory constraints are a
key factor. The solution space can be reduced to a 2D-manifold, i.e. the surface,
going by the same argument: A cuboid surface needs to consider 6 sides, each side
has at worst n · n ∈ O(n2) space complexity,⇒ O(6 · n2) ∈ O(n2). Using the same
number n = 1024 from before: 10242 ∗ 8 ≈ 8.389MB, a reduction of three orders of
magnitude.

......

......

Front Back Top Bottom Left Right

Fig. 3.3: A cuboid surface object consists of the hull voxels of a cuboid laid out sequentially
as an array to reduce cache misses.

Figure 3.3 visualizes how the memory is laid out. It also helps to visualize that the
process of deriving a cuboid surface object Cs from a cuboid C is simple: A thread
pool of 6 threads, on for each face of the cuboid C, is created and each thread is
assigned a face from which it copies the surface values into its specific section in
a new array. For access via indexing, the common 3D-to-1D indexing scheme is
not applicable anymore since in the terms of indices, a cuboid surface Cs is only
C0-continuous, since it is just a a direct sum of the surface voxels of each face:

3.3 Cuboid And Cuboid Surface 45

−→
f = (f1, f2, ..., fα) ∈ {cijk|cijk ∈ C : i = 1, ..., dimx(C), j = 1, ..., dimy(C), k = 1},

α = dimx(C) · dimy(C) (3.1)

−→
b = (b1, b2, ..., bα) ∈ {cijk|cijk ∈ C : i = 1, ..., dimx(C), j = 1, ..., dimy(C), k = dimz(C)},

α = dimx(C) · dimy(C) (3.2)

−→
t = (t1, t2, ..., tβ) ∈ {cijk|cijk ∈ C : i = 1, ..., dimx(C), j = 1, k = 1, ..., dimz(C)},

β = dimx(C) · dimz(C) (3.3)

−→o = (o1, o2, ..., oβ) ∈ {cijk|cijk ∈ C : i = 1, ..., dimx(C), j = dimy(C), k = 1, ..., dimz(C)},

β = dimx(C) · dimz(C) (3.4)

−→
l = (l1, l2, ..., lγ) ∈ {cijk|cijk ∈ C : i = 1, j = 1, ..., dimy(C), k = 1, ..., dimz(C)},

γ = dimy(C) · dimz(C) (3.5)

−→r = (r1, r2, ..., rγ) ∈ {cijk|cijk ∈ C : i = dimx(C), j = 1, ..., dimy(C), k = 1, ..., dimz(C)},

γ = dimy(C) · dimz(C) (3.6)

⇒
−→
Cs =

−→
f ⊕

−→
b ⊕−→t ⊕−→o ⊕

−→
l ⊕−→r (3.7)

A direct sum of vectors is strictly speaking an epimorphism from one n-dimensional
(here |C|-dimensional) vector space over a field (typically R) to one of different
dimensions over the same field, in this case of fewer dimensions.

−→
f ,
−→
b ,
−→
t ,−→o ,

−→
l ,−→r

denote the vectors holding the surface voxels for front, back, top, bottom ("o"
was chosen for bottom in order to not clash with "b" for "back"), left and right
respectively.

46 Chapter 3 System And Methods

3.4 Cost Map Generation

The first step of the system is to utilize a beam model for tracing paths through a
discretized volume, representing the whole scene, its sub-volumes (or objects) and
the respective densities or material properties according to the model chosen. In
the context of proton radiation therapy, these are the water-equivalent path length
(WEPL) (see section 2.2.3) together with the constraints later given when optimizing
for the optimal path length(s). The reasoning as to why the WEPL is used instead of
the Bethe-Bloch equation will be discussed in this chapter, as well as the rationale
behind the major steps taken for this component. The input is a cuboid object C, the
voxel of interest (VOI) voi ∈ N3, the dimensions of each voxel in mm dimvoxel ∈ R3

and the number of voxels in each dimension dimcuboid ∈ N3.

Start

Initialize
additional data

from input
Cuboid

Modified Xiao 3D DDA
kernel<Face_Front>

End

Initialize CUDA-
surface from

Cuboid (Z-Order
Curve)

Compute
kernel

configurations

Modified Xiao 3D DDA
kernel<Face_Back>

Modified Xiao 3D DDA
kernel<Face_Left>

Modified Xiao 3D DDA
kernel<Face_Right>

Modified Xiao 3D DDA
kernel<Face_Top>

Modified Xiao 3D DDA
kernel<Face_Bottom>

Clean up

Overwrite Input
Cuboid with
surface data

Copy surface
and required

data to device Copy surface
data to host

Launch kernels on
device in parallel:
Each kernel is a
separate grid

Global sync:
Wait for grids

to finish

Fig. 3.4: Structure of the main component of cost map generation. Note that in the current
CUDA version, it is allowed to "oversubscribe" blocks per grid and grids per device,
the CUDA-driver will schedule it accordingly. Therefore, logic to manage data
flow is not required. Also CUDA-surfaces (writable CUDA textures) are utilized
to reduce cache misses. CUDA surfaces are laid out in memory using a z-order
curve[nVi22a].

Figure 3.4 describes the main steps to compute the solution space (i.e. cost map) of a
given cuboid. The main idea is to use Xiao et al.’s branch-optimized version[Xia+12]
of the original Amanatides et al. DDA algorithm[AW87] in a slightly modified
version (a version for each face direction, using templates and "constexpr if" to
compile corresponding versions) in parallel for each face. As a cuboid has six

3.4 Cost Map Generation 47

faces, six kernels are launched concurrently on the GPU, each on its respective grid.
Fortunately, devices supporting newer versions of the CUDA-standard allow streams
of concurrent grids and can be oversubscribed (i.e. more grids can be scheduled
than can actually be executed on the device) as well as the number of blocks per
grid. The CUDA-driver will take care of the scheduling[nVi22a]. After the first data
initialization steps, the cuboid data is copied onto device by fitting it into a CUDA-
surface object, which is a writable CUDA-texture object of up to three dimensions.
The reason for this is that a CUDA-surface is using a space-filling curve for its data
layout, more specifically a Z-Order curve[nVi22a], preserving spatial locality in its
linear (1D) indexing. I.e. voxels that are closely together are indexed relatively close
together in 1D to reduce cache-misses significantly[MAK03], see figures 3.5 and 3.6.
This is especially important since the cuboid is not being rotated or transposed for
each kernel/face, but rather the threads compute their direction vector according to
the face and go from there.
Kernel configurations (for each face-kernel) are computed using nVidia’s provided
"Occupancy"-functions, maximizing the number of threads per block and blocks per
grid w.r.t. to occupancy. The kernels are then launched concurrently on separate
grids until every grid is finished.

48 Chapter 3 System And Methods

Fig. 3.5: A selection of space-filling curves in 2D space, their linear indexing scheme (mid-
dle) and their respective binary encoding (For the Z-Order curve (also known as
the Lebesgue curve) the encoding scheme is known as Morton code) According to
nVidia’s CUDA technical guide, texture and surface objects utilize a z-order curve.
Image taken from [SS15]

Fig. 3.6: 2D example of the Z-order (or Z space-filling) curve and its indexing scheme. Note
the relatively preserved spatial locality of the 1D indexing. Image taken from
[SS15]

3.4 Cost Map Generation 49

3.4.1 Branch-Optimized 3D DDA Kernel

L(x,ω)

L(x,ω)

L(x,ω)

L(x,ω)

L(x,ω)

L(x,ω)

L(x,ω)

L(x,ω)

L(x,ω)

L(x,ω)

L(x,ω)

L(x,ω)

L(x,ω)

L(x,ω)

L(x,ω)

L(x,ω)

L(x,ω)

L(x,ω) L(x,ω)

L(x,ω)

L(x,ω)

L(x,ω)

L(x,ω)

L(x,ω)

L(x,ω)

L(x,ω)

L(x,ω)

L(x,ω)

L(x,ω)

L(x,ω)

L(x,ω)

L(x,ω)

L(x,ω)

L(x,ω)

Grid

VOI

Top

Bottom

Left Right

Fig. 3.7: 2D slice showing how the modified algorithm based on Xiao et al.’s work[Xia+12]
is working in parallel. A kernel is launched on GPU for each face surface, where
a thread corresponds to one surface voxel. Then, the beam model is applied
to accumulate the radiance L(x,−→ω) for each path. The coloring here serves to
visualize that each CUDA-kernel for each face surface here is working in parallel
(concurrent grids).

Figure 3.7 is showing how the modified algorithm based on Xiao et al.’s work[Xia+12]
is working in parallel. Grids for each kernel are launched concurrently on the GPU
for each face, one thread corresponding to one respective surface voxel. Then,
the beam model is applied to accumulate the radiance L(x,−→ω) (see section 2.1),
through the (partial) path lengths of the beam through each voxel, together with
the respective density value of the material the voxel belongs to, from the voxel of
interest (VOI) to the corresponding surface voxel. Lastly, the result is written in
an additional layer around the grid, which was initialized with 0 previously. These
"hull"-voxels serve as the basis for the cuboid surface object later.
Algorithm 5 is showing Xiao et al’s branch-optimized version. It might be helpful to

50 Chapter 3 System And Methods

the reader to look at the non-optimized version of the algorithm (algorithm 1) in
section 2.1.1.

Algorithm 5: Xiao et al.’s description of the optimized version of the original
DDA-based ray-tracing algorithm by Amanatides et al.[AW87], optimized for
minimal branch-divergence. Edited for clarity.

1 initialize ray information(source point S, direction
−→
d);

2 initialize voxel information(voxel size vsize);
3 initialize Vcurrent as indices of the voxel where S is;

4 if ∃di ∈
−→
d : di 6= 0 then

5 step = {si|∀di ∈
−→
d : si = ternary_op((di < 0),−1, 1)};

6
−−→
dinv = 1−→

d
;

7 t = ||S−"nearest boundary intersection with ray from S"||2;

8 else

9
−−→
dinv ="a large value for each component";

10 t ="a large value for each component";

11 ∆ = vsize ·
−−→
dinv;

12 vincr = 0;
13 while Vcurrent is inside traversal region do

// Note that the whole logical conjunction on the right is being converted

to 1 or 0 accordingly.

14 vincr_x = (tx ≤ ty) ∧ (tx ≤ tx);
15 vincr_y = (ty ≤ tx) ∧ (ty ≤ tx);
16 vincr_z = (tz ≤ tx) ∧ (tz ≤ ty);
17 t += vincr �∆; // Hadamard product

18 Vcurrent += vincr � step;// Hadamard product

The step documented in line 7, to initialize t to the nearest boundary border, is done
by using the very efficient (O(1) runtime complexity) 3D ray-AABB intersection
algorithm described by Majercik et al.[Maj+18]. As mentioned before, between
line 3 and 4, steps were added to compute from given direction

−→
d to the direction

according to the face. This is done by using templates and "constexpr if"-statements
and don’t have any impact on runtime complexity.

The common approach is using a variation of Siddon’s algorithm. However, this
is unfeasible for GPU utilization because of Siddon’s memory requirements: It
constructs a lookup table and on the GPU, each thread would construct one for itself.
Using the previous example, loading a 8GB cuboid on the device and then having at
most an additional lookup table of 8GB being built is not feasible for the approach.
The trade-off would be the reduce block size, defeating the initial purpose of using
the GPU for parallelization.

3.4 Cost Map Generation 51

In sections 2.1.1 and 1.2, another interesting algorithm for this purpose was briefly
discussed, based on the original projection algorithm by Joseph[Jos82] using a
driving-axis approach and Graetz’s version, which is a GPU-executable variant of
it[Gra20]. This algorithm was originally considered as well, however, CT data
can be based on non-uniform grids, where each voxel "side" has a different length.
The approach described by Graetz does not consider this fact in the path length
calculation. It considers a relative path based on the relative percentage the partial
ray/beam travelled through the volume but not the actual volume size.
For this purpose, it would add imprecision to the whole path length, especially when
the voxel in question is only traversed for a very slight bit, e.g. through a corner.
However, if input grids were uniform, Graetz’s method might be preferable as it is
easier to implement while at least as fast.

3.4.2 On The Beam Model

It is also necessary to discuss the utilized beam model for the application in proton
radiation therapy. As documented in section 2.2.1, the Bethe-Bloch model determines
the stopping power of protons travelling (linearly) through materials and serves as
the basis for proton radiation therapy. However, similar to the rendering equation
(section 2.1.2), computing it using this model prima face is impossible due to it being
not closed form (in addition to being relatively expensive to compute regardless).
Thus, several models have been developed to approximate the phenomena described
in the Bethe-Bloch model. A very popular approximation, using the Bragg-Kleeman
range-energy relationship, to compute radiation dosage transmitted (z) in relation
to a given target-depth R0, was developed by Thomas Bortfeld[Bor97]. Bortfeld’s
equation uses water as homogeneous media to approximate dose delivery:

DH2O(z) =

Φ0
e−(R0−z)2/4σ2

σ0.565

1 + 0.012 ·R0
·
[
11.26σ−1D−0.565(−R0 − z

σ
) + (0.157 + 11.26ε

R0
) ·D−1.565(−R0 − z

σ
)
]

(3.8)

with z := residual depth, Φ0 := inital proton fluence, R0 := target depth,
σ := standard deviation of the Gaussian distribution function,
Dv := the parabolic cylinder function[ZJ96],
ε := Fraction of primary fluence contributing to the "tail" of the energy spectrum.

The approximation was confirmed by Rasouli et al.[Ras20] with <2% deviation (only
occuring at >200 MeV), but with the potential of being mediated by p and α values
of the underlying Bragg-Kleeman relationship. The table 2.4 gives a selection of

52 Chapter 3 System And Methods

possible candidates. Ulmer et al. have found that proton fluence, i.e. the amount of
protons that pass through a unit volume per time frequency unit, scale with depth in
homogeneous media (like water)[UM12]. Consequently, they also described that the
required initial energy scales with the depth as well in order to uphold proton fluence
with increasing depth. Since the possibility of irradiation reactions (deposing dose)
is proportional to the fluence, or more general the interaction cross-section (the
possibility that protons interact with the material they travel through) for protons
scales with fluence.
Considering this and observing the convergence behaviour of DH2O(z):

lim
z→∞

DH2O(z) = 0 (3.9)

lim
z→R0

DH2O(z) = 1 (max dose) (3.10)

lim
z→0

DH2O(z) = min(DH2O(z)), ∀z < R0 (3.11)

It can be determined that the dose distributed along the way (up to R0)is scaling
with the water-equivalent path length (WEPL) and shortly before R0 it begins to
scale exponentially, if fluence is constant. Also considering the general form of the
stopping power function up to R0 (Bragg-Peak) (section 2.2, figure 2.4) is strictly
increasing, supports this argument. For the purpose of suggesting "optimal" beam
angles for proton therapy, which will have to be evaluated by an expert and evaluated
in the final fluence matrix calculations, the beam model used for ray tracing here
can be the translated WEPL.

3.5 Optimizing Paths

This part of the system essentially utilizes the "Teaching-Learning-Based Optimiza-
tion" (TLBO) algorithm by Kern et al.[KLV20]. Using the taxonomy by Stork et al. in
section 2.4.2, TLBO is population-based metaheuristic using a "Teacher (current best
solution candidate) teaches a class room of students (other solution candidates)"-
metaphor to iteratively attempt to mutate the population to converge towards an
optimum.
The basic underlying problem that has been identified to optimize path lengths can
be expressed as a "0/1-Multidimensional Knapsack Problem" (0/1-MKP) (section
2.4.1), utilizing TLBO to solve. The original description by Kern et al. is completely
CPU-bound and, to the best of the author’s knowledge, only one well-described
method to utilize the GPU for parallelization exists[Ric+19]. GPU-utilizing parallel
versions of the repair operator and the evaluation operator will be presented as
well.

3.5 Optimizing Paths 53

By definition of the 0/1-MKP, the problem lies within NP and thus no "efficient"
algorithm exists to solve it, including TLBO and its variants. Consider again the
TLBO algorithm already presented before in section 2.4.2:

Algorithm 6: The TLBO variation as described by Kern et al.[KLV20].

1 g = 0;
2 X = initialize population(sizepop);
3 evaluate(X);
4 repeat
5 X = sort(X);

// from minimum objective function score to maximum

6 for i = 1 to sizepop do
// Teacher Phase

7 tf = round to nearest integer(1 + rand(0, 1));
8 xmean = xb |X|2 c

∈ X;

9 xteacher = x1 ∈ X;
10 xi,new = xi + rand(0, 1) · (xteacher − (tf · xmean));// xi ∈ X

11 evaluate(X);
// If the objective function score of xi,new is better than the score of

xi

12 if xi,new > xi then
13 xi = xi,new;

// LearnerPhase

14 ii = rand(1, sizepop){ii 6= i};
15 if xi > xii then
16 xi,new = xi + rand(0, 1) · (xii − xi);
17 else
18 xi,new = xi + rand(0, 1) · (xi − xii);

19 evaluate(X);
20 if xi,new > xi then
21 xi = xi,new;

22 g = g + 1;

23 until g 6= generationsmax

The evaluation operation is parallelized, as well as the repair operation, following
immediately (but has sparsely been documented by Kern et al.) after a transforma-
tion operation (lines 10, 16 and 18 in 6). As with many other metaheuristics, it
involves non-deterministic components. Here in the form of random generation of
initial solution candidates as well as in the transformation operations, which utilize
a biased randomness as well.
Note that one immediate performance and memory optimization being applied is to

54 Chapter 3 System And Methods

use sparse vectors to represent a solution candidate. Solution candidates are vectors
of Bn, with usually many more 0-components than 1-components. This seems to
hold especially true for proton radiation therapy as research of the current literature
only yielded applied number of beams, i.e. the number of 1-components, within the
single-digit range (< 10). For large number of variables/items, i.e. a large n, it is
therefore sensible to only consider the 1-components for computation. For this, the
sparse vector type of the venerable Eigen library[GJ+10] is used.
The first step is to initialize the solution population, which also only has been docu-
mented as a suggestion of possible vague high-level steps, most of which had to be
reconsidered for this thesis.

