
University of Bremen

Faculty of Mathematics and Computer Science

Computer Graphics and Virtual Reality Research Group

Bachelor thesis

Redirected Walking in Virtual Reality

during eye blinking

Edited by: Victoria Ivleva (Matr. Nr: 2770973)

Supervisors: Prof. Dr. Gabriel Zachmann

 Prof. Dr. Mehul Bhatt

Thesis submitted in partial fulfillment of the requirements for the Digital Media Bachelor of

Science degree at the University of Bremen

2016

II

STATUTORY DECLARATION

I declare that I have authored this bachelor thesis independently, that I have not used other

than the declared sources / resources, and that I have explicitly marked all material which has

been quoted either literally or by content from the used sources.

____________ ______________________

 Date Signature

III

Abstract

This bachelor thesis aimed to explore a technique which helps to achieve more immersion in

Virtual Reality (VR) by creating the illusion of free movement in VR by using features of the

human visual perception. The main goal is to ascertain if users are able to notice manipulations

by changing their position when these manipulations occur during eye blinking. The main

technique to generate a free movement illusion in virtual environments is called Redirected

Walking (RW). This technique is based on manipulations, such as rotation and translation of

virtual objects or of the user’s point of view. There are different options to apply Redirected

Walking.

In this study, one of the main processes of the human eye is used, namely reflexive blinking.

In particular, at the time when a person blinks, the position of his/her point of view in virtual

space changes. The main goal of this work is to find out if users are able to notice

manipulations by changing their position when these manipulations occur during eye blinking.

This experiment uses an HTC Vive Head Mounted Display (HMD), Unity3D Game Engine and

a self-made eye blink sensor. The blink sensor is based on an Arduino Uno microcontroller,

a LED and a photo sensor.

The experiment was implemented in Unity3D, and participants were standing in a virtual

environment that replicated the real room. During the experiment, participants were wearing

an HTC Vive HMD and had a wireless StreamVR controller in their hands to choose

the answers in VR. The main manipulations during the experiment were rotation and

translation along 3 axes and by 7 values.

The results showed that rotations in the negative direction, in particular around the Y-axis,

were perceived correctly up to 86-97%, by the Z-axis up to 80-90%, and by the X-axis up to 78-

82%. Translations were also perceived correctly, but users tended to choose the positive

direction when they were translated along the Z-axis. In addition, participants were evaluated

by the Kennedy SSQ [1] to check for physical side effects, and these effects increased after

the experiment.

The results of this experiment demonstrate that Redirected Walking in Virtual Reality during

eye blinking is possible, but there are some additional factors which need to be considered:

IV

 precise eye blink detection with an eye tracker specially designed to work with

the HMD should be ensured;

 exact timing of running the reorientation algorithm is important for perception of this

manipulation;

 to avoid the discrepancy between real and virtual movement and to reduce the motion

sickness effect, the reorientation should be added to the actual movements;

 it is also necessary to involve most of the human perception channels to reduce

cognitive abilities and attention to details. This can be achieved with the use of specific

virtual environments, e.g. outdoor nature environments with sounds.

In the context of real applications, it is important to note that people blink infrequently, once

per 4-6 seconds.

Keywords: Redirected Walking, HMD, Immersion, Eye Blinking, Saccadic Eye Movement,

Natural Walking, Unity 3D, Tuscany, Virtual Reality, Arduino, eye blink sensor.

V

Structure

1 Introduction .. 1

1.1 Motivation ... 2

1.2 Requirement .. 2

2 Previous Work .. 3

3 Redirected Walking during eye blinking .. 5

3.1 Eye blink detection .. 6

3.2 Sensor description ... 7

3.3 Virtual Environment Application ... 13

4 User study ... 14

4.1 Pre-study .. 14

4.2 Final experiment .. 15

4.3 Hypothesis ... 15

4.4 Experiment design ... 16

4.5 Equipment ... 20

4.6 Participants .. 21

4.7 Data evaluation method .. 22

4.8 Results .. 23

4.8.1 Rotation .. 23

4.8.2 Translation .. 31

4.8.3 Personal estimation .. 34

VI

4.8.4 Motion sickness evaluation .. 38

5 Discussion ... 41

6 Conclusion .. 44

6.1 Future Work ... 46

7 References .. 48

8 Attachment ... 52

8.1 Arduino source code .. 52

8.2 Unity3D source code ... 53

8.2.1 Unity3D source code for communication with Arduino 53

8.2.2 Unity3D source code for rotation .. 57

8.2.3 Unity3D source code for translation .. 64

8.2.4 Unity3D source code for the feedback on the screen 71

8.3 VBA Excel Macros for data evaluation .. 73

8.4 Experiment results ... 77

8.4.1 Rotation results .. 77

8.4.2 Translation results .. 85

8.4.3 Personal estimation data ... 87

8.5 Simulator Sickness Questionnaire ... 97

8.6 Participant information and consent form .. 99

VII

Figure list

Figure 1 Change blindness redirection [6] ... 3

Figure 2 The Eye Tribe eye tracker [10] ... 6

Figure 3 An EOG [17] device used to measure saccadic movements .. 7

Figure 4 LDR4 [29] .. 8

Figure 5 Biological effects of optical radiation on the eye [11] show that the eye absorbs most

light frequencies ... 8

Figure 6 Working principle of the self-made optical sensor: the light emitted by the HMD

display is reflected by the eyelid if the eye is closed and the photo sensor produces output

bigger than zero ... 9

Figure 7 Left: Arduino LDR circuit ... 9

Figure 8 Final eye blink device with an Arduino Uno microcontroller, an LED and an LDR 10

Figure 9 LDR evaluation graph: blue line – sensor output from 0 to 4, red dots – eye closing

moments, below – time in ms .. 11

Figure 10 Left: adjustable sensor positioning design for Oculus Rift DK2; right: sensor and LED

positioning in HTC Vive ... 11

Figure 11 Universal sensor positioning device design based on eyeglasses to use in HMD ... 12

