
Faculty 3: Mathematics & Computer Science
Program: M.Sc. Computer Science

Master’s Thesis

T E T R A H E D R A L K D E T
Linear Time Collision Detection for Tetrahedral Meshes

Submitted by: Navid Mirzayousef Jadid

Enrollment ID No.: 4136247

E-Mail: navid@uni-bremen.de

First Examiner: Prof. Dr. Gabriel Zachmann

Second Examiner: Dr. René Weller

Supervisor: M.Sc. Hermann Meißenhelter

External Supervisor: Prof. Yoshio Okamoto (UEC Tokyo)

July 25, 2023

D E C L A R AT I O N

Hereby I declare that I am the sole author of this thesis. No sources or
tools other than those listed were used. All references and citations to
other works, be it direct or indirect, are declared as such.

Ich versichere, die Masterarbeit ohne fremde Hilfe angefertigt zu
haben. Ich habe keine anderen als die angegebenen Quellen und Hilf-
smittel benutzt. Alle Stellen, die wörtlich oder sinngemäß aus Veröf-
fentlichungen entnommen sind, sind als solche kenntlich gemacht.

Bremen, July 25, 2023

Navid Mirzayousef Jadid

A C K N O W L E D G M E N T S

I would like to first of all thank all my family and friends that offered
me continuous support during my studies. Their encouragement and
help consistently reached me at the right time.

Next, I would like to thank all the staff at UEC Tokyo who took
great care of me during my stay abroad in 2019/2020. This especially
applies to Prof. Choo who supervised the whole exchange program
at UEC; Ms. Tomita who helped me in many situations and was al-
ways quick to reply to my requests; Prof. Watanabe who repeatedly
moved us with his speeches; and all my Japanese language teachers,
especially Ms. Nakashima who never failed to greet me with a smile
and kept motivating me to do better. Furthermore, special gratitude
is reserved for Prof. Okamoto who graciously welcomed me to his
research lab and gave me great supervision for my work before and
after my stay.

Last but not least, I want to thank my supervisors and staff at the
University of Bremen: Dr. Weller, Hermann Meißenhelter, Prof. Dr.
Zachmann, Sabine Dohls, and Ms. Kranz from the examination office.
Ms. Kranz would swiftly answer all my inquiries without exception,
especially during the last few months of my thesis. Sabine, the system
administrator for the PC pool of our work group, helped me countless
times with my work computer and was also fast to respond without
fail. Most importantly however, were Dr. Weller and Hermann who
always took time for me, even during my stay abroad, and offered me
great advice during our weekly meetings here, while Prof. Zachmann
had useful insights at every monthly work group meetings. It is
difficult to express how thankful I am for their lasting support and
patience throughout my graduate studies, and I am glad to have been
able to contribute to the body of scientific knowledge under their
guidance.

v

C O N T E N T S

1 introduction 1

1.1 Motivation . 1

1.2 Challenges & Goals . 2

2 related work 3

2.1 Collision Detection for Deformable Objects with Tetra-
hedral Meshes . 3

2.1.1 Self-Collisions 5

2.2 Intersection Tests . 6

2.2.1 Separating Axis Test (SAT) 6

2.2.2 Gilbert-Johnson-Keerthi (GJK) 8

3 theoretical work 11

3.1 Applying the Predicate of k-Freeness to Sets of Tetra-
hedra & General Polyhedra 11

3.2 Sphere Coverings . 14

4 algorithms & implementation 25

4.1 Base Implementation 25

4.2 Finding All Pairs . 28

4.2.1 Collision Table 29

4.2.2 Prime Factorization 30

4.2.3 Multiple Phases 31

4.3 Self-Collisions . 34

4.4 Hashing Methods . 35

4.5 Intersection Tests . 35

4.6 Collision Pipeline . 37

5 benchmarking scenes 39

5.1 Choice of Tools & Resources 39

5.1.1 Simulation Software 39

5.1.2 Models . 41

5.2 Scenes . 43

5.2.1 Scenes created with SOFA 43

5.2.2 Pass Through Armadillos 44

5.3 Shortcomings . 46

6 evaluation 47

6.1 Selecting Benchmarking Parameters 47

6.1.1 Correcting for SOFA Contact Distance 48

6.1.2 Use of 10 Run Averages 49

6.1.3 Host Time vs Device Time 50

6.1.4 CUDA Block Size 51

vii

viii contents

6.1.5 Hashing Methods 53

6.1.6 Intersection Tests 54

6.2 GPU Brute-Force vs kDet 56

6.3 kDet . 57

6.3.1 Pass Through Armadillos 57

6.3.2 Remaining Scenes 62

6.3.3 Memory Usage 69

7 future work 71

7.1 Hash Maps . 71

7.1.1 Provisional Implementation 71

7.1.2 Results . 74

7.2 Self and Inter Object Collisions in the Same Pass . . . 77

7.3 Size of Potential Pairs Vector 79

8 conclusions 81

a appendix 83

a.1 Source Code . 83

a.1.1 Asset Folder Location & CUDA SDK Samples 83

a.1.2 Demo Application 84

a.1.3 Command-Line Benchmarking Tool 84

a.1.4 Benchmarking Files 86

a.2 Benchmarking Scenes & Data 86

bibliography 87

L I S T O F F I G U R E S

Figure 2.1 Spatial Hashing Grid 4

Figure 2.2 Bounding Volume Hierarchy 4

Figure 2.3 Separating Axis Test 6

Figure 2.4 Edge-On-Edge Case SAT 7

Figure 2.5 Minkowski Difference of Two Shapes 8

Figure 3.1 4-free Tetrahedron 12

Figure 3.2 Triangle Circumcenters 15

Figure 3.3 Finding Circumcenter of Tetrahedron 16

Figure 3.4 Collapsing Sub-Triangles 16

Figure 3.5 Collapsing Sub-Tetrahedra 17

Figure 3.6 Malformed Tetrahedra 20

Figure 3.7 Sphere Covering for Sphere 22

Figure 4.1 Collision Pipeline - kDet old 26

Figure 4.2 Collision Table 29

Figure 4.3 Collision Pipeline - kDet 31

Figure 4.4 Double Pairs during Self-Collisions 34

Figure 4.5 Collision Pipeline - kDet with Self Collisions . 37

Figure 5.1 Armadillo Self Penetrating Snout 41

Figure 5.2 Models Used for Benchmarking Scenes 42

Figure 5.3 Benchmarking Scenes created with SOFA . . . 45

Figure 5.4 Pass Through Armadillos Scene 45

Figure 6.1 Bounding Box Pre-Check 48

Figure 6.2 Test of Average Frame Times with kDet-Thrust 49

Figure 6.3 Test of Average Frame Times with kDet-No-Pairs 50

Figure 6.4 Host vs Device Time with kDet-Thrust 51

Figure 6.5 Warp Occupancy for different GPU Block Sizes 52

Figure 6.6 Test of Different Block Sizes for kDet 52

Figure 6.7 Runtimes with Different Hashing Methods . . 53

Figure 6.8 Total Runtimes and Collision Pairs for Different
Intersection Methods 55

Figure 6.9 Comparison of Detected Collision Pairs be-
tween SAT and GJK 56

Figure 6.10 Runtimes Comparison Brute-Force vs kDet for
Pass-Through-Armadillos Scene 57

Figure 6.11 Runtimes Comparison Brute-Force vs kDet for
Other Scenes . 58

Figure 6.12 Pass-Through-Armadillo Frame Times 59

Figure 6.13 Different Measures in Regards to Penetration
Depth . 60

Figure 6.14 Stack Plots for kDet Methods in Pass Through
Armadillo Scenes 61

ix

Figure 6.15 Runtimes SOFA Scenes kDet 63

Figure 6.16 Runtimes SOFA Scenes kDet 64

Figure 6.17 Box Plot for frame times of kDet-Thrust 65

Figure 6.18 Box Plot for frame times of kDet-No-Pairs . . . 66

Figure 6.19 Runtimes SOFA Scenes kDet-Thrust with and
without Self-Collisions 67

Figure 6.20 Stack Plot Runtimes kDet-Thrust with Self-
Collisions . 68

Figure 6.21 Total Runtimes of kDet-Methods over All Scenes 68

Figure 6.22 kDet Memory Usage 69

Figure 6.23 kDet Memory Usage with Fix Applied 70

Figure 7.1 Collision Pipeline - kDet with Hash Map . . . 72

Figure 7.2 Frame Times kDet Hash Map 75

Figure 7.3 Stack-Plot kDet Hash Map 75

Figure 7.4 Anomalies with Collision Pairs for kDet Hash
Map . 76

Figure 7.5 Collision Pipeline - kDet 2 78

L I S T O F TA B L E S

Table 5.1 Tetrahedron Counts for Different Model Reso-
lutions . 43

Table 5.2 Exact Tetrahedron Counts for Each Model and
Resolution . 43

Table 5.3 Exact Vertex Counts for Each Model and Reso-
lution . 44

Table 6.1 Applied Translations per Scene 48

Table 6.2 Hash Grid Occupancy for Benchmarking Scenes 54

Table A.1 Option flags and default values for CMD bench-
marking tool . 85

L I S T O F A L G O R I T H M S

Figure 4.1 Populate Grid 26

Figure 4.2 Check Collisions Grid 27

Figure 4.3 Determine If Already Checked - Primes 30

Figure 4.4 Find All Potential Collisions Pairs 32

Figure 4.5 SAT Intersection Test 36

Figure 7.1 Find All Potential Pairs - Hash Map 72

x

list of algorithms xi

Figure 7.2 Insert Pair into Hash Map 73

1
I N T R O D U C T I O N

1.1 motivation

With the steady rise of computational power and efficiency in hard-
ware during the previous two decades, real-time collision detection of
tetrahedral and polyhedral models has become much more feasible.
Collision detection itself is a technology widely used in all kinds of
applications, such as computer games, material simulations, etc.; yet,
currently triangulated models are used most commonly. The use of
tetrahedral meshes then allows for proper simulation of deformable
or fracturing objects, and generally objects with an internal structure.

While for many applications collision detection can be sufficiently
accelerated with data-structures like, for example, Bounding Volume
Hierarchies or alike, these methods still inhibit the risk of needing
O(n2) time in the worst case. For time-critical applications or use-cases
where a steady runtime needs to be guaranteed, other solutions have
to be utilized.

In 2017, Weller, Debowski, and Zachmann [WDZ17] offered the
foundational basis of this work when they proposed kDet, an efficient
collision detection algorithm for the graphics-processing-unit (GPU)
based on a novel geometric predicate. They proved a worst-case linear
runtime O(n) bound to the number of intersecting pairs of polygons.
When parallelized with a linear number of processors, the algorithm
can theoretically perform in constant time. In the most basic sense,
their method is based on the premise that for "normal" objects the
number of neighbors for a given polygon is somewhat limited. There-
fore, only a certain number of potential collision partners in near
proximity need to be considered for each polygon.

However, this was only the first step. Since the algorithm does
not require a specific kind of base primitive, it should be possible to
apply these findings to other classes of objects like higher dimensional
polytopes. In this work, I want to present how kDet can be applied
to tetrahedral and polyhedral meshes. Fast collision detection for
(deformable) tetrahedral meshes finds use in various field, such as
material simulations with the finite-element-method (FEM) or real-
time computations for robot vision and haptics, to only name a few.

1

2 introduction

1.2 challenges & goals

One immediate point of concern is the increased number of primitives
necessary for volumetric aka tetrahedral meshes. This is especially
problematic when considering collisions between primitives of the
same object, so-called self- or inter-object collisions. This drastically
multiplies the number of potential collision partners that need be con-
sidered for each primitive. Yet, detecting self-collisions is a necessity
and cannot be avoided for proper simulation of deformable bodies
[WC21].

Furthermore, intersection tests between tetrahedra are also more
computationally expensive than for triangles. Obtaining collision re-
sponses also requires additional computations. Whether or how much
this would affect the overall runtime was not clear at the beginning of
my work.

Lastly, it is important that capabilities of the GPU be properly
utilized, while avoiding the many pitfalls that can occur when pro-
gramming on it.

In this work, I want to first extend the geometric predicate of kDet
to the case of tetrahedra and general polyhedra. Once this foundation
is set, the previous implementation of kDet shall be adjusted and
improved upon, before being put to rigorous test in different scenarios.
With that we will hopefully explore the strengths and weaknesses of
the algorithm. This will also reveal us, whether the promise of linear
runtime holds true in practice for the case of collision detection with
tetrahedral meshes. Even if that is the case, the actual runtimes need
to be evaluated to see whether kDet would be usable in time-critical
real-time applications.

2
R E L AT E D W O R K

2.1 collision detection for deformable objects with

tetrahedral meshes

To date, the topic of collision detection (CD) with tetrahedral models
is not as extensively researched as collision detection on polygonal
and triangulated bodies. Only in within the last two decades have
computational capabilities, such as the emergence of programmable
GPUs, allowed their use in real-time applications. Prior, only meshes
with a limited resolution could be used.

Early, Teschner et al. [Tes+03] proposed the use of spatially hashed
grids for CD with tetrahedra. Spatially hashed grids are data structures
that model a grid, but do not fully instantiate it. Instead the grid is
implicitly created by hashing occupied grid cells (and their contents)
into a hash map based on their positions, as demonstrated in figure 2.1.
They optimized parameters for the method using a uniform grid, with
which they could overall achieve a linear running time complexity,
only depending on the number of primitives. They could simulate 20k
tetrahedra at around 15Hz. Eitz and Lixu [EL07] followed suit, but
used a hierarchical spatial grid instead, which is able to adapt to a
given scene. They put emphasis on minimizing computation times for
the acceleration data structure.

Marchal, Aubert, and Chaillou [MAC04] showed an alternative ap-
proach without the use of a computational grid, instead utilizing
updates of distance fields computed with fast marching [Set96] on the
tetrahedral models.

As for deformable objects, Teschner et al. [Tes+05] classified appli-
cable CD methods and gave a comprehensive review on them. They
focused mainly on inter-object collisions; self-collisions were only
briefly discussed. Weller [Wel13] later gave a compact summary on
the same topic. More recently, Wang and Cao [WC21] did a review
on state-of-the-art collision detection methods for deformable object,
describing the various approaches in detail and emphasizing the im-
portance of self-collisions in the matter. We shall discuss the most
relevant of the methods mentioned in these reviews. Please note how-
ever, that most of them were not yet applied to CD with tetrahedral
meshes.

3

4 related work

Figure 2.1: A spatial hashing grid is always only implicitly constructed, by
calculating grid positions of objects, passing them to a hash func-
tion to obtain a key, before inserting them into a hash table.

Figure 2.2: A Bounding Volume Hierarchy encloses an object with multiple
sub-structures, which are then put into a hierarchy. For collision
detection, the hierarchy is traversed until either no overlap of
sub-structures is found or until primitives are to be tested for
intersection.

Bounding Volume Hierarchies (BVH) have been used to acceler-
ate CD for a long time [Ber97; GLM96] They divide the object into
recursive bounded areas which are stored in a tree structure or hier-
archy (see figure 2.2). For CD, the hierarchy is traversed until either
primitive intersection tests have to be performed or no collisions of
bounding volumes are found. When using BVHs on the GPU they
need suitable adjustments, as the hardware does not work well with
recursion. Lauterbach, Mo, and Manocha [LMM10] proposed the use
linear ordering derived from Morton codes for efficient construction
of BVHs for CD on the GPU. This was later improved upon by Wang
et al. [Wan+18], addressing issues with culling efficiency and caching.

Spatial partitioning splits the space into sub-domains and checks for
collision of objects within the same region. There exist many schemes
for spatial partitioning, such as the previously mentioned spatially
hashed grid [Tes+03; EL07]. This work’s predecessor paper also uses
methods of spatially hashed grids and was shown to also be suitable
for changing topologies [WDZ17]. Meanwhile, Ye et al. [Ye+16] used
similar techniques for robust and efficient CD in surgical training
simulators. Other methods of spatial partitioning include: uniform
grids [GASF94], octrees [WLZ14], and k-d trees [HKM95].

Sweep and prune algorithms efficiently check AABBs of shapes,
before deciding to move to further computations such as intersection

2.1 collision detection for deformable objects with tetrahedral meshes 5

tests. The method relies on the fact that AABBs only overlap in three
dimensions, if their projection intervals along each of the three world
axes also have overlap. For that, the projected intervals are sorted
before sweeping through them. Nowadays, principal component anal-
ysis is used to determine the optimal sweeping direction. Mainzer
and Zachmann [MZ15] used fuzzy clustering to subdivide objects for
fast CD of deformable objects on the GPU. Capannini and Larsson
[CL16; CL18] combined the sweep and prune method with BVHs and
achieved great culling performance. Their algorithm runs only on the
CPU as it is heavily reliant on fast and large caches.

2.1.1 Self-Collisions

The problem with self-collisions detection is that even in cases where
the mesh remains free from self intersections, the amount of computa-
tional effort required per frame is huge. This stems from the fact that
each primitive in a volume mesh is close to several others and thus
necessarily has several potential collision pairs every frame. Acceler-
ation techniques like BVH, which are used effectively in inter-object
collisions, often do not apply well to self-collisions or need suitable
adjustments [WC21].

To reduce the number of potential collision pairs per primitive in
self-collision, several approaches have been proposed. The normal
cone method proposed by [VT94] is one such technique, and utilizes
the mesh connectivity and topology for culling irrelevant collision
partners by means of normal cones and two-dimensional contour test.
Normal cone methods were commonly used with discrete self-collision
detection, but Tang et al. [Tan+09] it to continuous CD for better
performance. However, the additional cost of culling with normal
cones scaled badly with the quadratic complexity of CCD. Wang et al.
[Wan+17] later published a variation that combined BVH with the
normal cone method and could be performed discretely as well as
continuously. The algorithm has a linear time complexity and reliably
found all self-collisions for models with triangle counts in the six
digits. A year later, they improved upon the robustness and runtime
of the approach [Wan+18]. Tang et al. [Tan+18b] used the normal
cone method together with spatial hashing and achieved 6-8x speed
compared to their old work [Tan+14].

Others utilized a fast triangle-triangle intersection test [M9̈7] to-
gether with the computing capabilities of the GPU and spatial partion-
ing [PKS10] or BVHs [Tan+18a] to great effect. Notably, this approach
was also applied to triangle models undergoing topological changes
[He+15].

Lastly, Tian, Hu, and Shen [THS19] presented a hybrid CPU-GPU
continuous CD method for studying brain deformations with models

6 related work

(a) (b)

Figure 2.3: The SAT test looks for different penetration axes. (a)) If we find
a hyper-plane that separates the two objects, then they are not
colliding. (b) If there is overlap, then by projecting the furthest
points of each object onto the axis, we can obtain the MTV/MTD.

that had tetrahedral meshes. They achieved very interactive frame
rates while also computing the deformation via finite element method
at the same time.

2.2 intersection tests

Intersection tests are algorithms that determine whether two shapes,
usually polygons or polyhedra, have any overlap. They are usually
executed during the narrow-phase portion of a collision pipeline, to
see which primitives of a given mesh intersect. While many tests only
return a boolean answer, some will additionally calculate a collision
response.

One such response is the minimum translation vector (MTV) or
distance (MTD). The MTV is the smallest translation vector which
when applied would separate two penetrating objects. A problem with
the MTV is that it can produce sub-optimal results, especially with
discrete CD methods, as shown in figure. When objects move too fast
and temporal coherence is not considered, applying the MTV can place
the objects at undesirable locations. Therefore, it is more frequently
used with continuous CD methods and additional constraints.

For polyhedra, the two most commonly used intersection tests are
the separating axis test (SAT) [Got96; GLM96] and the GJK algorithm
[GJK88]. In the following, we will look at both, examine their differ-
ences, as well as merits and demerits.