3.5 Optimizing Paths 55

3.5.1 Initial Population Generation

The purpose of the first step of TLBO is to generate unique, feasible solutions accord-
ing to a given population size. The method devised for this thesis utilizes factoriadics
(number system with base factorial) to quickly take a randomly generated unique
decimal number and using it as a "rank", i.e. an index corresponding to a set of
combinations of decimal numbers. The core idea is to use the isomorphism between
factoriadics and sets of numerical permutations and combinations and to compute,
from the given "rank" (the randomly generated number) the combination of numbers
by translating the "rank" into a factorial number, which in turn encodes a correspond-
ing to numerical combination as described by Genitrini et al.[GP21]. This step will
be explained in greater detail later.

The algorithm developed in this thesis to generate the initial population is described
in 7:
Algorithm 7: Initialize population algorithm. Generates unique, feasible solu-
tions according to a given population size.

1 numperms = nCr(numvars, sizesample);
2 sizepop = ternary_op((numperms ≤ sizepop), numperms, sizepop);
3

4 solution_population ⊆ R× Bn;
5

6 seed = rand(0, numperms − 1) ∈ N;
7 b = nCr(numvars − 1, sizesample − 1) · numvars;
8 for i = 0 to sizepop do
9 idxcombination = permute(i, numperms, seed);

10
−−−−−→
solution = unrank(numvars, sizesample, i, b) ∈ Bn;

11

12 if
−−−−−→
solution is valid then

13 score = calc_objective_score(−−−−→vprofits,
−−−−−→
solution);

14 solution_population = solution_population
⋃
{(score,

−−−−−→
solution)};

15 return solution_population;

The first two lines are ensuring that the given population size sizepop can actually
yield the number of requested unique solutions. This is done by computing the
binomial coefficient to get the amount of possible combinations of r elements out of
a set of n elements:
As mentioned in the beginning, a numerical combination essentially represents a
solution candidate

−−−−−→
solution = (s1, s2, ..., sn) ∈ Bn, encoded as a sparse vector. This

is done by generating the combination c = (c1, c2, ..., cn) ∈ Nn and taking the first

56 Chapter 3 System And Methods

k elements c1, ..., ck, which are, according to the combination, different for each
combination. Remember that permutations do have constraints regarding the order,
so permutations which have the first k elements as "1, 2, 3", "1, 3, 2", "2, 1, 3", ... are
all considered different, whereas they are considered to be the same combination.
These first k elements are then interpreted as indices of non-zero (i.e. 1) components
in the solution:

−−−−−→
solution = (..., sc1 = 1, ..., sc2 = 1, ...sck

= 1, ...).
To compute the binomial coefficient (also known as "n choose r", nCr), the well-
known multiplicative formula has been chosen[GKP89, Chapter 5]. It is a fast (O(k))
and simple-to-implement method. As the initialization of the population is done
once during the whole pipeline and nCr is also only called once in the beginning of
the algorithm, further optimization of this step is not a priority and O(k) is deemed
as fast enough.

solution_population ⊆ R × Bn holds the set of generated unique and feasible
solution candidates. A solution candidate is a tuple consisting of the objective
score of a

−−−−−→
solution and the solution itself: {(score,

−−−−−→
solution)}. Within the for-loop

(line 8 and onward), the aforementioned "rank" of a combination (idxcombination),
corresponding to a combination by considering the isomorphic mapping between
factoriadics and combinations, is first randomly generated. This is done by using the
jittered multi-sampling method described by Kensler[Ken13], which, for a given seed,
generates in O(1) essentially a table on-the-fly of (pseudo-)random, unique decimal
numbers within a given range. The method itself was initially devised to improve
path tracing sampling for Pixar’s internal renderer. A problem with path tracing is to
find a good (pseudo-)random sampling scheme for the bouncing rays without any
apparent bias due to clustering or emerging meta-patterns (which would indicate a
non-random behaviour of the sampling). Kensler reports that his method provides a
good-enough random spread of numbers for a given seed. The implementation of
Kensler’s O(1) method can be found in the source code, it is called "permute".

The solution is then checked whether it is valid/feasible by using the evaluation
operation, parallelized using the GPU. This will be discussed in the section following
this one. If the solution is valid, the objective score is calculated, which is essentially
the inner product of the profits (consider the 0/1-MKP!) vector −−−−→vprofits and

−−−−−→
solution.

This is a common operation provided by Eigen. Lastly, the valid solution is added to
solution_population. The for-loop repeats until the given (or possible) solution
population size or a maximum amount of "tries" has been reached.

In the context of combinatorial mathematics, unranking a permutation (and com-
bination) describes an algorithm that, for a given integer u ∈ N, will give out a
permutation sorted according to a specified scheme (usually lexicographical), so
u denotes the "rank" or index of that permutation/combination according to the
sorting scheme[PB81]. Commonly, for combinations, this was done using the com-

3.5 Optimizing Paths 57

binatorial number system[PB81][GP21]. Genitrini et al. have described a method
using factoriadics to unrank combinations, providing a straight forward and fast
algorithm (similar to nCr, in O(k)).
The core ideas will be introduced. Different to representing a decimal value in
another number system with a different base (like base 2 or 8, etc.), the factoriadics
do not have a fixed radix, i.e. not a fixed "distance" from one digit to the next after
it.

Definition: Factoriadic:
Let u, n ∈ N : (n − 1)! ≤ u < n!. Then there exists a unique sequence of integers
(fl) = (f0, f1, ..., fn−1) with 0 ≤ fl ≤ l such that

u = f0 · 0! + f1 · 1! + ...+ fn−1 · (n− 1)! =
n−1∑
i=0

fi · i! (3.12)

where the finite sequence (f0, f1, ..., fn−1) is called factoriadic of u.

Definition: Permutation:
Let n ∈ N. A permutation of size n is an ordering of the elements of the set
P = 0, 1, ..., n− 1.

Genitrini et al. report and prove that there exists an isomorphism between inte-
gers and permutations, specifically with regards to sets of permutations of size
n. Furthermore, that isomorphism provides a lexicographical order on the sets of
permutations[GP21]. The unoptimized, common method to obtain a permutation
from a decimal number, i.e. "unranking", is simple:

1. Establish a set of integers S = {0, 1, ..., n− 1}

2. From the factoriadic of u, read from right to left.

3. The current element fi read from the factoriadic corresponds to the index of
the element in S

4. The value of the element in S at index fi is extracted (S = sfi
\S)and inserted

in the permutation P = P
⋃
sfi

.

58 Chapter 3 System And Methods

5. Repeat from step 2 until the factoriadic has been fully read, i.e. leftmost
element f0 has been processed.

An example might be helpful: Let u = 1986, the corresponding factoriadic is
(0, 0, 0, 3, 2, 4, 2). Applying the method:
S0 = {0, 1, 2, 3, 4, 5, 6}, P = {}
Read: 2⇒ s2 ∈ S0 = 2, extract from S, add to P : S1 = {0, 1, 3, 4, 5, 6}, P = {2}
Read: 4⇒ s4 ∈ S1 = 5, S2 = {0, 1, 3, 4, 6}, P = {2, 5}
Read: 2⇒ s2 ∈ S2 = 3, S3 = {0, 1, 4, 6}, P = {2, 5, 3}
Read: 3⇒ s3 ∈ S3 = 6, S4 = {0, 1, 4}, P = {2, 5, 3, 6}
Read: 0⇒ s0 ∈ S4 = 0, S5 = {1, 4}, P = {2, 5, 3, 6, 0}
Read: 0⇒ s0 ∈ S5 = 1, S6 = {4}, P = {2, 5, 3, 6, 0, 1}
Read: 0⇒ s0 ∈ S6 = 4, S7 = {}, P = {2, 5, 3, 6, 0, 1, 4}

Genitrini et al. then define an isomorphism between k-combinations of sets with
n elements and a subset of permutations of n elements. Note that permutations
are essentially combinations with more restrictions: Permutations also consider the
order of elements as a distinctive factor, e.g. let set S = {a, b, c, d}. There exist
2-combinations: ab, ac, ad, bc, bd, cd. And 2-permutations of S would be: ab, ba, ac,
ca, ad, da, bd, db, cd, dc. They then transform the "rank" u (for a combination!) to a
corresponding rank u′ for a permutation, using u′ to build a permutation according
to the scheme presented (in an optimized way), corresponding to a combination.
In essence, permutations are used as an "in-between" domain between the domain
(combination rank u) and the codomain (the combination), isomorphic to both.
An optimized version of the unranking algorithm is described by Genitrini et al.
(Algorithm 6 in their paper[GP21]) and utilized in this thesis with a slight modifica-
tion: Since a solution vector is a sparse vector and only k-combinations of a set of
integers of size n are considered (i.e. k corresponds to the number of non-zeros in
the solution candidate), the value of sfi

is taken as index of a non-zero element in
the solution candidate. I.e. each sfi

represents an index to a non-zero (1-component)
in the solution candidate. And only the first k sfi

are considered, akin to the number
of non-zero elements allowed/required.

3.5.1.1 Complexity

Looking at algorithm 7, the worst-case complexity can be determined in a straight-
forward manner: nCr is done twice before the loop, requiring 2 · T (k) ∈ O(k). The
loop itself is bounded by the number of solutions in the population, sizepop. Kern et
al. recommend a size around 30 in their paper[KLV20] and argue that increasing the
population size after a certain point does not yield significantly better converging

3.5 Optimizing Paths 59

results. Therefore an argument can be made that there is a "usefulness"-bound for a
population size, i.e. log(sizepop). However, it will not be used as an argument here
and instead sizepop will be considered naively.
Within the loop, "permute" is called, requiring O(1) and can be omitted. Then
"unrank" is called, requiring O(k).
Evaluation of the solution candidate is parallelized using the GPU and depends on
its capabilities. A more thorough discussion about the worst-case complexity of the
evaluation operation is done in the next section. For the sake of argument, if the GPU
is only capable of processing one constraint at a time (with m constraints in total)
and the solution candidate has n variables/items, it would require T (n ·m) ∈ O(n2),
being ultimately no different than using a CPU sequentially. Allowing for more
grids/kernels pk to process constraints and more threads pt per kernel:

T (n
pt
· m
pk

)⇒ lim
(pt,pk)→(n,m)

(T (n
pt
· m
pk

)) = T (1 · 1) ∈ O(1). (3.13)

If the solution is valid, the objective score is calculated, requiring T (numvars) ∈
O(n). If evaluation is done sequentially without using the GPU, one loop requires
T (npt

· mpk
) + T (n + k)) ∈ O(n2). As such, the whole loop requires sizepop · (T (npt

·
m
pk

) + T (n + k)) ∈ O(n3). Adding the nCk from the beginning (O(k)) to this does
not impact the significant terms and can be omitted. Considering the GPU, the
worst-case complexity is

lim
(pt,pk)→(n,m)

(log(sizepop) · T (n
pt
· m
pk

) + T (n+ k)) = sizepop · (T (1 · 1) + T (n+ k)) ∈ O(n2)

(3.14)

Even if it is not the best, the fact that the population is initialized once during the
whole pipeline in the beginning of TLBO diminishes the overall impact.

3.5.2 Evaluation Operator

One of the principal operations used in TLBO is the evaluation of a solution. It occurs
not only in the initial population generation but also after each transformation
operation in TLBO and therefore possible optimizations of this operation have
merit. Since at its most basic, the evaluation is a generalized matrix-vector product
with a generalized reduction of the resulting vector, it fits the typical use cases
for parallelization on the GPU. This is also the core mechanism with which to
compute/solve the 0/1-MKP. Unfortunately, to the best of the author’s knowledge,
no libraries exist providing such functionality implemented on the GPU supporting
heterogeneous matrices as well as different function applications for each row,
which is required to process each constraint accordingly. As such, such functionality

60 Chapter 3 System And Methods

has been developed and implemented for the system presented in this thesis with
supporting data structures.

Indeed, the actual operation for evaluating a solution is structurally equivalent to
the "constraint part" of the 0/1-MKP, as it has been discussed in section 2.4.1. On
the left below, the 0/1-MKP can be seen and on the right the evaluation operation
that specifically targets to solve the constraints.

maximize
n∑
j=1

pjxj

subject to {
n∑
j=1

ai1xj�1b1,

n∑
j=1

ai2xj�2b2,

...,
n∑
j=1

aijxj�ibi,

...,
n∑
j=1

amjxj�mbm }

m∧
i=0

freli

 n∑
j=0

fci(aij , si) · xj

 , bi

where
�i ∈ {<,≤,=,≥, >}, xj ∈ {0, 1},
i = 1, ...,m and j = 1, ..., n.

where
freli : R× R→ B.
fci : Ti × Ti → R.
aij ∈ Am×n (element of type Ti of

constraint matrix.)
m := |Γ| (number of constraints given).
n := dim(Bn) (number of items/elements

in a solution candidate.)
si (supplemental data to support

dynamic/dependent constraints.)
xj ∈ Bn (the selection vector, i.e. the

solution candidate vector.)
bi ∈ Rm (the boundaries).

With a binary relation freli ≡ �i and a binary function fci according to constraint i,
≤ i ≤ m. The latter function serving the purpose of allowing dynamic constraints, i.e.
constraints that are dependent on the form of the solution candidate or other dynamic
conditions. As of now, this is primarily needed for minimum distance constraints
between beams, i.e. between the positions of the 1-components in the solution

3.5 Optimizing Paths 61

candidate xj . freli and fci are implemented as host and device functions and stored
on constant device memory, accessible via function tables; an index is used to call
the specific function, i.e. f_c_table[i](aij , si) and f_rel_table[i](

∑n
j=0 fci(aij , si), bi).

The general form of a constraint is:

(”ConstraintName”, Ti, freli, fci) (3.15)

With "Constraint Name" being a string, denoting the name of the constraint. Ti
being the data type of the corresponding row of the constraint matrix, holding
the respective aij . The constraint matrix Am×n is implemented as a row-wise
heterogeneous matrix, where each row holds one type Ti of data according to its
constraint. More precisely, Am×n can be seen as the direct sum of row-vectors of
size n:

Am×n = −→r1 ∈ Tn1 ⊕−→r2 ∈ Tn2 ⊕ ...⊕−→rm ∈ Tnm (3.16)

The purpose of using a heterogeneous matrix is to reduce cache misses: The under-
lying type to store data is (cuda::)std::byte, data is stored and read linearly. Offset
sizes (in byte) for how many bytes a row requires are stored as well as respective
row indices. The trade-off being made here is to gain more speed but forgoing
type-safety.

Figure 3.8 visualizes the process of evaluating a solution candidate as it has been
implemented. For the purpose of parallelization, CUDA-streams were used to launch
grids concurrently on the device (the gray areas). The number of streams is v with
1 ≤ v ≤ m, where m denotes the number of constraints or "rows" in the constraint
matrix. Each stream is scheduled with a number of rows/constraints that it processes
sequentially. Each stream is scheduled with a number of rows/constraints that
it processes sequentially; from at least one row/constraint per stream to possibly
more rows/constraints per stream, depending on how many streams and memory
the GPU provides. E.g. if there are 8 constraints in total and the device can only
hold 2 and therefore can only run 2 parallel streams, then each stream receives 4
rows to process. In the case of odd numbers of streams, those "remaining" rows
are given to the streams in a round-robin scheme. Note here that the streams are
asynchronous: They are launched and the host thread is free to launch other streams
or do something else until a barrier (e.g. a cudaDeviceSynchronize()) is reached.
Each stream/grid is processing the same tasks: First computing an offset idxv which
serves as a global index to the constraint matrix rows and the global device buffer
buffer_d, which is accessible to every stream and each stream works on a specific
region according to its offset.

62 Chapter 3 System And Methods

Start

End

Copy expanded solution candidate
and constraint-dependent

supplemental data to device
(both into buffer_d)

Clean up

. . .