Figure 12 Pseudocode for connection between Unity 3D and Arduino via a COM Port 13

Figure 13 Left: pre-study equipment: Oculus Rift DK2 with Arduino and eye blink sensor setup;

right: a screenshot from the Tuscany Microsoft Demo ... 14

Figure 14 Left: Unity 3D scene seen by participants; right: a participant during the experiment

wearing an HMD and holding a controller ... 16

Figure 15 Redirection of user's FOV along 3 axes .. 17

file:///C:/Users/jschmidt/Desktop/baV30_JS_5.docx%23_Toc463867292
file:///C:/Users/jschmidt/Desktop/baV30_JS_5.docx%23_Toc463867293
file:///C:/Users/jschmidt/Desktop/baV30_JS_5.docx%23_Toc463867294
file:///C:/Users/jschmidt/Desktop/baV30_JS_5.docx%23_Toc463867295
file:///C:/Users/jschmidt/Desktop/baV30_JS_5.docx%23_Toc463867296
file:///C:/Users/jschmidt/Desktop/baV30_JS_5.docx%23_Toc463867296
file:///C:/Users/jschmidt/Desktop/baV30_JS_5.docx%23_Toc463867297
file:///C:/Users/jschmidt/Desktop/baV30_JS_5.docx%23_Toc463867297
file:///C:/Users/jschmidt/Desktop/baV30_JS_5.docx%23_Toc463867297
file:///C:/Users/jschmidt/Desktop/baV30_JS_5.docx%23_Toc463867298
file:///C:/Users/jschmidt/Desktop/baV30_JS_5.docx%23_Toc463867299
file:///C:/Users/jschmidt/Desktop/baV30_JS_5.docx%23_Toc463867300
file:///C:/Users/jschmidt/Desktop/baV30_JS_5.docx%23_Toc463867300
file:///C:/Users/jschmidt/Desktop/baV30_JS_5.docx%23_Toc463867301
file:///C:/Users/jschmidt/Desktop/baV30_JS_5.docx%23_Toc463867301
file:///C:/Users/jschmidt/Desktop/baV30_JS_5.docx%23_Toc463867302
file:///C:/Users/jschmidt/Desktop/baV30_JS_5.docx%23_Toc463867303
file:///C:/Users/jschmidt/Desktop/baV30_JS_5.docx%23_Toc463867304
file:///C:/Users/jschmidt/Desktop/baV30_JS_5.docx%23_Toc463867304
file:///C:/Users/jschmidt/Desktop/baV30_JS_5.docx%23_Toc463867305
file:///C:/Users/jschmidt/Desktop/baV30_JS_5.docx%23_Toc463867305
file:///C:/Users/jschmidt/Desktop/baV30_JS_5.docx%23_Toc463867306

VIII

Figure 16 Part of the source code for rotation .. 18

Figure 17 Left: HTC Vive [18]; right: Oculus Rift DK2 [18] .. 20

Figure 18 Experiment setup: PC, HTC Vive with an eye blink sensor and an LED turned on... 20

Figure 19 Part of the Unity3D source code for rotation trial ... 22

Figure 20 Rotation results -10° X .. 24

Figure 21 Rotation results -15° X .. 24

Figure 22 Rotation results -5° X .. 25

Figure 23 Rotation results 0° X ... 25

Figure 24 Rotation results +5° X ... 26

Figure 25 Rotation results -15° Y .. 27

Figure 26 Rotation results -5° Y .. 27

Figure 27 Rotation results 0° Y ... 28

Figure 28 Rotation results +5° Y ... 28

Figure 29 Rotation results +10° Y ... 29

Figure 30 Rotation results -5° Z .. 30

Figure 31 Average values for rotations .. 30

Figure 32 Percentage of correct answers for rotations ... 31

Figure 33 Translation along the X-axis over (>0>) meters ... 32

Figure 34 Translation along the X-axis by 0 meters ... 32

Figure 35 General average for translations .. 33

Figure 36 Kennedy SSQ results before the experiment ... 38

file:///C:/Users/jschmidt/Desktop/baV30_JS_5.docx%23_Toc463867307
file:///C:/Users/jschmidt/Desktop/baV30_JS_5.docx%23_Toc463867308
file:///C:/Users/jschmidt/Desktop/baV30_JS_5.docx%23_Toc463867309
file:///C:/Users/jschmidt/Desktop/baV30_JS_5.docx%23_Toc463867310
file:///C:/Users/jschmidt/Desktop/baV30_JS_5.docx%23_Toc463867311
file:///C:/Users/jschmidt/Desktop/baV30_JS_5.docx%23_Toc463867312
file:///C:/Users/jschmidt/Desktop/baV30_JS_5.docx%23_Toc463867313
file:///C:/Users/jschmidt/Desktop/baV30_JS_5.docx%23_Toc463867314
file:///C:/Users/jschmidt/Desktop/baV30_JS_5.docx%23_Toc463867315
file:///C:/Users/jschmidt/Desktop/baV30_JS_5.docx%23_Toc463867316
file:///C:/Users/jschmidt/Desktop/baV30_JS_5.docx%23_Toc463867317
file:///C:/Users/jschmidt/Desktop/baV30_JS_5.docx%23_Toc463867318
file:///C:/Users/jschmidt/Desktop/baV30_JS_5.docx%23_Toc463867319
file:///C:/Users/jschmidt/Desktop/baV30_JS_5.docx%23_Toc463867320
file:///C:/Users/jschmidt/Desktop/baV30_JS_5.docx%23_Toc463867321
file:///C:/Users/jschmidt/Desktop/baV30_JS_5.docx%23_Toc463867322
file:///C:/Users/jschmidt/Desktop/baV30_JS_5.docx%23_Toc463867323
file:///C:/Users/jschmidt/Desktop/baV30_JS_5.docx%23_Toc463867324
file:///C:/Users/jschmidt/Desktop/baV30_JS_5.docx%23_Toc463867325
file:///C:/Users/jschmidt/Desktop/baV30_JS_5.docx%23_Toc463867326
file:///C:/Users/jschmidt/Desktop/baV30_JS_5.docx%23_Toc463867327