2.2.1 Separating Axis Test (SAT)

The separating axis theorem (also known as hyperplane separation
theorem) states that for two convex shapes that have no overlap, there
exists at least one axis where the projection of the shapes onto that
axis are disjoint, as shown in figure 6.7.

2.2 intersection tests 7

Figure 2.4: A case where the edge-on-edge test provides the separation axis.
We obtain it by calculating the cross product c of a and b.

The SAT intersection test tries to find such an axis, but if it fails, we
know that the two shapes must intersect. The important question is
which axes should be tested. These are 1) the face normals of each
shape and 2) in three dimensions also the cross products of the edges
between the objects [GLM96]. These are commonly referred to as face-
and edge-queries. Figure 2.4 shows a case where the edge-on-edge
case is relevant. For tetrahedra, this gives a total of 44 axes to check: 8

for the face normals (4 per tetrahedron), and 36 for the edge-on-edge
axes (6× 6, with 6 edges for each tetrahedron).

In addition, the regular SAT test is capable of computing the MTV.
For that, whenever a separation axis is tested, the shapes are projected
onto it. By determining the overlap of the projections, we obtain the
penetration along the tested axis, as shown in figure 2.3b. Since the
SAT test only returns intersection after all relevant axes have been
tested, we obtain the MTV by keeping track of the separation axis
with the shallowest penetration and the depth.

In practice, we first search for so-called support points obtained
from a support mapping, which is a function that takes a shape and a
direction and then returns the point furthest in that direction. When
probing for support points along an separation axis, each polyhedron
searches in the opposite direction of the other. To obtain the penetra-
tion depth, the support points are projected onto the axis and their
distance is measured (see figure 2.3b).

Improvements of the SAT algorithm mainly focus on reducing the
number of edge-queries. The reasons are twofold: For one, their num-
ber scales quadratically with the edge-count per simplex. Second,
they require more expensive computations, like the calculation of
cross-products.

8 related work

Figure 2.5: If two primitives are colliding, then their Minkowski difference
(green) will contain the origin. In practical applications, only
parts of the Minkowski difference are constructed (black) to check
whether they contain the origin. This saves computation time.)

Following this principle, Ganovelli, Ponchio, and Rocchini [GPR02]
presented a faster version of the SAT for tetrahedron-tetrahedron in-
tersections that foregoes explicitly testing pairs of edges, by reusing
quantities that were obtained during the face-queries. Another method
makes clever use of concepts like Gauss maps to also trim down on
edge-queries. Moreover, this approach generalizes to polytopes, and
generates the contact manifold as well [Mig10].

One major downside of SAT is that it only works with convex shapes
and also requires their features (edges, faces, etc.). Another point of
consideration is that when searching for the MTV, SAT must check all
separation axes, which is inherently slower than comparable methods
that just find approximate solutions and can therefore finish earlier.
On the other hand, the SAT test is relatively easy to understand and
implement, especially when comparing to algorithms such as GJK. It
also does not need elaborate data-structures, such as priority queues,
thus on GPU’s, where branching is rather slow, it might perform faster.
[Mig10].

2.2.2 Gilbert-Johnson-Keerthi (GJK)

The Gilbert-Johnson-Keerthi (GJK) algorithm [GJK88] is frequently
used for the distance computations between shapes, but can also be
used for intersection queries. It takes advantage of the observation
that if the Minkowski-difference of two polytopes contains the origin,
then the two polytopes must intersect, as shown in figure 2.5. The
Minkowski-difference can be thought of as the shape that results when

2.2 intersection tests 9

we subtract the positions of all vertices of one polytope from another.
In practice, the computation of the full convex hull of the Minkowski-
difference is too expensive for real-time applications; instead, the GJK
algorithm iteratively constructs simplices which are contained within
said hull. If the origin is found inside one of the constructed sub-
shapes, then it has to also be inside the Minkowski-difference (see
again figure 2.5).

GJK by itself does not compute the MTV; however, extensions of
it with such capabilities have been presented, such as the popular
Expanding-Polytope-Algorithm (EPA) [VDB01; VDB03]. It achieves
this by expanding the simplex that was used to find the origin inside
the Minkowski-difference and determining the closest feature between
them.

Another variation of GJK can even compute the domain intersection
of several polytopes. This is done by translating the origin back into
the intersection area and constructing the convex hull of the inter-
section volume by solving a dual problem [TCF13]. Computing the
domain intersection from a point known to be inside it had already
been shown much earlier for other intersection methods [MP78; DK83].

The major advantage of the GJK algorithm is that it can handle
various geometries and is not concerned with the format the geometry
is stored in, so long a suitable support mapping is provided.

However, GJK is notoriously sensitive to floating point precision
problems. Early on, Bergen [Ber99] presented a faster, more versatile
and robust version. Montanari, Petrinic, and Barbieri [MPB17] replaced
the original Johnson algorithm and Backup procedure with a distance
sub-algorithm, gaining more numerical robustness. Their method
is less susceptible to degenerate geometries while having a faster
convergence rate and performing around 15% to 30% better than
the original GJK algorithm. More recently, Montaut et al. [Mon+22]
applied principles from other convex optimization algorithms and
achieved up to two times faster computation times. A last noteworthy
mention is XenoCollide, a "cousin" of GJK, that also claims to be more
robust and require fewer branching operations overall [Sne08].

3
T H E O R E T I C A L W O R K

This part of my research was conducted during my stay abroad at
UEC-Tokyo1, Japan, under the attentive supervision of Prof. Okamoto.

3.1 applying the predicate of k-freeness to sets of tetra-
hedra & general polyhedra

The predicate of k-freeness was first proposed by Weller, Debowski,
and Zachmann [WDZ17] with the original work behind kDet. At the
heart of the predicate lies the observation that for three-dimensonal
models meant to represent real-world objects, the number of polyhe-
dra intersecting the neighborhood of another polyhedron has to be
somewhat limited. Technically and mathematically speaking, it would
obviously be possible to cram infinitely many objects in a space, by,
for example, making them infinitesimally thin. But for our mentioned
use-case this not should apply. Thus, we will see that for two sets
where each object fulfills the mentioned neighborhood property, the
number of possible intersecting pairs of polyhedra stays linear to the
number of total polyhedra of both sets.

To demonstrate that, I will extend the existing predicate to the case
of polyhedra by first adjusting the original definitions and lemmas.
Then, I will follow the same exact proof for the lemmas as in the
triangle/polygon case, to show that it seamlessly extends to polyhedra.
The upper bound for the maximum of intersections per primitive will
differ however. This property is dependent on solving a case of the
sphere covering problem for tetra- and polyhedra respectively. The
topic will be dealt with separately, after the general proof for the
predicate has been presented.

Definition 3.1.1. Given some constant k > 0, a polyhedron p ∈ P,
with P being a set of polyhedra, let d be the diameter of the smallest
enclosing sphere of p and s a sphere with diameter d/2. We say p
is k-free if |{pj ∈ P | d ≤ dj and pj ∩ (p ⊕ s) 6= }| < k, with dj
representing the diameter of smallest enclosing sphere of polyhedron
pj and p ⊕ s the Minkowski-sum of s and p. Consequently, we can
declare a set of polyhedra P k-free, if all polyhedra pi ∈ P are k-free.

That is to say, a k-free polyhedron p has fewer than k polyhedra
of P that (1) intersect the Minkowski-sum p ⊕ s, being the volume
resulting from sweeping a sphere with diameter d/2 around p, and (2)
have a larger minimum enclosing sphere than p itself. From here on,

1 UEC Tokyo - Homepage: https://www.uec.ac.jp/eng/

11

https://www.uec.ac.jp/eng/

12 theoretical work

Figure 3.1: 4-free tetrahedron (blue); red area marks the Minkowski-sum of
said tetrahedron and a sphere half the diameter of its minimum
enclosing sphere; a 4-free polyhedron intersects at most 3 "larger"
polyhedra (determined by the minimum enclosing sphere) with
said Minkowski-sum

such polyhedra will simply be referred to as larger polyhedra. Moreover,
assume two polyhedra pi, pj with minimum enclosing spheres si, sj of
diameters di, dj. Then, if di ≥ dj we say si is larger than sj. Figure 3.1
shows an example of a k-free tetrahedron, where k = 4.

Please note, that any constant k suffices for our theoretical analysis.
For sake of simplicity, the constant k will be referred to interchange-
ably for individual polyhedra and the complete set.

We will now show that a single polyhedron cannot intersect too
many larger polyhedra of a k-free polyhedron set:

Lemma 3.1.1. Let P be a k-free set of polyhedra and let p /∈ P be an
arbitrary polyhedron. Under those circumstances, the number of larger
polyhedra pj ∈ P which p intersects is bound by a constant. Next, let
q be the (maximum) number of covering spheres necessary for each
polyhedron in question, according to our special case of the sphere
covering problem. Then qk is the maximum number of intersections
between p and larger polyhedra pj ∈ P.

Before we move on, let us clarify what are "sphere covering prob-
lems" and the meaning of q. In general, they are a class of problems that
deal with covering a volume or area with (usually) a minimum num-

3.1 applying the predicate of k-freeness to sets of tetrahedra & general polyhedra 13

ber of spheres of a specified quality 2. The sphere covering problem
we are interested in, is the following: Assume we have a polyhedron p
and we know its minimum enclosing sphere, which has diameter d.
We now want to figure out, how many spheres with diameter d/2 are
necessary to gaplessly cover the volume enclosed by p and how they
need be arranged to achieve that. The former quantity is represented
by q, and varies for different classes of polyhedra.

The proof of lemma 3.1.1 is not really concerned with the exact
value of q. Rather, it only requires that a class of object can be covered
with a constant number of covering spheres. Later, we will determine
some values for q by considering this problem in detail for two classes
of polyhedra, being arbitrary tetrahedra (chapter 3.2.0.1 and arbitrary
polyhedra (chapter 3.2.0.2.

Proof. Let s be the minimum enclosing sphere of p, having diameter
d. We construct a sphere covering of p with spheres si ∈ S each of
diameter d/2, where i ∈ 0, 1, . . . , q. For spheres sj there can then be at
most k larger polyhedra pi ∈ P that intersect it.

The proof works by contradiction: Suppose that k + 1 larger polyhe-
dra intersect sphere sj, where pa is the smallest of these polyhedra and
da the diameter of its minimum enclosing sphere. Since pa is larger
than p, we get d ≤ da, by definition. With sj being intersected by pa, it
means that sj is completely located inside pa ⊕ sa, due to the fact that
the diameter of sj is d/2. Therefore, pa ⊕ sa would be intersected by k
larger polyhedra, contradicting the prerequisite of Lemma 3.1.1 that
pa is k-free.

We move on to prove a linear bound on the number of intersecting
polyhedra with a constant factor for all objects that have a k-free
polyhedron mesh.

Theorem 3.1.2. Presume that A and B are two k-free sets, each consist-
ing of n polyhedra, and in collision. In such a case, the total number of
colliding polyhedra is in O(n). More precisely, the number is at most
qnk, with q being the (maximum) number of covering spheres nec-
essary for each polyhedron, according to the aforementioned sphere
covering problem.

Proof. For each of the sets A and B, we test each polyhedron of that set
against all larger polyhedra of the other set. Each of these polyhedra
returns at most qk intersections with larger polyhedra, according to
Lemma 3.1.1. Furthermore, we are guaranteed to find all pairs of
colliding polyhedra, because in a pair of intersecting polyhedra either
of the polyhedra must be larger than the other. Since for each of the n

2 Technically "covering" of volumes would need to be done with balls and not spheres,
as spheres only represent the boundary of balls without their interior. However, in
this work I will forego this technicality and just refer to them as spheres.

14 theoretical work

polyhedra the number of intersections with larger polyhedra does not
exceed qk, we have at most qnk intersecting pairs when A and B are
colliding.

3.2 sphere coverings

In this chapter, we will deal with the topic of covering arbitrary
tetrahedra and polyhedra with spheres half the size of their minimum
enclosing sphere. The minimum number of spheres necessary for each
covering gives us the constant q, which is a defining factor in the upper
bound of intersections between k-free sets. For the original version
of kDet, this q was shown to be 3 for triangles, and 7 in the case of
arbitrary polygons [WDZ17]. In the following, I will prove that for
tetrahedra q = 4, and q = 21 for arbitrary polyhedra.

3.2.0.1 Tetrahedra

Theorem 3.2.1. Let t be an arbitrary tetrahedron with minimum en-
closing sphere s of diameter d. Then t can fully be covered with 4

spheres of diameter d/2 (from here on, when referring to covering
spheres this quality of the diameter is implied).

Before we get to the proof, we consider a few points and ideas:

1. First, the smallest enclosing sphere of a tetrahedron is either
given by its circumscribing sphere or the smallest enclosing
sphere of one of its faces [BSA17]. In the latter case, the circum-
scribing sphere might not touch all points of that face, e.g. if the
simplex is very long and thin.

2. By looking at some properties of minimum enclosing circles of
triangles, we can draw some parallels to minimum enclosing
spheres of tetrahedra. For acute and right triangles, the circum-
scribing circle would describe the minimal enclosing circle, while
for obtuse triangles the circle with diameter of the hypotenuse,
placed on the center of that edge, would provide said circle
[WDZ17].

We make another observation, in that the circumcenter for acute
triangles lies strictly inside the triangle, i.e. not on an edge of the
triangle; for obtuse triangles it is outside the triangle; for right
triangles it is strictly the midpoint of the hypotenuse (see figure
3.2). This is an equivalence relation and we can reformulate these
into a predicate for determining the minimal enclosing circle of
a given triangle: If the circumcenter lies inside or on an edge
of the triangle, then the minimum enclosing circle has to be the
circumcircle. On the other hand, if the circumcenter is found
outside the triangle, the minimal enclosing circle has to be the
one with diameter of the hypotenuse.

3.2 sphere coverings 15

(a) (b) (c)

Figure 3.2: Circumcenters for different kinds of triangles. Orange lines repre-
sent the perpendicular bisectors. (a) The circumcenter of an acute
triangle is inside of the triangle itself. (b) The circumcenter of a
right triangle is located on the center of its hypotenuse. (c) The
circumcenter of an obtuse triangle is located outside of itself.

How can this insight be applied? Contrary to triangles, tetra-
hedron cannot be trivially put into a few categories (like acute,
right, and obtuse). Instead, we can use this intuition about the
position of the circumcenter, to reduce the number of classes of
tetrahedra we have to look at; namely tetrahedra which have
their circumcenter inside, on a face or edge, or outside.

3. We extend the idea from 2. to tetrahedra: If the circumcenter lies
inside of the tetrahedron or on one of its faces or edges, then the
circumscribing sphere will be the minimum enclosing sphere.
This also implies that all 4 of the tetrahedron’s vertices touch
the minimum enclosing sphere. If the circumcenter is outside of
the tetrahedron, then the minimum enclosing sphere is given by
the minimum enclosing sphere of that tetrahedron’s largest face
[BSA17]. More specifically, if said largest face is an acute or right
triangle, then 3 vertices will touch the sphere. If it is obtuse, only
two vertices will touch it.

Now that we are able to classify tetrahedra and have an idea on
how to find the minimum enclosing sphere for a given tetrahedron, let
us look at how this knowledge can be used to cover any tetrahedron
with 4 covering spheres.

Proof. Let t be an arbitrary tetrahedron with minimum enclosing
sphere s of diameter d. We consider the following three cases:

1. The circumcenter of t is inside itself, but not on either of its
surfaces or edges

2. The circumcenter of t is on of its surfaces or edges

3. The circumcenter of t is outside itself

16 theoretical work

(a) (b)

(c) (d)

Figure 3.3: (a) Determining the circumcenter of a tetrahedron with bisector
planes. (b), (c) Cutout from the tetrahedron using the bisector
planes. (d) Pyramid cutout from the structure in (c). Point C is
the circumcenter of the tetrahedron, B is the intersection point of
the edge and the bisector plane, D and E are intersection points
of two bisector planes and a face of the tetrahedron.

(a) (b) (c)

Figure 3.4: We subdivide a triangle into six sub-triangles by using the perpen-
dicular bisectors and the lines connecting the circumcenter to the
vertices of the triangle. When transforming an acute triangle into
a right one, by moving one of the vertices along the circumcircle,
two of the sub-triangles "collapse" into the hypotenuse.

3.2 sphere coverings 17

(a) (b)

(c) (d) (e)

Figure 3.5: Showing how certain substructures (blue) in our tetrahedron
subdivision can sometimes ’collapse’ into a face of the tetrahedron.
(a), (b) Before and after of the tetrahedron. We can clearly see in
(b) the substructures ’collapsed’ into the bottom face and A and
C now coincide in position. (c), (d), (e) Transitioning point D so it
is on the equator circle with the other two vertices.

18 theoretical work

Case 1 and 2: From our previous deductions, we know that in these
cases the circumscribing sphere is given by the minimum enclosing
sphere. The circumscribing sphere is constructed by first determining
the circumcenter, using perpendicular bisector planes on three edges
which share a common vertex. Figure 3.3a demonstrates this with the
vertex A and the adjacent edges, yielding us the circumcenter C. By
drawing all the bisector planes, the tetrahedron can be subdivided
into four structures similar to the ones shown in figure 3.3b and 3.3c
(basically one structure for each vertex). If we can show that each
of these structures can be contained within a covering sphere, then
four covering spheres will suffice for the whole tetrahedron. In one
last subdivision, each of these structures can be partitioned into three
double-tetrahedra as shown in figure 3.3d. Later, when discussing the
edge cases, we will see why we should not classify this structure as
a pyramid, even though for "regular" tetrahedra this would certainly
apply.

Let us stay on figure 3.3d: C is the circumcenter, A an original vertex
of the tetrahedron, B a midpoint of an original edge connected to A,
while D and E are the intersection points of the faces adjacent to A
and the intersection lines of the perpendicular bisector planes placed
on the edges adjacent to A. We note that B, C, D, and E are co-planar
since we obtained them from the bisection of the tetrahedron with
the perpendicular bisector plane. In addition, we note that the angles
between AB and BC, AD and CD, as well as AE and CE are all right
angles.

For the former, it should be apparent why this is the case, because
BC is the line segment co-planar to the bisector plane connecting
the intersection point of the bisector plane and the edge (= point B)
to the circumcenter C. For why the latter two enclosed angles are
right angles, we need to take a better look at points D and E. Both of
them are the intersection points of two bisector planes (of adjacent
edges) and a tetrahedron face. The intersection of two planes which
are not parallel is always a line, meaning that D and E are specifically
the intersection points of such lines and a tetrahedron face. Note,
that in our case all such lines meet in the circumcenter C and stand
perpendicular to the tetrahedron’s face. This is because the bisector
planes were already perpendicular to the face, thus their intersection
line has to be as well. Since CD and CE are segments of these lines, it
means the angles in question need to be right angles as well.

We can now place a covering sphere on the midpoint of AC. Tri-
angles ABC, AEC, and ACD are then contained within that covering
sphere according to Thales’s Theorem, since all the important angles
in question are right angles. Each of the triangles is co-planar with
a “circle intersection” of the said sphere, referring to the circle we
would obtain if we slice the sphere with the plane co-planar to any
of the given triangles. Then AC describes the hypotenuse for all of

3.2 sphere coverings 19

the mentioned triangles, and since we showed the leftover angles are
all right angles, they have to be contained by the circles according to
Thales’s Theorem. The circles are part of the covering sphere, thus all
the triangles are contained by it as well.