Initialize result_d
array on device:

1...m

 Λ
0

m

result_di Λ
0

m

result_diresult = Λ
0

m

result_diresult =

Generalized Inner
Product Kernel1

Generalized
Reduction Kernel1

Async Copy:
Constraint Matrix

rowidx_1 to
buffer_d (device)

Kernels still
scheduled for this

stream?

idx_1 =
row_offset1 + iter

* |streams|

YES

Generalized Inner
Product Kernel1

Generalized
Reduction Kernel1

Async Copy:
Constraint Matrix

rowidx_1 to
buffer_d (device)

Kernels still
scheduled for this

stream?

idx_1 =
row_offset1 + iter

* |streams|

YES

Generalized Inner
Product Kernelv

Generalized
Reduction Kernelv

Async Copy:
Constraint Matrix

rowidx_v to
buffer_d (device)

Kernels still
scheduled for this

stream?

idx_v =
row_offsetv + iter

* |streams|

YES

Copy result_d to
host

NO NO

Launch kernels on device
in parallel: streams 1...v,

1 ≤ v ≤ m

Global sync:
Wait for

streams to
finish

Parallel on
host

Fig. 3.8: Visualization of the evalua-
tion operation and its par-
allelization scheme. Note
that the gray areas denote
a stream. The number
of streams is v with 1 ≤
v ≤ m, where m denotes
the number of constraints
or "rows" in the constraint
matrix. Each stream is
scheduled with a number
of rows/constraints that it
processes sequentially. The
number of rows a stream
receives is determined by
the number of total con-
straints and the number of
constraints fitting on the
device.

3.5 Optimizing Paths 63

That region within buffer_d is used to asynchronously copy one to several rows from
the host constraint matrix to the device. A section of buffer_d at the beginning of
the buffer is restricted as it holds the solution vector −→x ; which was expanded from a
sparse to a "full" vector since, to the best of the author’s knowledge, implementa-
tions of sparse vectors for GPU-side usage don’t exist, typically being implemented
using hash-tables. It also holds result_d, i.e. the results of each freli, which are
later reduced on the host in parallel to one final result; determining whether the
constraint is valid or not. After a stream has copied the required data to the device,
a "generalized inner product kernel" is launched, computing

∑n
j=0 fci(aij , si), via

the usage of the aforementioned function tables. As the kernel is a heavily modified
dot-product kernel, a final step is required to reduce all the remaining partial results.
This is done using the "generalized reduction kernel", computing freli also via a
function table. Lastly, the result of the stream is stored in a corresponding index at
result_d and if more tasks are scheduled on that stream, work begins anew. The host
waits until all streams have finished before reducing result_d.

For performance reasons, the block configuration and grid configuration required
to launch the streams are computed once in the beginning of TLBO and kept; they
are not re-computed every time an evaluation operation is launched. buffer_d was
similarly declared once in the beginning so memory allocation and deallocation
don’t have to be done repeatedly. The size of buffer_d tries to fit in as much of the
constraints as possible while also considering memory requirements for the solution
candidate −→x , result_d and a "safety"-margin for temporary data on the device.

3.5.2.1 Complexity

As briefly mentioned in the discussion of the complexity for the generation of the
inital population (section 3.5.1.1), the worst-case runtime complexity is dependent
on the capabilities of the device (GPU). Before the streams are launched however,
data is initialized and copied onto the device according to Figure 3.8. Specific
timings on cudaMemcpy are not public, it is a reasonable assumption that it re-
quires T(m) for initializing result_d, T(n) for copying the solution vector onto the
device and T(n) for copying supplemental data of the current solution candidate:
T (m) + 2 · T (n) ∈ O(n).
The more interesting part comes right after: The concurrent streams processing
scheduled tasks on the device. The kernel and stream configurations have already
been determined in the beginning of TLBO and need not be computed again. Calcu-
lating the respective offset idxv is done in T (1), copying a row to the corresponding
spot within buffer_d is done in T (n). The "generalized inner product kernel" and the
following "generalized reduction kernel" compute

∑n
j=0 fci(aij , si).

The "generalized inner product kernel" still possesses the general structure of the

64 Chapter 3 System And Methods

common implementation of the cuda dot-product kernel (found in the official nVidia
CUDA examples[nVi22b]), detailed in algorithm 8:

Algorithm 8: Outline of the generalized dot product kernel, which performs a
partial reduction operation as well.

1 . . .
2 tid = threadIdx.x + blockDim.x · blockIdx.x;
3 resulttmp = 0;
4 cacheidx = threadIdx.x;
5 . . .
6 while tid < n do
7 resulttmp = f_c_table[i](aij , si);
8 tid += blockDim.x · gridDim.x;

9 . . .
10 i = blockDim.x/2;
11 . . .
12 while i 6= 0 do
13 if cacheidx < i then
14 cache[cacheidx] += cache[cacheidx + i];

15 __syncthreads();
16 i /= 2;

17 . . .

The number of iterations in first while-loop at line 6 are determined by the block and
grid layouts: T (n

blockDim.x·gridDim.x . For one grid with one thread it would require T (n),
increasing the threads per block and blocks (i.e. grid size) would converge to T (1).
The second while-loop at line 12 reduces the step size of i by 2 at each iteration,
therefore T (log2(blockDim.x). The dominant term here is the first while-loop with
T (n).
The "generalized reduction kernel" utilizes one while-loop with the same conditions
as the the one at line 6 for the "generalized inner product kernel", thus: T (n). The
stream then would require in total 2 · T (n). The threads per block and number of
blocks per grid determine the number of total threads influencing the dominant term:

2 · T (n
pt

) (3.17)

with pt denoting the number of threads in total for the grid assigned to the stream.
As multiple constraints/rows can be scheduled to a stream:

2 · T (m · n
pt

) (3.18)

3.5 Optimizing Paths 65

with m being the number of constraints. As several concurrent streams can be
launched:

2 · T (m
mk
· n
pt

) (3.19)

with pk being the number of concurrent grids/streams launched. Considering the
time required for the operations before the grid launches (copying and initializing
data), i.e. T (m) + T (n)⇒ T (m) + T (n) + T (mpk

· npt
) can be omitted as the stream-

complexity is the dominant term here. The following observations regarding the
worst-case complexity can be made now:

lim
(pt,pk)→(1,1)

(2 · T (n
pt
· m
pk

)) = 2 · T (n1 ·
m

1) = 2 · T (n ·m) ∈ O(n2) (3.20)

with one thread and one stream launched, essentially emulating as if the CPU would
compute it sequentially.

lim
(pt,pk)→(n,1)

(2 · T (n
pt
· m
pk

)) = 2 · T (n
n
· m1) = 2 · T (m) ∈ O(n) (3.21)

with up to n threads and one stream launched.

lim
(pt,pk)→(n,m)

(2 · T (n
pt
· m
pk

)) = 2 · T (n
n
· m
m

) = 2 · T (1 · 1) ∈ O(1) (3.22)

with up to n threads and up to m streams launched. The work of a stream here has
already been considered in calculation of the complexity. The algorithm as a whole
can be considered work-efficient, as O(1) < O(n) < O(n2), where O(n2) would be
the worst-case complexity for a sequential processing of the algorithm, whereas O(1)
and O(n) already consider multiple threads and streams.
The depth D of stream can be easily deduced from the previous observations: The
"generalized inner product kernel" has a depthDprod(n) = T (n)+T (log2(blockDim.x)),
as the first while-loop iterates up to size times at maximum, depending on the block
and grid layouts. The second while-loop iterates log2(blockDim.x) times. The "gen-
eralized reduction kernel" has a depth Dred(n) = T (n), as it utilizes one while-loop
with similar conditions to the first while-loop in the "generalized inner product
kernel". Therefore the depth for a stream Dstream(n) = Dprod(n) + Dred(n) =
2 · n+ log2(blockDim.x).

66 Chapter 3 System And Methods

3.5.3 Repair Operator

Start

Initialize a vector idxs of non-zero
indices of solution and fill it with the

corresponding indices of the
permutation by utility ratios u_ratiosp

(parallelized on CPU)

Sort idxs in ascending order
(parallelized on CPU)

Initialize thread pool
Tpool and mutex m1

Resize non-zero indices of
sol by the amount of

dropped indices

DROP

End

ADD

Initialize mutex m2

(Continue using Tpool)

Fig. 3.9: High-level visualization of the main
steps repair operation. Note that
the gray areas denote a thread. The
number of threads is determined by
the size of the thread pool Tpool.
Note that both the drop and add
operations launch threads, which
launch their own evaluation oper-
ation on the GPU. This is discussed
in more detail in the specific sections
of these operations.

3.5 Optimizing Paths 67

Originally, the TLBO-version described by Rao et al.[RSV11] does not include a
repair operation and instead discards invalid solution candidates and generates new
ones until one is valid. Kern et al.[KLV20] have incorporated the repair operator,
originally described by Chu et al. in their description of Genetic Algorithms[CB98],
to attempt to repair an invalid solution candidate after a transformation. This
chapter describes an approach to implement it (as only a vague, abstract description
has been given by Kern et al.) and parallelize it, building on the evaluation operator
discussed in the previous section.

Figure 3.9 is a visualization of the principal steps of the algorithm developed in this
thesis to implement the repair operator. The first step is to initialize a vector idxs of
non-zero indices of the current solution candidate and mutating these indices during
initialization by overwriting them to with the corresponding permutation indices
in the utility ratios permutation vector u_ratiosp. Then these indices are sorted in
ascending order. This will be helpful during the drop operation.

3.5.3.1 Utility Ratios

Kern et al. describe the purpose of the utility ratios, as derived from Chu et al.’s work,
as essentially an order of "impact" of each variable/item in a solution candidate. It is
defined as

−−−−−→
u_ratios = (u1, u2, ..., uj , ..., un) ∈ Rn with (3.23)

uj = pj∑
(Wi · aij)

where pj is the j-th element of the profits vector and aij the corresponding element
of the constraint matrix Am×n (see 0/1-MKP as discussed in section 2.4.1 and section
3.5.2 respectively). Kern et al. describes the "Wi-values as surrogate multipliers,
essentially being weights for the respective row of constraints. These are typically
obtained via solving a linear programming relaxation of the MKP but Kern et al.
have devised a quicker scheme: They compute the Wi by taking the best (i.e. best
objective score value) solution candidate xbest from the inital population and sort its
constraints (the constraint matrix rows 1 ≤ i ≤ m) by tightness. According to Dyer
et al.[Dye+17], an inequality constraint is tight at a certain point j if the point lies
on the hyperplane, i.e. aij · xj = bi. However, Kern et al. relax it by looking for "least
slack", i.e. min(|(aij · xj − bi|) for all j, 1 ≤ j ≤ n and constraint i.
For the the implementation in this thesis then, tightness ti for a constraint matrix

68 Chapter 3 System And Methods

row i is the absolute value of subtracting the evaluated constraint value from the
corresponding boundary value bi:

(t1, t2, ..., ti, ...tm) ∈ Rm with (3.24)

ti =

∣∣∣∣∣∣
 n∑
j=0

fci(aij , si) · xbestj

− bi
∣∣∣∣∣∣

Using these tightness values to sort the constraint matrix rows in descending order
(tightest constraints are at the top of the list). Then the top half of the sorted
constraint matrix rows have their Wi set to 1, the bottom half have their Wi set to 0.
The i correspond to the respective constraint matrix row indices.
The next step then is to sort the copied solution candidate by the u_ratios vector/list,
which serves as a permutation vector to sort solc by. This is implemented using a
customized sorting iterator for permutation-based sorting applied to std::sort in a
parallelized manner on the host.
Algorithms 9, 10 and 11 document the computation of the surrogate multipliers,
the computation of the utility ratios and the utilization of the utility ratios as a
permutation to sort by respectively. These listings will also be referred to during
the discussion of the complexities. Note that the computation of the surrogate
multipliers as the utility ratios is only done once in TLBO after the initial pop-
ulation has been generated. and thus, there is no multiplicative speedup to be
gained and therefore it was deemed to opt for the easier implementation and less
memory allocation operations/movement.
An additional algorithm, almost equivalent to algorithm 11, also exists to compute
the inverse permutation vector. The only difference there is that the custom sorting
operation is reversed and the already computed permutation vector by algorithm
11 is used as a basis, thus not requiring to call the other algorithms again. This
algorithm is not listed here but discussed in the complexity analysis. The inverse
permutation vector as well as the permutation vector are required in the "drop
operation".

3.5 Optimizing Paths 69

Algorithm 9: Algorithm to compute the surrogate multipliers.

1 thread_pool Tpool(numthreads);
2

// Vector of pairs. First component holds the tightness value, second component

holds the constraint index according to the constraint matrix. A

3 tightnesses[A.numrows] ⊂ R× N;
4

// Submit tasks to the pool. Each task is a callback to evaluation function,

specifically for one row; i.e. for one constraint. The amount of

constraints is equal to the number of rows to the constraint matrix and we

will save the computed tightness of each constraint in the tightnesses

vector.

5 for (i = 0, iter = A.row[0]) to (A.numrows, A.row[m - 1]) do
6 Tpool.push_task(λ(i) : N→ R× N {

// compute tightness using a version of the evaluate operator that, instead

of a boolean result, computes the value as presented in equation 3.24

with respect to the best solution solbest of the initial population. Done

on the GPU in parallel but for just one row. I.e. one thread in the

thread pool launches one stream, essentially. Result is then inserted

into tightnesses at position i.

7 });

8

// pool-wide barrier

9 Tpool.wait_for_tasks();
10

// sort and get the median solution and map every value > median = 1, else = 0.

11 std::sort(std::execution::par, tightnesses.begin(), tightnesses.end(), ...);

12 tmedian ∈ R = tightnesses[|tightnesses|
2].first;

13

14
−−−−→
results[|tightnesses|] ∈ Rm;

15 foreach ti ∈ tightnesses do
16

−−−−→
results[elem.second] = ternary_op(ti.first ≥ tmedian), 1, 0);

17 return
−−−−→
results;

70 Chapter 3 System And Methods

Algorithm 10: Algorithm to use the computed surrogate multipliers to compute
the utility ratios.

1 thread_pool Tpool(numthreads);
2

3
−−−−−→
u_ratios ∈ Rn;

4 for i = 0 to n - 1 do
5 Tpool.push_task(λ(i) : N→ R {

// Essentially computes in parallel on the host the equation 3.23. Each

surrogate multiplier computed before serves as a weight for aij ∈ Am×n

for row i respectively. The computed uj are stored in
−−−−−→
u_ratios[i].

6 });

// pool-wide barrier

7 Tpool.wait_for_tasks();
8

9 return
−−−−−→
u_ratios;

Algorithm 11: Algorithm to sort a solution candidate according to the computed
utility ratios. It uses a custom sort iterator, permuting (sorting) an input range
according to a permutation vector

1
−−−−−→
u_ratios ∈ Rn = utility_ratios(−→p , solbest, W, Am×n, ...);

2

// Permutation initialized as {0, 1, ..., n− 1}

3 P ⊆ Nn = {0, 1, ..., n− 1};
// Custom sort iterators that sort P , which is a set of {0, 1, ..., n - 1},

such that the elements are now sorted according to utility_ratios, making P

now a permutation that can be used in the repair operation to sort the

elments of given candidate solution by using P as indices.

4 std::sort(std::execution::par, custom_begin(P, u_ratios),
custom_end(P, u_ratios), ...);

5

6 return P;

3.5 Optimizing Paths 71

3.5.3.2 Drop

Drop next non-zero
value from sol

according to the task

Evaluate sol
(on GPU)

Fetch task from
Tpool

Valid/Feasible?

YES

NO

Update m1 with new
valid number of non-

zeros

Thread pool
contains tasks?

YES

NO

Drop next non-zero
value from sol

according to the task

Evaluate sol
(on GPU)

Fetch task from
Tpool

Valid/Feasible?

YES

NO

Update m1 with new
valid number of non-

zeros

Thread pool
contains tasks?

NO

YES

DROP
Start

(From Repair
Operation)

End
(Continue Repair

Operation)

. . .

Thread pool Tpool: A thread
fetches a task and

executes it. Thread k with
1 ≤ k ≤ |Tpool|

Thread pool sync. Wait till
task queue is empty and

thread pool is idle

Fig. 3.10: Visualization of the drop
operation. Note that
the gray areas denote
a host-thread. There
are up to |Tpool| threads
and the number of tasks
submitted to the thread
pool Tpool is equal to the
amount of non-zero in-
dices of the current solu-
tion candidate sol. The
evaluation operation in
each thread is done on
the GPU as described in
section 3.5.2.