IX

Figure 37 Kennedy SSQ results after the experiment .. 40

file:///C:/Users/jschmidt/Desktop/baV30_JS_5.docx%23_Toc463867328

X

Table index

Table 1 Data received for rotation around the X-axis by -15° ... 23

Table 2 Kennedy SSQ before the experiment .. 39

Table 3 Kennedy SSQ after the experiment ... 39

XI

Abbreviatons

RW – Redirected Walking

VR – Virtual Reality

fps – Frames per second

ms – Millisecond

HMD – Head Mounted Display

LDR – Light Dependent Resistor

LED – Light-Emitting Diode

COM – Communication Port

FOV – Field of View

1

1 Introduction

The topic of my bachelor thesis is “Redirected Walking in Virtual Reality during eye blinking”.

A Virtual Reality is a computer-generated environment which replicates existing landscape

and indoor rooms, or represents imaginary space, where users can move and interact with it.

The most important problem in Virtual Reality is that the physical space is much smaller than

the virtual one. The size of the real space limits the ability to move in the boundless virtual

space. This, in turn, violates the immersion into the virtual world. Nowadays, scientists are

trying to solve the problem with maximal immersion, without any intrusive hardware [2].

The researchers have developed a technology called “Redirected Walking (RW)” which is

based on using a Head Mounted Display (HMD) and algorithms based on the use of features

of human visual perception. The Redirected Walking technique is based on many different

methods of manipulating the user’s orientation or position during natural locomotion in

virtual reality, without their noticing. In general, there are several basic options to manipulate

the user’s position: translation, rotation, resetting. These manipulations can happen

automatically, manually or dynamically [2].

Some of the Redirected Walking experiments are based on the use of saccadic eye

movements. At the same time as the user is looking in one direction, some virtual objects or

the part of the virtual environment in the opposite direction, from the user’s point of view,

are manipulated to correct the user’s walking direction. In some studies scientists directly

manipulate the position of the user, like Razzaque et al. [2], or interactively rotate the virtual

scene around the participant [3]. There is also a lot of interest in the perceptual aspects of

different redirection techniques. Steinecke [4], Neth [5] et al., and Bruder [6], for example,

researched how Redirected Walking influences a user’s cognitive abilities.

In this work, the Redirected Walking experiment is based on physiological characteristics of

human visual perception. Specifically, the algorithm to redirect the user's walking direction

will be launched at the time the user blinks. The details are described in Section “Redirected

Walking during eye blink”.

2

1.1 Motivation

Over the last few years, Virtual Reality has been developing at a rapid rate. A lot of applications

and hardware are designed to make some imaginary place possible even without leaving your

own room.

There are a lot of problems in the development of Virtual Reality and questions that need

unconventional solutions. For example, VR is mostly used indoors, which leads to a smaller

physical space than the virtual world where you want to move or play. Since increasing the

physical space is not always possible, developers and scientists are trying to solve this problem

by different scientific methods. One of them is the Redirected Walking (RW) technique, which

can stop the users from running into their own table, by manipulating the position of virtual

objects or the users themselves.

This technique is based on physical and physiological characteristics of human visual

perception. The main intention of this work is to find out the ability of users to observe

manipulations by changing their position if these manipulations occur during their eye

blinking.

1.2 Requirement

The aim of this work is therefore to design a system that would allow RW during eye blinking

using an HMD and to build an eye blink detection device prototype to make an initial

evaluation and ensure the feasibility of the designed system. For this purpose the following

hardware and software is needed: Windows x64 Bit PC, 4 GB RAM, Intel Core i5 processor,

Nvidia Geforce GTX 970, HDMI 1.4, HTC Vive Head Mounted Display, SteamVR Motion

Controller, Arduino Uno Microcontroller, Excelitas LDR04 Photosensor, Unity 3D Game Engine

Version 5.4, SteamVR, Arduino Code-Editor, test project scene for Unity 3D with high amount

of light or an Adafruit NeoPixel LED strip RGBW.

3

2 Previous Work

The first successful application in Redirected Walking appeared in 2001 by Razzaque [2] and

colleagues, which was based on a pre-programmed amount of rotation. The virtual

environment was larger than the real space, and users were able to move naturally, but in

a zig-zag pattern. Every time the users turned through 90 degrees in the virtual environment,

they actually turned 180 degrees in the real space. This manipulation induced the movement

of users in a zig-zag pattern in the large virtual environment, without collisions with real

obstacles in physical space. The participants did not pay attention to the difference between

their real and virtual movements. However, this Redirected Walking study of Razzaque et al.

[2] has a disadvantage - a lack of freedom: the users cannot choose where they want to go,

and should follow the prescribed route.

In 2009, Steinecke [4] and his research group analysed human sensitivity to the redirection of

walking and looked for some perceptual thresholds that can be detected by users. The

important feature of this work was that the Redirected Walking could be implemented with

some perceptual manipulations to which the users are less sensitive. They tested the following

manipulations: rotation, translation and curvature gains along a circle. The results for

translation and rotation manipulations showed that users were less sensitive to an increase in

the rate of change, up to 40 percent for rotation and 26 percent for translation. Also, the users

did not notice the curvature gain along the circle with radius over 22 meters. The perceptual

sensitivity of the users was also researched by the group of scientists [5] in 2012. They

explored whether the users sensitivity for the rotation manipulations is dependent on the

Figure 1 Change blindness redirection [6]

4

users walking speed. The results have showed that the faster users were walking, the more

sensitive they were to the manipulation within rotation.