The argument now applies recursively: Since we showed that the
mentioned triangles are contained inside the covering sphere, all the
other structures than built upon them to be contained have to be inside
it as well. Thus we have shown that by placing covering spheres with
centers on the midpoints of the sections connecting the circumcenter
and the vertices, we can cover the whole tetrahedron with exactly four
spheres.

Note, that for tetrahedra which coincide with case 2, the struc-
tures in figure 3.3b and 3.3b are different, in that they contain fewer
sub-structures. We can better understand this, by looking at a lower-
dimensional analogy: Acute triangles can be subdivided into six sub-
triangles that need to be contained within the covering circles, while
for right and obtuse triangles we only get four sub-triangles, despite
using the same principles. The placement of the circles remains the
same though, in that we place them on the midpoints of the sections
connecting the circumcenter to the vertices (for obtuse triangles we
expanded the triangle to be a right one since we could do so without
loss of generality, meaning again the circumcenter was the center of
the minimum enclosing circle for the resulting triangle). It is just that
for right triangles, two of these sub-triangles basically ‘collapse’ into
the hypotenuse of the triangle (= they have no area; see figure 3.4), but
still the same principles applied to show that the 4 remaining partial
triangles are contained within the covering circles.
Similarly, some of these substructures can ‘collapse’ into the faces of
the tetrahedron (= they have no volume) as shown in figure 3.5, but
we can still use the same methods (i.e. Thales’s theorem) to show that
the remaining structures are contained within the covering spheres.
This is the reason, we chose not to refer to the structure in figure 3.3d
as a pyramid in general, since in such cases it can also be a single
tetrahedron.

Case 3: Here we have to make another distinction between tetra-
hedra which touch the enclosing sphere with either two or three
vertices:

• If two vertices touch the minimum enclosing sphere: Let C be
the center of the enclosing sphere and P, Q the vertices of the
tetrahedron which do not touch the enclosing sphere. We push
each point to the surface of the sphere in the direction that would
move C to P or Q respectively (see figure 3.6a and 3.6b).

20 theoretical work

(a) (b)

(c) (d)

Figure 3.6: (a) tetrahedron with obtuse triangle as its largest face and its
minimum enclosing sphere (b) result of moving P, Q to the
surface of the minimum enclosing sphere (c) tetrahedron with
acute triangle as its largest face and its minimum enclosing sphere
(d) result of moving P to the surface of the minimum enclosing
sphere

3.2 sphere coverings 21

• For the case of three vertices touching the enclosing sphere, we
do the same as the previous case, but only for the single point
not on the surface of the sphere (see figure 3.6c and 3.6d).

In both cases we now have a tetrahedron with the same minimum
enclosing sphere as the original one, but with the following addi-
tional properties: 1) It encloses the original tetrahedron, and 2) The
circumcenter is also the center of the minimum enclosing sphere (=
four vertices on the minimum enclosing sphere), therefore the circum-
sphere is the minimum enclosing sphere

We have already proven that tetrahedra which have the circum-
sphere as their minimum enclosing sphere can be covered with four
covering spheres. Therefore, we have shown that this covering extends
to all kinds of tetrahedra.

3.2.0.2 Spheres

Unlike tetrahedra, arbitrary polyhedra require more than only 4 cov-
ering spheres. Since the covering depends on the specific type of
polyhedron in question, it is not possible to suggest a general solution
in this matter. Instead, we aim for a covering of the minimum enclos-
ing sphere of the arbitrary polyhedron and thus reach a upper bound
for the number of covering spheres.

Verger-Gaugry [VG05] proposed that the volume enclosed by a
sphere sr,d with radius 1/2 < r ≤ 1 in dimension d ≥ 2 could be
covered with spheres of radius 1/2 as follows: Put the first covering
sphere at the center of sr,d; we will call this the inside sphere. Next,
place covering spheres at equivalent distance from the center and such
that spherical caps created by the intersection of the covering spheres
with sr,d have bases that are of radius 1/2; these spheres will from
here on referred to as outer spheres. Additionally, the outer spheres
overlap with the inside sphere, leaving no gaps, giving a full covering
of sr,d. This simplifies the problem to determining how many spherical
caps of the mentioned quality cover the surface of sr,d.

Following the proposed strategy, we can prove that a sphere in R3

can be covered with at most 21 spheres half its radius [Wyn12].

Theorem 3.2.2. A sphere of radius r can be covered with of 21 spheres
of radius r/2.

We prove this theorem for the unit sphere, as this will trivially
extend to spheres of any radius r ∈ R.

Proof. Let us take a look at figure 3.7: Let the black sphere be the unit
sphere (r = 1) and the orange ones be covering spheres. First, we
place the inner sphere with its center C aligning to the unit sphere’s
center. We continue to place outer spheres to cover the surface of the

22 theoretical work

Figure 3.7: Covering the unit sphere (black, r = 1) with covering spheres
(orange) of radius r = 1/2. We have an inside sphere whose center
aligns with the unit sphere, and outer spheres that are placed such
that the bases of their spherical caps are of radius 1/2.

unit sphere, such that the bases of the spherical caps are of radius 1/2.
With this strategy, we will cover the maximum amount of area from
the unit sphere’s surface for each outer sphere.
We want to know how many of these spherical caps are needed to
cover the surface of the unit sphere. For that we first need to determine
the angle α of these spherical caps using the basic sin-law:

sin(α) =
opposite side
hypotenuse

.

We know all the gray line segments have length 1 (as they represent
the radius of the unit circle). The orange spheres are half as big, thus
their radius is 1/2, which is half the length of the red line. We insert
the values and take the arcsin:

⇔ sin(α) =
(1/2)

1
=

1
2

⇔ α = arcsin(
1
2
) = 30◦ .

We can also use cos to determine the length of the black line segment
connecting C and C′, i.e. the distance from the center at which the
outer spheres are placed:

cos(α) =
adjacent side
hypotenuse

3.2 sphere coverings 23

⇔ cos(30) =
adjacent side

1

⇔
√

3
2

= adjacent side = CC′ .

What’s more, is that this implies that the inside and outside spheres
overlap, since the distance of their centers is less than their combined
radii:

√
3

2
< 1/2 + 1/2 = 1 .

According to the computed table provided by Hardin, Sloane, and
Smith [HSS95], in order to fully cover a sphere with spherical caps
of 30◦ one needs exactly 20 spheres. In addition, the outer spheres
intersect the inside sphere with the same spherical cap of 30◦ (we can
confirm that by using sin and arcsin again, knowing that CF is half of
CC′ and then solve for α). So covering the surface of the unit sphere
will at the same time cover the surface of the inside sphere which
provides us a gapless covering of the unit sphere using 20 + 1 = 21
spheres of radius r = 1/2.

4
A L G O R I T H M S & I M P L E M E N TAT I O N

4.1 base implementation

The base implementation was ported by Hermann Meißenhelter from
the original kDet implementation and is written in C++. Figure 4.1
shows the collision pipeline of said implementation. It contains only
two steps: 1.) populate the spatial grid, and 2.) check for collisions.
The first step inserts all the simplices of the objects into the hashed
spatial grid. The second step traverses the grid for each object and
checks for collision against the primitives of the other. To do so, it
searches for all potential collision partners in a tetrahedron’s vicinity,
and executes the intersection tests for the simplices.

The hash table that implicitly stores the grid uses bucket hashing.
Each bucket has 133 entries: 128 for storing tetrahedron ids, and 5

entries that are used as flags. These flags include the frame counter, the
spatial-id of the currently hashed grid-cell, and the hash of the next
bucket if there is overflow. The flag for the frame counter is beneficial
in that spares us the time for resetting the entries of the hash table
each frame. When visiting a bucket while populating the grid, we can
just check the flag and if it is not the current frame, we can treat it like
an empty bucket.

With this, we can look at algorithm 4.1 presenting the procedure for
populating the grid:

First we check if the tetrahedron is in the overlap are of the bound-
ing boxes of the collision objects, and if not, we can already return.
This reduces the number of tetrahedra that need be inserted into the
grid and accelerates traversal during the collision checks. This method
can however not be applied, when self-collisions have to be detected.
We continue by determining the "size" of the tetrahedron and the grid
layer it should be inserted in. Next, we obtain all grid cells that are
intersected by the tetrahedron. For all those cells we then continuously
calculate a hash and inspect the hash table until we either find a) a
bucket that is already used for this grid cell or b) an empty bucket. In
either case, we then try insert the tetrahedron into the bucket. If the
bucket in case a) is full however, we need to jump to the next bucket
that is designated to the same grid cell.

Next, algorithm 4.2 demostrates how the grid is traversed when
checking for collisions:

We start by determining all cells that are intersected by the tetrahe-
dron in its own grid layer and all higher layers. For each of these cells,

25

26 algorithms & implementation

Figure 4.1: Collision Pipeline of the old Version of kDet

Algorithm 4.1 Populate Grid

Input: object A with tetrahedral mesh
bbox overlap area of both collision objects A, B

Result: inserts all tetrahedra of the mesh into the hashed spatial
grid accordingly

1: for all t ∈ O do in parallel
2: if t is not in bbox overlap area then

return
3: end if
4: determine size s of t
5: determine grid layer l of t based on s
6: find set C of all grid cells intersected by ton layer l
7: for all cells c ∈ C do
8: calculate hash key k based on grid position g of c
9: while k does not point to bucket b that is either empty

or has the same hashed grid position g do
10: increase hash misses m by 1

11: recalculate hash k with g and m
12: end while
13: if bucket b is empty then
14: atomic: set grid position of b to g
15: else if bucket b is full then
16: recalculate hash key k until a suitable overflow

bucket bo is found
17: atomic: set grid position of bo to g
18: set b’s reference of overflow bucket to bo

19: atomic: increase tetrahedron counter of bo by 1

20: insert t intro bucket
21: continue
22: end if
23: atomic: increase tetrahedron counter of b by 1

24: insert t intro bucket
25: end for
26: end for

4.1 base implementation 27

Algorithm 4.2 Check Collisions Grid

Input: objects A, B with tetrahedral meshes
Output: all tetrahedra tA ∈ A that collide with larger

tetrahedra tB ∈ B

1: for all tA ∈ A do in parallel
2: determine size s of t
3: determine grid layer l of t based on s
4: find set C of all grid cells intersected by t on all layers li ≥ l
5: for all cells c ∈ C do
6: calculate hash key k based on grid position g of c
7: while k does not point to bucket b in hash table

with same hashed grid position g do
8: increment hash misses m by 1

9: recalculate hash k with g and m
10: end while
11: for all tetrahedra ti ∈ B hashed into bucket b do
12: if t and ti are both already marked as colliding then
13: continue
14: else if bbox of t and ti do not overlap then
15: continue
16: end if
17: if t and ti have intersection then
18: set t & ti to colliding
19: end if
20: end for
21: if bucket b is has reference to overflow bucket bo then
22: update b to bo

23: go-to line 10
24: end if
25: end for
26: end for

28 algorithms & implementation

we, again, find the all hash buckets that correspond to them. We will
then try to check for collisions against each tetrahedron that is hashed
into those buckets. To reduce the number of intersection tests, two
techniques are applied beforehand: 1) A bounding box test between
the tetrahedra is executed, and 2) if both tetrahedron have a flag set,
that they already have another collision partner, then the intersection
test is skipped. Only if both measures do not apply, do we execute
the intersection test. If it returns an intersection, we set the according
flag for each tetrahedron. A consequence of the second acceleration
trick is that the original kDet would not find all collision pairs, only
all simplices that were part of the collision set.

4.2 finding all pairs

As explained in the previous chapter, the original implementation
merely finds all simplices which are part of the collision set, but im-
portantly not all collision pairs between these simplices. This might
be a problem when computing collision responses, as it might be
necessary to compute the response on a per collision pair basis. There-
fore, it was necesseray to remove this acceleration trick for the new
implementation. Now, after removing the acceleration trick, kDet will
suddenly find the same collision pair several times. The is caused by
the fact that during the insertion of a simplex into the grid, it can be
hashed into multiple adjacent grid cells. We would like to avoid these
duplicate collision pairs, the reason being twofold: First, this prevents
the physics pipeline from applying the force responses of a collision
pair multiple times. This is especially useful, in case we do not want to
explicitly store, sort, and filter the collision responses, before applying
them after the collision detection is finished, which would require
additional computational effort. Second and more importantly, we
want to avoid the additional computations for the intersection tests of
the duplicate pairs.

Due to parallelization and the possible race conditions, it is rather
difficult and expensive to check during run-time whether another
pair has already been checked for collision with a naive approach.
One such naive approach could be to simply write all checked pairs
into a list and check before the execution of the intersection test if
the pair is already included in the mentioned list. We immediately
see why this would be inefficient: Imagine multiple threads for the
same collision pair checking the list at the same time and not finding
their pair. They would all proceed to execute the intersection test.
Afterwards, to avoid duplicate insertions into the list, the list would
need to be checked once again, before the insertion is done as an
atomic operation. One way to accelerate this, is to not check the list
beforehand, but to always execute the intersection test and only check
the list afterwards. Another way would be to insert all pairs into the

4.2 finding all pairs 29

Figure 4.2: Example of a Collision Table: If a pair of primitives is to be
checked, we first look whether there exists an entry within the
table. If objects have not been checked yet, they have no entries.
Otherwise, we fill in whether they are intersecting or not.

list and sort afterwards. But this would mean that the intersection
test was computed for the same collision pair several times. For these
reasons, several approaches were considered to mitigate this issue.

4.2.1 Collision Table

The simplest idea that comes to mind is a table that tracks the colli-
sions of all possible combinations of tetrahedra. An example for such
an collision table is presented with table 4.2. The table entries store in-
formation about whether a potential pair has been (or is in the process
of being) checked or not. So each time, before running the intersection
test for a potential collision pair, we check the respective entry in the
table. If it is set to not-checked, we change the entry to checked and
continue with the intersection test. Otherwise, we know the pair has
already been checked or is in the process of getting checked, and we
can continue. Importantly, the check and set of the collision table has
to be done as an atomic operation.

Having said that, we face one important problem with this approach,
being that the size of the table grows proportionally to the number of
tetrahedra in the scene squared. Imagine the table for two collision
objects with 100.000 tetrahedra each. The resulting collision table
would have 1010 entries. Let us assume the table entries are represented
with booleans, which in C++ need 1 byte of memory. Then the resulting
table would have a size of ~9,3 GiBi 1. Additionally, a consequence of
the table size would be higher numbers of random memory accesses,
which are rather expensive on the GPU.

1 Technically, the size of the table can be halved because entry (x, y) would correspond
to the same pair as (y, x). Still, the size of the table remains in the same order of
magnitude.

30 algorithms & implementation

4.2.2 Prime Factorization

Another idea that was suggested to me, was to make use of the prime
factorization theorem, which states that any positive integer > 1 can be
represented as a product of prime numbers and that the factorization
of that product is unique. For example, 500 = 22 × 53.

By assigning each tetrahedron a unique prime number and keeping
track of the product of the primes of all other tetrahedra that the
tetrahedron already checked against in a frame (from here on referred
to as prime-product), it is possible to detect duplicate potential collision
pairs during runtime with some divisibility checks. To be more specific,
if we have two tetrahedra A and B, and they have previously been
checked for collision, then one factor of each of their respective prime-
product’s has to be the assigned prime of the other, making them
divisible by said prime. Algorithm 4.3 demonstrates the procedure for
such a check.

Algorithm 4.3 Determine If Already Checked - Primes

Input: two tetrahedra tA, tB

Output: returns whether tA, tB have already been checked
for intersection

Require: all ti ∈ A ∪ B are assigned a unique prime pi, and
a prime-product qi initialized with the value of pi

1: if qtA is divisible by ptB then
return tA, tB have already been checked for intersection

2: else
3: atomic qtA ← qtA × pB and qtB ← qtB × pA
4: proceed to intersection test between tA, tB

5: end if

To start off, the algorithm requires us to give each tetrahedron of the
scene a different prime number in pre-computation. In addition, each
tetrohedron keeps a prime-product, which on each frame is initial-
ized with the value of the tetrahedron’s prime. When checking if two
tetrahedra have already collided, we determine if the prime-product
of tetrahedron A is divisible by the prime of tetrahedron B. This can
be done with a simple modulo calculation: If a mod b = 0, then b is
divisible by a. If the prime-product of tetrahedron A is not divisible,
we multiply the prime-product of both tetrahedron A and B with the
assigned prime of the other and proceed with the intersection test.
When the prime-product is divisible however, we know that tetrahe-
dron A and B have already been checked, and we exit. This check and
swap of the prime-product, once again, has to be done as an atomic
operation to avoid race conditions.

4.2 finding all pairs 31

Figure 4.3: Collision Pipeline of new version of kDet with multiple phases.

While elegant and theoretically possible, this approach fails in prac-
tice simply due to the limited size of integers. The growth of the
prime-product for each tetrahedron is quasi factorial. Consequently,
even with integers of type long long int, which usually can take
a maximum value of up to 263 − 1 ≈ 9, 2× 1018 (depending on the
compiler), overflow occurs frequently. For example, if we take the
following list of primes, which are all within the first 100,000 prime
numbers, and multiply them, we get:

7× 13331× 73961× 268789× 755033 ≈ 1, 4× 1021

, which is already three orders of magnitude larger than the maximum
value for long long int’s. We will see another possible application of
the prime factorization theorem in chapter 7.1.

4.2.3 Multiple Phases

The solution I settled on, actually does not check for duplicate pairs
during the initial traversal of the grid. Instead, an approach with
multiple phases is used, as presented in figure 4.3.

In the first phase, we traverse the grid and write all potential colli-
sion pairs to a list, including duplicate ones. As shown in algorithm
4.4, the procedure for that is almost identical to algorithm 4.2, except
for where the insertion of the pair into the list replaces the intersec-
tion test and acceleration trick. This is done by incrementing a global
counter and then inserting the pair into the list at the returned position.
The incrementation of the counter, again, has to be done as an atomic
operation, to avoid race conditions. Note, that again the traversal of
the grid has to be done for the first object against the second, and vice
versa, or else not all collision pairs can be found later.

In the second step, we then filter out all duplicate pairs, before
moving to the final phase where we execute intersection tests for the
remaining potential pairs.

32 algorithms & implementation

Algorithm 4.4 Find All Potential Collisions Pairs

Input: objects A, B with tetrahedral meshes
Result: writes all potential collision pairs (tA, tB) to a list,

with tA ∈ A, tB ∈ B and tA being smaller than tB;
can find the same pair multiple times

1: for all tA ∈ A do in parallel
2: determine size s of t
3: determine grid layer l of tA based on s
4: find set C of all grid cells intersected by tA on all layers li ≥ l
5: for all cells c ∈ C do
6: calculate hash key k based on grid position g of c
7: while k does not point to bucket b in hash table

with same hashed grid position g do
8: increment hash misses m by 1

9: recalculate hash k with g and m
10: end while
11: for all tetrahedra tB ∈ B hashed into bucket b do
12: if bbox of tA and tB overlap then
13: atomic: write pair (tA, tB) into list of potential

collision pairs
14: end if
15: end for
16: if bucket b has reference to overflow bucket bo then
17: update b to bo

18: go-to line 10
19: end if
20: end for
21: end for

4.2 finding all pairs 33

The list is implemented as a device (= GPU) vector from the CUDA
thrust-library [Dev23], which offers a similar API to that of std::vector.
The list uses CUDA’s int2 as its entry data type, which is essentially
just a wrapper for 32-bit integers. The vector can be resized, but not
during CUDA kernel execution. This means that the size of the vector
has to be declared beforehand. Additionally, the vector has to be large
enough to hold all potential collision pairs with duplicates, while not
exceeding the memory capacities of the GPU. For the current imple-
mentation, I chose a fairly arbitrary heuristic to determine the size
of the device vector. Currently the vector size is calculated with this
formula:

sizevector = c (#tetrahedraA × #tetrahedraB), where c = 1/10.