72 Chapter 3 System And Methods

After idxs has been initialized according to u_ratiosp, a thread pool Tpool is created
using the maximum amount of threads the CPU can run earnestly in parallel along-
side a mutex-object m, serving to guard a specific data field keeping track of the
current state of non-zeros in the (about to be mutated) solution candidate sol.
Tasks are then pushed into the pool, each task is marked as gray area in Figure 3.9
and are run in parallel by the amount of threads 1 ≤ k ≤ |Tpool| available. Each
task encompasses what Kern et al. call a "drop operation"[KLV20]. If a solution
is unfeasible after a transformation operation within TLBO, the repair operator
attempts to make it feasible again. The drop operation reads the variables/items
of sol from right to left and drops a non-zero element, i.e. sets a non-zero value to
0, evaluates the solution with the dropped element and repeats until sol becomes
feasible again.
The size of the thread pool depends on how many concurrent grids can be run on
the device/GPU, i.e. how many streams can be launched as each thread launches its
own evaluation operation which has one stream and 1 to m rows per stream, akin
to the evaluation operation. The only difference is that the number of streams is
determined from the "outside", by the threads. GPUs capable of supporting compute
capability 7 or higher support the launch of several streams from several host threads.
The amount of tasks pushed into the pool depends on the number non-zero elements
of sol. A thread fetches a task from the pool and drops the next 1-component
assigned to it. Each task is assigned an index of a non-zero element where it acts as
if all the other non-zero elements after it were already set to 0. E.g.:

sol = (10, 01, 02, 13, 14, 05, 16, 07, ..., 0n−1) ∈ Bn (3.25)

non-zero elements of sol: 4⇒ |Tpool| = 4

Therefore:

thread1(sol)⇒ solthread1 = (10, 01, 02, 13, 14, 05, 06, 07, ..., 0n−1)

thread2(sol)⇒ solthread2 = (10, 01, 02, 13, 04, 05, 06, 07, ..., 0n−1)

thread3(sol)⇒ solthread3 = (10, 01, 02, 03, 04, 05, 06, 07, ..., 0n−1)

thread4(sol)⇒ solthread4 = (00, 01, 02, 03, 04, 05, 06, 07, ..., 0n−1)

After the evaluation operation, if the solution is still not feasible the tasks concludes
and the thread fetches a new task from the pool. If the solution is feasible, the
thread writes into a global index, readable and writable by all threads, its index
of the dropped 1-component. However, the global index is guarded by mutex m1

to avoid data races and additionally also takes care that the maximum amount of
1-components being kept that makes it feasible. I.e. only the minimal necessary
amount of 1-components are attempted to be dropped (otherwise it would just drop
all non-zero components).

3.5 Optimizing Paths 73

3.5.3.3 Add

After dropping 1-components, the solution candidate sol is feasible again. The add
operation intended by Kern et al. tries to optimize the objective score of the solution
candidate by adding 1-components from left to right while keeping it feasible. The
evaluation operation is parallelized in familiar fashion on the GPU as described in its
section.
The parallelization scheme of the add operation can be seen in figure 3.11. Each
gray area denotes a host-thread, i.e. a task. Each task copies sol locally, denoted
by solc in the figure. Structurally, a task is similar to a task in the drop operation
but instead of dropping a non-zero component, a non-zero component is added
from left to right. Each task is grouped in a stride. There is only one stride with a
certain stride.width (the number of threads) and sol is being iterated through using
the stride-width, so essentially it is semantically not different from how the drop
operation is processing a solution candidate (a number of thread processes sol) but
a stride gives the "movement" of a thread an additional structure: It is required that
the order of tasks a thread processes is kept. A stride is therefore used as a barrier
before moving on to the next tasks, i.e. the next number of indices in sol to consider,
and ensures that each thread k receives task iteration · stride_width+ k.
Copying sol to a thread’s specific solk is done using the inverse permutation vector
u_ratiosip, constructed from the utility ratios. I.e. the indices i ∈ 0, ..., |sol| are
translated to the real positions/indices in sol using u_ratiosip. This is necessary to
adhere to the "utility" that the utility ratio permutation vectors give to each position
of a solution candidate while still being able to just iterate through the solution
candidate elements. After a non-zero component has been added, solc is being
evaluated on the device. If feasible, a global variable, holding the current smallest
position index of the non-zero element to be added, is updated by a task. This global
variable is guarded by mutex m2. Furthermore, the global variable is only updated if
it is the current smallest of the whole stride, i.e. if several tasks of the same stride
attempt to update it, the smallest index will prevails. After a stride of tasks has
finished, the position stored in the global variable is then used to add a non-zero
element to sol at that corresponding position using u_ratiosip.

74 Chapter 3 System And Methods

St
ar

t
(F

ro
m

 R
ep

ai
r

O
p

er
at

io
n

)

C
o

p
y

so
l t

o
 a

te

m
p

o
ra

ry
 s

o
l k

 a
n

d

ad
d

 a
 n

o
n

-z
er

o

ac
co

rd
in

g
to

 in
d

ex
 o

f
in

ve
rs

e
u

ti
lit

y
p

er
m

u
ta

ti
o

n
 v

ec
to

r
u

_r
at

io
s i

p

Ev
al

u
at

e
so

l k
(o

n
 G

P
U

)

Fe
tc

h
 t

as
k

(s
tr

id
e

+
th

re
ad

 in
d

ex
)

fr
o

m

T p
o

o
l

V
al

id
/F

ea
si

b
le

?

YE
S

N
O

U
p

d
at

e
m

2
 w

it
h

 n
ew

va

lid
 s

m
al

le
st

 in
d

ex
 o

f
n

o
n

-z
er

o
 o

f
cu

rr
e

n
t

st
ri

d
e

. .
 .

St
ri

d
e

1

. .
 .

Th
re

ad
 p

o
o

l
co

n
ta

in
s

ta
sk

s?

YE
S

 S
tr

id
e

s
+=

 s
tr

id
e

w
id

th

C
o

p
y

so
l t

o
 a

te

m
p

o
ra

ry
 s

o
l k

 a
n

d

ad
d

 a
 n

o
n

-z
er

o

ac
co

rd
in

g
to

 in
d

ex
 o

f
in

ve
rs

e
u

ti
lit

y
p

er
m

u
ta

ti
o

n
 v

ec
to

r
u

_r
at

io
s i

p

Ev
al

u
at

e
so

l k

(o
n

 G
P

U
)

Fe
tc

h
 t

as
k

(s
tr

id
e

+
th

re
ad

 in
d

ex
)

fr
o

m

T p
o

o
l

V
al

id
/F

ea
si

b
le

?

YE
S

N
O

U
p

d
at

e
m

2
 w

it
h

 n
ew

va

lid
 s

m
al

le
st

 in
d

ex
 o

f
n

o
n

-z
er

o
 o

f
cu

rr
e

n
t

st
ri

d
e

C
o

p
y

so
l t

o
 a

te

m
p

o
ra

ry
 s

o
l k

 a
n

d

ad
d

 a
 n

o
n

-z
er

o

ac
co

rd
in

g
to

 in
d

ex
 o

f
in

ve
rs

e
u

ti
lit

y
p

er
m

u
ta

ti
o

n
 v

ec
to

r
u

_r
at

io
s i

p

Ev
al

u
at

e
so

l k

(o
n

 G
P

U
)

Fe
tc

h
 t

as
k

(s
tr

id
e

+
th

re
ad

 in
d

ex
)

fr
o

m

T p
o

o
l

V
al

id
/F

ea
si

b
le

?

YE
S

N
O

U
p

d
at

e
m

2
 w

it
h

 n
ew

va

lid
 s

m
al

le
st

 in
d

ex
 o

f
n

o
n

-z
er

o
 o

f
cu

rr
e

n
t

st
ri

d
e

. .
 .

St
ri

d
e

s

C
o

p
y

so
l t

o
 a

te

m
p

o
ra

ry
 s

o
l k

 a
n

d

ad
d

 a
 n

o
n

-z
er

o

ac
co

rd
in

g
to

 in
d

ex
 o

f
in

ve
rs

e
u

ti
lit

y
p

er
m

u
ta

ti
o

n
 v

ec
to

r
u

_r
at

io
s i

p

Ev
al

u
at

e
so

l k

(o
n

 G
P

U
)

Fe
tc

h
 t

as
k

(s
tr

id
e

+
th

re
ad

 in
d

ex
)

fr
o

m

T p
o

o
l

V
al

id
/F

ea
si

b
le

?

YE
S

N
O

U
p

d
at

e
m

2
 w

it
h

 n
ew

va

lid
 s

m
al

le
st

 in
d

ex
 o

f
n

o
n

-z
er

o
 o

f
cu

rr
e

n
t

st
ri

d
e

A
D

D

N
O

U
p

d
at

e
so

l w
it

h
 n

ew

p
o

si
ti

o
n

 f
ro

m
 n

ew

n
o

n
-z

er
o

 in
d

ex
 (

if

ex
is

t)
 f

ro
m

 c
u

rr
en

t
st

ri
d

e
vi

a
in

ve
rs

e
u

ti
lit

y
p

er
m

u
ta

ti
o

n

ve
ct

o
r

u
_r

at
io

s i
p

En
d

(C

o
n

ti
n

u
e

R
ep

ai
r

O
p

er
at

io
n

)

Th
re

ad
 p

o
o

l T
p

o
o

l:
A

 t
h

re
ad

fe

tc
h

es
 a

 t
as

k
an

d

ex
ec

u
te

s
it

. T
h

re
ad

 k
 w

it
h

1

 ≤
 k

 ≤
 s

, a
 s

tr
id

e
s

is
 a

t
m

o
st

 t
h

e
si

ze
 o

f
|T

p
o

o
l|

 a
n

d

1
 ≤

 s
 ≤

 |
T p

o
o

l|

Th
re

ad
 p

o
o

l s
yn

c.
 W

ai
t

ti
ll

cu
rr

en
t

st
ri

d
e

is
 f

in
is

h
ed

Fig. 3.11: Visualization of the add operation. Gray areas denote a thread, dashed boxes
denote a stride.

3.5 Optimizing Paths 75

3.5.3.4 Complexity

The first step of the repair operation is to initialize a vector idxs of non-zero indices
of a solution candidate sol permuted by an already-computed permutation vector
u_ratiosp in parallel on the CPU: O(npc

), with pc threads. Then, idxs is sorted using
std::sort in parallel as well. The C++ standard guarantees a std::sort time of O(n ·
log(n)) (as of C++14 and newer), no official word is given on how parallelization
might affect the time and therefore only the time guaranteed is considered. Thus,
the time worst-case time before the drop operation is n

pc
+ O(n · log(n)) = O(npc

+
n · log(n))⇒ O(n · log(n)).
The drop operation is done by assigning tasks to a thread pool. The size of the pool
equals the number of non-zero elements of sol, here denoted as γ1. A task drops a
zero-value according to the index assigned to the task (done in O(1)) and checks
feasibility via the application of the evaluation operation. However, the "twist" here
is that one host-thread launches a stream. Each thread therefore launches a stream
for its own version (local copy) of sol with different dropped non-zero elements;
therefore γ1 single-stream evaluation operations are launched and processed in
parallel: γ1 · T (m1 ·

n
pt

) = T (γ1 ·m · npt
), with pt denoting the number of threads (per

stream on the GPU), m the number of constraints or constraint matrix rows.
The add operation is similar in its processing as the drop operation, including the
usage of the evaluation operation. Even through the traversal of sol is done using a
stride, the amount of threads remains the same. Each thread makes a local copy of
sol: O(n). Each thread then adds a non-zero component according to the task index
and inverse permutation vector and incurs a single-stream evaluation operation:
T (m1 ·

n
pt

) = T (m · npt
), with pt denoting the number of threads (per stream on the

GPU), m the number of constraints or constraint matrix rows. The traversal of
sol requires at worst n

pk
iterations, with pk being the number of threads, i.e. the

stride-width. As such, the add operation requires n
pk
· T (m · npt

) = T (npk
·m · npt

).
Thus, the whole timing is

O(n · log(n)) + T (γ ·m · n
pt

) + T (n
pk
·m · n

pt
) (3.26)

As γ might be, at worst (but unrealistically), approaching n, the term for the drop
operation can be encompassed by T (n·m· npt

). That term for grows faster individually
than O(n · log(n)), i.e.:

O(n · log(n)) < T (n ·m · n
pt

) ∈ O(n2 · n
pt

) (3.27)

76 Chapter 3 System And Methods

The term for the add operation requires more careful observation: Letting the stride-
width pk be as if it were sequentially executed, i.e. pk = 1, it converges similarly to
the drop operation:

O(n · log(n)) < lim
pk→1

T (n1 ·m ·
n

pt
) ∈ O(n2 · n

pt
) (3.28)

And letting pk grow up to n, the term that grows faster is now dependent on pt:

O(n · log(n))
?
< lim

pk→n
T (n
n
·m · n

pt
) ∈ O(m · n

pt
) (3.29)

Thus, with consideration of pt:

O(n · log(n)) < lim
(pt,pk)→(1,1)

T (n1 ·m ·
n

1) ∈ O(n3) (3.30)

O(n · log(n)) > lim
(pt,pk)→(n,n)

T (n
n
·m · n

n
) ∈ O(n) (3.31)

It can be observed that if parallel capabilities are utilized, the add operation falls
within O(n), meaning that the dominant term then is O(n · log(n)), whereas for
sequential observation it is at worst O(n3). And since O(n3) ≥ O(n2 · npt

) (from drop,
eq. 3.27), the worst-case complexity for sequential processing is within O(n3). When
parallel capabilities are considered, it is within O(n2), where drop is the dominant
term (letting pt there grow up to n): O(n2) > O(n · log(n)).
That being said, if observed more realistically, i.e. with γ < n, it would be within
O(n · log(n)). Work complexity has been considered here and is similar to the
complexity observations of sequential computation as discussed for the evaluation
operation.
Depth complexity D(n) for drop equals the depth required to process one row,
which is similar to the evaluation operation: Dstream(n) = Dprod(n) + Dred(n) =
2 · n + log2(blockDim.x). This is the same for the evaluation operation within the
add operation.

With respect to the computation of the utility ratios permutation vector being done
once at the beginning of TLBO, algorithms 9, 10 and 11 document the computational
steps: The computation of the surrogate multipliers Wi, i.e. algorithm 9, consists
of primarily a for-loop pushing m tasks, with m being the amount of constraints or
constraint matrix rows of Am×n, to a thread pool, followed by a std::sort (done in
parallel on the CPU) and last for-each-loop. The first for-loop at line 5 launches
essentially |Tpool| amount of streams on the device, each stream computing evaluating
one row. Using the complexities discussed for the evaluation operation: T (m

|Tpool| ·
n
pt

).
The C++14 standard guarantees at least O(n · log(n)) for std::sort (non-parallel

3.5 Optimizing Paths 77

version) and the last for-each-loop at line 15 requires T (|tightnesses|) ∈ O(m).
Thus,

T (m

|Tpool| · npt

) +O(n · log(n)) +O(m) (3.32)

⇒ lim
(pt,Tpool)→(1,1)

T (m

|Tpool|
· n
pt

) +O(n · log(n)) +O(m) ∈ O(n2) (3.33)

As the term for the evaluation operation is dominant for sequential operations. For
scaling up parallel capabilities:

lim
(pt,Tpool)→(n,m)

T (m

|Tpool|
· n
pt

) +O(n · log(n)) +O(m) ∈ O(n · log(n)) (3.34)

Algorithm 10 documents the computation for the utility ratios vector. Computation-
ally, only the for-loop at line 4 is of interest: It pushed n tasks onto a thread pool of
size |Tpool|, each thread essentially computes equation 3.23 on the host. Therefore:

T (m

|Tpool|
· n) (3.35)

⇒ lim
|Tpool|→1

T (m

|Tpool|
· n) ∈ O(n2) (3.36)

lim
|Tpool|→m

T (m

|Tpool|
· n) ∈ O(n) (3.37)

Algorithm 11 documents the computation for the permutation vector with which
to sort the invalid/"broken" solution candidate. It calls algorithm 10, initializes
the permutation P (done in O(n)) and calls std::sort (also in parallel on the host)
with a guaranteed O(n · log(n)). Therefore it is either bound by O(n2) due to the
utility ratios function called, if the utility ratios function is computed sequentially.
Otherwise the dominant bound is O(n · log(n)) within O(n) + O(n) + O(n · log(n)),
with the first O(n) bounding a parallelized utility ratios execution.
Additionally, the creation of the inverse permutation vector used by the repair opera-
tor is also called once and is structurally identical to algorithm 11 but works using
the already computed permutation vector to created the inverse permutation vector
and as such, not requiring algorithm 10. Therefore it requires only the initialization
time done in O(n) and time required by std::sort, also in parallel on the host) with a
guaranteed O(n · log(n)). Therefore it is bound by O(n · log(n)).
Each of the four algorithms is called once during the computation and thus the
timing of the whole depends on sequential or parallel execution observations: It is
either bound by O(n2) or O(n · log(n)) respectively.

78 Chapter 3 System And Methods

3.5.4 Result And Initial Energy Of The Ray/Beam

After TLBO has finished, the sorted list of solution candidates, sorted from worst to
best is returned. Depending on how many solution candidates should be considered,
they are taken from the list. Each solution candidate might contain multiple beams,
i.e. multiple 1-components in −→x . Each 1-component denotes a beam angle from
the isocenter to the respective cell the 1-component inhabits. This beam angle is
determined via spherical coordinates (ρ, θ, φ). ρ represents the radius/distance from
the cell center of the corresponding 1-component and the isocenter, θ represents
the azimuthal angle and φ represents the polar angle. Calculated by the common
formulas:

ρ =
√
cj2
x + cj2

y + cj2
z (3.38)

θ = atan2(cjy + cjx) (3.39)

φ = cos−1 cjz
ρ

(3.40)

With (cjx, cjy, cjz) ∈ R3 denoting the euclidean coordinates of the cell center corre-
sponding to the index of j of xj .
In addition, the initial energy E0 required for the beam/ray to reach the isocenter is
computed. The beam model used here for the application domain of proton radiation
therapy also considers the target dose with which the beam should hit the isocenter
as discussed more thoroughly in section 3.4.2 and section 2.2.2. The cell index of a
cell corresponding to a 1-component xj maps to the cell index of the corresponding
cell pj in the profits vector −→p holding the WEPL.