In 2011, Suma et al. [7] and colleagues explored a technique related to Redirected Walking,

named Change Blindness Redirection. Change Blindness is a phenomenon, which appears if

some part of the environment is out of the users’ field of view. If some changes happen at the

moment when the part of the virtual space is out of the users view, they would not notice

these changes. In this study, users explored the virtual environment, which was four times

bigger than the real room. The virtual place that researchers have developed was a building

with a lot of rooms and as soon as users entered any of the rooms, the entered door moved

to the other side, but the users could not see the door because it was out of their field of view

(Figure 1). Only 1 out of 77 participants noticed this change. But this technique is applicable

only for indoor virtual environments.

Peck et al. [8] in 2011 conducted research and experiments in Redirected Walking using

distractors. Distractors, like the humming-bird that flew back and forth in front of participants,

are used to stop users when they are near to the boundary, to prevent collision, or when the

users are away from obstacles, to prevent participants from leaving the tracked space.

In 2015, Bolte et al. [9] explored redirection during saccades, short and fast eye movements.

They used electrooculography (EOG) to track the saccade, and changed the scene or user

position during saccadic movement. The users’ view direction was translated and rotated

during saccadic movement and fixation. The study showed that users were less sensitive to

manipulations during saccadic movement than during fixations. When participants were

stable, they could not notice the reorientation (rotation) of ±5 degrees and translation along

the line of vision of ±0.5 meters during saccades [9].

This appearance of less sensitivity to manipulation during the eye movement can be explained

by the fact that the human visual system uses a built-in prior assumption that the world is

stable during the eye movements. This theory and Bolte’s study [9] became the basis of the

work on redirection during eye blink.

5

3 Redirected Walking during eye blinking

Redirected Walking is a manipulation technique to re-orient users in virtual environments

during natural locomotion. Natural locomotion in a virtual environment is very important to

achieve maximum immersion and to eliminate all moments when users might disbelieve. Also,

natural locomotion can help avoid the “Motion Sickness”, an unpleasant phenomenon that

often disrupts users in virtual reality and which appears because of the complex human

perception system [10].

The main goal of this study is to find out whether users are able to notice manipulations by

changing their position when these manipulations occur during eye blinking.

Blinking is an instinctive closure of the eyelids. The eyelid is used to moisten the cornea with

tear fluid and to protect the eye against foreign bodies [11]. A person blinks about 10 to

15 times per minute, so every 4 to 6 seconds; this happens over an average time of 100 to 400

milliseconds [12].

The dark phase during closure of the eyelids is not consciously perceived as the visual

perception in relevant brain areas is suppressed shortly before and during blinking. This is

a neural mechanism underlying the lack of awareness of the changes in visual input. Blink

interrupts visual input, but usually is not noticed because of blink suppression [12] [13].

Additionally, according to current theories, the human brain believes that the world is stable

during the eye movements [9].

The blinking happens usually synchronously: on both sides and at the same time. However, it

is possible for almost all people to close only one eye. This movement often leads to a specific

strain of the eye and face muscles. According to a small study carried out in 2008, women

blink faster and more often than men do. In fact, women blink 19 times per minute whereas

men blink only 11 times during the same period. Also, older women blink more frequently

than young women [14].

These special features of human visual perception are the main reason why the decision was

made to apply the redirection during eye blinking.

6

3.1 Eye blink detection

For the implementation of the experiment, it was necessary to capture the moment when

participants were blinking. For this purpose, eye tracking can be used. Eye tracking is a process

that measures some features of the eye in order to determine the viewing direction and the

visual focus of the eye. The eye trackers locate the iris of the eye in captured video pictures,

and specific algorithms, for example the Circular Hough Transformation, recognize rounded

patterns in the image [15] and determine the direction of view, i.e. point of gaze. Eye tracking

is used in several applications to control and interact with digital devices or for research

purposes in design and advertising analyses as well as academic and medical research.

The most common technology used for this type of tasks is real-time eye tracking. An eye

tracker called The Eye Tribe (Figure 2) developed by The Eye Tribe Apps company, based in

Denmark, was tested for suitability for the specific purposes of this study. This device is based

on infrared video and mathematical algorithms which calculate the point of gaze [16].

The Eye Tribe is easy to use, but too bulky (20×1.9×1.6cm) to be used in an HMD; moreover,

it is not suitable for use at close range due to the fact that a distance of about 30cm to 45cm

must be maintained, and such a distance is not required in an HMD [16]. In addition, a video-

based real-time eye tracker is not fast enough, mostly 30fps, because the eye cannot move

faster than 30 motions per second [15]. Nonetheless, the Eye Tribe has delay of about 20ms.

Consequently, no precise information regarding the eye blinking can be provided as

a minimum frame rate of about 100fps is required. Measurements should be carried out

approximately every 10ms to check whether the blinking process has started, as the minimum

duration of the whole process is 100ms.

Figure 2 The Eye Tribe eye tracker [10]

7

Another device that can be used for eye tracking is an EOG Electrooculography amplifier

(Figure 3). This device is based on tiny electrodes that measure the electric field created by

the corneoretinal resting potential. These electrodes are attached to the skin at the inner and

outer corners of the eye. When the eye moves, the potential of these electrodes changes and

the difference between these individual potentials provides information as to where the eye

moved [9].

The EOG is a precise measuring system, but as the noise level of the EOG signal differs for each

participant and may also vary over time, it is challenging to develop and setup a general eye

movement classification algorithm. Additionally, the EOG with its electrodes contradicts with

the concept of maximum non-intrusiveness of the VR hardware, which supports maximum

immersion into VR.

For that reason, the idea was to find some other possibilities to capture the blinking

movement in a faster and easier way. For this purpose, the physical characteristics of the eye

and the changes that occur during the eyelid closure have been studied.