The rationale was that the size of the vector should be proportional
to the maximum combinations of possible collision pairs multiplied
by some constant, which in this case was meant to reduce the vector
size since I did not expect to have that many collision pairs. I also
tested smaller values for c, such as c = 1/50 or c = 1/100,. While
these would work in some cases, c = 1/10 was the smallest value that
would not crash the program for any of the provided scenes, even
with self-collisions turned on.

During development I did not spend much time refining this heuris-
tic, as it was sufficient for my work. However, we can already note
that memory demands for the vector would increase by a square-law,
similar to the collision table. Ideally the size of the vector would grow
linearly. Determining a suitable size of the device vector is its own
topic of discussion, which we will further explore in chapter 7.3.

Finally, for the filtering of the duplicate pairs, I use a built-in func-
tion of the thrust-library, called unique(). This method reorders a
specified range of the vector such that all unique elements are put to
its front. It then returns the index of the last unique element, which
gives us the range of all non-duplicate items in the list. The unique()

function requires the vector to be sorted prior. For that thrust offers
an adequately named sort() method as well. Note, that we never
need to sort the whole list, only the first n entries, with n being the
number of potential collision pairs (with duplicates) detected that
frame. For the sorting and filtering to work properly, the pairs that
are placed into the list need to follow a strict ordering. One example
of such an ordering would be that the first entry of the pair always
corresponds to a tetrahedron of first object, while the second entry
always corresponds to a tetrahedron of the second object.

34 algorithms & implementation

(a) (b) (c)

Figure 4.4: The list of potential pairs during self-collision detection normally
would include duplicate pairs, since the pairs (11, 345) and (345,
11) reference the same tetrahedra (a). By enforcing a strict ordering
of the entries (b) before sorting (c), we can forego this problem.

4.3 self-collisions

The procedure for finding all self collision pairs is implemented almost
identically to the normal multi-phase method for finding all pairs. The
differences are minute, but important.

First of all, when checking for self-collisions, populating the grid
cannot use the acceleration trick described in chapter 4.1 with the
bounding box overlap anymore. That trick would cause tetrahedra
outside of the bounding box overlap area of the two models to not
be placed into the hashed grid. Since all tetrahedra are relevant for
self-collisions, we need to hash them all into the grid instead.

Second, when searching for all potential pairs, we (obviously) tra-
verse the grid for the object against itself.

Lastly and most importantly, we need to add an additional step
before filtering out duplicate pairs. Consider the situation demon-
strated in figure 4.4: The list of potential pairs includes the pairs (11,
345) and (345, 11). When checking for inter-object collisions, the order
of the pair encodes which object an tetrahedron belongs to. But for
self-collisions, both tetrahedra of the pair are from the same object;
therefore, the pairs (11, 345) and (345, 11) are identical in this case
and would be considered duplicates, even after filtering. This can be
solved by just reordering the entries of each pair, such that the first
entry is always smaller than the second one 2, as shown in figure 4.4b.
Anew, the thrust-library has a suitable function for this situation:
With for_each() it is possible to apply a function to all entries in a
specified range. This allowed me to easily reorder the entries of all
pairs in the relevant range of the list.

2 At the time of writing, it also occurred to me that this ordering could just be applied
before inserting into the list.

4.4 hashing methods 35

4.4 hashing methods

As for hashing functions, the following algorithms are implemented:

• DJB2 [RRM07]

• FNV-1a [FNV91]

• Simple-Hash [Eri04]

• Morton Bit Interleaving [BLD13]

The hash functions are used both when populating the grid with
tetrahedra and when traversing it. Each method takes a position, grid
layer, and number of hash misses as input to generate a table hash.
The hash is then taken module the table size, obtain a hash key of
appropriate size. Also, some of these methods were originally hash
algorithms for strings, thus they were slightly adjusted.

The first three methods all utilize prime numbers to some degree.
DJB2 utilizes bitshifts for fast multiplications by a constant factor,
while FNV-1a uses mainly XOR operations. Simple-Hash just takes
three prime numbers and multiplies each position components with
one of them. Morton Bit Interleaving generates Morton codes by tak-
ing the integer coordinates of the cell that is to be hashed, shifting the
bits of these integers, before applying XOR operations on them.

Note: The base implementation ported by Hermann Meißenhelter
included DJB2 hashing as well as Morton Bit Interleaving. I imple-
mented the remaining two hashing methods.

4.5 intersection tests

These intersection tests were implemented:

• SAT [Got96; GLM96]

• SAT-No-Edges

• SAT-MTV

• GJK [GJK88]

The SAT test is implemented in its most rudimentary form. The
summary of the high-level steps is presented in algorithm 4.5. Basically
all the relevant axes described in chapter 2.2.1 are queried and if a
separation axis is found, we return that there is no intersection. If all
axes have been checked and no separation axis was found, we return
an intersection.

36 algorithms & implementation

Algorithm 4.5 SAT Intersection Test

Input: two tetrahedra tA, tB

Output: whether tA, tB intersect

1: if face normals of tA contain separation axis then
return No Intersection

2: end if
3: if face normals of tB contain separation axis then

return No Intersection
4: end if
5: if edge cross-products from tA and tB contain separation axis then

return No Intersection
6: end if

return Intersection

Meanwhile, SAT-No-Edges omit the edge tests of the normal SAT
test. Doing so causes the algorithm to find more false positives for
collision, because we are skipping some relevant axes. The rationale
was to compare the false positive rate with the saved computational
time, to determine if such an intersection test could be useful in certain
applications where accuracy might be less important.

On the other hand, the basis of the SAT-MTV is almost identical
to the normal SAT test, except that during the tests of the separation
axes, we also keep track of the current minimum penetration depth
and the axis which this penetration occurred on. This method was
included in order to offer at least one intersection test that would
compute some kind of collision response, similar to what we would
expect from a real use-case. However, the collision response is not
applied to the simplices in the actual implementation, only calculated
to see its effects on performance.

For my implementation of GJK, I used libccd [dan10], an com-
monly open-source collision detection library for the CPU that offers
several intersection tests, and other resources [Win20] as foundation.
I also considered implementing the EPA algorithm [VDB01; VDB03]
to compute the MTV with GJK., but later decided against it. This was
mainly due to time constraints, but another reason was that GJK had
issues with accuracy, i.e. finding all collision pairs.

Note: The SAT (separating axis theorem) test was included with
the base implementation ported by Hermann Meißenhelter. The other
intersection tests were added by me.

4.6 collision pipeline 37

Figure 4.5: Collision Pipeline of new version of kDet with Self Collisions.

4.6 collision pipeline

We saw the final collision pipeline for kDet already in figure 4.3.
To summarize again: In the first step, we calculate the axis aligned
bounding box for each of the collision objects. Then we check if the
bounding boxes have any overlap. Only if they do, do we populate
the grid and check for inter-object collisions. Otherwise, said steps
are skipped and the program exits, since the objects cannot possibly
intersect if their bounding boxes do not either.

If we also check for self-collisions, we need to populate the grid
and check for self-collisions every frame, no matter if the bounding
boxes of the geometries overlap or not. Furthermore, as previously
discussed, with self-collisions we cannot use the acceleration trick
when populating the grid. Said trick only inserted tetrahedra into the
grid that were inside the bounding box overlap of the models. But
when checking for self-collisions, we need to consider all tetrahedra
of the scene, not only those inside the bounding box overlap area.

The adjusted pipeline with self-collisions is shown in figure 4.5.
Note that the bounding box overlap test only determines whether to
check for inter-object collisions.

Lastly, for the integration of kDet into a proper physics pipeline, it
is recommended to execute as many of the pipeline stages as possible
on the GPU. This saves the computational effort and time of copying
data to and from the GPU.

5
B E N C H M A R K I N G S C E N E S

For the evaluation, I was suggested to run the presented algorithms
against some benchmarks, ideally established ones. Surprisingly, ani-
mated scenes with tetrahedron meshes are hard to come by. SCI Utah,
for example, offers their animation repository [Wal13], but their mod-
els use triangle meshes. An early idea was to take those animations
and simply run a tetrahedron mesh generator on each frame. The
problem is that this does not deliver desirable results because, for
one, meshing would not be coherent over consequent frames. Second,
certain kinds of animations (e.g. explosions) do not leave the mesh
closed, making them unusable for (most) tetrahedron mesh generators.
Therefore, I proceeded to create some scene benchmarks which we
will proceed discuss in detail.

To offer other researchers a better starting point, I published all the
created benchmark scenes as well as scene configurations & details in
the kDet benchmark repository [MJ23]. Furthermore, I included all
the data from benchmarking kDet as a point of reference for runtime
comparisons.

5.1 choice of tools & resources

5.1.1 Simulation Software

For the making of the animations, I required an animation program
with a FEM solver (or comparable procedures, such as mass spring
systems) to compute deformations with the internal mesh. Unfortu-
nately, many common programs, such as Blender [BF23], do not (yet)
offer such capabilities, The choice of software was mostly limited by
this requirement. The two other important requirement were a) the
ease of use, due to the amount of time that was left before thesis sub-
mission, and b) the option to export tetrahedron meshes each frame.
The following were considered:

1. NVidia PhysX [NVI23]

2. SideFX: Houdini [Sid23]

3. SOFA FrameWork [Fau+12]

NVidia PhysX programming framework would have been a solid
option, since it offers many capabilities aside from the necessary FEM
solver. But given the remaining time, learning the framework and the
necessary skills for this use-case seemed too much of a hurdle. This

39

40 benchmarking scenes

was only consolidated by my inexperience with setting up C++ builds.
Therefore, this option was discarded.

SideFx: Houdini was at first my animation software of choice, be-
ing an industry grade, feature rich animation program. SideFx even
graciously offered me a key for their professional suite upon request
for my research. Learning the software would have been manageable,
because I had some prior practice with similar 3D modeling and ani-
mation program. On top of that, there exist lots of accessible material
online which teaches how to create soft body animations using the
Houdini’s FEM solver.

The reason I decided against using SideFx: Houdini, was that during
my initial research I came to the conclusion that the program would
not offer sufficient export options for the model geometries on a per
frame basis. Later I came to find out however, that this was a research
mistake on my behalf, because exporting geometries per frame was
indeed possible. This was regrettably only realized by me within the
last month before thesis submission, where I had no more time to
create new scenes with the program.

Consequently, the choice fell on the SOFA Framework. SOFA offers
various tools and solvers to simulate physical systems. The application
accepts scene descriptions in .scn-format (which is basically .xml)
that are fairly customizable.

In addition, scenes in SOFA can be written in python 1. This would
enable even more possibilities than with the .scn-format. However,
the python scripts would not work with the Windows executable pro-
vided on their website. For that reason, I was restricted to using the
.xml-style .scn scene declarations. SOFA’s documentation for these
scene declaration file formats can be a bit lacking at times, but with the
provided examples [Sof06] and a YouTube tutorial [SF21] explaining
most of the components that were necessary for this use-case, I was
able to construct the scenes for the animations.

Before we move on, a few remarks on the limitations of SOFA.
First of all, SOFA’s solvers enforce a contact distance for the collision
detection. This means that the models in the exported animations
would never penetrate each other. But we have to consider that in
real applications models possibly penetrate each other before force
penalties are calculated and applied to correct for said penetration.
Based on that, I corrected for this detail in the benchmarking by
slightly translating the objects positions to have some penetration, in

1 Technically C++-scripts can be used as well, however this requires to build the program
from source and on the programmer’s end much more insight into the architecture
of the SOFA framework

5.1 choice of tools & resources 41

Figure 5.1: Since the animated scenes were not computed with self-collision
detection, some frames have deformations where the models self
penetrate.

order to obtain more realistic runtimes. We will discuss this later in
more detail.

Additionally, SOFA did not calculate self-collisions. Their website
occasionally mentions the option to check for them, but in my testing
this did not work. Some frames therefore have the models penetrating
themselves, for example the Armadillos’ snouts penetrating their ears
as shown in figure 5.1. An effort was made to minimize the occurrence
of such frames.

Lastly, SOFA .scn- or .xml-scenes do not offer the proper capabilities
to by themselves compute topological changes to the models such as
cuts, breaks, or explosions. There exists an option to define a list of
simplices that shall be added or removed at specific points of time
during the simulation. But in light of the large number of simplices for
our models, the effort required made this method simply unfeasible.

5.1.2 Models

The following models were sourced for the animations:

1. Stanford Armadillo [KL96] (figure 5.2a)

2. Stanford Happy Buddha [CL96] (figure 5.2b)

3. Max Planck head from MPI [Rus+] (figure 5.2c)

4. Stanford Bunny [TL94] (figure 5.2d)

42 benchmarking scenes

(a) (b)

(c) (d)

Figure 5.2: Models used for benchmarking scenes (a) Stanford Armadillo
(b) Stanford Happy Buddha (c) Max Planck Head from MPI (d)
Stanford Bunny

5.2 scenes 43

model resolution # tetrahedra

1 ~10k

2 ~20-30k

3 ~44-57k

4 ~85-100k

Table 5.1: Tetrahedron Counts for Different Model Resolutions

model \ resolution 1 2 3 4

Armadillo 10,121 20,052 49,218 83,804

Happy Buddha 10,433 28,584 49,616 87,158

Max Planck 10,093 21,240 43,648 92,387

Stanford Bunny 10,308 29,274 56,924 99,201

Table 5.2: Exact Tetrahedron Counts for Each Model and Resolution

Each model was first resized and prepared with Meshlab [Cig+08].
This included the covering of any holes, to make the models water-
tight, before removing any self intersecting triangles. To obtain the
model in the various resolutions, Meshlab’s Surface Reconstruction:
VGC procedure was applied to the models with according parameters.
Finally, the generation of the tetrahedron mesh was done using tetgen

[Si15], with the -pq options.

As previously stated, each model is provided in different resolutions,
four to be exact. Table 5.1 shows the approximate number of tetrahedra
for each model resolution. Models with resolution one will have
around 10k tetrahedra; roughly 20-30k for resolution two; between
44-57k for resolution three; and finally 85-100k for resolution four.
Table 5.2 presents the exact number of tetrahedra per model for each
of the four resolutions, while table 5.3 shows the number of vertices
for the models.

5.2 scenes

5.2.1 Scenes created with SOFA

With SOFA, I created the following three scenes using the FEM solver:

1. Bunny & Planck: a stiff model of Max Planck’s head falling onto
a deformable Stanford bunny

2. Buddha & Armadillo: a deformarble armadillo falling onto a non-
deforming buddha model

44 benchmarking scenes

model \ resolution 1 2 3 4

Armadillo 3,051 5,912 15,233 25,159

Happy Buddha 3,380 8,647 15,046 26,450

Max Planck 3,079 6,290 12,673 26,507

Stanford Bunny 3,272 8,969 17,205 29,536

Table 5.3: Exact Vertex Counts for Each Model and Resolution

3. Armadillos: two deformable armadillo models moving towards
and colliding with each other

Figure 5.3 shows some screenshots for each of the listed animations.
Each scene contains two colliding models, though the forces, poses,

and elastic properties of the models differ for each scene. The two
model "restriction" is not due to kDet being unable to handle collisions
between multiple objects, but only due to the implementation of our
application.

In addition, each scene was computed for each of the model resolu-
tions. The goal was to keep the same animations consistent over the
different model resolutions for better comparisons. However, while
using the same scene configuration for the different resolutions, the
parameters of the FEM solver had to be adjusted in each case. Thus,
the same animation came out slightly different for each model resolu-
tion.

More info about the scene configurations and the FEM parameters
is included together with the source code (see appendix A.2).

5.2.2 Pass Through Armadillos

As previously discussed, SOFA enforces a contact distance and already
applies correction forces to each frame. This means, that models of a
scene would usually not have any overlap or penetration. Even though
we will later correct for this in the actual benchmarking, it might be
of interest to observe runtimes for larger penetration depths. For that
reason, I created this fourth scene of an armadillo phasing through
another, as shown in figure 5.4. No force penalties or interactions were
calculated or applied for this scene. This was done without SOFA,
using a simple python script which took the initial starting position
for one armadillo and applied a constant translation along the x-axis.
The other armadillo remains stationary.

The scene is only available with the armadillos in resolution 2 (~20k
tetrahedra), because of the concern that for higher resolutions either
the GPU memory or the vector holding the potential pairs might
overflow.

5.2 scenes 45

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5.3: Screenshots of the Benchmarking Scenes created with SOFA (or-
der is left to right). (a)-(c) Flexible Stanford Armadillo falling on
rigid Happy Buddha model. (d) - (f) Two deformable Armadillos
accelerating towards each other. (g)-(i) Head of Max Planck falling
onto Stanford Bunny, with both being deformable.

(a) (b) (c)

Figure 5.4: Screenshots of the Pass Through Armadillos Scene (left to right)

46 benchmarking scenes

5.3 shortcomings

The created benchmarks unfortunately exhibit several flaws which
need to be acknowledged before moving to the evaluation.

The major problem of this benchmarking suite is that the scenes
are too similar overall. Even though each scene uses different models
and material properties, all scenes are essentially just two deformable
objects moving towards each other and colliding for brief moments of
time.

Ideally the benchmark suite would cover various scenarios to help
determine challenging as well as favorable conditions for the algo-
rithm. Among other things, one could include scenes with changing
topologies, like tears, breaks, or explosions. Especially the former two
occur frequently in material simulations. To that one could add scenes
where models have large contact areas, such as cloth simulations, or
scenes with higher penetration depth. For the former, I actually tried
to create a cloth simulation benchmark, but it turned out unsuccessful
because the modeled cloth just phased through the sphere, instead of
colliding and deforming.

Finally, for future benchmarks the use of tetrahedron meshes that
contain tetrahedra of varying sizes might be interesting. To my knowl-
edge, software such as Gmsh [gmsh] would allow for creating meshes
with such constraints.

6
E VA L UAT I O N

For the benchmarking, I ran and compared the following four meth-
ods:

• kDet-Thrust: The new version of kDet that I worked on. The
name was chosen, because the list that stores all the potential
pairs uses CUDA’s thrust device vectors. This version find all
collision pairs.

• kDet-No-Pairs: The old version of kDet. This version does not
find all collision pairs, but only all collision simplices, hence the
name.

• GPU-BF-Loop: GPU brute-force method that launches a thread
for each tetrahedron of the first object and checks against all
tetrahedra of the second object in a loop. This method finds all
collision pairs.

• GPU-BF-No Loop: GPU brute-force method that launches a thread
for each possible pair of tetrahedra to be checked. This method
finds all collision pairs.

Every presented method includes a bounding box pre-check, similar
to kDet-Thrust. This means, that if no bounding box overlap of the
collision objects is detected, then inter-object collisions are skipped;
self-collisions might still be computed. We can observe the effects of
this in figure 6.1: The huge jumps in runtime indicate where bound-
ing boxes of the collision objects overlap, and therefore inter-object
collisions were computed.

All scenes, except for the pass through armadillos, were bench-
marked with and without self-collisions. Benchmarking results with
self-collisions consequently never include data for the pass through
armadillos scene. Also please keep in mind, that when not explicitly
mentioned, a benchmark was executed without self-collisions.

The benchmarks were run on a 64-Bit Windows 10 system with an
Intel(R) Core(TM) i7-7800X with six cores and 3.50 GHz, 64 GB of
RAM, and an NVIDIA GForce RTX 3080 with 10 GB of GPU memory.

6.1 selecting benchmarking parameters

Before running the "actual" benchmarks, I ran some tests to deter-
mine favorable parameters (e.g. CUDA block size, choice of hashing
method). We will consequently go through the results of these tests as
well as some measures that I needed to employ for the benchmarking.