To consider the two main approaches (phenomenological, i.e. Bragg-Kleeman[NZ15],
and approximation of relativistic, i.e. Bethe-Bloch[NZ15]) to model proton traversal
and proton energy radiation/dissipation during travel through a medium (here a
homogeneous medium: water), two methods have been considered to calculate E0.
The phenomenological Bragg-Kleeman model as reported by Newhauser et al.[NZ15]
and already discussed in in section 2.2.2:

R− x = αEP ⇔ E(x) =
(
R− x
α

) 1
P

(3.41)

The other model considers the relativistic, more accurate Bethe-Bloch equation,
which has also been officially adopted as the "gold standard" by the ICRU(ICRU
Reports 50[Lan+93] and 62[Lan+99]) to measure against and often computed
using Monte Carlo methods. However, as already discussed in the previous sections,

3.5 Optimizing Paths 79

the model is impossible to compute directly. Ulmer et al.[UM10] provide an ap-
proximation of the the Bethe-Bloch equation. They approximated the integration
operation by using a 4th-degree polynomial based on the power series expansion:

∞∑
k=0

an(x− c)n (3.42)

Providing a higher accuracy while still being computationally cheap: Computed
in O(1). They fitted λk ∈ Λ and ck ∈ C empirically to fit their function as closely
as possible to the official ICRU curve for the proton ranges up to 300MeV with a
deviation from the ICRU curve of 0.0013MeV:

Λ = {10.256410256410255, 0.800006400051200, 0.175435518675111,

0.099501497497537, 0.009369626519191}

C = {96.63872, 25.0472, 8.80754, 4.19001, 9.2732}

E0 = (wepl − z) ·
5∑

k=1
ck · e−λk·(wepl−z) (3.43)

with ck ∈ C, λk ∈ Λ

z denoting the residual range (for the purposes here it is 0).

For each 1-component of a solution candidate, a list of 4-tuples is returned:

[(E0a, ρa, θa, φa)], a = 1, ...,#non-zero elements of solution candidate (3.44)

80 Chapter 3 System And Methods

4Evaluation And Discussion

This chapter presents and discusses the quality of the system presented in the
previous chapter and if the goals stated in the beginning were achieved and to what
degree. A main source of radiation therapy data sets is the Imaging Cancer Archive
(ICA)[Pri+17], a database with numerous data sets of CT scans and additional
treatment data for various treatment modalities. A major difficulty during the
creation of this thesis has been finding suitable data sets in the application domain
of proton therapy: DICOM structure variations and/or missing/inconsistent meta
information and incomparable environments on which they were obtained/generated
were an unpleasant factor. Furthermore, purposely missing information due to being
generated by implementations of algorithms and methods within proprietary systems
(often in cooperation with device manufacturers) were also encountered.

Luckily, researchers in the domain identified these problems as well and efforts
were made to build "standardized" or easily comparable data sets specifically for the
purpose of evaluating treatment planning systems. One of the more famous ones,
which shall also be used in the evaluation here, is the CORT data set[Cra+14], as
well as the Alderson-Phantom[SVS08]. More detailed discussions on these data sets
can be found in section 4.2.

As the application domain for the system presented in the previous chapter is proton
radiation therapy, it makes sense to utilize the domain’s methodology of evaluating
the quality of a treatment plan, of which the beam angles are a crucial factor. This
is commonly done using dose-volume histograms (DVH)[KG14], which allow for a
qualitative analysis and comparison of treatment plans and will be explained in the
next section.
Naturally, timings will be presented for the critical parts of the system: The genera-
tion of the cost map (i.e. ray tracing) as well as the optimization (TLBO).

81

4.1 Dose-Volume Histograms (DVH)

0 10 20 30 40 50 60 70

RBE x Dose [Gy(RBE)]

0

20

40

60

80

100

V
o
lu

m
e
 [
%

]
Organ At Risk

Target Volume

0 10 20 30 40 50 60 70

RBE x Dose [Gy(RBE)]

0

20

40

60

80

V
o
lu

m
e
 [
%

]

Organ At Risk

Target Volume

Fig. 4.1: Top: A theoretical ideal cumulative DVH (cDVH).
Bottom: A theoretical ideal differential DVH (dDVH).

Dose-Volume histograms (DVH) are the common tool in radiation treatment planning
to assess the quality of a plan. A DVH represents a summarization of 3D dose
distributions as a 2D graph and relates the amount of dose received by which
amount of voxels of a volume. Two types can usually be encountered in related
literature: The cumulative DVH (cDVH) and the differential DVH (dDVH). The
independent variable is expressed by the domain, being expressed as absolute or
relative value in Gy (Gray). The dependent variable is expressed by the codomain
and denotes the absolute or relative value of the volume receiving a certain amount
of dose. Note that this morphism is essentially a "binning", i.e. discretization, of the
domain (a histogram)[KG14]. This thesis expresses the volume receiving the doses
relatively (in %).

A dDVH, visualizes the amounts variation of dose (dose bin) a volume is receiving,
i.e. a spectrum of dose distribution for a volume. E.g. the bottom dDVH in figure 4.1
shows that for the target volume, a bit above 70% of voxels of that volume receive
60Gy. The rest of the volume voxels receive close to 0% (but it sums up to 100% of

82 Chapter 4 Evaluation And Discussion

volume voxels considered). Whereas for the organ at risk, it can be seen that 80% of
the volume voxels receive close to 0Gy.
Generally, the narrower the peak in a dDVH, the more homogeneous the dose
distribution in a volume is. The wider the peak, the more spread-out the dose
distribution in a volume is. That is, voxels of a volume receive different doses.
Ideally, it is desired for the voxels of the target volume to receive the same dose, so
that the target volume is being destroyed a homogeneous manner. Thus reducing
the number of fractions, beams and maybe sessions, even possibly simplifying the
treatment plan itself.

A cDVH can be calculated from a dDVH by integration of the dDVH from a dose bin
D to∞, for every dose bin. The cDVH visualizes the amount of cumulative dose (or
higher) a volume receives. E.g. in the top cDVH in figure 4.1, the target volume
graph shows that 100% of the volume receives up to 60Gy, whereas 100% of the
organ at risk receives up to close to 0Gy, the rest of the graph is close to 0% for up
to 60Gy.
Organs at risk in cDVH should essentially strive to mimic the curve of a very sharp/s-
teep log(1

x), whereas the graphs for the target volumes should strive to mimic the
curve of −exc + 100, with c ∈ N, c being very large.

4.2 Evaluation

OS Microsoft Windows 10, Version 10.0.19042, Build 19042

CPU AMD Ryzen 7 5800X @3800 Mhz

RAM 32 GB

GPU nVidia GeForce RTX 3080
Tab. 4.1: Test system specifications.

For the purpose of evaluating the system presented in the previous chapter, the CORT
data set[Cra+14] has been chosen, being the result of one of the more recent efforts
to produce a purpose-built data set for evaluating treatment planning systems. In
addition, the Alderson-Phantom[Pri+17] will be utilized as well. These data sets also
come with volume/organ segmentations/contours as well as constraint/penalties
and further additional information to use as treatment planning parameters.
Due to the nature and approach of the system developed in this thesis, the constraints
utilized are interpreted from a more geometrical/physical point of view. Medical con-
straints were considered via the usage of a penalty map; a voxel grid with the same
dimensions and resolutions of the CT of the respective data set but holding clinical
penalty values for each voxel, i.e. voxels of an organ at risk have a higher penalty
than non-OARs as well as target volumes. Note that this approach is not clinically

4.2 Evaluation 83

verified, only a suggestion with the application area of proton therapy radiation. A
radiologist and/or oncologist are required to review and consider the beam angle
suggestions given by the system. Further note that contouring/segmentation of the
OARSs and PTVs do have an impact on DVH evaluation as well as they might differ
(slightly) for the same patient for different setups, e.g. patient positions, devices
used, oncologists generating the treatment constraints, etc. Table 4.2 documents the
general parameters of each scenario used.

Head And Neck Prostate TG119

CT Dimensions 161× 161× 67 183× 183× 90 167× 167× 129
Voxel Dimensions 3× 3× 5(mm) 3× 3× 3(mm) 3× 3× 2.5(mm)
CT/Cuboid Voxels 1736707 3014010 3597681
CuboidSurface Voxels 94990 132858 141950

Alderson-Phantom Box-Phantom Liver

CT Dimensions 155× 155× 170 160× 160× 160 217× 217× 168
Voxel Dimensions 2× 2× 2(mm) 3× 3× 3(mm) 3× 3× 2.5(mm)
CT/Cuboid Voxels 4084250 4096000 7910952
CuboidSurface Voxels 153450 153600 240002

Tab. 4.2: Overview of data set scenarios. The scenarios are ordered by the number of CT
voxels, ascending (left to right).

4.2.1 Cost Map

Figure 4.2 shows average timings (in milliseconds) for each scenario for the cost map
generation/ray tracing, using the slightly modified method by Xiao et al.[Xia+12],
discussed in section 3.4. Each time measurement is an average over 10 runs. Each
run consists of ray from the voxel of interest (the isocenter) towards each surface
voxel of a cuboid face. This is done in parallel for each side as far as the GPU
capabilities allow. For the GPU used here for testing purposes (refer to table 4.1),
full parallel processing was always achieved, without the need for queuing tasks due
to memory limitations. Timings include the copying of data to and from the device,
as well as the initialization of the CUDA-surfaces and additional data structures.

84 Chapter 4 Evaluation And Discussion

141.6 140.7
145.4

158.2

150.4

160.8

Head And Neck Prostate TG119 Alderson-Phantom Box-Phantom Liver

0

20

40

60

80

100

120

140

160

180

m
s

Fig. 4.2: Timings of the CostMap-step (Ray Tracing), discussed in section 3.4, via the slightly
modified method of Xiao et al[Xia+12]. All 6 faces of a cuboid are done in parallel
for a data set. Timings in milliseconds, average of 10 runs for each scenario.

4.2.2 TLBO

The evaluation of the TLBO consists of two observation areas: Qualitative evaluation
of the results and quantitative evaluation of the time required. Since TLBO attempts
to solve the 0/1-multidimensional knapsack problem (0/1-MKP), introduced in
section 2.4.1, which lies within NP, it seems to be the most useful to present the
timings for each scenario as a 3-tuple of (min, max, average) time required for an
iteration of the main loop, i.e. the "most outer" loop of TLBO (see algorithm 6).
These values are taken from 100 iterations. For the qualitative results, the computed
beam angles will be used.

Those computed beam angles are then applied as the beam angles used in the
treatment planning system matRad[Wie+17], calculating the fluence matrix and
final dose distributions for a scenario. The results for each scenario are presented
here using a dDVH and cDVH respectively, as well as visualizations of dose distribu-
tions as heat maps for each of the principal axes in medical physics (axial, sagittal,
coronal).

However, not only are the number of voxels of a cuboid surface object affecting
the time required, but also the number of beams and constraints. Moreover, the
constraint to ensure a minimum distance between beams, namely C2 (eq. 4.2), (so
that they don’t fall all into one position, which could happen since TLBO doesn’t
check for identical solutions but rather just tries to converge to an optimum) is
what can be considered to be a "dynamic constraint" or "dependent constraint" as
it relies on the number of beams. Internally, this is done by reading the number of

4.2 Evaluation 85

beams from the boundary condition of the boundary set B to the supplemental data
buffer and then being read from there when C2 (or another dependent constraint) is
selected by a kernel for computation. As such, the independent constraints need to
be fed into the system first.
A listing of used constraints for the evaluation can be found below. Note that C1 and
C2 are always used. The notions of "1 Constraint", "2 Constraints" and "3 Constraints"
found in the visualizations that follow and tables 4.3 and 4.4 are equivalent to
the number of penalty-constraints used, i.e. "1 Constraint" ≡ {C1, C2, C3}, "2
Constraints" ≡ {C1, C2, C3, C4} and "3 Constraints" ≡ {C1, C2, C3, C5}.
A note on the nature of the constraints: The data of each constraints is also a cuboid
surface object of the same size and dimensions as the "profit" (i.e. WEPL) data. Each
voxel element vci of a constraint cuboid surface ci can be any valid supported data
type or even a vector over a field, as in C2. The penalty values of C3 are taken from
the clinical constraint penalties given for each scenario found in the data set.

C1 = (uint64, "MAX_BEAMS", ≤, fmax_beams) (4.1)

C2 = (double3, "MIN_DIST_SPHERICAL", ≥, fmin_dist_spherical) (4.2)

C3 = (double, "PENALTY", ≤, fpenalty) (4.3)

C4 = (double, "PENALTY", ≤, fpenalty) (4.4)

C5 = (double, "PENALTY", ≤, fpenalty) (4.5)

The structure of the constraints are akin to equation 3.15 as discussed in section
3.5.2.

Fc = {fmax_beams, fmin_dist_spherical, fpenalty1 , fpenalty2 , fpenalty3} (4.6)

Frel = {≤, ≥, ≤, ≤, ≤} (4.7)

B = {b1, b2, b3, b4, b5} (4.8)

1 to 3 beams are used together with (2 +) 1 to 3 constraints. The beam number
of 3 to 5 appears to be common in related literature, so up to 3 will be used
here. The reasoning for the amount of constraints is that {C1, C2, C3} appear to be
the required constraints to have at least somewhat potentially useful results. The
additional penalties, C4 and C5, are just using the data from C3 but pronounce it
a bit more, adding/subtracting penalty values according to the importance given
by the values of C3, without changing clinical semantics introduced by the penalty
values for voxels defined in C3. They rather just introduce more computational

86 Chapter 4 Evaluation And Discussion

complexity.
Lastly, the timings for the initial population generation were all taken over 50 runs,
collected as a 3-tuple (min, max, average) of time required to finish the population
generation. Generally, a population size of 32 has been chosen as this is the around
the number of what Kern et al.[KLV20] recommend.
A discussion of the results follows in section 4.3.

4.2.2.1 Initial Population Generation Timings

1 Constraint

Head And Neck Prostate TG119 Alderson-Phantom Box-Phantom Liver

0

10

20

30

40

50

60

70

m
s

2 Constraints

Head And Neck Prostate TG119 Alderson-Phantom Box-Phantom Liver

0

10

20

30

40

50

60

70

m
s

3 Constraints

Head And Neck Prostate TG119 Alderson-Phantom Box-Phantom Liver

0

10

20

30

40

50

60

70

m
s

Fig. 4.3: Initial population generation timings visualized for easier comparison. The error
bars denote the most and least amount of time required for a for the generation.
The average time required is denoted as a bar. Blue bar denotes 1 Beam, red bar 2
beams, yellow bar 3 beams. Timings were taken from 50 runs for each condition
(number of constraints, number of beams). See table 4.3 for a more detailed
reference.

4.2 Evaluation 87

#
C

on
st

ra
in

ts
#

B
ea

m
s/

R
ay

s
H

ea
d

A
n

d
N

ec
k

Pr
os

ta
te

T
G

11
9

m
in

m
ax

av
g

m
in

m
ax

av
g

m
in

m
ax

av
g

1
1

18
22

19
.0

22
25

23
.1

7
23

26
23

.9
1

2
20

22
20

.5
0

24
27

25
.2

5
26

29
26

.6
6

3
23

26
24

.2
3

26
29

26
.9

7
29

32
29

.2
9

2
1

23
25

23
.7

0
28

30
28

.4
9

29
34

29
.8

7
2

24
27

25
.1

0
30

32
30

.5
3

31
34

32
.1

1
3

27
29

27
.8

0
32

35
32

.4
4

34
37

34
.8

5

3
1

26
29

27
.1

0
32

34
32

.6
2

34
37

34
.8

2
2

28
30

28
.4

2
36

40
37

.2
0

37
39

37
.8

3
3

31
34

32
.1

6
37

40
38

.3
4

39
43

40
.3

8

#
C

on
st

ra
in

ts
#

B
ea

m
s/

R
ay

s
A

ld
er

so
n

-P
ha

n
to

m
B

ox
-P

ha
n

to
m

Li
ve

r

m
in

m
ax

av
g

m
in

m
ax

av
g

m
in

m
ax

av
g

1
1

23
26

24
.0

6
23

25
23

.9
0

31
33

31
.4

1
2

26
29

27
.0

26
29

26
.9

1
34

37
35

.1
6

3
28

31
29

.1
3

28
30

28
.3

6
38

40
38

.1
6

2
1

29
32

30
.2

1
30

32
30

.3
3

39
43

40
.2

0
2

33
35

33
.6

7
32

36
33

.2
1

43
51

43
.8

4
3

34
38

35
.4

5
35

40
35

.4
7

46
49

46
.7

9

3
1

35
38

36
.2

2
35

38
35

.9
4

46
51

47
.4

0
2

38
41

39
.1

0
38

42
38

.9
4

50
60

51
.0

7
3

40
45

41
.4

2
40

43
40

.8
0

53
63

54
.5

0
Ta

b.
4.

3:
In

it
ia

lp
op

ul
at

io
n

ge
ne

ra
ti

on
ti

m
in

gs
of

50
ru

ns
:

m
in

|
m

ax
|

av
g.