3.2 Sensor description

During a blink, the eyelid covers nearly the entire eyeball; this feature can be used for eye

blink detection. The question is, though, what else changes in addition to the eyelid closure.

One of the changes is the light reflection. The eyeball does not reflect most of the light

frequencies; instead, it absorbs them, as shown in Figure 5. Furthermore, most of these light

frequencies can cause eye damage; for example, the normal light can cause photochemical

Figure 3 An EOG [17] device used to measure saccadic movements

8

damage of the retina, the ultraviolet light causes corneal irritation and cataract, and the

infrared frequencies lead to thermal damage of the retina [17]. Unlike the eyeball, the eyelid

skin reflects the majority of light frequencies. Therefore, these reflection characteristics are

used for eye blink detection.

The first prototype of an eye blink detection sensor was an infrared optocoupler, a device

containing an infrared light-emitting diode (LED) and a light-sensitive component, e.g. a Light

Dependent Resistor (LDR). The idea was that the LED should beam into the eye, and the

reflected light should be captured by the photocell. Unfortunately, the experiment showed

that the optocoupler needed a very close distance to receive the signal and the infrared LED

got hot while operating. As a result, under the given conditions, usage of the infrared

frequencies emitted by the optocoupler can harm the eye.

Figure 5 Biological effects of optical radiation on the eye [11] show that the eye absorbs most light frequencies

Figure 4 LDR4 [29]

9

In the next step, usage of a single light-sensitive component and the light emitted by the HMD

screens was considered. The emitted light should be reflected from the closed eyelid and

received by a simple photocell which is integrated in the HMD. This method is non-intrusive,

but it is necessary that the shown scene be well lit; otherwise, the photocell does not receive

enough light. Therefore, later it was decided that an external light source should be used

inside of the HMD to make the setup work with every single virtual scene.

As an external light source, an Adafruit NeoPixel Digital RGBW LED Strip with three small

RGBW LEDs was used. This LED strip was placed in the HMD above the eye and was shining

downwards. The colour of the LED was green because the used Light Dependent Resistor LDR4

(Figure 4) is sensitive to spectral wave length of 520 to 600nm, which is equivalent to green

and yellow coloured light from the visible spectrum. The LDR was placed above and to the side

of the eye (Figure 6). The light from the LED was reflected when the eyelid was closed, and

this reflected light was detected by the LDR and an output was generated. This output was an

integer value from 0 to 256, depending on the amount of light falling on the LDR. The final eye

blink device is shown in Figure 8.

Figure 6 Working principle of the self-made optical sensor: the light emitted by the HMD display is reflected by the eyelid if
the eye is closed and the photo sensor produces output bigger than zero

Figure 7 Left: Arduino LDR circuit

10 Ohm

GND

5
V

LD
R

10

The LDR4 had two pins and was interfaced with and controlled by an Arduino Uno

microcontroller; the circuit of the device is shown in Figure 7. The communication ran via

a Communication Port (COM Port). Over the same port, the Unity Application received sensor

data with baud rate of up to 57.600 values per second. The response time of the LDR was 1 to

3ms [18], and the force of data delivery as well as the LED were controlled by the code for

Arduino (see Arduino source code in attachment).

The sensor evaluation was performed without the HMD in a completely dark room, simulating

the conditions in the HMD; the LDR was placed above and to the side of the eye. A smartphone

lamp served as the light source. The user’s eye was also recorded with a smartphone

camcorder, and the abrupt lighting change from dark to light served as the timestamp.

The values received from the sensor were stored in a .txt file and then imported and processed

in Excel. In Figure 9 LDR evaluation graph, the blue line represents sensor output distribution:

depending on the amount of light received by the LDR, the values were between 0 and 3 when

the eye was open; with the eye closed, as marked by the red dots, the maximum achieved

value was 5. The graph shows fluctuations between 2 and 3 which may be explained by

the strong light source and the reflection from the skin around the eye. A more efficient way

would be to use a spot light source at a short distance to the eyelid to avoid diffuse reflection

from other skin parts. The red dots in the graph represent the moments of eye blinking; it took

the LDR about 20ms to notice the change from closed to open eye. This force was controlled

Figure 8 Final eye blink device with an Arduino Uno microcontroller, an LED and an LDR

11

by the baude rate in Arduino Script and was equal to 9.600. By using a higher baud rate value,

the reaction time of the sensor can be improved up to 2ms. The LDR response force and

accuracy of reaction upon eye closure is highly dependent on the position of the LDR relative

to the eye. Also, the open angle of the LDR (±60 degree [18]) must be considered. To make

the difference between the reflection from the skin near the eye and the eyelid more

noticeable, a reflection booster should be used. It can be a small piece of a highly reflective

material, like aluminium foil, that can be placed on the eyelid. Such an auxiliary component

would also help make the received reflection values more homogeneous because every

person’s skin on the eyelid reflects the light differently, depending on the general skin

characteristics.

As discussed above, the blinking usually happens synchronously: on both sides and at the

same time; therefore, one sensor should be enough to track the blinking. The sensor needs to

be positioned very precisely to provide correct data; ideally, a positioning system with

3 degrees of freedom should be implemented. Generally, the sensor should be placed above

the eyelid at a distance of about 15–20mm in order not to block the eye movements and

to capture the light reflected from the eyelid. It was found that the best position was above

and at the outside corner of the eye, but this position, distance and angle in particular, should

be calibrated for each user due to different head size and facial morphology. In addition,

because of using the LED, the LDR should be protected from its direct light.

Figure 9 LDR evaluation graph: blue line – sensor output from 0 to 4, red dots – eye closing moments, below – time in ms

Figure 10 Left: adjustable sensor positioning design for Oculus Rift DK2; right: sensor and LED positioning in HTC Vive

12

In this study, various sensor positioning and mounting methods were developed and tested.