47

48 evaluation

Figure 6.1: The plots show sample frame times for the GPU brute-force meth-
ods. Note the sudden jump in frame times at certain positions:
This indicates whether the bounding box pre-check passed and
let CD be computed or not.

Animation Model Translation

Bunny & Planck Planck (0, 0.1, 0)

Buddha & Armadillo Armadillo (0, -0.1, 0)

Armadillos Armadillo B (-0.1, 0, 0)

Table 6.1: Applied translations on the models of each respective scene to
create overlap during CD.

6.1.1 Correcting for SOFA Contact Distance

As previously eluded to, the objects in the animated scenes do not
have any collisions or penetration, because of the enforced contact
distance by the SOFA framework. This could possibly distort runtimes
and does not accurately depict actual use-cases, where we would
expect some overlap 1. For that reason, the decision was made to
slightly translate the position of one object per scene. Table 6.1 lists
which objects were translated for each scene and the translation vector
in world coordinates for every respective case.

1 Of course, after the collision detection is finished and force penalties have been
applied, the overlap should be resolved.

6.1 selecting benchmarking parameters 49

Figure 6.2: Test of Average Frame Times with kDet-Thrust: Total range of
values per frame is green; Standard deviation per frame is given
in orange.

6.1.2 Use of 10 Run Averages

To minimize variance for the runtimes, I decided to run every bench-
mark ten times and average over the results for each frame. For this
to be a good measure however, it required that the averaged runtime
does not drastically differ from the runtime of individual runs. To
inspect whether this is the case, I plotted for each frame the averaged
runtime, the range of total values, and the standard deviation for all
scenes in the highest resolution with kDet-Thrust and kDet-No-Pairs.
When inspecting figure 6.2 and 6.3, we can see that the standard devi-
ation usually stays below 1/5 th to 1/4 th of a millisecond. There are
some occasional spikes in the total range of values, but in most cases
these are only in the order of a few milliseconds. A notable spike was
recorded for kDet-Thrust and the pass through armadillos near frame
80.

Overall the averaged runtime seems to depict the general runtime of
the algorithm decently. The same can be said for the GPU brute-force
methods as well as for the kDet methods with self-collisions. Although
it should be mentioned, that the standard deviation per frame was
higher, yet roughly scaled to the runtimes of each method.

50 evaluation

Figure 6.3: Test of Average Frame Times with kDet-No-Pairs: Total range of
values per frame is green; Standard deviation per frame is given
in orange.

Based on these results, all graphs from here on out will depict
averaged runtimes. However, the raw data for all runs is included
with the source code (see appendix, A.2).

6.1.3 Host Time vs Device Time

The benchmarking recorded both host (CPU) and device (GPU) times.
Since kDet runs mostly on the GPU, our main interest lies in the
device times. Beforehand, let us confirm that host and device times do
not differ by a significant amount. We expect only a few ms difference
per frame, caused by overhead to start the GPU kernels and some
operations that are carried out by the CPU.

Figure 6.4 depicts host and device times for kDet-Thrust in all
scenes on highest resolution. We notice a high host runtime on the
first frame of the animation, as well as the frame where inter-object
collisions seem to be checked for the first time. These are artifacts of
an implementation detail, being the initialization of the grid and other
data structures for kDet. In an actual implementation these can all be
done as pre-computation. Other than that, host and device times seem
to follow the stated expectations, in that they only vary by a small and
seemingly set amount per frame.

A small note that I would like to add, is that from what I can deduct,
the computation times for the initialization of the grid do not seem to

6.1 selecting benchmarking parameters 51

Figure 6.4: Host vs Device Time with kDet-Thrust: The spike in host times
occur when data-structures on the GPU are initialized. The ini-
taliziations could just be done as pre-computation, this was an
oversight on my part.

exceed 100 ms in the benchmarking data.

All reported runtimes henceforth are device runtimes.

6.1.4 CUDA Block Size

Next, I intended to explore what effect different block sizes of the GPU
kernels would have on runtime. CUDA block sizes reflect how many
threads are in a single thread block of the GPU kernel grid. As shown
in figure 6.5, according to the NSIGHT Compute statistics for the RTX
3080, powers of two seem to offer the best warp occupancy. Thus, I
decided to test block sizes of 16, 32, 64, 128, and 256 with kDet-Thrust
for each scene on the highest resolution. Block sizes higher than 256

could not be tested because the intersections tests would not execute.
Figure 6.6a presents the sums of the total runtimes of all bench-

marked animations for each block size. Figure 6.6b does the same for
kDet-Thrust with self-collisions. Overall, we cannot observe significant
difference between the various block sizes. Overall, we only see that
that block sizes of 16 and 256 perform (slightly) slower than the rest.
These results extended to the kDet-No-Pairs method as well.

52 evaluation

Figure 6.5: Warp Occupancy for different GPU Block Sizes for a NVIDIA
RTX 3080 (source: NSIGHT compute)

(a) with self-collisions (b) without self-collisions

Figure 6.6: Summation of runtimes for all resolution 4 animations with dif-
ferent GPU block-sizes for kDet-Thrust without self-collisions (a)
and with self-collisions (b).

6.1 selecting benchmarking parameters 53

(a) kDet-Thrust (b) kDet-No-Pairs

Figure 6.7: Total summed runtimes over all resolution 4 scenes for different
hashing methods with kDet-Thrust (a) and kDet-No-Pairs (b)

Based on these results, I picked a block size of 128 for all following
benchmarks 2.

6.1.5 Hashing Methods

To see if the hashing method had an effect on the runtime, we can
first look at figure 6.7a which displays the total runtimes of all bench-
marked animations for each hashing method executed with kDet-
Thrust. Figure 6.7b presents the same info but for kDet-No-Pairs. Both
graphs tell the same story, being that the hashing method does not
have any noticeable impact on the runtime. Presumably, the number of
hashed entries in contrast to the hash table size is too small to observe
any meaningful differences in hash collisions or other characteristics
of the hash functions, that could affect the runtime. Table 6.2 displays
the total number of tetrahedra for the resolution 4 scenes and the cor-
responding occupancy of the spatial grid in memory. The occupancy is
calculated by dividing the number of tetrahedra per scene by the total
available entries in the hash table of the spatial grid. The hash table
has a hard-coded size of roughly ~3.8× 106, with every bucket having
128 entries, resulting in 480 million entries overall. Because multiple
tetrahedra can get hashed into the same bucket, it is reasonable to
argue that a lower percentage of the available buckets is occupied than
total entries in the hash table. Despite the bucket occupancy being
dependent on the object poses, the general point holds and underlines
our assumption.

From here onwards, benchmarks for kDet-Thrust and kDet-No-Pairs
all use DJB2 hashing 3.

2 It should be noted, that the benchmarks from the previous sections were also executed
with a block size of 128.

3 DJB2 hashing was also used for all benchmarks in the previous chapters.

54 evaluation

scene total #tetrahedra grid occupancy

Armadillos - 4 167,608 0.03%

Bunny & Planck - 4 191,588 0.04%

Buddha & Armadillo - 4 170,962 0.04%

Table 6.2: Hash Grid Occupancy for Benchmarking Scenes; observe the low
utilization of the available hash cells.

6.1.6 Intersection Tests

The last parameter that was tested for, were the different intersec-
tion tests. I compared runtimes and detected collision pairs for the
implemented intersection tests from chapter 4.5, which were:

• SAT: traditional SAT intersection test

• SAT - No Edges: SAT test without edge-on-edge tests

• SAT-MTV: SAT that also computes the MTV

• GJK: Gilbert-Johnson-Keerthi algorithm

First things first, figure 6.8a shows the total runtime of the inter-
section tests for each animation (in highest resolution) when bench-
marked with kDet-Thrust. Please note, that these are not the total
frame times, but only the time that was spent in the GPU kernel
for intersection tests. SAT - No Edges and GJK run slightly faster for
most of the scenes, except for the pass through armadillos where they
considerably pull ahead of the other methods. Here, SAT - No Edges is
almost 50% faster than the normal SAT test. Since the pass through
armadillos are the scene where the most penetration occurs, as the
collision objects literally pass through each other, differences in the
runtimes of the intersection tests manifest here most noticeably. On
the other hand, the SAT-MTV is only slightly slower than the standard
SAT test in all scenes.

Let us now contrast that with the total number of collision pairs
detected for each animation with every intersection test, as presented
in figure 6.8b. The SAT and SAT-MTV always find the same number
of collision pairs. However, SAT - No Edges will find between 15 - 30

% additional collision pairs, which is quite significant. GJK on the
other hand, finds almost no pairs for some of the scenes, and misses a
noteable amount in the others. To further investigate this, I plotted the
collision pairs of GJK and SAT for all resolutions of the Armadillos
scene in figure 6.9. We observe that for resolutions 1 & 2, GJK still
finds the majority of the collision pairs (even though it still misses a
considerable number of them), before collapsing with resolutions 3 &

6.1 selecting benchmarking parameters 55

(a) total runtimes

(b) total collision pairs

Figure 6.8: Total summed runtimes and collision pairs for all resolution 4

scenes with kDet and different intersection tests

56 evaluation

Figure 6.9: Comparison of Detected collision pairs between SAT and GJK in
Armadillo scenes. GJK cannot properly detect collision pairs from
resolution 2 onwards.

4. I suppose that my implementation of GJK cannot handle simplices
below a certain size. Since the different resolutions of the scenes are
the same scale, it means that the simplices of the meshes have to
become smaller for higher resolutions. Perhaps this issue could also
be attributed to the numerical inrobustness of the algorithm. This
remains speculation on my behalf though.

From this selection, only the SAT and SAT-MTV are reasonably
accurate, even if they are slower in certain scenes. Accuracy has to be
valued higher here, because as we will soon see, intersection tests do
not take a considerable amount of time per frame with kDet-Thrust.
Hence my choice of the SAT test for all benchmarks moving forward
4.

6.2 gpu brute-force vs kdet

A keen reader might have noticed, that for the choice of parameters
the GPU brute-force methods were only sparingly mentioned. The
reason being, that for scenes with higher resolutions the brute-force
methods run several orders of magnitude slower than both versions
of kDet. No choice of parameters would meaningfully change this
outcome (see appendix.

Figure 6.10 shows the runtime per frame for the pass through ar-
madillos with all our collision methods. The armadillos in this scene
are only of resolution two, which explains the "mere" 10-15 ms run-
time difference per frame. The rise and fall of the runtimes can be
explained with the increasing and decreasing penetration depth of

4 The SAT was also used for all benchmarks in the previous chapters.

6.3 kdet 57

rp

Figure 6.10: Runtime comparison between kDet and GPU brute-force meth-
ods in Pass-Through-Armadillo scene

the armadillos as they phase through each other (we will discuss this
in detail in chapter 6.3.1). Notice, that as soon the bounding box test
passes and inter-object collisions are calculated, the brute-force meth-
ods already have quite the jump in runtimes to about 12 ms, while the
kDet methods seem to scale with the penetration depth.

When we move to figure 6.11, we can deduct what was eluded to
earlier. For scenes with smaller resolutions, the runtimes of brute-force
methods are again slower, but still somewhat comparable to that of
kDet as they are only differ a few ms. With increasing scene resolu-
tion however, the runtimes of kDet are dwarfed in contrast, as they
basically appear flat for resolutions 3 and 4. The brute-force methods
need several hundred ms, while the kDet methods are in the single
digits. Results for all other scenes painted the same picture, with and
without self-collisions.

Based on these results, I will only compare kDet-Thrust against
kDet-No-Pairs from here on.

6.3 kdet

6.3.1 Pass Through Armadillos

The pass through armadillo scene was created to measure kDet’s be-
havior for different penetration depths. Since calculating the actual
penetration would have been rather cumbersome, I instead use an

58 evaluation

(a) without self-collisions

(b) with self-collisions

Figure 6.11: Runtime comparison between kDet and GPU brute-force meth-
ods: (a) Buddha & Armadillo scenes with self-collisions, and (b)
Bunny & Planck scenes with self collisions

6.3 kdet 59

Figure 6.12: Pass-Through-Armadillo frame times with kDet

approximation with the bounding box overlap of the two collision
objects along the x-axis. Because the objects move only along said
axis, this seems like an acceptable estimation. When mentioning to
penetration depth in this chapter, I will be referring to this measure of
bounding box overlap.

Let us examine first the runtimes per frame with figure 6.12. We
see that kDet-Thrust and kDet-No-Pairs show overall similar frame
times, with kDet-Thrust having moderately slower runtimes at the
peak, but being slightly faster during the rest. What is more, we
can roughly see how the runtime for the increasing and decreasing
penetration evolves. To put that into better perspective, figure 6.13a
plots the runtime against the penetration depth. For one, the former
claim seems to be supported by the graph. On the other hand, we can
better see how the runtimes develop for the increasing penetration
depth; starting at around 1-2 ms and gradually building up to 13-14

ms at the top. Notice that for deep penetrations, the runtime is several
times higher than for shallow ones. This hints to us that detecting
self-collisions has to be regarded as basically one of the worst case
scenarios 5, thus resulting in much higher runtimes. Checking the
object against itself can be regarded as practically checking against
another object at 100% penetration, where the number of potential
collision pairs per tetrahedron and overall become meaningfully larger
than it would be for shallow penetrations. Actually, what should
be kept in mind, is that the number of potential collision pairs in
proportion to the penetration depth increases cubically. This can be

5 The statement does not mean to imply that self-collisions are the definitive worst case
scenario for kDet in general, only for the scenes that we look at in this work.

60 evaluation

(a) kDet-No-Pairs

(b) kDet-Thrust

Figure 6.13: (a) Frame time compared to penetration depth approximated
by bounding box overlap. (b) Number of potential pairs plotted
against penetration depth.

6.3 kdet 61

(a)

(b)

Figure 6.14: Stack plots for runtimes in Pass-Through-Armadillos Scene with
(a) kDet-Thrust and (b) kDet-No-Pairs

62 evaluation

easily explained by considering that the intersection volume grows by
the same measure in relation to the penetration, and with that also
the number of tetrahedra contained within that space. Figure 6.13b
depicts this relationship. A trendline for a degree three polynomial
was fitted onto the data set.

Lastly, let we will investigate how much each step of the collision
pipeline takes per frame for the respective collision method. Looking
at figures 6.14b we see this subdivision of the runtime for kDet - No
Pair. The bounding box test and grid populating take little time overall,
around 1 ms, regardless of the penetration depth. Traversing the grid
and checking for collisions take most of the time; near full penetration
almost ten times as much as the other two steps, meaning between
10-12 ms.

Figure 6.14a shows a similar graph for kDet-Thrust. Populating
the grid together with the bounding box test are identical to kDet
- No Pairs, therefore they take the same amount of time. Moreover,
notice that the intersection tests only demand little runtime, even at
high penetration; usually less than 1-1.5 ms. What we see instead, is
that for increasing penetration depth, traversing the grid to find all
potential collision pairs and sorting them afterwards take majority of
the runtime, combining together for around 10-12 ms at maximum
penetration. These two steps of the collision pipeline are the areas that
should be improved upon in future iterations of kDet.

6.3.2 Remaining Scenes

After the considerations from the previous chapter, we can now ex-
plore all the benchmarking scenes that were created with the SOFA
framework. Note, that from here on, when referring to "all scenes", I
exclude the pass through armadillos scene.

Figure 6.15 pits the runtimes per frame of the two kDet methods
against each other in all scenes. In that graph we make out comparable
runtimes for kDet-Thrust and kDet-No-Pairs. This means that kDet-
Thrust does the computation of finding all unique collision pairs at
basically no discernible cost in runtime, when comparing to the old
method. For the armadillo scenes, we observe frame times of less than
3 ms; for the buddha & armadillo scene frame times stay beneath 4.5
ms; and for the bunny & planck scene the kDet methods top out at
roughly 3.5 ms.

Once we look at frame times with self-collisions, as presented in
figure 6.16, we even see that kDet-Thrust runs faster. The runtimes
separate further and further with increasing scene resolutions, reach-
ing differences of up to 10-15 ms per frame for resolution 4. Looking
at all scenes, kDet-Thrust maxes out at around 30 ms per frame. For
lower resolution scenes it even stays comfortably under that margin.

6.3 kdet 63

Figure 6.15: Runtimes for kDet methods in the benchmarking scenes with
varying resolutions

64 evaluation

Figure 6.16: Runtimes for kDet methods in the benchmarking scenes with
varying resolutions with self-collisions

6.3 kdet 65

Figure 6.17: Box plot of frame times for kDet-Thrust in the benchmarking
scenes with varying resolutions

The old method on the other hand, needs upwards of 45 ms for some
of the resolution 4 scenes.

Also notice, that for the benchmarks without self-collisions, frame
times for the varying scene resolutions do not seem to differ by much.
Whereas with self-collisions, we see a clear development of the frame
times. To further investigate these frame times, I created a box plot
with the frame times of each scene benchmarked with kDet-Thrust
and self-collisions, as presented in figure 6.17. Again, we see a clear
progression in the median frame time (orange line within each box)
for the increasing resolutions. Starting at around 6-7 ms for resolution
1 scenes; then going to 9-10 ms for resolution 2 scenes; 15-16 ms with
resolution 3; and finally between 23-26 ms for scenes of resolution
4. Figure 6.18 depicts the same for kDet-No-Pairs with self-collisions.
We see a similar development, though the median frame times for the
scenes are higher: 7-8 ms for resolution 1; 10-12 ms for resolution 2;
17-19 ms for resolution 3; and 33-36 ms for resolution 4 scenes.

Previously, we were also interested in the difference in runtime
between collision detection with and without self-collisions. Figure
6.19 plots the frame times for kDet-Thrust with and without self colli-
sion. self-collisions have a noticeable impact on the runtime, further
increasing with the scene resolution. In scenes with resolution 4 we

66 evaluation

Figure 6.18: Box plot of frame times for kDet-No-Pairs in the benchmarking
scenes with varying resolutions

see almost 20-25 ms differences in runtime. Keep in mind that kDet-
Thrust with self-collisions topped out at around 30 ms in those scenes,
and generally stayed around 23-26 ms. When we look at the runtime
allocations for those scenes with self-collisions, as shown in figure 6.20,
we see that almost all of the runtime is occupied by the self-collisions.
I made comparable observations for kDet-No-Pairs.

Next, to roughly gauge the overall differences in runtime, I summed
the frame times over all scenes for each kDet method, with and with-
out self-collisions respectively. The results can be viewed in figure
6.21. Without self-collisions, kDet-Thrust needed about 2,100 ms for
collision detection on all scenes, whereas kDet-No-Pairs only needed
about 2,000 ms. Consequently, without self-collisions kDet-No-Pairs is
roughly 5.3% faster than my method.

Yet with self-collisions, kDet-No-Pairs was the slower method, need-
ing around 37 seconds total, while kDet-Thrust required only about
29 seconds, which is about 23.1% faster.

Comparing kDet-Thrust with and without self-collisions, then colli-
sion detection with self-collisions requires almost 14 times as much
computation time as without.

Lastly, we evaluate how usable collision detection with kDet is for
real time applications. With self-collisions, kDet-Thrust runs with

6.3 kdet 67

Figure 6.19: Runtimes for kDet-Thrust with and without self-collsions in the
benchmarking scenes with varying resolutions

68 evaluation

Figure 6.20: Stack plot of runtimes for kDet-Thrust with self-collisionsin the
benchmarking scenes with the highest resolutions

Figure 6.21: Total runtimes of kDet-methods over all scenes

6.3 kdet 69

Figure 6.22: kDet Memory Usage: Baseline usage is delimited by the black
line, the memory usage of the grid with the orange-yellow line.
Additional Usage is to be attributed to the vector that stores the
potential pairs.

over 38 fps on average for our benchmarking scenes of resolution 4,
where the median frame time was about 23-26 ms. These scenes have
between 170,000 - 190,000 tetrahedra each. For real time applications
that could be a little too slow however, since the collision detection
would not leave much room for other computations (e.g. physics
and rendering), which would result in unusable frame rates. It is
probably more realistic to target a maximum of 100,000 tetrahedra
per scene, like with resolutions 3, which had a median frame time of
15-16 ms. If we are targeting a minimum frame rate of 30 fps, that
leaves approximately the same amount of time per frame for different
computations.