(i
n

m
ill

is
ec

on
ds

).
M

in
de

no
te

s
th

e
m

in
im

um
ti

m
e

re
qu

ir
ed

of
a

ru
n

ou
t

of
50

,
m

ax
de

no
te

s
th

e
m

ax
im

um
ti

m
e

re
qu

ir
ed

of
a

ru
n

ou
t

of
50

an
d

av
g.

de
no

te
s

th
e

av
er

ag
e

ti
m

e
of

ru
n

ou
t

of
50

.
T

he
da

ta
se

ts
ar

e
or

de
re

d
by

th
e

nu
m

be
r

of
C

T
vo

xe
ls

,a
sc

en
di

ng
(l

ef
t

to
ri

gh
t)

.

88 Chapter 4 Evaluation And Discussion

4.2.2.2 Optimization (Main Loop) Timings

1 Constraint

Head And Neck Prostate TG119 Alderson-Phantom Box-Phantom Liver

0

500

1000

1500

2000

2500

3000

m
s

2 Constraints

Head And Neck Prostate TG119 Alderson-Phantom Box-Phantom Liver

0

500

1000

1500

2000

2500

3000

m
s

3 Constraints

Head And Neck Prostate TG119 Alderson-Phantom Box-Phantom Liver

0

500

1000

1500

2000

2500

3000

m
s

Fig. 4.4: TLBO timings visualized for easier comparison. The error bars denote the most
and least amount of time required for a TLBO main loop iteration. The average
time required for a loop is denoted as a bar. Blue bar denotes 1 Beam, red bar
2 beams, yellow bar 3 beams. Timings were taken from 50 iterations for each
condition (number of constraints, number of beams). See table 4.4 for a more
detailed reference.

4.2 Evaluation 89

#
C

on
st

ra
in

ts
#

B
ea

m
s/

R
ay

s
H

ea
d

A
n

d
N

ec
k

Pr
os

ta
te

T
G

11
9

m
in

m
ax

av
g

m
in

m
ax

av
g

m
in

m
ax

av
g

1
1

46
5

16
53

91
7.

06
71

6
16

12
11

11
.0

3
37

1
16

65
89

1.
23

2
74

5
20

37
12

74
.8

6
70

6
21

50
13

54
.5

0
75

2
24

20
15

59
.3

6
3

65
4

19
21

13
68

58
4

20
45

13
68

.5
3

48
5

21
21

13
14

2
1

34
0

14
47

94
0.

90
28

8
15

26
90

0.
50

32
7

14
00

10
54

.2
0

2
67

7
18

96
11

25
.2

0
71

5
20

28
12

57
.6

3
46

3
16

36
11

38
.2

0
3

64
2

16
79

12
14

.3
0

85
8

22
71

14
26

.7
6

44
3

17
44

99
6.

43

3
1

37
1

15
72

93
9.

73
75

9
17

20
12

22
.6

6
56

7
17

40
12

45
.5

5
2

70
8

21
74

13
45

.0
3

78
9

20
02

11
13

.1
6

10
19

23
52

15
25

.4
1

3
62

3
15

30
10

11
.2

2
65

2
22

80
12

53
.0

3
30

9
19

61
11

87
.7

1

#
C

on
st

ra
in

ts
#

B
ea

m
s/

R
ay

s
A

ld
er

so
n

-P
ha

n
to

m
B

ox
-P

ha
n

to
m

Li
ve

r

m
in

m
ax

av
g

m
in

m
ax

av
g

m
in

m
ax

av
g

1
1

36
2

13
70

74
0.

80
35

5
14

73
77

3.
83

40
7

16
75

99
9.

90
2

67
1

19
87

12
05

.7
0

69
0

18
69

12
12

.0
6

40
3

19
86

11
30

.2
6

3
64

1
24

04
12

62
.3

3
51

4
27

80
14

20
.5

3
64

3
24

73
15

19
.7

0

2
1

42
5

15
17

83
1.

93
37

9
16

15
79

8.
63

39
4

14
19

88
0.

63
2

10
65

21
91

15
30

.1
3

80
0

20
98

13
48

.9
3

70
1

19
03

12
53

.6
3

3
79

4
19

30
13

34
.6

3
70

2
16

78
12

57
.7

0
72

0
21

18
15

19
.4

6

3
1

40
9

15
79

87
3.

06
38

1
14

48
76

9.
60

40
9

14
37

92
1.

66
2

68
3

20
96

13
25

.5
0

69
2

20
94

13
58

.9
7

96
4

24
81

16
41

.1
5

3
59

7
19

55
14

78
.1

2
82

7
20

31
14

16
.2

9
50

0
23

67
16

67
.1

1
Ta

b.
4.

4:
TL

B
O

ti
m

in
gs

of
50

m
ai

n
lo

op
it

er
at

io
ns

:
m

in
|

m
ax

|
av

g.
(i

n
m

ill
is

ec
on

ds
).

M
in

de
no

te
s

th
e

m
in

im
um

ti
m

e
re

qu
ir

ed
of

an
it

er
at

io
n

ou
t

of
50

,m
ax

de
no

te
s

th
e

m
ax

im
um

ti
m

e
re

qu
ir

ed
of

a
lo

op
ou

t
of

50
an

d
av

g.
de

no
te

s
th

e
av

er
ag

e
ti

m
e

of
a

lo
op

ou
t

of
50

.
T

he
da

ta
se

ts
ar

e
or

de
re

d
by

th
e

nu
m

be
r

of
C

T
vo

xe
ls

,a
sc

en
di

ng
(l

ef
t

to
ri

gh
t)

.

90 Chapter 4 Evaluation And Discussion

4.2.2.3 Optimization (TLBO) Results

In the following pages, qualitative results for the "top" returned 3 beams are shown
for each scenario. The top shows the differential DVH and the cumulative DVH. The
middle and bottom shows axial, sagittal and coronal views of the scenario with the
beams applied and corresponding dose distributions as heat maps. matRad is then
given these three beams for each scenario to compute the best possible dosimetry to
hit the tumor with to fullfill the given radiation dose target (also found in the meta
data of the data sets), including the amount of Gray to hit the target with.

4.2 Evaluation 91

0 10 20 30 40 50 60 70 80

RBE x Dose [Gy(RBE)]

0

20

40

60

80

100
V

o
lu

m
e

 [
%

]

BRAIN_STEM

BRAIN_STEM_PRV

CEREBELLUM

CHIASMA

GTV

LARYNX

LENS_LT

LENS_RT

LIPS

OPTIC_NRV_LT

OPTIC_NRV_RT

PAROTID_LT

PAROTID_RT

PTV70

SKIN

SPINAL_CORD

SPINL_CRD_PRV

TEMP_LOBE_LT

TEMP_LOBE_RT

TM_JOINT_LT

TM_JOINT_RT

0 10 20 30 40 50 60 70 80

RBE x Dose [Gy(RBE)]

0

20

40

60

80

100

V
o

lu
m

e
 [

%
]

Fig. 4.5: "Head And Neck" results. Top: dDVH, middle: cDVH, bottom: (top to bottom
right) axial view, sagittal view, coronal view. 3 Beams, (gantry angle, couch angle):
(-73°, 157°), (-63°, 180°), (-33°, -154°).

92 Chapter 4 Evaluation And Discussion

0 10 20 30 40 50 60 70 80

RBE x Dose [Gy(RBE)]

0

20

40

60

80
V

o
lu

m
e

 [
%

]

Rectum

Penile_bulb

Lymph Nodes

Rt femoral head

prostate_bed

PTV_68

Bladder

BODY

Lt femoral head

0 10 20 30 40 50 60 70 80

RBE x Dose [Gy(RBE)]

0

20

40

60

80

100

V
o

lu
m

e
 [

%
]

Fig. 4.6: "Prostate" results. Top: dDVH, middle: cDVH, bottom: (top to bottom right) axial
view, sagittal view, coronal view. 3 Beams, (gantry angle, couch angle): (-30°,
-57°), (-21°, 61°), (-90°, -180°).

4.2 Evaluation 93

0 10 20 30 40 50 60

RBE x Dose [Gy(RBE)]

0

20

40

60

80
V

o
lu

m
e

 [
%

]

Core

OuterTarget

BODY

0 10 20 30 40 50 60

RBE x Dose [Gy(RBE)]

0

20

40

60

80

100

V
o

lu
m

e
 [

%
]

Core

OuterTarget

BODY

Fig. 4.7: "TG119" results. Top: dDVH, middle: cDVH, bottom: (top to bottom right) axial
view, sagittal view, coronal view. 3 Beams, (gantry angle, couch angle): (-35°, 0°),
(0°, 0°), (35°, 0°).

94 Chapter 4 Evaluation And Discussion

0 10 20 30 40 50 60 70

RBE x Dose [Gy(RBE)]

0

20

40

60

80

100

V
o

lu
m

e
 [

%
]

Skin

Eye(L)

Eye(R)

Opticus(L)

Opticus(R)

Chiasma

Brainstem

Cord

Temp(L)

Temp(R)

Parotis(L)

Parotis(R)

CTV

PTV

0 10 20 30 40 50 60 70

RBE x Dose [Gy(RBE)]

0

20

40

60

80

100

V
o

lu
m

e
 [

%
]

Fig. 4.8: "Alderson-Phantom" results. Top: dDVH, middle: cDVH, bottom: (top to bottom
right) axial view, sagittal view, coronal view. 3 Beams, (gantry angle, couch angle):
(0°, -15°), (-45°, -16°), (-214°, -17°).

4.2 Evaluation 95

0 10 20 30 40 50 60 70

RBE x Dose [Gy(RBE)]

0

20

40

60

80
V

o
lu

m
e

 [
%

]

BODY

OuterTarget

0 10 20 30 40 50 60 70

RBE x Dose [Gy(RBE)]

0

20

40

60

80

100

V
o

lu
m

e
 [

%
]

BODY

OuterTarget

Fig. 4.9: "Box-Phantom" results. Top: dDVH, middle: cDVH, bottom: (top to bottom right)
axial view, sagittal view, coronal view. 3 Beams, (gantry angle, couch angle): (0°,
0°), (90°, 182°), (90°, 90°).

96 Chapter 4 Evaluation And Discussion

0 10 20 30 40 50

RBE x Dose [Gy(RBE)]

0

20

40

60

80

100
V

o
lu

m
e

 [
%

]
GTV

Kidney_R

Kidney_L

Stomach

SmallBowel

LargeBowel

Celiac

SMA_SMV

Liver

Heart

SpinalCord

DoseFalloff

duodenum

CTV

Skin

PTV

cord+5mm

clip1

clip2

clip3

clips

entrance

Liver-CTV

combinedKidney

CT Reference

ISOCENTER

0 10 20 30 40 50

RBE x Dose [Gy(RBE)]

0

20

40

60

80

100

V
o

lu
m

e
 [

%
]

Fig. 4.10: "Liver" results. Top: dDVH, middle: cDVH, bottom: (top to bottom right) axial
view, sagittal view, coronal view. 3 Beams, (gantry angle, couch angle): (46°,
-138°), (46°, 20°), (64°, -90°).

4.2 Evaluation 97

4.3 Discussion

The fist component of the system to undergo evaluation is the cost map generation.
Figure 4.2 lists the timings over 10 runs for each scenario. All 6 faces of the cuboid
are processed in parallel, tracing paths from the voxel of interest to the respective
surface voxel. Generally, the time required scales as expected: The more voxels,
the more time required. An outlier is the Alderson-Phantom, requiring an average
time of 158.2ms, being very close to the Liver scenario with 160.8, despite having
almost less than double the voxels. The Box-Phantom has just slightly more voxels
than the Alderson-Phantom but requires 7.8ms less. It is notable however, that the
Alderson-Phantom has the smallest resolution with 2mm for each voxel dimension,
whereas all the other data sets generally have around 3 for most of their voxel
dimensions. That being said, the overall timings are actually not bad at all and
certainly can be deemed acceptable, especially with respect to the optimization step
(TBLO) of the whole system. An additional note: The utilization of a CUDA-surface
certainly affected the time required in a positive way, as it measurably reduced
cache misses. The alternative would have been to transpose/rotate the cube before
a kernel call for a cube face with voxel indices not aligned for linear memory access
patterns, which would have required more time in total.

The optimization step is the "main course" of the system, especially with the overall
time required. Due to the core of the problem being a 0/1-MKP and thus being
solved during the optimization step by applying the TLBO metaheuristic, there is
a non-deterministic nature regarding the timings and the quality of results, i.e.
the overall converging behaviour, which are not always guaranteed to converge
towards the global optimum. As such, there is a variance to the solutions and timings
reported.
This also holds true for the first substep of TLBO; the generation of the initial
population. This substep already utilizes (biased) randomness to generate candidates
to be rejected or accepted into the population. Figure 4.3 and table 4.3 give an
overview of minimum, maximum and average time required over 50 runs of the
population generation for each scenario and each condition. Generally, it scales
as expected: The more voxels and constraints needed to be processed, the longer
the time required. Liver being especially time-consuming due to its number of
voxels. This also translates to the number of voxels needed to be considered for each
constraint. Depending on the GPU, there is a threshold of how much a kernel can
process before it needs to queue data that is "too large to fit", causing additional
memory movement and allocations. However, for each scenario and each condition
presented, this did not occur with the GPU used for testing (see table 4.1). The
system also reported the biggest variance of timings for the Liver scenario, with
the curious observation that for the condition of 2 beams having the most variance

98 Chapter 4 Evaluation And Discussion

reported. The difference between the Alderson-Phantom and Box-Phantom is slightly
diminished here in comparison to the cost map generation but still observable. It
does seem that the lower the voxel resolution is, the more costly related floating
point operations become; but this is just an educated guess and might warrant
further observation. Overall, if a graph would be fitted over each similar condition
for each scenario respectively, it would resemble a monotonic increase, adhering to
the overall expectations.

After the initial population generation, the main loop, i.e. the optimization of the
population, is to be observed and evaluated next. As figure 4.4 and table 4.4 report,
The overall time required lies within the thousands of milliseconds, an order of
magnitude of difference to the cost map generation before and even two orders of
magnitude of difference to the initial population generation. The cause of this is
not only the evaluation of feasibility of a solution candidate itself for each of the
inner loop iteration, but also primarily due to the repair operation, which itself
also checks for feasibility (although parallelized). Looking at the initial population
generation, which rejects unfeasible solutions outright and just generates a new one,
it might be faster to just use this scheme for the optimization step as well. However,
this would heavily affect the overall converging behaviour negatively, i.e. it would
make it unstable as solution population itself would be unstable and previously
rejected candidates could occur again and again. This is why the repair operation
was deemed necessary by Kern et al.[KLV20] and even Chu et al.[CB98]; time is
sacrificed for solution quality.
Figure 4.4 shows a big variance of timings for each scenario and each condition,
mainly caused by the add operator of the repair operation rejecting added 1-
components. Interestingly, for the condition of 1 constraint and 3 beams, the
Box-Phantom, not the Liver or Alderson-Phantom, reports the most variance of time
required, whereas it is more "in line" with expectations for the other conditions. It
can also be observed that no monotonic increase or decrease can be fitted nicely
over the whole data, due to the bigger variance and spread of time. This is most
likely caused by the increased reliance on randomness: Each transform operation
utilizes a (biased) random factor of 0 or 1 for multiplication during the combination
of two solutions and the transform operation is called upon multiple times. It is
observable however, especially with table 4.4, that the number of beams, i.e. the
number of 1-components in a solution, appears to have a more dominant effect
than the number constraints. That being said, for "dependent constraints", like the
minimum spherical distance, the number of beams directly affects the computational
time required: It scales with linearly with the number of beams (O(n)).

Depending on the constraints, beams and number of main loop iterations, it can
be minutes before solutions are computed and optimized. For real-time purposes
this is obviously unusable but literature discussing treatment planning systems

4.3 Discussion 99

and components, single-digit to lower double-digit amount of minutes are "not a
bad" ballpark to be in. This is especially true for a system supposed to give initial
suggestions or estimations to a domain expert for further consideration.

With regards to the quality of the system’s output, the figures 4.5 to 4.10 are giving
an overview of a run of each scenario for 3 beams and the constraints C1, C2, C3 (see
section 4.2.2). Looking at each respective cumulative DVH, it can be seen that the
GTVs, CTVs and PTVs are hit with the maximum dose, unfortunately not always with
a sharp fall-off as desired but still within workable margins. Each of the chosen beam
angles seem, to the author’s untrained eye and with respect to the OARs, sensible.
For the "Head And Neck"-scenario, it can be seen that the suggested beam positions
also distribute dose of up to 60Gy to OARs. Looking at the differential DVH however,
it can be assumed that less than 30% of voxels of the OARs are hit non-desired does,
i.e. they are partially hit by the beam due to its tendency to have a Gaussian spread,
especially as the beam approaches the Bragg-peak depth.
The "Prostate"-scenario has an equally unfortunate "casualty": The lymph nodes
(green graphs). The prostate bed seems unavoidable to be hit in the process as it
essentially surrounds the tumor itself. Here, the careful positioning of the Bragg-peak
appears to be the key and at least serves as a reminder that it is a factor to consider.
The "TG119"-scenario, "Alderson-Phantom"-scenario and the "Box-Phantom"-scenario
are, from the author’s untrained eye, results that could be considered for a plan
without a lot of "fine-tuning" by a domain expert.
The results for the "Liver"-scenario also show a desired dose distribution rate for
the target volumes. However, the "clip"-curves/objects denote clinical supporting
structures that are situated within or around the tumor and are also unavoidable to
hit, unless maybe a "thinner" beam is chosen (with higher proton fluence). To the
author, the purpose of these structures is not exactly clear and the documentation by
Craft et al [Cra+14] did not help to alleviate this. This might very well be due to
the author’s inexperience in the field of medical physics.
Overall, these results can very well be used to help to inform decisions made by
the planners, oncologists and other related experts for a possible treatment therapy,
especially with the timings in mind.