At the start of this project, Oculus Rift DK2 was used as the HMD. Later on, it was decided to

use the HTC Vive HMD. For both HMDs, it was necessary to solve the sensor positioning and

mounting problem. The Oculus Rift DK2 HMD differs in its design from the HTC Vive as it has

thicker round lenses with a smaller radius than the latter. For each of them, an individual

mounting device had to be used (Figure 10), a round-shaped foam material placed around the

lens, which can be rotated to change the position of the sensor. Furthermore, the material,

soft as it is, allows to push the sensor deeper into the foam and, by doing so, adjust the

distance to the eyelid.

Figure 11 shows one of the prototypes for the sensor positioning device. The shown device is

based on eyeglasses properly sized to be used in the HMD (HTC Vive). This design ensures

accurate and reliable sensor positioning for different users; the distance and the angle to the

closed eyelid were almost equal for each user. Unfortunately, when the HMD was placed on

the head, the glasses were pressed up and the sensor changed its position relative to the eye

making the distance between the LDR and the eyelid too short for correct functioning of the

LDR. For this reason, it was impossible to use this device in the HMD.

Eventually, the sensor was mounted in the HTC Vive HMD on a flexible material made of 100%

silicone (Figure 10) so that the LDR position could be changed if necessary. It was also

protected from the LED light with a piece of stable black material. However, this positioning

method does not allow for precise calibration of the sensor for each user. To get more

Figure 11 Universal sensor positioning device design based on eyeglasses to use in HMD

13

accurate data from the sensor, a high-precision positioning system with 3 degrees of freedom

is required.

3.3 Virtual Environment Application

For the Virtual Environment application, Unity 3D Version 5.4 was used. The Unity 3D game

engine communicates with the sensor via a Communication Port and receives integer values

depending on the light amount captured by the LDR. The main algorithm for redirection should

start at the moment when the sensor value achieves a predefined threshold, which means

that the user is closing or has already closed the eyes. The threshold first needs to be

calibrated for each user via Unity 3D Inspector.

In general, the script for communication between Unity 3D and the sensor contains following

commands written in pseudocode (Figure 12): (see the full Unity3D source code for

communication with Arduino in attachment)

This script also activates the redirection scripts. Translations along the X-, Y-, Z-axes by 0, ±0.5,

±0.10, ±0.15m and rotations around the X-, Y-, Z-axes by 0, ±5, ±10, ±15 degrees were used as

the redirection. The user’s Field of View (FOV) (Figure 15) was rotated and translated.

void Start()

 {

 SerialPort.Open();

 }

 void Update()

 {

 ArduinoLight = sp.ReadByte();

 }

 public void processSensorValue(int value)

 {

if (ArduinoLight == thresholdBlink)

 {

 Reorientations = true;

 }

 }

 }

 public void Close()

 {

 sp.Close();

 }

Figure 12 Pseudocode for connection between Unity 3D and Arduino via a COM Port

14

4 User study

4.1 Pre-study

Before the final user study, a pre-study was carried out to check the eye blink sensor

connection with Unity 3D, to define the correct position for the sensor and to check the overall

performance of the setup and the scene. The pre-study was implemented with Oculus Rift

DK2, Unity 3D Version 4.3, an eye blink sensor based on Arduino Uno and an LDR. As a light

source only the light from the virtual scene and as a test scene the Tuscany Demo from

Microsoft for Unity 3D and Oculus Rift DK2 [19] (Figure 13) were used.

This pre-study involved three participants: one female and two males aged 14 to 30, all

without any prior experience with the HMD studies or 3D games. The participants were sitting

during the experiment wearing an Oculus Rift DK2 HMD. They were moving in the scene by

using a computer keyboard and were able to move their head. The reorientation included only

rotation around the Y-axis by +5 degrees. After the detected blinking, the participants were

rotated and then were asked whether they had seen some rotation or not, and if yes, then in

which direction. This experiment showed that the sensor had to be very precisely positioned

and securely fixed. When the correct position was found and the threshold equal to the light

reflected from the closed eyelid was exactly defined, the reorientation was not noticed in 80%

of the cases.

The problem in this experiment was that Oculus Rift DK2 did not have full body motion

tracking, which was required for the RW experiment, and the Tuscany scene contained many

distractors, like floating particles in the air, butterflies, birds, sea waves and sounds. All these

Figure 13 Left: pre-study equipment: Oculus Rift DK2 with Arduino and eye blink sensor setup; right: a screenshot from the
Tuscany Microsoft Demo

15

scene details have loaded the user’s attention, and the small reorientation manipulations

went unnoticed.

4.2 Final experiment

The final user study was performed in the Human Computer Interaction Laboratory (HCI Lab)

of the Computer Science Department at the University of Hamburg from 18th of July to 30th of

July 2016 with support from PhD student E. Langbehn and Dr. G. Bruder. The main objective

of the project was to evaluate the potential of the eye blinks for Redirected Walking in

an immersive virtual environment.

The participants were required to stand in the laboratory wearing an HTC Vive HMD and to

follow the instructions presented at the display. The participants had to be healthy and free

of any disorder of equilibrium or vision.

The experiment took on average approximately 80 minutes. As part of the experiment,

participants signed a participant information and consent form (see Participant information

and consent form in attachment) which includes information about the experiment,

participants’ task, benefits and risks related to the participation, e.g. motion sickness,

confidentiality, sharing and publication agreement and consent to photo and video recording.

Before and after the experiment, participants completed the Kennedy Simulator Sickness

Questionnaire [1] to measure the VR induced physical side effects. After the experiment,

participants also answered questions about the experiment itself.