Having said that, without self-collisions, the fps count for both kDet
methods goes into the low three digit range, leaving plenty room for
other computations with very interactive frame rates.

6.3.3 Memory Usage

Before finishing up this chapter, we should also look at memory usage.
Figure 6.22 demonstrates how the new version of kDet has rather
high memory demands. The reason being, that in addition to the base
memory usage (black vertical line) and the memory allocation for the
spatial grid (yellow vertical line), we also need to allocate memory for
the thrust device vector. Scenes of resolution 1 need around 5.5 GB
in total scenes of resolution 2 require around 5.8 GB; while scenes of

70 evaluation

Figure 6.23: kDet Memory Usage with Fix Applied

resolution 3 and 4 need upwards of 7 GB. In comparison, the original
kDet only requires the spatial grid in addition to the base usage, which
is always around 5.2 GB.

However, we notice that Bunny & Planck - 4 has suspiciously low
memory usage. Also, if we remember that the vector size (and there-
fore also the memory demands) should grow by some square law. The
memory usage for the different model resolutions does not reflect this
characteristic. Instead there is only a huge jump between resolutions 2

and 3. After some investigation, I could trace back the issue to memory
rollover during the calculation of the vector size. This was due to the
usage of different integer types (signed and unsigned) within the same
calculation. I implemented a fix and figure 6.23 presents the memory
usage of the different scenes with said fix. We can observe that the
allocated memory for the different resolutions now better fits our prior
expectations. For scenes of resolution 1, the total memory usage ends
up being around 5.3 GB; scenes of resolution 2 require around 5.5 GB;
around 6.0 GB for scenes of resolution 3; and finally 7.0 - 7.5 G.B of
memory usage for resolution 4 scenes.

The version of the software included with this work still uses the
old implementation without the fix, because in my short testing the
fixed version would crash at times.

7
F U T U R E W O R K

During the span of this research numerous interesting ideas came up
in addition to the work already presented. Unfortunately, I lacked the
time to (properly) implement and test these ideas, yet found them
to be worthy of discussion. Hence, the decision to dedicate a whole
chapter to them instead.

Note that the presented ideas might not be compatible with each
other due to the respective limitations posed by each. Furthermore
we will also discuss some considerations and possible downsides for
every proposal.

7.1 hash maps

Hash maps (or hash tables) could be used to replace the thrust

GPU vector which stores the potential pairs. The intention is to avoid
inserting duplicate pairs with the hashing, since with a deterministic
hash function we can always evaluate whether pairs have already
been inserted into the hash map. This in turn would save the time
for sorting and removing said duplicates, which took considerable
runtime as previously demonstrated.

I implemented a tentative version for this approach and ran a few
benchmarks, which we will consequently discuss.

7.1.1 Provisional Implementation

On a general level, the hash map implementation only differs to the
standard one in that when searching for the potential collision pairs
they are not inserted into a list but instead a hash map. As previously
explained, this also makes the step of sorting the pairs obsolete. The
resulting collision pipeline is presented in figure 7.1, while algorithm
7.1 presents the updated procedure to find all potential collision pairs
with a hash map.

In the following, we will discuss how the hash map is used in that
function. In my short research about the topic of hash maps on the
GPU, I was unable to find a suitable and easily usable implementation
for this use case., which is why I had to implement one on my own.
For this experiment I chose a closed hashing approach and combined
it with a variation of the prime number method presented in chap-
ter 4.2.2. The reasoning being that with the available code and my
knowledge at that time this was the fastest way to put together a

71

72 future work

Figure 7.1: Collision Pipeline - kDet with Hash Map

Algorithm 7.1 Find All Potential Pairs - Hash Map

Input: objects A, B with tetrahedral meshes
Result: writes all potential collision pairs (tA, tB) to a list,

with tA ∈ A, tB ∈ B and tA being smaller than tB

1: for all tA ∈ A do in parallel
2: determine size s of tA
3: determine grid layer l of tA based on s
4: find set C of all grid cells intersected by tA on all layers li ≥ l
5: for all cells c ∈ C do
6: calculate hash key k based on grid position g of c
7: while k does not point to bucket b in hash table

with same hashed grid position g do
8: increment hash misses m by 1

9: recalculate hash k with g and m
10: end while
11: for all tetrahedra tB ∈ B hashed into bucket b do
12: if bbox of tA and tB overlap then
13: try inserting pair (tA, tB) into list of potential

collision pairs via hash map (see algorithm 7.2)
14: end if
15: end for
16: if bucket b has reference to overflow bucket bo then
17: update b to bo

18: go-to line 10
19: end if
20: end for
21: end for

7.1 hash maps 73

sample build for me. However, other possible approaches will also be
discussed later in the results.

On the GPU, insertions into the hash map need to be done as
atomic operations to avoid race conditions. For that I used CUDA’s
atomicCAS() (case and switch), which is implemented for various
integer types. If we assign each tetrahedron a prime number, it would
be possible to use the products of said primes (which would be some
type of integer), as keys for the hash function and also as entries in
the hash map to check if a pair has already been inserted. This works,
once again, due to the prime factorization theorem: If we assigned
each tetrahedron a distinct prime, the product of any two different
tetrahedron primes will also be distinct (this by extension means that
tetrahedra from different collision objects also cannot have the same
prime number assigned to them). In addition, compared to the previ-
ous prime numbers approach we do not need any expensive division
or modulo operations, only multiplications and equals comparisons.

Once the prime product has been successfully inserted into the
hash map, the ids of the two tetrahedra in question are inserted into
a separate list that stores the potential pairs. The rationale for this
second list is to save a) the space of maintaining a second array with
the size of the hash map to insert the potential pairs into (at the same
hashed address) and b) the time afterwards to sweep through the
array and gather all hashed pairs. Based on all that, algorithm 7.2
shows the procedure for inserting a potential pair into the hash map.

Algorithm 7.2 Insert Pair into Hash Map

Input: two tetrahedra tA, tB

Output: determines whether to write pair (tA, tB) into
the list of potential collision pairs

Require: all ti ∈ A ∪ B are assigned a unique prime pi

1: calculate prime-product: q← ptA × ptB

2: misses m← 0
3: while True do
4: generate hash-key k for hash map with q and m as input
5: if hash map at position k is empty then
6: atomic: write q into hash map at k
7: write (tA, tB) to list of potential pairs return
8: else if entry at position k is equal to q then return
9: else . entry at position k is not equal to q

10: m← m + 1
11: continue
12: end if
13: end while

74 future work

In preprocessing we assign each tetrahedron a different prime num-
ber. We can simply pick the n-th largest prime for the n-th tetrahedron,
but technically any primes would work, so long they are distinct.

On a little side note, because the algorithm will not multiply more
than two primes the chance of facing the event of an integer overflow
is much smaller and could realistically only happen if n becomes very
large (roughly in the order of 108).

We begin by calculating the product of the primes of the two tetra-
hedra. This value is then used for our hash function and we check
if the product of the primes is already inserted into the table at the
hashed position. From here, there are three possibilities:

1. The cell at the hashed position is empty, thus we can write the
prime product into it. We proceed to write the id-pair of the two
tetrahedra into the list of potential pairs and the function exits.

2. The cell at the hashed position already contains the prime prod-
uct. In this case the function exits, since the pair will already be
in the list of potential collision pairs.

3. The cell at the hashed position contains another prime product.
Here we increase the number of hash misses and pass it to the
hash function together with prime product and repeat.

Given that the table is large enough to hold all potential pairs, the
function either ends with inserting the prime product into the hash
map and writing the id-pair to the list of potential pairs, or finding
said product in the table and exiting. Doing so, we should end up
with the same list of potential pairs as the standard implementation.

7.1.2 Results

The benchmarks were run on the same machine that was used for the
evaluation, with a GPU block size of 128, SAT as the intersection test,
and DJB2 hashing. The hash map used the same hashing algorithm as
the grid.

Figure 7.2 shows the frame time comparison between our current
standard method with the thrust device vector and the presented
hash map for various scenes.

It should be noted, that because of an issue where the GPU memory
would run full we could not benchmark the Armadillos and Buddha
& Armadillo scenes on the highest resolution. This has mostly to do
with the fact, that we stored both the thrust vector as well as the hash
map which increased memory demands. For the same reason, the
benchmarks were run without self-collisions. In any case, we observe

7.1 hash maps 75

Figure 7.2: Frame times between kDet-HashMap and kDet-Thrust in various
scenes.

Figure 7.3: Stack plot of the frame times between kDet-HashMap and kDet-
Thrust in the Pass-Through-Armadillos Scene.

76 future work

Figure 7.4: Plot of collision pairs per frame in the Pass-Through-Armadillos
scene. Notice the difference between kDet-Thrust and kDet-
HashMap.

that both methods display similar runtimes, with the hash map being
slightly faster in the Bunny & Planck and Buddha & Armadillo scenes.

With figure 7.3 we can compare how much each step of the collision
pipeline took for the Pass Through Armadillos scene. We observe
that finding all pairs with the hash map took a similar amount of time
as finding and sorting all pairs with the thrust vector. The other steps
are identical between the methods, so no difference is to be expected
there.

From that, we would conclude that our hash map implementation
offers only marginal improvements in runtime compared to the stan-
dard method. The time to insert the pairs into the hash table seems to
compensate for the time that was saved by skipping the sorting. Per-
haps the great number of atomic operations causes a lot of stalling of
the threads. Or maybe the closed hashing approach is not well suited
for the GPU due to larger numbers of random memory accesses. Also,
in my short testing I did not explore how the size of the hash map
or other hashing methods would affect the hash collision rate and
runtime.

Having said that, all of the benchmarking data for the presented
hash map method regrettably has to be taken with a grain of salt.
While plotting the collision pairs per frame for the Pass Through

Armadillos scene, as shown in figure 7.4, I noticed a strange anomaly:
kDet-HashMap would find additional collision pairs comparred to
kDet-Thrust.

Unfortunately, this was another point that was noticed only a few
weeks before thesis submission, which is why I did not have the time
to fix it. Since I cannot estimate how much this bug affects the actual
runtime, the presented figures can at best only be taken as a rough

7.2 self and inter object collisions in the same pass 77

measure. I estimate that fixing the bug would improve runtimes only
slightly, although this remains speculation on my behalf.

On another note, even though the implementation with the prime
numbers is "clever", in hindsight it might have been faster to just insert
the pairs into the hash map directly and use them for comparison
instead of the prime product. Afterwards, when all potential pairs are
hashed they can be gathered by sweeping through the table once,
before launching the intersection tests. At the time of implementation,
I presumed the list sweep might turn out rather slow, which is why
I stuck with the prime numbers. Whether this assumption is correct
remains to be tested.

In addition, storing the pairs directly in the hash map would save
the space of the second list as well as the time to insert the pairs into
that list. This might be especially important on the GPU, since random
memory accesses are rather expensive.

Another possible avenue is to use a bucket hashing approach, simi-
lar to what kDet uses for populating and traversing the grid.

Last but not least, the size of the hash map remains a concern for
GPU memory usage, considering the need for the hash table to be
large enough to minimize the number of hash collisions and store all
potential pairs at the same time. Picking an appropriate size for the
hash map, and whether it or the vector occupies more space is its own
topic of analysis.

Nonetheless, I think that the hash map approach bears a lot of
potential and could show better results with further research and
experimentation.

7.2 self and inter object collisions in the same pass

The current implementation of kDet checks self and inter object col-
lisions in different stages of the algorithm. Figure 7.5 once again
shows the current collision pipeline. Furthermore, we remember that
self-collisions are comprised of the same three steps as inter object
collisions, i.e. finding all (potential) collision pairs, sorting them & re-
moving duplicates, and finally the intersection tests for each potential
pair.

Checking these two types of collisions separately is convenient for
the case where it is necessary to have the ability to toggle either on or
off. But if the use-case requires that both should always be checked
anyway, it might be possible to save the overhead of launching the
GPU kernel twice for each of the mentioned steps. We could achieve
this by handling both self and inter object collisions in the same pass.

78 future work

Figure 7.5: Current collision pipeline of kDet with annotations about how
often a single pipeline step is executed during CD.

This is possible due to the nature of the kDet algorithm which allows
us to ignore the object association of tetrahedra and just check against
nearby tetrahedra to find all self and inter object collision pairs in one
go.

Upon further thought, this approach could even be extended to the
case where one has multiple objects in a scene. If we have another look
at figure 7.5, we note that the last three steps are executed for each
pair of objects. Thus, instead of checking for collisions between each
pair of objects in a separate kernel, all collisions between the objects
could also be checked in one pass.

The easiest way to go about these measures would be to store the
tetrahedra of all objects in a single large list. Each collision object could
then either just store the list of tetrahedron indices belonging to it, or
- if we inserted the tetrahedra for each object sequentially - a pair of
indices which would delimit the section of tetrahedra belonging to the
object in said list. For example, we could have a list of 100,000 entries
and an object with the index pair 20,000 and 30,000, telling us all the
tetrahedra in that index range belong to it. This kind of object associa-
tion for the tetrahedra could be useful when collision responses, like
forces and deformations, should be applied to the object in question.

Finally, it should trivially follow that we can run the collision
pipeline for kDet with just the large list of tetrahedra. Alternatively,
it would be possible to assign an object id to each tetrahedron, so
that we can associate each tetrahedron to its object during runtime.
This would, for example, allow us again to toggle self (or inter object)
collisions on or off, by simply adding a check for whether the object
id of two tetrahedra matches or not.

The hope is that combining all the different passes into one would
reduce the runtime of the algorithm, but still a few concerns remain.
First of all, it might be possible that this method results in more global
random memory accesses, which could slow down the algorithm

7.3 size of potential pairs vector 79

considerably. The same could be true for sorting the larger lists of
potential pairs.

Moreover, while we are on that topic, we would also need to consider
the growing memory usage of the vector which stores the potential
pairs. Even currently the algorithm boasts almost 7.5 GB GPU memory
usage for our highest resolution scenes. This is while reusing the
lists for the different steps, meaning self collision and inter object
collisions will clear the list between their execution and reuse it to
save memory. If all steps are done in a single pass, the list cannot be
reused but instead has to be large enough to hold all the potential
self collision pairs as well as inter object collision pairs at once. This
would necessitate a substantially larger list, further increasing memory
demands.

As mentioned in the beginning, we also lose the ability to easily
toggle kernels for certain steps on or off.

And lastly, the bounding box pre-check, which determined whether
we would launch the collision check between objects at all and which
would especially be relevant for scenes with multiple objects, would
become obsolete or at the very least less useful. With the current im-
plementation, we can just skip a kernel launch if we do not detect any
bounding box overlap between two objects. In the one pass method,
we would still launch the kernel since we at the very least check for
self-collisions. On the other hand, it is also possible to argue that this
is irrelevant because kDet only checks nearby simplices for collisions
and thus if the bounding boxes of the objects do not overlap, no con-
siderable time would be lost on checking collisions between those
objects anyway.

7.3 size of potential pairs vector

As was mentioned earlier, the size of the vector which would store
the potential pairs was picked rather arbitrarily and just so that the
implementation would work and not crash. To reinstate, the size of
the vector was calculated with:

sizevector = c (#tetrahedraA × #tetrahedraB), where c = 1/10.

This estimate was based on my assumption that the vector size should
be somewhat proportional to the maximum possible combinations of
potential pairs.

Nonetheless, speculations remain whether there exists a better
heuristic to determine a suitable size for that vector. The two im-
portant criteria for such a heuristic would be to minimize the size
of that vector to save memory, while staying large enough to avoid
overflows during runtime. Importantly, the heuristic would need to

80 future work

take into account the number of potential pairs before sorting and
removing duplicate pairs.

Previously we saw that the number of potential pairs scales roughly
cubically in proportion to the penetration depth. Perhaps that could
be taken into account as well, i.e. if one can estimate the maximum
expected penetration depth for an application, it should be possible to
determine a scaling factor for the vector size. Though, when checking
for self-collisions we theoretically have to assume the worst case
scenario of 100% overlap anyway, so this consideration would only be
useful for applications where self-collisions are not checked.

In the end, perhaps the most valuable heuristic could be derived
from one of the major assumptions for the kDet algorithm itself, being
the fact that we expect each simplex to be k-free, i.e. to have at most k
"larger" neighbors. With proof 3.1 in chapter 3.1 we derived the upper
bound of intersections for k-free sets of size n, which was nk multiplied
with some constant depending on the objects included in the sets. This
additional constant is irrelevant to us and can instead be replaced with
some factor that accounts for implementation details like duplicate
pairs. This would give us a heuristic of sizevector ∼ c ∗ n ∗ k, where n is
the total number of tetrahedra in the scene, c is some constant, and k is
the maximum number of "larger" neighbors per tetrahedron. It might
be possible to estimate or precompute c and k for a scene, though this
is just a guess on my behalf.

8
C O N C L U S I O N S

In this work, I aimed to present how the existing kDet algorithm could
be applied and extended to tetrahedral meshes. For that, first the
geometric predicate at the foundation of the algorithm was proven for
tetrahedra and polyhedra of any kind. Afterwards, the upper bound
on the expected number of neighbors per polyhedra was shown, based
on sphere coverings for the specific type of polyhedra.

We moved on to explore the short-comings of the old implementa-
tion of the algorithm, namely the inability to find all collisions pairs.
Several solutions were discussed and one was successfully imple-
mented. Due to a lack of available CD benchmarks with tetrahedral
meshes, I created three different benchmark scenes in four different
model resolutions, each consisting of two deformable and colliding
objects. These scenes were made publically available for other re-
searchers, together with additional material and the benchmarking
data obtained in this work.

The implementation was tested extensively with different param-
eters, being the GPU block sizes, hashing methods for the grid, and
intersection tests. Overall, the parameters seemed to have little effect
on the runtimes of kDet. We only noticed an anomaly where our rudi-
mentary imolementation of GJK would find little to no collision pairs
for scenes of resolution 3 or higher. Runtimes without self-collision
detection maxed out at around 4-5 ms and were comparable to the
old version of kDet, meaning we obtained the list of unique collision
pairs per frame at no additional cost in runtime. With self-collision
detection, this dynamic flipped, as the new version of kDet ran faster,
having a maximum runtime of around 30 ms per frame in scenes
with higher resolutions. The old implementation ran almost 10-15 ms
slower in these cases. Next, we looked at how self-collision detection
exemplifies a worst case runtime for kDet and how frame times with
it are basically one order of magnitude slower. We also looked at, how
runtimes develop for different scene resolutions, and how they scale
with increasing penetration depth in the Pass-Through-Armadillos
scene. For the latter, the observation was that kDet scales cubically
with the penetration depth. This was rationalized with the claim
that the intersection volume and the number of tetrahedra contained
within it grow by the same rate, thus keeping kDet’s linear runtime.
Furthermore, we can say that currently the steps to find and sort all
potential collision pairs are the limiting factor of the algorithm. This
ran against my assumption that the intersection test would be the
major bottleneck. Memory demands of the algorithm were also ad-

81

82 conclusions

dressed, because the algorithm in its present implementation needed
upwards of 7.5 GB of VRAM.