4.3.1 Limitations And Future Work

Most usability, performance-affecting and computational limitations can be found
withing the optimization step itself. While TBLO has been chosen, among other
reasons more thoroughly discussed in section 2.4.2 and 3, to alleviate the need for
parameter tuning, as common with other metaheuristics, it is still not free from
possible improvements. As already discussed before, the overall time required for
TLBO lies within the thousands of milliseconds, an order of magnitude difference to

100 Chapter 4 Evaluation And Discussion

the cost map generation and even two orders of magnitude difference to the initial
population generation. And both the cost map and the population generation are
only executed once and not in a loop. So it seems that future optimization work
should focus on this part in particular.
One of the main reasons for this is that the repair operation is called multiple times
within one inner loop iteration, especially after a transformation operation occurred.
So it might be worthwhile to investigate a transformation operation that does not
(or slightly less frequently) "damage" solution candidates, i.e. making them not
unfeasible. A more "stable" transform operation could possibly even eliminate the
need for a repair operation altogether. The main caveat here of course is to also
preserve the converging behaviour at the same time.

Another, more usability-focused, concern is that constraints need to be added (im-
plemented) "by hand" and the system needs to be recompiled. This is due to two
reasons. The first is that functors (pure and impure) defined in Matlab are not
exportable to external DLLs, unless a specific interface/API has been developed and
implemented to do so, which is outside the scope of this system. Secondly, there
currently is no way to copy functors, especially impure ones, to the device from the
host without added complexity, impacting the overall performance. Consequently,
the user needs to be aware of what types of constraint functions the system currently
supports and possibly needs to add custom constraints in code and recompile the
system.
Unfortunately, other current metaheuristics, as listed in the taxonomy by Stork et al.
(figure 2.11), do not sidestep or eliminate the overall basic structure of implementa-
tion as the problem (the 0/1-MKP) remains the same. Maybe with more GPU-Host
interoperability efforts, like unified memory, less host-side code is required and
more GPU-side computations can be made, eliminating the "memory interoperability
abyss" between host and device. In this regard, the unification of GPU and CPU in
one system-on-a-chip, like the Apple M1 or the APUs by AMD, may allow exactly for
this.

Additionally, due to the generality of the system presented, it does not deliver results
that should be used prima facie in the application domain. One of the reasons are
the abstractions to the beam model made and the discretizations made in favor
of performance. On a personal level, the idea to use the parallelized evaluation
operation (with the constraints) together with a Virtual Reality application (VR),
allowing an oncologist and/or radiologist to place beams in 3D and evaluate them
in real-time is something worth to explore. It would combine the expert domain
knowledge with the evaluation capabilities of the system. For the purpose of a more
readily applicable evaluation, the resolution, constraint complexity and overall scope
can be increased. The overall structure of computation would not change. This
could allow for real-time beam evaluation in VR for a treatment or teaching scenario.

4.3 Discussion 101

The overall precision/accuracy of the results might be alleviated by a better penalty
constraint map, maybe even a custom-made map for this system in mind.

The system can also possibly be adapted for volumetric modulated arc therapy
(VMAT), wherein support points on a sphere around the isocenter of a PTV are used as
"visiting nodes" of a path, essentially forming a travelling salesman problem of finding
the shortest hamiltonian path. The path is then traversed by a beam (or multiple
beams) while it shoots. The beam angles suggested here could be used as these
"visiting nodes". That being said, the more popular area of research for treatment
planning and beam angle optimization approaches seem to be fully dependent on the
usage/utilization of convolutional neural networks, as reported in section 1.2. Which
attempt to directly compute beam angles (and even other treatment parameters)
using a CT (and other meta information) as input. Unfortunately, the training data
sets are limited and do not cover all possible variations and abnormal situations
and even the simple task of optaining a set that does not overfit a network is not
trivial. Also discussed in section 1.2, a combination of CNNs and expert systems, i.e.
systems that try to SAT-solve incomplete predicates using description logics over a
knowledge base, seem to be another possible approach. That being said, this system
is also applicable to other areas of application, which is the main disadvantage of
trained neural networks and expert systems: It is obvious that the more specialized
a tool for a problem is, the better it generally solves given problem but the worse it
is applicable to other, maybe similar, problems. And one of the goals stated was to
maintain a certain generality of application.

102 Chapter 4 Evaluation And Discussion

Bibliography

[AMA19] S. Almufti, R. Marqas, and V. Ashqi. “Taxonomy of bio-inspired optimization
algorithms”. In: Journal Of Advanced Computer Science & Technology 8.2 (2019),
p. 23 (cit. on p. 7).

[App68] A. Appel. “Some techniques for shading machine renderings of solids”. In: AFIPS
’68 Proceedings of the April 30–May 2, 1968, Spring Joint Computer Conference.
1968, pp. 37–45 (cit. on pp. 1, 6, 10).

[AW87] J. Amanatides and A. Woo. “A Fast Voxel Traversal Algorithm for Ray Tracing”. In:
Proceedings of Eurographics 1987. Eurographics Association, Aug. 1987 (cit. on
pp. xi, 6, 11–13, 47, 51).

[BB11] M. Balonov and A. Bouville. “Radiation exposures due to the Chernobyl accident”.
In: (2011) (cit. on p. 18).

[BBT20] T.-D. Bradley, T. Bryson, and J. Terilla. Topology: A Categorical Approach. MIT
Press, 2020 (cit. on p. 44).

[Ber+13] D. Bertsimas, V. Cacchiani, D. Craft, and O. Nohadani. “A hybrid approach to
beam angle optimization in intensity-modulated radiation therapy”. In: Comput-
ers & Operations Research 40.9 (2013), pp. 2187–2197 (cit. on p. 5).

[Ber+93] M. Berger, M. Inokuti, H. Andersen, et al. “Report 49”. In: Journal of the Inter-
national Commission on Radiation Units and Measurements 2 (1993), NP–NP
(cit. on p. 24).

[BJB18] L. Burigo, O. Jäkel, and M. Bangert. “matRad-An open-source treatment planning
toolkit for educational purposes”. In: MEDICAL PHYSICS 6.1 (2018) (cit. on
p. 31).

[Bor97] T. Bortfeld. “An analytical approximation of the Bragg curve for therapeutic
proton beams”. In: Medical physics 24.12 (1997), pp. 2024–2033 (cit. on pp. 23,
24, 52).

[BS93] T. Bortfeld and W. Schlegel. “Optimization of beam orientations in radiation
therapy: some theoretical considerations”. In: Physics in Medicine & Biology 38.2
(1993), p. 291 (cit. on p. 4).

[Cac+22] V. Cacchiani, M. Iori, A. Locatelli, and S. Martello. “Knapsack problems — An
overview of recent advances. Part I: Single knapsack problems”. In: Computers &
Operations Research 143 (2022), p. 105692 (cit. on p. 35).

103

[Can15] B. Cantanzaro. Variant. https://github.com/bryancatanzaro/variant. 2015
(cit. on p. 42).

[Can17] Canon Medical Systems. Aquilion Lightning 80. Technical Brochure. Online ac-
cessible via https://us.medical.canon/products/computed-tomography/aquilion-
lightning-80/. 2017 (cit. on pp. 28, 45).

[CB98] P. C. Chu and J. E. Beasley. “A genetic algorithm for the multidimensional
knapsack problem”. In: Journal of heuristics 4.1 (1998), pp. 63–86 (cit. on pp. 7,
38, 68, 99).

[Cra+14] D. Craft, M. Bangert, T. Long, D. Papp, and J. Unkelbach. “Shared data for
intensity modulated radiation therapy (IMRT) optimization research: the CORT
dataset”. In: GigaScience 3.1 (2014), pp. 2047–217X (cit. on pp. 81, 83, 100).

[DBC03] J. O. Deasy, A. I. Blanco, and V. H. Clark. “CERR: a computational environment
for radiotherapy research”. In: Medical physics 30.5 (2003), pp. 979–985 (cit. on
p. 31).

[Don+19] X. Dong, Y. Lei, T. Wang, et al. “Automatic multiorgan segmentation in thorax
CT images using U-net-GAN”. In: Medical physics 46.5 (2019), pp. 2157–2168
(cit. on p. 28).

[Dye+17] M. Dyer, B. Gärtner, N. Megiddo, and E. Welzl. “Linear Programming”. In:
Handbook of Discrete and Computational Geometry, 3rd Edition. Ed. by J. E.
Goodman, J. O’Rourke, and C. D. Toth. Boca Raton, Florida, United States of
America: Chapman and Hall/CRC Press, 2017. Chap. 49, pp. 1291–1310 (cit. on
pp. 7, 68).

[FH12] P. F. Felzenszwalb and D. P. Huttenlocher. “Distance transforms of sampled
functions”. In: Theory of computing 8.1 (2012), pp. 415–428 (cit. on p. 7).

[GJ+10] G. Guennebaud, B. Jacob, et al. Eigen v3. http://eigen.tuxfamily.org. 2010 (cit.
on pp. 42, 55).

[GKP89] R. L. Graham, D. E. Knuth, and O. Patashnik. Concrete Mathematics: A Foundation
for Computer Science. Boston, MA, USA: Addison-Wesley, 1989 (cit. on p. 57).

[GP21] A. Genitrini and M. Pépin. “Lexicographic unranking of combinations revisited”.
In: Algorithms 14.3 (2021), p. 97 (cit. on pp. 56, 58, 59).

[Gra20] J. Graetz. “High performance volume ray casting: A branchless generalized
Joseph projector”. In: arXiv preprint arXiv:1609.00958 (2020) (cit. on pp. 7, 52).

[Gu+18] W. Gu, D. O’Connor, D. Nguyen, et al. “Integrated beam orientation and scanning-
spot optimization in intensity-modulated proton therapy for brain and unilateral
head and neck tumors”. In: Medical physics 45.4 (2018), pp. 1338–1350 (cit. on
p. 5).

[Gu+19] W. Gu, R. Neph, D. Ruan, et al. “Robust beam orientation optimization for
intensity-modulated proton therapy”. In: Medical physics 46.8 (2019), pp. 3356–
3370 (cit. on pp. 5, 18).

[Gu+20] W. Gu, D. O’Connor, D. Ruan, et al. “Fraction-variant beam orientation optimiza-
tion for intensity-modulated proton therapy”. In: Medical Physics 47.9 (2020),
pp. 3826–3834 (cit. on p. 5).

104 Bibliography

https://github.com/bryancatanzaro/variant

[GWP17] D. R. Grimes, D. R. Warren, and M. Partridge. “An approximate analytical solution
of the Bethe equation for charged particles in the radiotherapeutic energy range”.
In: Scientific reports 7.1 (2017), pp. 1–12 (cit. on p. 23).

[Hei+14] H. Heinrich, P. Ziegenhein, C. Kamerling, H. Froening, and U. Oelfke. “GPU-
accelerated ray-tracing for real-time treatment planning”. In: Journal of Physics:
Conference Series. Vol. 489. 1. IOP Publishing, 2014, p. 012050 (cit. on p. 6).

[HLY19] C. Huang, Y. Li, and X. Yao. “A survey of automatic parameter tuning methods for
metaheuristics”. In: IEEE transactions on evolutionary computation 24.2 (2019),
pp. 201–216 (cit. on p. 8).

[Hug+13] J. F. Hughes, A. van Dam, M. McGuire, et al. Computer graphics: principles and
practice (3rd ed.) Boston, MA, USA: Addison-Wesley Professional, 2013, p. 1264
(cit. on pp. 1, 10).

[HW12] Y. Hung and W. Wang. “Accelerating parallel particle swarm optimization via
GPU”. In: Optimization Methods and Software 27.1 (2012), pp. 33–51 (cit. on
p. 7).

[Jak+10] W. Jakob, A. Arbree, J. T. Moon, K. Bala, and S. Marschner. “A radiative transfer
framework for rendering materials with anisotropic structure”. In: SIGGRAPH
’10: ACM SIGGRAPH 2010 papers. ACM New York, NY, USA, 2010, pp. 1–13
(cit. on p. 17).

[JKH19] P. Jackson, T. Kron, and N. Hardcastle. “A future of automated image contouring
with machine learning in radiation therapy”. In: Journal of Medical Radiation
Sciences 66.4 (2019), pp. 223–225 (cit. on p. 29).

[JMP18] B. Jones, S. McMahon, and K. Prise. “The radiobiology of proton therapy: chal-
lenges and opportunities around relative biological effectiveness”. In: Clinical
Oncology 30.5 (2018), pp. 285–292 (cit. on p. 6).

[Jos82] P. M. Joseph. “An Improved Algorithm for Reprojecting Rays through Pixel
Images”. In: IEEE Transactions on Medical Imaging 1.3 (1982), pp. 192–196
(cit. on pp. 6, 52).

[Kai+19] A. Kaiser, J. G. Eley, N. E. Onyeuku, et al. “Proton therapy delivery and its
clinical application in select solid tumor malignancies”. In: JoVE (Journal of
Visualized Experiments) 144 (2019), e58372 (cit. on p. 20).

[Kaj86] J. T. Kajiya. “The rendering equation”. In: SIGGRAPH ’86: Proceedings of the 13th
annual conference on Computer graphics and interactive techniques. Association
for Computing Machinery (ACM), 1986, pp. 143–150 (cit. on pp. 9, 16).

[Kel+19] A. Keller, T. Viitanen, C. Barré-Brisebois, C. Schied, and M. McGuire. “Are we
done with ray tracing?” In: SIGGRAPH Courses. 2019, pp. 3–1 (cit. on p. 6).

[Ken13] A. Kensler. “Correlated multi-jittered sampling”. In: Pixar Technical Memo 13-01
(2013), pp. 1–8 (cit. on p. 57).

[KG14] F. M. Khan and J. P. Gibbons. The physics of radiation therapy. Lippincott Williams
& Wilkins, 2014 (cit. on pp. 14–16, 18, 19, 23, 27–29, 31, 32, 81, 82).

Bibliography 105

[Kim+20] J. Kim, Y.-K. Park, G. Sharp, P. Busse, and B. Winey. “Beam angle optimization
using angular dependency of range variation assessed via water equivalent path
length (WEPL) calculation for head and neck proton therapy”. In: Physica Medica
69 (2020), pp. 19–27 (cit. on p. 5).

[KLV20] Z. Kern, Y. Lu, and F. Vasko. “An OR practitioner’s solution approach to the
multidimensional knapsack problem”. In: International Journal of Industrial
Engineering Computations 11.1 (2020), pp. 73–82 (cit. on pp. xi, 3, 8, 37, 38,
53, 54, 59, 68, 73, 87, 99).

[KM19] B. Krayer and S. Müller. “Generating signed distance fields on the GPU with ray
maps”. In: The Visual Computer 35.6 (2019), pp. 961–971 (cit. on p. 7).

[KWB15] J. B. Kiely, B. White, and S. Both. “A beam angle optimization technique for
proton pencil beam scanning treatment planning of lower pelvis targets”. In:
World Congress on Medical Physics and Biomedical Engineering, June 7-12, 2015,
Toronto, Canada. Springer. 2015, pp. 479–482 (cit. on p. 4).

[Laa+18] S. Laabadi, M. Naimi, H. El Amri, B. Achchab, et al. “The 0/1 multidimensional
knapsack problem and its variants: a survey of practical models and heuristic
approaches”. In: American Journal of Operations Research 8.05 (2018), pp. 395–
439 (cit. on pp. 35, 36).

[Lan+93] T. Landberg, J. Chavaudra, J. Dobbs, et al. “Report 50”. In: Journal of the
International Commission on Radiation Units and Measurements 1 (1993), NP–NP
(cit. on pp. 29, 79).

[Lan+99] T. Landberg, J. Chavaudra, J. Dobbs, et al. “Report 62”. In: Journal of the
International Commission on Radiation Units and Measurements 1 (1999), NP–NP
(cit. on pp. 29, 79).

[LCM14] G. Lim, W. Cao, and R. Mohan. “Recent advances in intensity modulated proton
therapy treatment planning optimization”. In: Proceedings of the 15th Asia Pacific
Industrial Engineering and Management Systems Conference. 2014, pp. 1520–
1525 (cit. on p. 4).

[Li+20] L. Li, X. Zhao, W. Lu, and S. Tan. “Deep learning for variational multimodality
tumor segmentation in PET/CT”. In: Neurocomputing 392 (2020), pp. 277–295
(cit. on p. 28).