4.3 Hypothesis

The experiment’s aim was to prove or disprove the following hypothesis: based on the neural

mechanism of blink suppression [12] [13] and the information that the human brain believes

that the world is stable during the eye movements [9], participants were expected not to

notice manipulations by changing their position if these manipulations occurred during eye

blinking.

16

4.4 Experiment design

At first, participants were asked to fill in two questionnaires: a demographic questionnaire

with general questions about age, gender and VR experience, and the Kennedy Simulator

Sickness Questionnaire (SSQ), which is a standard in VR studies (see Simulator Sickness

Questionnaire in attachment). After that, the task was explained to the participants, and the

exact procedure was described. Then they were given a controller, which they held in the right

or left hand, and an HTC Vive HMD was placed on their head. Inside the HMD, a green LED

was shining, and the virtual scene replicated the real room where the experiment was

performed (Figure 14).

The participants were supposed to stand in one place during the whole experiment. The

reason for this is that this stable body position ensures more accurate measurement of the

user’s sensitivity to manipulations. When a person is moving, his/her attention to small

changes is lower, while in a static position attention is focused on one particular task. The

participants should be more sensitive to smaller changes, especially in an indoor virtual scene

with regularities in the seen image. This difference might influence the experiment and users

Figure 14 Left: Unity 3D scene seen by participants; right: a participant during the experiment wearing an HMD and holding
a controller

17

might notice more manipulations. It is expected that if some manipulations are not or only

rarely perceived under the given conditions, they would not be noticed during the natural

walking in VR because users would have to pay attention to more things, their cognitive

abilities would decrease [6] and they would not be able to discern small reorientations.

After each detected blinking and reorientation, the following question appeared in front of

the user: “In which direction were you rotated?“ after rotations and “In which direction were

you moved?” after translations, both questions regarding the user’s view. In addition to each

question, two buttons with possible answers appeared under the question text. Only one of

them contained correct information about the direction where the user was moved, except

rotation and translation by 0 degrees and meters, because in this case both answers were

false; nevertheless, participants had to answer the question.

At the start of the experiment, participants were given the following task: after the question

appeared, they had to select an answer, which they thought was correct, and confirm it by

pressing back button or side button on the controller. The answers for rotation were: right,

left, up, down; for translation: right, left, forward, backward, up, down. All answers for each

user were recorded in a .txt file for evaluation.

Each participant’s FOV was randomly rotated around all three axes X, Y and Z (Figure 15) by

0°, ±5°, ±10°, ±15°. Additionally, each user was also randomly translated along all three axes

X, Y and Z by 0m, ±0.5m, ±0.10m, 0.15m.

Figure 15 Redirection of user's FOV along 3 axes

18

At the beginning of the experiment for each participant, a trial was carried out, one for

translation and one for rotation. During this trial, the sensor was calibrated, participants were

asked to blink several times and then to keep their eyes open for some seconds to find the

threshold between two eye conditions, open and closed. Additionally, the position of the

sensor in the HMD was adjusted, if needed. During the trial, participants practiced choosing

the answers with the controller and pushing the buttons.

Each participant was rotated and translated eight times by each angle and each distance

around/along each axis (Figure 16). The experiment contained two general runs: rotation and

translation. A rotation by +5, +10, +15 degrees around the X-axis corresponded to a rotation

upward. A rotation by +5, +10, +15 degrees around the Y-axis corresponded to a rotation to

the right. A rotation by +5, +10, +15 degrees around the Z-axis corresponded to a rotation to

the right. A rotation by -5, -10, -15 degrees around the X- axis corresponded to a rotation

onward. A rotation by -5, -10, -15 degrees around the Y- axis corresponded to a rotation to

the left. A rotation by -5, -10, -15 degrees around the Z- axis corresponded to a rotation to the

left. A rotation of 0 degree around the X-, Y- and Z-axis changed nothing.

A translation by +0.5m, +0.10m, +0.15m along the X-axis corresponded to a translation to the

right. A translation by +0.5m, +0.10m, +0.15m along the Y-axis corresponded to a translation

upward. A translation by +0.5m, +0.10m, +0.15m along the Z-axis corresponded to a

 void Start () {

 possibleAxises = new List<Vector3>();

 possibleAxises.Add (Vector3.up);

 possibleAxises.Add (Vector3.right);

 possibleAxises.Add (Vector3.forward);

 possibleDegrees = new List<float>();

 possibleDegrees.Add (-15f);

 possibleDegrees.Add (-10f);

 possibleDegrees.Add (-5f);

 possibleDegrees.Add (0f);

 possibleDegrees.Add (5f);

 possibleDegrees.Add (10f);

 possibleDegrees.Add (15f);

 repetitions = 8;

 for (int i = 0; i < 10; i++)

 { int chosenTransform = UnityEngine.Random.Range(0,

possibleTransforms.Count - 1);

int chosenAxis = UnityEngine.Random.Range(0,

possibleAxises.Count - 1);

 int chosenDegree = UnityEngine.Random.Range(0,

possibleDegrees.Count - 1);

Figure 16 Part of the source code for rotation

19

translation forward. A translation by -0.5m, -0.10m, -0.15m along the X-axis corresponded to

a translation to the left. A translation by -0.5m, -0.10m, -0.15m along the Y-axis corresponded

to a translation downward. A translation by -0.5m, -0.10m, -0.15m along the Z-axis

corresponded to a translation backward. A translation by 0m along the X-, Y- and Z-axis

changed nothing.

Additionally to these two general parts: rotation and translation, one trial was conducted for

each part with also ten test manipulations. After the first part, the participants were offered

a break as one part takes 20 to 30 minutes and the HTC Vive HMD has no cooling inside.