Concluding the discussion of the results, I recommended that for
real-time applications that intend to use kDet with self collision de-
tection, maybe the number of tetrahedra per scene should not exceed
around 100, 000, to leave enough time per frame for other computa-
tions. Although, if self-collisions need not be considered, then even
higher scene resolutions should be possible while comfortably main-
taining interactive frame rates.

Lastly, we discussed several possible high-level optimizations and
adjustments that could be incorporated in the future for better per-
formance. One interesting idea was to check self-collisions and inter-
object collisions between possibly multiple object in the same traversal
of the grid. Most noteworthy however, was the concept of using a
hash map instead of lists to store potential collision pairs before the
intersection tests. Considering the complexity of programming on
the GPU and the impact of small implementation details, I believe
there are also numerous low-level optimizations that could have a
very noticeable effect.

To sum up, I hope with these results to have offered a collision
detection which offers sufficient capabilities for various applications
and a good point of comparison for other GPU collision methods.

A
A P P E N D I X

a.1 source code

The software is written in C++ and can be built with CMake to gener-
ate the project files. The source code is located in /kdet-tetrahedra.
The project depends mainly on the CUDA SDK. The following libraries
are also required, but should already be included together with the
source code:

• Eigen

• GLFW

• OpenGL

• GLEW

• Threads

a.1.1 Asset Folder Location & CUDA SDK Samples

When using Windows and compiling with Visual Studio, copy the
assets folder from the root directory of the project to:

• buildfolder/src/apps for running the executable with Visual
Studio

• buildfolder/bin/[DEBUG | RELEASE | etc.] or the same loca-
tion as the executable, when running it by itself

The build process might also need the CUDA SDK Samples 1. Down-
load them and add the path of the directory to src/kdet_tetrahedron/CMakeList.txt:

[...]

find_path(CUDA_SDK_INCLUDE_DIR

[...]

PATHS

"C:/ProgramData/NVIDIA Corporation/CUDA Samples/${
CUDA_VERSION}/common"

PATH TO GPU TOOLKIT SAMPLES

<add the path to CUDA samples here>

"$ENV{HOME}/NVIDIA_CUDA−${CUDA_VERSION}_Samples/common")
endif()

1 CUDA SDK Samples - GitHub: https://github.com/NVIDIA/cuda-samples (last ac-
cessed: July 25, 2023)

83

https://github.com/NVIDIA/cuda-samples

84 appendix

a.1.2 Demo Application

The demo_tet.exe offers a visual user interface that can be interacted
with. Several scenes can be loaded and collision detection with various
methods can be run.

For animated scenes, benchmarks can be performed. In that case, the
scene will be animated and benchmarked with the selected parameters.
Once finished, the recorded results for each frame are averaged over
the number of runs and written to an output file, which will be placed
under assets/animations/<scene>/benchmark_data (consider where
assets were placed for the build process; see Chapter A.1.1). The file
name will reflect the parameters used for the benchmark. See Chapter
A.1.4 for details on the benchmarking files.

Please use the command-line benchmarking tool if the raw output
files for each run are needed, compared to only the averaged results.

Controls, options and other information regarding the software are
documented in the project’s README.

a.1.2.1 Notable Bugs

• The hashing method for kDet cannot be changed before having
executed the collision check for a scene at least once. Doing
otherwise will crash the program.

• When changing scenes and using kDet several times, the GPU
memory will most likely run full and crash the program. In such
a case, just restart the demo application.

a.1.3 Command-Line Benchmarking Tool

Benchmarks without rendering can be executed from the command
line with benchmarking_tet.exe (note, that during the benchmarking
an empty window will pop-up).

It can be used as follows:

$./benchmark_tet.exe [scene] [options]

The scene option has to be placed first, but other parameters can
be passed in arbitrary order. Additionally, all parameters are optional
since default values are provided. The option flags are listed in table
A.1 and can also be referred to via the project’s README.

Example usage:

$./benchmark_tet.exe buddha_and_armadillo -r 2 -n 5 -c

gpu_no_loop -o sat-mtv -d ./../../exports/benchmark_data

IMPORTANT: The program does not have proper error handling,
so please just stick to the provided values. If values are faulty, the

A.1 source code 85

flag option possible values default value

scene pass_through_armadillos ←
buddha_and_armadillo

bunny_and_planck

armadillos

-r model resolution 1 - 4 1

-c collision method kdet kdet

kdet_no_pairs

gpu

gpu_no_loop

-o simplex intersection sat sat

test sat_no_edges

sat_mtv

gjk

-g gpu block size 16 128

32

64

128

256

-n number of runs 1 - 20 10

-s self collisions yes or y no

no or n

-h hashing algorithm djb2 djb2

(if applicable) fnv-1a

morton

simple

-d destination folder any string value exports/benchmark_data,

for benchmark data usually turns out to
buildfolder/bin/[DEBUG

| RELEASE | etc.]

/exports/benchmark_data

(see Chapter A.1.1)

Table A.1: Option flags and default values for CMD benchmarking tool

program has undefined behavior. Always check the command line
and file output to make sure.

86 appendix

a.1.4 Benchmarking Files

Files produced by the benchmarking routines, be it by the demo appli-
cation or the benchmarking cmd tool, are in .csv format.

Each file has a header, which contains some meta data about the
run. It might look something like this:

scene name, Buddha & Armadillo - 2

algorithm, gpu-no-loop

cuda block size, 128

overlap test, sat

self collisions, no

hashing algorithm, none

#frames, 160

total runs for benchmark, 5

#tetsA, 8647

#tetsB, 5912

#verticesA, 28584

#verticesB, 20052

Which is then followed by the actual data about the run. This usually
includes various timers (in ms) and info about the # collision pairs
etc.:

frame, host time, device time, bbox time, collision time, col

tets A to B, col tets B to A, collision pairs

1, 1.39198, 0.491174, 0.491174, 0, 0, 0, 0

2, 1.34758, 0.505254, 0.505254, 0, 0, 0, 0

3, 1.37228, 0.537926, 0.537926, 0, 0, 0, 0

4, 1.44264, 0.631341, 0.631341, 0, 0, 0, 0

5, 1.32118, 0.51639, 0.51639, 0, 0, 0, 0

[...]

a.2 benchmarking scenes & data

All the obtained benchmarking data, SOFA scene-configurations, ex-
ported animations & models, as well as short video recordings of the
animations can be found under kdet-benchmarks.

B I B L I O G R A P H Y

[BLD13] J. Baert, A. Lagae, and Ph. Dutré. “Out-of-core Construc-
tion Of Sparse Voxel Octrees.” In: Proceedings of the 5th
High-Performance Graphics Conference. HPG ’13. Anaheim,
California: ACM, 2013, pp. 27–32. isbn: 978-1-4503-2135-8.
doi: 10.1145/2492045.2492048. url: http://doi.acm.
org/10.1145/2492045.2492048.

[Ber99] G. Van den Bergen. “A Fast and Robust GJK Implemen-
tation for Collision Detection of Convex Objects.” In: J.
Graph. Tools 4.2 (Mar. 1999), pp. 7–25. doi: 10 . 1080 /

10867651.1999.10487502. url: https://doi.org/10.
1080/10867651.1999.10487502.

[Ber97] G. van den Bergen. “Efficient Collision Detection of Com-
plex Deformable Models using AABB Trees.” In: Jour-
nal of Graphics Tools 2.4 (1997), pp. 1–13. doi: 10.1080/
10867651.1997.10487480. url: https://doi.org/10.
1080/10867651.1997.10487480.

[BSA17] M. Bern, J. R. Shewchuk, and N. Amenta. “TRIANGU-
LATIONS AND MESH GENERATION.” In: ed. by C.
Toth, J. OŔourke, and J. Goodman. 3rd ed. Boca Ra-
ton, Florida: CRC Press, 2017. Chap. 29, pp. 763–785.
isbn: 9781315119601. url: https://doi.org/10.1201/
9781315119601.

[BF23] Blender-Foundation. Blender: Homepage. Last accessed:
23.07.23. 2023. url: https://www.blender.org.

[CL16] G. Capannini and T. Larsson. “Adaptive Collision Culling
for Large-Scale Simulations by a Parallel Sweep and Prune
Algorithm.” In: Eurographics Symposium on Parallel Graphics
and Visualization. Ed. by E. Gobbetti and W. Bethel. The
Eurographics Association, 2016. isbn: 978-3-03868-006-2.
doi: 10.2312/pgv.20161177.

[CL18] G. Capannini and T. Larsson. “Adaptive Collision Culling
for Massive Simulations by a Parallel and Context-Aware
Sweep and Prune Algorithm.” In: IEEE Transactions on
Visualization and Computer Graphics 24.7 (2018), pp. 2064–
2077. doi: 10.1109/TVCG.2017.2709313.

87

https://doi.org/10.1145/2492045.2492048
http://doi.acm.org/10.1145/2492045.2492048
http://doi.acm.org/10.1145/2492045.2492048
https://doi.org/10.1080/10867651.1999.10487502
https://doi.org/10.1080/10867651.1999.10487502
https://doi.org/10.1080/10867651.1999.10487502
https://doi.org/10.1080/10867651.1999.10487502
https://doi.org/10.1080/10867651.1997.10487480
https://doi.org/10.1080/10867651.1997.10487480
https://doi.org/10.1080/10867651.1997.10487480
https://doi.org/10.1080/10867651.1997.10487480
https://doi.org/10.1201/9781315119601
https://doi.org/10.1201/9781315119601
https://www.blender.org
https://doi.org/10.2312/pgv.20161177
https://doi.org/10.1109/TVCG.2017.2709313

88 bibliography

[Cig+08] P. Cignoni, M. Callieri, M. Corsini, M. Dellepiane, F. Ganov-
elli, and G. Ranzuglia. “MeshLab: an Open-Source Mesh
Processing Tool.” In: Eurographics Italian Chapter Conference.
Ed. by V. Scarano, R. D. Chiara, and U. Erra. The Euro-
graphics Association, 2008. isbn: 978-3-905673-68-5. doi:
10.2312/LocalChapterEvents/ItalChap/ItalianChapConf2008/

129-136.

[CL96] B. Curless and M. Levoy. “A Volumetric Method for Build-
ing Complex Models from Range Images.” In: Proceed-
ings of the 23rd Annual Conference on Computer Graphics
and Interactive Techniques, SIGGRAPH 1996, New Orleans,
LA, USA, August 4-9, 1996. Ed. by J. Fujii. ACM, 1996,
pp. 303–312. doi: 10.1145/237170.237269. url: https:
//doi.org/10.1145/237170.237269.

[Dev23] N. Developer. CUDA Thrust API Documentation. Last ac-
cessed: 23.07.23. 2023. url: https://docs.nvidia.com/
cuda/thrust/index.html.

[DK83] D. P. Dobkin and D. G. Kirkpatrick. “Fast detection of
polyhedral intersection.” In: Theoretical Computer Science
27.3 (1983). Special Issue Ninth International Colloquium
on Automata, Languages and Programming (ICALP) Aarhus,
Summer 1982, pp. 241–253. doi: https : / / doi . org /

10.1016/0304- 3975(82)90120- 7. url: https://www.
sciencedirect.com/science/article/pii/0304397582901207.

[EL07] M. Eitz and G. Lixu. “Hierarchical Spatial Hashing for
Real-time Collision Detection.” In: IEEE International Con-
ference on Shape Modeling and Applications 2007 (SMI ’07).
2007, pp. 61–70. doi: 10.1109/SMI.2007.18.

[Eri04] C. Ericson. Real-Time Collision Detection. USA: CRC Press,
Inc., 2004, p. 288. isbn: 1558607323.

[Fau+12] F. Faure et al. “SOFA: A Multi-Model Framework for In-
teractive Physical Simulation.” In: Soft Tissue Biomechanical
Modeling for Computer Assisted Surgery. Ed. by Y. Payan.
Vol. 11. Studies in Mechanobiology, Tissue Engineering
and Biomaterials. Springer, June 2012, pp. 283–321. doi:
10.1007/8415_2012_125. url: https://inria.hal.
science/hal-00681539.

[FNV91] G. Fowler, L. C. Noll, and K.-P. Vo. FNV-1a alternate al-
gorithm. Last accessed: 23.07.23. 1991. url: http://www.
isthe.com/chongo/tech/comp/fnv/index.html#FNV-1a.

https://doi.org/10.2312/LocalChapterEvents/ItalChap/ItalianChapConf2008/129-136
https://doi.org/10.2312/LocalChapterEvents/ItalChap/ItalianChapConf2008/129-136
https://doi.org/10.1145/237170.237269
https://doi.org/10.1145/237170.237269
https://doi.org/10.1145/237170.237269
https://docs.nvidia.com/cuda/thrust/index.html
https://docs.nvidia.com/cuda/thrust/index.html
https://doi.org/https://doi.org/10.1016/0304-3975(82)90120-7
https://doi.org/https://doi.org/10.1016/0304-3975(82)90120-7
https://www.sciencedirect.com/science/article/pii/0304397582901207
https://www.sciencedirect.com/science/article/pii/0304397582901207
https://doi.org/10.1109/SMI.2007.18
https://doi.org/10.1007/8415_2012_125
https://inria.hal.science/hal-00681539
https://inria.hal.science/hal-00681539
http://www.isthe.com/chongo/tech/comp/fnv/index.html#FNV-1a
http://www.isthe.com/chongo/tech/comp/fnv/index.html#FNV-1a

bibliography 89

[GPR02] F. Ganovelli, F. Ponchio, and C. Rocchini. “Fast Tetrahedron-
Tetrahedron Overlap Algorithm.” In: Journal of Graphics
Tools 7.2 (2002), pp. 17–25. doi: 10.1080/10867651.2002.
10487557. url: https://doi.org/10.1080/10867651.
2002.10487557.

[GASF94] A. Garcia-Alonso, N. Serrano, and J. Flaquer. “Solving the
collision detection problem.” In: IEEE Computer Graphics
and Applications 14.3 (1994), pp. 36–43. doi: 10.1109/38.
279041.

[GJK88] E. Gilbert, D. Johnson, and S. Keerthi. “A fast proce-
dure for computing the distance between objects in three-
dimensional space.” In: Robotics and Automation, IEEE Jour-
nal of 4 (May 1988), pp. 193–203. doi: 10.1109/56.2083.

[Got96] S. Gottschalk. Separating axis theorem. Technical Report
TR96-024. Department of Computer Science, UNC Chapel
Hill, 1996.

[GLM96] S. Gottschalk, M. Lin, and D. Manocha. “OBBTree: A
Hierarchical Structure for Rapid Interference Detection.”
In: Computer Graphics 30 (Oct. 1996). doi: 10.1145/237170.
237244.

[HSS95] R. Hardin, N. Sloane, and W. Smith. Spherical Coverings.
Last accessed: 23.07.23. 1995. url: http://neilsloane.
com/coverings/index.html.

[He+15] L. He, R. Ortiz, A. Enquobahrie, and D. Manocha. “Interac-
tive continuous collision detection for topology changing
models using dynamic clustering.” In: Proceedings of the
19th symposium on interactive 3D graphics and games. i3D
’15. San Francisco, California: Association for Comput-
ing Machinery, 2015, pp. 47–54. isbn: 9781450333924. doi:
10.1145/2699276.2699286. url: https://doi.org/10.
1145/2699276.2699286.

[HKM95] M. Held, J. Klosowski, and J. Mitchell. “Evaluation of Colli-
sion Detection Methods for Virtual Reality Fly-Throughs.”
In: Proc. 7th Canad. Conf. Comput. Geom. (CCCG’95). 1995,
pp. 205–210.

[KL96] V. Krishnamurthy and M. Levoy. “Fitting Smooth Sur-
faces to Dense Polygon Meshes.” In: Proceedings of the
23rd Annual Conference on Computer Graphics and Interac-
tive Techniques, SIGGRAPH 1996, New Orleans, LA, USA,

https://doi.org/10.1080/10867651.2002.10487557
https://doi.org/10.1080/10867651.2002.10487557
https://doi.org/10.1080/10867651.2002.10487557
https://doi.org/10.1080/10867651.2002.10487557
https://doi.org/10.1109/38.279041
https://doi.org/10.1109/38.279041
https://doi.org/10.1109/56.2083
https://doi.org/10.1145/237170.237244
https://doi.org/10.1145/237170.237244
http://neilsloane.com/coverings/index.html
http://neilsloane.com/coverings/index.html
https://doi.org/10.1145/2699276.2699286
https://doi.org/10.1145/2699276.2699286
https://doi.org/10.1145/2699276.2699286

90 bibliography

August 4-9, 1996. Ed. by J. Fujii. ACM, 1996, pp. 313–324.
doi: 10.1145/237170.237270. url: https://doi.org/10.
1145/237170.237270.

[LMM10] C. Lauterbach, Q. Mo, and D. Manocha. “gProximity:
Hierarchical GPU-based Operations for Collision and Dis-
tance Queries.” In: Computer Graphics Forum (2010). doi:
10.1111/j.1467-8659.2009.01611.x.

[MZ15] D. Mainzer and G. Zachmann. “Collision Detection Based
on Fuzzy Scene Subdivision.” In: GPU Computing and
Applications. Ed. by Y. Cai and S. See. Singapore: Springer
Singapore, 2015, pp. 135–150. isbn: 978-981-287-134-3. doi:
10.1007/978-981-287-134-3_9. url: https://doi.org/
10.1007/978-981-287-134-3_9.

[MAC04] D. Marchal, F. Aubert, and C. Chaillou. “Collision be-
tween Deformable Objects Using Fast-Marching on Tetra-
hedral Models.” In: Proceedings of the 2004 ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation.
SCA ’04. Grenoble, France: Eurographics Association,
2004, pp. 121–129. isbn: 3905673142. doi: 10.1145/1028523.
1028540. url: https : / / doi . org / 10 . 1145 / 1028523 .

1028540.

[Mig10] S. Migdalskiy. “SAT in Narrow Phase and Contact-Manifold
Generation.” In: Game Physics Pearls. Ed. by G. van den
Bergen and D. Gregorius. Taylor & Francis, 2010, pp. 63–
98. isbn: 9781568814742. url: https://books.google.de/
books?id=8vIpAQAAMAAJ.

[MJ23] N. Mirzayousef Jadid. kDet Tetrahedron Animation Bench-
marks. Last accessed: 23.07.23. 2023. url: https://gitlab.
informatik.uni-bremen.de/cgvr_public/kdet-benchmarks.

[M9̈7] T. Möller. “A Fast Triangle-Triangle Intersection Test.”
In: Journal of Graphics Tools 2.2 (1997), pp. 25–30. doi: 10.
1080/10867651.1997.10487472. url: https://doi.org/
10.1080/10867651.1997.10487472.

[MPB17] M. Montanari, N. Petrinic, and E. Barbieri. “Improving
the GJK Algorithm for Faster and More Reliable Distance
Queries Between Convex Objects.” In: ACM Trans. Graph.
36.3 (June 2017). doi: 10.1145/3083724. url: https://
doi.org/10.1145/3083724.

https://doi.org/10.1145/237170.237270
https://doi.org/10.1145/237170.237270
https://doi.org/10.1145/237170.237270
https://doi.org/10.1111/j.1467-8659.2009.01611.x
https://doi.org/10.1007/978-981-287-134-3_9
https://doi.org/10.1007/978-981-287-134-3_9
https://doi.org/10.1007/978-981-287-134-3_9
https://doi.org/10.1145/1028523.1028540
https://doi.org/10.1145/1028523.1028540
https://doi.org/10.1145/1028523.1028540
https://doi.org/10.1145/1028523.1028540
https://books.google.de/books?id=8vIpAQAAMAAJ
https://books.google.de/books?id=8vIpAQAAMAAJ
https://gitlab.informatik.uni-bremen.de/cgvr_public/kdet-benchmarks
https://gitlab.informatik.uni-bremen.de/cgvr_public/kdet-benchmarks
https://doi.org/10.1080/10867651.1997.10487472
https://doi.org/10.1080/10867651.1997.10487472
https://doi.org/10.1080/10867651.1997.10487472
https://doi.org/10.1080/10867651.1997.10487472
https://doi.org/10.1145/3083724
https://doi.org/10.1145/3083724
https://doi.org/10.1145/3083724

bibliography 91

[Mon+22] L.-R. Montaut, Q. L. Lidec, J. Sivic, and J. Carpentier.
“Collision Detection Accelerated: An Optimization Per-
spective.” In: ArXiv abs/2205.09663 (2022). url: https:
//doi.org/10.48550/arXiv.2205.09663.