[Lüh+18] A. Lühr, C. von Neubeck, M. Krause, and E. G. Troost. “Relative biological
effectiveness in proton beam therapy–Current knowledge and future challenges”.
In: Clinical and translational radiation oncology 9 (2018), p. 35 (cit. on p. 6).

[Lus+18] T. Lustberg, J. van Soest, M. Gooding, et al. “Clinical evaluation of atlas and
deep learning based automatic contouring for lung cancer”. In: Radiotherapy
and Oncology 126.2 (2018), pp. 312–317 (cit. on p. 28).

[Maj+18] A. Majercik, C. Crassin, P. Shirley, and M. McGuire. “A ray-box intersection
algorithm and efficient dynamic voxel rendering”. In: Journal of Computer
Graphics Techniques 7.3 (2018), pp. 66–81 (cit. on p. 51).

[MAK03] M. Mokbel, W. Aref, and I. Kamel. “Analysis of Multi-Dimensional Space-Filling
Curves”. In: GeoInformatica 7 (Sept. 2003), pp. 179–209 (cit. on p. 48).

106 Bibliography

[Mar+19] D. Martinez, M. Rahmani, C. Burbadge, and C. Hoehr. “A practical solution of the
Bethe equation in the energy range applicable to radiotherapy and radionuclide
production”. In: Scientific reports 9.1 (2019), pp. 1–9 (cit. on pp. 22, 23).

[MAT21] MATLAB. version 9.11.0 (R2021b). Natick, Massachusetts: The MathWorks Inc.,
2021 (cit. on pp. 3, 43).

[Mat96] G. B. Mathews. “On the Partition of Numbers”. In: Proceedings of the London
Mathematical Society s1-28.1 (1896), pp. 486–490 (cit. on p. 35).

[MD19] A. K. Mandal and S. Dehuri. “A Survey on Ant Colony Optimization for Solving
Some of the Selected NP-Hard Problem”. In: International Conference on Bio-
logically Inspired Techniques in Many-Criteria Decision Making. Springer. 2019,
pp. 85–100 (cit. on p. 8).

[Mei+21] D. Meister, S. Ogaki, C. Benthin, et al. “A Survey on Bounding Volume Hierarchies
for Ray Tracing”. In: Computer Graphics Forum 40.2 (2021), pp. 683–712 (cit. on
p. 6).

[Nat17] National Electrical Manufacturers Association (NEMA). DICOM strategic doc-
ument - Revision 2017-03-08. https://dicom.nema.org/dicom/geninfo/
Strategy.pdf. 2017 (cit. on p. 43).

[Nic+08] J. Nickolls, I. Buck, M. Garland, and K. Skadron. “Scalable parallel programming
with CUDA”. In: Queue 6.2 (2008), pp. 40–53 (cit. on p. 3).

[nVi22b] nVidia. Github Repository: CUDA C++ Samples. https://github.com/NVIDIA/
cuda-samples. 2022 (cit. on p. 65).

[NZ15] W. D. Newhauser and R. Zhang. “The physics of proton therapy”. In: Physics in
Medicine & Biology 60.8 (2015), R155 (cit. on pp. 2, 18, 20–22, 24–26, 79).

[Pag17] H. Paganetti. Proton beam therapy. IOP Publishing Bristol, 2017 (cit. on pp. 4, 6,
22).

[PB81] G. Pâolya and E. F. Beckenbach. Applied Combinatorial Mathematics. USA: Krieger
Publishing Co., Inc., 1981 (cit. on pp. 57, 58).

[Pet+18] H. E. S. Pettersen, M. Chaar, I. Meric, et al. “Accuracy of parameterized proton
range models; a comparison”. In: Radiation Physics and Chemistry 144 (2018),
pp. 295–297 (cit. on pp. 23, 24).

[Pin+12] C. Pinter, A. Lasso, A. Wang, D. Jaffray, and G. Fichtinger. “SlicerRT: radia-
tion therapy research toolkit for 3D Slicer”. In: Medical physics 39.10 (2012),
pp. 6332–6338 (cit. on p. 31).

[PJH16] M. Pharr, W. Jakob, and G. Humphreys. Physically based rendering: From theory
to implementation. Morgan Kaufmann, 2016 (cit. on pp. 10, 11, 16, 17).

[Pri+17] F. Prior, K. Smith, A. Sharma, et al. “The public cancer radiology imaging
collections of The Cancer Imaging Archive”. In: Scientific data 4.1 (2017), pp. 1–
7 (cit. on pp. 81, 83).

[Pur+05] T. J. Purcell, I. Buck, W. R. Mark, and P. Hanrahan. “Ray tracing on pro-
grammable graphics hardware”. In: ACM SIGGRAPH 2005 Courses. 2005, 268–es
(cit. on p. 6).

Bibliography 107

https://dicom.nema.org/dicom/geninfo/Strategy.pdf
https://dicom.nema.org/dicom/geninfo/Strategy.pdf
https://github.com/NVIDIA/cuda-samples
https://github.com/NVIDIA/cuda-samples

[Ras20] F. S. Rasouli. “Analytical range evaluation for therapeutic protons in stack of
materials”. In: Radiation Physics and Engineering 1.2 (2020), pp. 35–39 (cit. on
p. 52).

[Ric+19] H. Rico-Garcia, J.-L. Sanchez-Romero, A. Jimeno-Morenilla, et al. “Comparison
of high performance parallel implementations of TLBO and JAYA optimization
methods on manycore GPU”. In: IEEE Access 7 (2019), pp. 133822–133831
(cit. on pp. 3, 8, 53).

[RSV11] R. V. Rao, V. J. Savsani, and D. Vakharia. “Teaching–learning-based optimization:
A novel method for constrained mechanical design optimization problems”. In:
Computer-Aided Design 43.3 (2011), pp. 303–315 (cit. on pp. 8, 37, 68).

[Sán+14] D. Sánchez-Parcerisa, M. Kondrla, A. Shaindlin, and A. Carabe. “FoCa: a modular
treatment planning system for proton radiotherapy with research and educa-
tional purposes”. In: Physics in Medicine & Biology 59.23 (2014), p. 7341 (cit. on
p. 31).

[Sar+06] D. Sarrut, V. Boldea, S. Miguet, and C. Ginestet. “Simulation of four-dimensional
CT images from deformable registration between inhale and exhale breath-hold
CT scans”. In: Medical physics 33.3 (2006), pp. 605–617 (cit. on p. 28).

[SEB20] J. Stork, A. E. Eiben, and T. Bartz-Beielstein. “A new taxonomy of global opti-
mization algorithms”. In: Natural Computing (2020), pp. 1–24 (cit. on pp. xi, 34,
37).

[SG13] K. Sörensen and F. Glover. “Metaheuristics”. In: Encyclopedia of operations re-
search and management science 62 (2013), pp. 960–970 (cit. on pp. 36, 37).

[Sho21] B. Shoshany. “A C++ 17 Thread Pool for High-Performance Scientific Comput-
ing”. In: arXiv preprint arXiv:2105.00613 (2021) (cit. on p. 42).

[Sid85] R. L. Siddon. “Fast calculation of the exact radiological path for a three-dimensional
CT array”. In: Medical physics 12.2 (1985), pp. 252–255 (cit. on p. 6).

[SS15] G. Schrack and L. Stocco. “Generation of Spatial Orders and Space-Filling
Curves”. In: IEEE Transactions on Image Processing 24.6 (2015), pp. 1791–1800
(cit. on p. 49).

[SVS08] L. Struelens, F. Vanhavere, and K. Smans. “Experimental validation of Monte
Carlo calculations with a voxelized Rando–Alderson phantom: a study on in-
fluence parameters”. In: Physics in Medicine & Biology 53.20 (2008), p. 5831
(cit. on p. 81).

[Taa+20] V. T. Taasti, L. Hong, J. S. Shim, J. O. Deasy, and M. Zarepisheh. “Automating pro-
ton treatment planning with beam angle selection using Bayesian optimization”.
In: Medical Physics (2020) (cit. on p. 5).

[Tan21] T. “Tanki” Zhang. “Handling Translucency with Real-Time Ray Tracing”. In: Ray
Tracing Gems II: Next Generation Real-Time Rendering with DXR, Vulkan, and
OptiX. Ed. by A. Marrs, P. Shirley, and I. Wald. Berkeley, CA: Apress, 2021,
pp. 127–138 (cit. on p. 7).

[Tho06] S. J. Thomas. “Margins for treatment planning of proton therapy”. In: Physics in
Medicine & Biology 51.6 (2006), p. 1491 (cit. on p. 30).

108 Bibliography

[Tia+18] X. Tian, K. Liu, Y. Hou, J. Cheng, and J. Zhang. “The evolution of proton beam
therapy: Current and future status”. In: Molecular and clinical oncology 8.1
(2018), pp. 15–21 (cit. on p. 31).

[UM10] W. Ulmer and E. Matsinos. “Theoretical methods for the calculation of Bragg
curves and 3D distributions of proton beams”. In: The European Physical Journal
Special Topics 190.1 (2010), pp. 1–81 (cit. on pp. 23, 80).

[UM12] W. Ulmer and E. Matsinos. “A calculation method of nuclear cross-sections of
proton beams by the collective model and the extended nuclear-shell theory
with applications to radiotherapy and technical problems”. In: Journal of Nuclear
and Particle Physics 2.3 (2012), p. 42 (cit. on p. 53).

[WC08] I. B. Weinstein and K. Case. “The History of Cancer Research: Introducing an
AACR Centennial Series”. In: Cancer Research 68.17 (2008), pp. 6861–6862
(cit. on p. 2).

[Wie+17] H.-P. Wieser, E. Cisternas, N. Wahl, et al. “Development of the open-source dose
calculation and optimization toolkit matRad”. In: Medical physics 44.6 (2017),
pp. 2556–2568 (cit. on pp. 3, 31, 43, 85).

[Woh+17] P. Wohlfahrt, C. Möhler, V. Hietschold, et al. “Clinical implementation of dual-
energy CT for proton treatment planning on pseudo-monoenergetic CT scans”.
In: International Journal of Radiation Oncology* Biology* Physics 97.2 (2017),
pp. 427–434 (cit. on pp. 28, 29).

[Xia+12] K. Xiao, D. Z. Chen, X. S. Hu, and B. Zhou. “Efficient implementation of the
3D-DDA ray traversal algorithm on GPU and its application in radiation dose
calculation”. In: Medical Physics 39.12 (2012), pp. 7619–7625 (cit. on pp. 6, 13,
47, 50, 84, 85).

[Zie15] A. Zietman. “The Practicing Clinician’s Perspective On Proton Beam Therapy”.
In: Principles and Practice of Proton Beam Therapy. Ed. by I. J. Das, H. Paganetti,
American Association of Physicists in Medicine, et al. Medical Physics Publishing,
2015. Chap. 2 (cit. on p. 2).

[ZJ96] S. Zhang and J.-M. Jin. Computation of special functions. Wiley, 1996 (cit. on
p. 52).

[ZZB10] J. F. Ziegler, M. D. Ziegler, and J. P. Biersack. “SRIM–The stopping and range
of ions in matter (2010)”. In: Nuclear Instruments and Methods in Physics Re-
search Section B: Beam Interactions with Materials and Atoms 268.11-12 (2010),
pp. 1818–1823 (cit. on p. 24).

Websites

[Epi20a] Epic Games. Unreal Engine 4 Documentation: Distance Field Ambient Occlusion.
2020. URL: https : / / docs . unrealengine . com / en - US / BuildingWorlds /
LightingAndShadows / DistanceFieldAmbientOcclusion / index . html (vis-
ited on Mar. 22, 2022) (cit. on p. 7).

Websites 109

https://docs.unrealengine.com/en-US/BuildingWorlds/LightingAndShadows/DistanceFieldAmbientOcclusion/index.html
https://docs.unrealengine.com/en-US/BuildingWorlds/LightingAndShadows/DistanceFieldAmbientOcclusion/index.html

[Epi20b] Epic Games. Unreal Engine 4 Documentation: Distance Field Soft Shadows. 2020.
URL: https://docs.unrealengine.com/en-US/BuildingWorlds/LightingAndShadows/
RayTracedDistanceFieldShadowing/index.html (visited on Mar. 22, 2022)
(cit. on p. 7).

[Glo18] Global Change Data Lab. Our World In Data. 2018. URL: https://ourworldindata.
org/cancer#cancer-over-the-long-run (visited on Mar. 3, 2022) (cit. on
p. 2).

[ITN13] ITN - Imaging Technology News. An Introduction to Current Radiation Ther-
apy Treatment Planning Systems. 2013. URL: https://www.itnonline.com/
article/introduction-current-radiation-therapy-treatment-planning-
systems (visited on Feb. 7, 2022) (cit. on p. 31).

[NAS14] NASA HEASARC - NASA High Energy Astrophysics Science Archive Research
Center. What are the Energy Range Definitions for the Various Types of Electromag-
netic Radiation? 2014. URL: https://heasarc.gsfc.nasa.gov/docs/heasarc/
headates/spectrum.html (visited on Feb. 13, 2022) (cit. on p. 18).

[NIS20] NIST - National Institute of Standards and Technology. Electron volt. 2020. URL:
https://physics.nist.gov/cgi- bin/cuu/Value?evj%7Csearch_for=
electron+volt (visited on Feb. 22, 2022) (cit. on p. 18).

[nVi22a] nVidia. CUDA C++ Programming Guide. 2022. URL: https://docs.nvidia.
com/cuda/cuda- c- programming- guide/index.html (visited on Mar. 22,
2022) (cit. on pp. 42, 47, 48).

[Wal22] J. Walton. GPU Benchmarks and Hierarchy 2022: Graphics Cards Ranked. 2022.
URL: https://www.tomshardware.com/reviews/gpu-hierarchy,4388.html
(visited on Mar. 22, 2022) (cit. on p. 45).

[WHO20] WHO - World Health Organization. Fact Sheet: Cancer. 2020. URL: https://www.
who.int/news-room/fact-sheets/detail/cancer (visited on Mar. 3, 2022)
(cit. on p. 1).

110 Bibliography

https://docs.unrealengine.com/en-US/BuildingWorlds/LightingAndShadows/RayTracedDistanceFieldShadowing/index.html
https://docs.unrealengine.com/en-US/BuildingWorlds/LightingAndShadows/RayTracedDistanceFieldShadowing/index.html
https://ourworldindata.org/cancer#cancer-over-the-long-run
https://ourworldindata.org/cancer#cancer-over-the-long-run
https://www.itnonline.com/article/introduction-current-radiation-therapy-treatment-planning-systems
https://www.itnonline.com/article/introduction-current-radiation-therapy-treatment-planning-systems
https://www.itnonline.com/article/introduction-current-radiation-therapy-treatment-planning-systems
https://heasarc.gsfc.nasa.gov/docs/heasarc/headates/spectrum.html
https://heasarc.gsfc.nasa.gov/docs/heasarc/headates/spectrum.html
https://physics.nist.gov/cgi-bin/cuu/Value?evj%7Csearch_for=electron+volt
https://physics.nist.gov/cgi-bin/cuu/Value?evj%7Csearch_for=electron+volt
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://www.tomshardware.com/reviews/gpu-hierarchy,4388.html
https://www.who.int/news-room/fact-sheets/detail/cancer
https://www.who.int/news-room/fact-sheets/detail/cancer

	Cover
	Titlepage
	Abstract
	Declaration
	1 Introduction
	1.1 Motivation And Problem Statement
	1.1.1 Contribution And Goal

	1.2 Related Work
	1.3 Thesis Structure

	2 Preliminaries
	2.1 Ray Tracing And Beam Models
	2.1.1 Ray Tracing
	2.1.2 Photon Radiation Physics

	2.2 Proton Radiation Physics
	2.2.1 Bethe-Bloch Equation
	2.2.2 Bragg-Kleeman
	2.2.3 Water Equivalent Thickness And Composite Materials

	2.3 Proton Radiation Therapy
	2.3.1 CT Scans
	2.3.2 Geometric Volume Concepts
	2.3.3 Treatment Planning Systems

	2.4 Mathematical Optimization And Metaheuristics
	2.4.1 The 0/1 Multidimensional Knapsack Problem
	2.4.2 Metaheuristics And Teaching-Learning-Based Optimization

	3 System And Methods
	3.1 Overview
	3.2 Input
	3.3 Cuboid And Cuboid Surface
	3.4 Cost Map Generation
	3.4.1 Branch-Optimized 3D DDA Kernel
	3.4.2 On The Beam Model

	3.5 Optimizing Paths
	3.5.1 Initial Population Generation
	3.5.1.1 Complexity

	3.5.2 Evaluation Operator
	3.5.2.1 Complexity

	3.5.3 Repair Operator
	3.5.3.1 Utility Ratios
	3.5.3.2 Drop
	3.5.3.3 Add
	3.5.3.4 Complexity

	3.5.4 Result And Initial Energy Of The Ray/Beam

	4 Evaluation And Discussion
	4.1 Dose-Volume Histograms (DVH)
	4.2 Evaluation
	4.2.1 Cost Map
	4.2.2 TLBO
	4.2.2.1 Initial Population Generation Timings
	4.2.2.2 Optimization (Main Loop) Timings
	4.2.2.3 Optimization (TLBO) Results

	4.3 Discussion
	4.3.1 Limitations And Future Work

	Bibliography