[MP78] D. Muller and F. Preparata. “Finding the intersection of
two convex polyhedra.” In: Theoretical Computer Science 7.2
(1978), pp. 217–236. doi: https://doi.org/10.1016/0304-
3975(78)90051- 8. url: https://www.sciencedirect.
com/science/article/pii/0304397578900518.

[NVI23] NVIDIA. NVIDIA Developer: PhysX. Last accessed: 23.07.23.
2023. url: https://developer.nvidia.com/physx-sdk.

[PKS10] S. Pabst, A. Koch, and W. Straßer. “Fast and Scalable
CPU/GPU Collision Detection for Rigid and Deformable
Surfaces.” In: Computer Graphics Forum 29.5 (2010), pp. 1605–
1612. doi: https://doi.org/10.1111/j.1467-8659.2010.
01769.x. eprint: https://onlinelibrary.wiley.com/
doi/pdf/10.1111/j.1467- 8659.2010.01769.x. url:
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.

1467-8659.2010.01769.x.

[RRM07] V. Roussev, G. G. Richard, and L. Marziale. “Multi-resolution
similarity hashing.” In: Digital Investigation 4 (2007), pp. 105–
113. doi: https://doi.org/10.1016/j.diin.2007.06.
011. url: https://www.sciencedirect.com/science/
article/pii/S1742287607000473.

[Rus+] S. Rusinkiewicz, D. DeCarlo, A. Finkelstein, and A. San-
tella. Suggestive Contour Gallery. Last accessed: 23.07.23.
url: https://gfx.cs.princeton.edu/proj/sugcon/
models/.

[Set96] J. A. Sethian. “A fast marching level set method for mono-
tonically advancing fronts.” In: Proceedings of the National
Academy of Sciences 93.4 (1996), pp. 1591–1595. doi: 10.
1073/pnas.93.4.1591. eprint: https://www.pnas.org/
doi/pdf/10.1073/pnas.93.4.1591. url: https://www.
pnas.org/doi/abs/10.1073/pnas.93.4.1591.

[Si15] H. Si. “TetGen, a Delaunay-Based Quality Tetrahedral
Mesh Generator.” In: ACM Trans. Math. Softw. 41.2 (2015).
doi: 10.1145/2629697. url: https://doi.org/10.1145/
2629697.

https://doi.org/10.48550/arXiv.2205.09663
https://doi.org/10.48550/arXiv.2205.09663
https://doi.org/https://doi.org/10.1016/0304-3975(78)90051-8
https://doi.org/https://doi.org/10.1016/0304-3975(78)90051-8
https://www.sciencedirect.com/science/article/pii/0304397578900518
https://www.sciencedirect.com/science/article/pii/0304397578900518
https://developer.nvidia.com/physx-sdk
https://doi.org/https://doi.org/10.1111/j.1467-8659.2010.01769.x
https://doi.org/https://doi.org/10.1111/j.1467-8659.2010.01769.x
https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1467-8659.2010.01769.x
https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1467-8659.2010.01769.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-8659.2010.01769.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-8659.2010.01769.x
https://doi.org/https://doi.org/10.1016/j.diin.2007.06.011
https://doi.org/https://doi.org/10.1016/j.diin.2007.06.011
https://www.sciencedirect.com/science/article/pii/S1742287607000473
https://www.sciencedirect.com/science/article/pii/S1742287607000473
https://gfx.cs.princeton.edu/proj/sugcon/models/
https://gfx.cs.princeton.edu/proj/sugcon/models/
https://doi.org/10.1073/pnas.93.4.1591
https://doi.org/10.1073/pnas.93.4.1591
https://www.pnas.org/doi/pdf/10.1073/pnas.93.4.1591
https://www.pnas.org/doi/pdf/10.1073/pnas.93.4.1591
https://www.pnas.org/doi/abs/10.1073/pnas.93.4.1591
https://www.pnas.org/doi/abs/10.1073/pnas.93.4.1591
https://doi.org/10.1145/2629697
https://doi.org/10.1145/2629697
https://doi.org/10.1145/2629697

92 bibliography

[Sid23] SideFx. SideFx: Houdini. Last accessed: 23.07.23. 2023. url:
https://www.sidefx.com/products/houdini/.

[Sne08] G. Snethen. “XenoCollide: Complex Collision Made Sim-
ple.” In: Game Programming Gems 7. Ed. by S. Jacobs.
Charles River Media, 2008, pp. 165–178.

[SF21] Sofa-Framework. SOFA Training Session 2020: Introduction
to SOFA. Last accessed: 23.07.23. 2021. url: https://
youtu.be/KHTAgD1oG8Y.

[Sof06] Sofa. SOFA Github Repository. Last accessed: 23.07.23. 2006.
url: https://github.com/sofa-framework/sofa/tree/
master/examples.

[Tan+09] M. Tang, S. Curtis, S.-E. Yoon, and D. Manocha. “ICCD:
Interactive Continuous Collision Detection between De-
formable Models Using Connectivity-Based Culling.” In:
IEEE Transactions on Visualization and Computer Graphics 15

(2009), pp. 544–557. doi: http://doi.ieeecomputersociety.
org/10.1109/TVCG.2009.12.

[Tan+14] M. Tang, R. Tong, Z. Wang, and D. Manocha. “Fast and
Exact Continuous Collision Detection with Bernstein Sign
Classification.” In: 33.6 (Nov. 2014). doi: 10.1145/2661229.
2661237. url: https : / / doi . org / 10 . 1145 / 2661229 .

2661237.

[Tan+18a] M. Tang, t. wang, Z. Liu, R. Tong, and D. Manocha. “I-
Cloth: Incremental Collision Handling for GPU-Based
Interactive Cloth Simulation.” In: ACM Trans. Graph. 37.6
(Dec. 2018). doi: 10.1145/3272127.3275005. url: https:
//doi.org/10.1145/3272127.3275005.

[Tan+18b] M. Tang, Z. Liu, R. Tong, and D. Manocha. “PSCC: Parallel
Self-Collision Culling with Spatial Hashing on GPUs.” In:
Proc. ACM Comput. Graph. Interact. Tech. 1.1 (July 2018).
doi: 10.1145/3203188. url: https://doi.org/10.1145/
3203188.

[TCF13] V. Tereshchenko, S. Chevokin, and A. Fisunenko. “Algo-
rithm for Finding the Domain Intersection of a Set of Poly-
topes.” In: Procedia Computer Science 18 (2013). 2013 Inter-
national Conference on Computational Science, pp. 459–
464. doi: https://doi.org/10.1016/j.procs.2013.05.
209. url: https://www.sciencedirect.com/science/
article/pii/S1877050913003529.

https://www.sidefx.com/products/houdini/
https://youtu.be/KHTAgD1oG8Y
https://youtu.be/KHTAgD1oG8Y
https://github.com/sofa-framework/sofa/tree/master/examples
https://github.com/sofa-framework/sofa/tree/master/examples
https://doi.org/http://doi.ieeecomputersociety.org/10.1109/TVCG.2009.12
https://doi.org/http://doi.ieeecomputersociety.org/10.1109/TVCG.2009.12
https://doi.org/10.1145/2661229.2661237
https://doi.org/10.1145/2661229.2661237
https://doi.org/10.1145/2661229.2661237
https://doi.org/10.1145/2661229.2661237
https://doi.org/10.1145/3272127.3275005
https://doi.org/10.1145/3272127.3275005
https://doi.org/10.1145/3272127.3275005
https://doi.org/10.1145/3203188
https://doi.org/10.1145/3203188
https://doi.org/10.1145/3203188
https://doi.org/https://doi.org/10.1016/j.procs.2013.05.209
https://doi.org/https://doi.org/10.1016/j.procs.2013.05.209
https://www.sciencedirect.com/science/article/pii/S1877050913003529
https://www.sciencedirect.com/science/article/pii/S1877050913003529

bibliography 93

[Tes+03] M. Teschner, B. Heidelberger, M. Müller, D. Pomeranets,
and M. Gross. “Optimized Spatial Hashing for Collision
Detection of Deformable Objects.” In: VMV’03: Proceedings
of the Vision, Modeling, Visualization 3 (Dec. 2003).

[Tes+05] M. Teschner et al. “Collision Detection for Deformable
Objects.” In: Computer Graphics Forum 24.1 (2005), pp. 61–
81. doi: https://doi.org/10.1111/j.1467-8659.2005.
00829.x. url: https://onlinelibrary.wiley.com/doi/
abs/10.1111/j.1467-8659.2005.00829.x.

[THS19] Y. Tian, Y. Hu, and X. Shen. “A multi-GPU finite element
computation and hybrid collision handling process frame-
work for brain deformation simulation.” In: Computer
Animation and Virtual Worlds 30.1 (2019). e1846 cav.1846,
e1846. doi: https://doi.org/10.1002/cav.1846. url:
https://onlinelibrary.wiley.com/doi/abs/10.1002/

cav.1846.

[TL94] G. Turk and M. Levoy. “Zippered polygon meshes from
range images.” In: Proceedings of the 21th Annual Confer-
ence on Computer Graphics and Interactive Techniques, SIG-
GRAPH 1994, Orlando, FL, USA, July 24-29, 1994. Ed. by
D. Schweitzer, A. S. Glassner, and M. Keeler. ACM, 1994,
pp. 311–318. doi: 10.1145/192161.192241. url: https:
//doi.org/10.1145/192161.192241.

[VDB01] G. Van Den Bergen. “Proximity queries and penetration
depth computation on 3d game objects.” In: Game develop-
ers conference. Vol. 170. 2001, p. 209.

[VDB03] G. Van Den Bergen. Collision Detection in Interactive 3D
Environments. Oct. 2003. isbn: 9780429176364. doi: 10 .

1201/9781482297997.

[VG05] J.-L. Verger-Gaugry. “Covering a Ball with Smaller Equal
Balls in Rn.” In: Discrete & Computational Geometry 33.1
(2005), pp. 143–155. doi: 10.1007/s00454-004-2916-2.
url: https://doi.org/10.1007/s00454-004-2916-2.

[VT94] P. Volino and N. M. Thalmann. “Efficient self-collision
detection on smoothly discretized surface animations us-
ing geometrical shape regularity.” In: Computer Graphics
Forum 13.3 (1994), pp. 155–166. doi: https://doi.org/10.
1111/1467-8659.1330155. url: https://onlinelibrary.
wiley.com/doi/abs/10.1111/1467-8659.1330155.

https://doi.org/https://doi.org/10.1111/j.1467-8659.2005.00829.x
https://doi.org/https://doi.org/10.1111/j.1467-8659.2005.00829.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-8659.2005.00829.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-8659.2005.00829.x
https://doi.org/https://doi.org/10.1002/cav.1846
https://onlinelibrary.wiley.com/doi/abs/10.1002/cav.1846
https://onlinelibrary.wiley.com/doi/abs/10.1002/cav.1846
https://doi.org/10.1145/192161.192241
https://doi.org/10.1145/192161.192241
https://doi.org/10.1145/192161.192241
https://doi.org/10.1201/9781482297997
https://doi.org/10.1201/9781482297997
https://doi.org/10.1007/s00454-004-2916-2
https://doi.org/10.1007/s00454-004-2916-2
https://doi.org/https://doi.org/10.1111/1467-8659.1330155
https://doi.org/https://doi.org/10.1111/1467-8659.1330155
https://onlinelibrary.wiley.com/doi/abs/10.1111/1467-8659.1330155
https://onlinelibrary.wiley.com/doi/abs/10.1111/1467-8659.1330155

94 bibliography

[Wal13] I. Wald. The Utah 3D Animation Repository. Last accessed:
23.07.23. 2013. url: http://www.sci.utah.edu/~wald/
animrep/.

[WC21] M. Wang and J. Cao. “A review of collision detection for
deformable objects.” In: Computer Animation and Virtual
Worlds 32.5 (2021), e1987. doi: https://doi.org/10.1002/
cav.1987. url: https://onlinelibrary.wiley.com/doi/
abs/10.1002/cav.1987.

[Wan+17] T. Wang, Z. Liu, M. Tang, R. Tong, and D. Manocha. “Ef-
ficient and Reliable Self-Collision Culling Using Unpro-
jected Normal Cones.” In: Computer Graphics Forum 36.8
(2017), pp. 487–498. doi: https://doi.org/10.1111/cgf.
13095. url: https://onlinelibrary.wiley.com/doi/
abs/10.1111/cgf.13095.

[Wan+18] T. Wang, M. Tang, Z. Wang, and R. Tong. “Accurate self-
collision detection using enhanced dual-cone method.” In:
Computers & Graphics 73 (2018), pp. 70–79. doi: https://
doi.org/10.1016/j.cag.2018.04.001. url: https://www.
sciencedirect.com/science/article/pii/S0097849318300475.

[Wel13] R. Weller. “A Brief Overview of Collision Detection.” In:
New Geometric Data Structures for Collision Detection and
Haptics. Heidelberg: Springer International Publishing,
2013, pp. 9–46. doi: 10.1007/978-3-319-01020-5_2.
url: https://doi.org/10.1007/978-3-319-01020-5_2.

[WDZ17] R. Weller, N. Debowski, and G. Zachmann. “kDet: Parallel
Constant Time Collision Detection for Polygonal Objects.”
In: Computer Graphics Forum 36.2 (2017), pp. 131–141. doi:
https : / / doi . org / 10 . 1111 / cgf . 13113. url: https :

//onlinelibrary.wiley.com/doi/abs/10.1111/cgf.

13113.

[Win20] WinterDev. GJK: Collision detection algorithm in 2D/3D. Last
accessed: 23.07.23. 2020-08-29. url: https://blog.winter.
dev/2020/gjk-algorithm/.

[WLZ14] T. H. Wong, G. Leach, and F. Zambetta. “An adaptive oc-
tree grid for GPU-based collision detection of deformable
objects.” In: The Visual Computer 30.6 (2014), pp. 729–738.
doi: 10.1007/s00371-014-0954-1. url: https://doi.
org/10.1007/s00371-014-0954-1.

http://www.sci.utah.edu/~wald/animrep/
http://www.sci.utah.edu/~wald/animrep/
https://doi.org/https://doi.org/10.1002/cav.1987
https://doi.org/https://doi.org/10.1002/cav.1987
https://onlinelibrary.wiley.com/doi/abs/10.1002/cav.1987
https://onlinelibrary.wiley.com/doi/abs/10.1002/cav.1987
https://doi.org/https://doi.org/10.1111/cgf.13095
https://doi.org/https://doi.org/10.1111/cgf.13095
https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.13095
https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.13095
https://doi.org/https://doi.org/10.1016/j.cag.2018.04.001
https://doi.org/https://doi.org/10.1016/j.cag.2018.04.001
https://www.sciencedirect.com/science/article/pii/S0097849318300475
https://www.sciencedirect.com/science/article/pii/S0097849318300475
https://doi.org/10.1007/978-3-319-01020-5_2
https://doi.org/10.1007/978-3-319-01020-5_2
https://doi.org/https://doi.org/10.1111/cgf.13113
https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.13113
https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.13113
https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.13113
https://blog.winter.dev/2020/gjk-algorithm/
https://blog.winter.dev/2020/gjk-algorithm/
https://doi.org/10.1007/s00371-014-0954-1
https://doi.org/10.1007/s00371-014-0954-1
https://doi.org/10.1007/s00371-014-0954-1

bibliography 95

[Wyn12] E. Wynn. Answer to: Covering a Unit Ball with Balls Half the
Radius. Last accessed: 23.07.23. Aug. 5, 2012. url: https:
//mathoverflow.net/a/103981.

[Ye+16] X. Ye, J. Zhang, P. Li, T. Wang, and S. Guo. “A fast and
stable vascular deformation scheme for interventional
surgery training system.” In: BioMedical Engineering On-
Line 15.1 (2016), p. 35. doi: 10.1186/s12938-016-0148-3.
url: https://doi.org/10.1186/s12938-016-0148-3.

[dan10] danfis. The Utah 3D Animation Repository. Last accessed:
23.07.23. 2010. url: https://github.com/danfis/libccd.

https://mathoverflow.net/a/103981
https://mathoverflow.net/a/103981
https://doi.org/10.1186/s12938-016-0148-3
https://doi.org/10.1186/s12938-016-0148-3
https://github.com/danfis/libccd

colophon

This document was typeset using the typographical look-and-feel
classicthesis developed by André Miede and Ivo Pletikosić. The
style was inspired by Robert Bringhurst’s seminal book on typography
“The Elements of Typographic Style”. classicthesis is available for both
LATEX and LYX:

https://bitbucket.org/amiede/classicthesis/

https://bitbucket.org/amiede/classicthesis/

	Declaration
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	List of Algorithms

	1 Introduction
	1.1 Motivation
	1.2 Challenges & Goals

	2 Related Work
	2.1 Collision Detection for Deformable Objects with Tetrahedral Meshes
	2.1.1 Self-Collisions

	2.2 Intersection Tests
	2.2.1 Separating Axis Test (SAT)
	2.2.2 Gilbert-Johnson-Keerthi (GJK)

	3 Theoretical Work
	3.1 Applying the Predicate of k-Freeness to Sets of Tetrahedra & General Polyhedra
	3.2 Sphere Coverings

	4 Algorithms & Implementation
	4.1 Base Implementation
	4.2 Finding All Pairs
	4.2.1 Collision Table
	4.2.2 Prime Factorization
	4.2.3 Multiple Phases

	4.3 Self-Collisions
	4.4 Hashing Methods
	4.5 Intersection Tests
	4.6 Collision Pipeline

	5 Benchmarking Scenes
	5.1 Choice of Tools & Resources
	5.1.1 Simulation Software
	5.1.2 Models

	5.2 Scenes
	5.2.1 Scenes created with SOFA
	5.2.2 Pass Through Armadillos

	5.3 Shortcomings

	6 Evaluation
	6.1 Selecting Benchmarking Parameters
	6.1.1 Correcting for SOFA Contact Distance
	6.1.2 Use of 10 Run Averages
	6.1.3 Host Time vs Device Time
	6.1.4 CUDA Block Size
	6.1.5 Hashing Methods
	6.1.6 Intersection Tests

	6.2 GPU Brute-Force vs kDet
	6.3 kDet
	6.3.1 Pass Through Armadillos
	6.3.2 Remaining Scenes
	6.3.3 Memory Usage

	7 Future Work
	7.1 Hash Maps
	7.1.1 Provisional Implementation
	7.1.2 Results

	7.2 Self and Inter Object Collisions in the Same Pass
	7.3 Size of Potential Pairs Vector

	8 Conclusions
	A Appendix
	A.1 Source Code
	A.1.1 Asset Folder Location & CUDA SDK Samples
	A.1.2 Demo Application
	A.1.3 Command-Line Benchmarking Tool
	A.1.4 Benchmarking Files

	A.2 Benchmarking Scenes & Data

	 Bibliography
	Colophon