Besides, there are additional heat sources, such as the LED. Such conditions were

uncomfortable for extended periods. All in all, there are 356 translations and rotations in the

experiment:

𝑅𝑜𝑡𝑎𝑡𝑖𝑜𝑛 𝑝𝑒𝑟 𝑢𝑠𝑒𝑟 = 3 𝑎𝑥𝑒𝑠 × 7 𝑣𝑎𝑙𝑢𝑒𝑠 × 8 𝑡𝑖𝑚𝑒𝑠 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛

= 168 𝑡𝑖𝑚𝑒𝑠 + 10 𝑡𝑒𝑠𝑡 𝑟𝑢𝑛𝑠 = 178 𝑡𝑖𝑚𝑒𝑠

𝑇𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛 𝑝𝑒𝑟 𝑢𝑠𝑒𝑟 = 3 𝑎𝑥𝑒𝑠 × 7 𝑣𝑎𝑙𝑢𝑒𝑠 × 8 𝑡𝑖𝑚𝑒𝑠 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛

= 168 𝑡𝑖𝑚𝑒𝑠 + 10 𝑡𝑒𝑠𝑡 𝑟𝑢𝑛𝑠 = 178 𝑡𝑖𝑚𝑒𝑠

Not each blinking movement was recognised by the sensor, so participants sometimes had to

blink more than once. The question with the answers appeared 1.5 seconds after the

manipulation. It took the participants a few seconds to answer the question; therefore, the

experiment took on average 80 minutes per user, including the break between the parts and

the time for filling in the questionnaires.

20

4.5 Equipment

The experiment was performed with an HTC Vive HMD and Steam Valve Version 2.10.91.91

[20] running on Windows 8.1 x64 Bit operating system. The experiment laboratory room scene

and the experiment were developed in Unity 3D Game Engine Version 5.4 [21].

For eye blink detection, the following equipment was used: an Arduino Uno microcontroller,

an Excelitas LDR04 photo sensor built in the HTC Vive HMD, Arduino Code Editor [22], an LED

strip emitting green light built in the HTC Vive HMD, a USB 2.0 cable, and a Windows 8.1 PC

(Figure 18).

At first, the project was implemented for the Oculus Rift DK2 Head Mounted Display, and the

first pre-study was carried out with an Oculus HMD as well. But later it was decided that the

HTC Vive should be used instead of the Oculus Rift DK2 (Figure 17) because of better position

tracking in space with laser Valve’s Lighthouse Position Sensor which can track the user’s

position in the space of 4.6 x 4.6 meters. The setup includes two wireless handheld SteamVR

Figure 17 Left: HTC Vive [18]; right: Oculus Rift DK2 [18]

Figure 18 Experiment setup: PC, HTC Vive with an eye blink sensor and an LED turned on

21

Motion Controllers, which are used to answer the questions in the VR scene. The HTC Vive

uses two small screens, one for each eye with a resolution of 1.080x1.200mp, and has a wider

110 degree field of view than Oculus Rift DK2 with 100 degrees. The HTC Vive also has lower

system requirements: Intel i5 processor, 4GB RAM, while using the Oculus Rift DK2 requires

8GB RAM; moreover, the HTC Vive needs one USB 2.0 port instead of three USB 3.0 and one

USB 2.0 ports for the Oculus. Also, the HTC Vive provides better performance and less latency

than the Oculus Rift DK2 [23].

4.6 Participants

The user study involved 13 persons. All of them volunteered to be part of this experiment.

Since the sensor calibration failed for two participants, the experiment was actually attended

by only 11 participants, including PhD, Master and Bachelor students from the Computer

Science Department at the University of Hamburg. Some of the Bachelor students got credits

for taking part in this experiment. Two of 11 participants were female, 9 male, aged between

21 and 37; the average age was 28. Four of them were wearing glasses, two were wearing

contact lenses, and one of the participants had an eye disorder, strabismus, which did not

interfere with the experiment. The other 10 users did not have any known vision impairment,

such as colour blindness, night blindness, red-green colour weakness or strong eye

dominance. None of the participants had a displacement of equilibrium or similar disorders.

Nine of 11 participants had already taken part in a study with an HMD, like the Oculus Rift and

the HTC Vive, before. All participants have experience with 3D computer games, six of them

have much experience, three participants have secondary experience, and two participants

have less experience. The participants spend on average 5 hours per week playing computer

games. Participant 2 spends the maximum amount of time, 20 hours per week, playing

computer games, followed by Participant 1 with 10 hours per week. Participant 8 does not

spend any time playing computer games, and the other participants are playing 1 to 5 hours

per week. All 11 participants already have experience with 3D stereoscopic displays. The

average height of the participants was 1.74m; the tallest participant was 1.85m, and the

shortest was 1.61m. All participants were feeling good physically, except Participant 5, who

felt tired, and Participant 10, who was not feeling absolutely well physically. See full data in

attachment (Personal estimation data).

22

4.7 Data evaluation method

The data from the experiment with the answers of each user for each redirection technique

were written to the .txt files, separately for rotation and translation (Figure 19), in the

following form: s0_1_6 = 0.875, where s0 stands for user ID number from 0 to 10; the second

value 0 to 2 stands for the axes: 0 for the X-axis, 1 for the Y-axis, and 2 for the Z-axis. The third

value from 0 to 6 stands for the rotation angle: 0 stands for -15°, 1 for -10°, 2 for -5°, 3 for 0°,

4 for 5°, 5 for 10°, 6 for 15°; or for translation values given in meters: 0 stands for -0.15m, 1

for -0.10m, 2 for -0.5m, 3 for 0m, 4 for 0.5m, 5 for 0.10m, 6 for 0.15m. The last value 0 or 1

stands for the user’s answers: 0 for all negative directions (left, down, backward); 1 for all

positive directions (right, up, forward). However, the last value can also be a fraction, for

example 0.87. As each manipulation was repeated 8 times, an average value from the user’s

answers was directly calculated.

All this data was imported in Excel (Microsoft Office 2013), sorted with VBA Script (see VBA

Excel Macros for data evaluation in attachment) by each axis and by each rotation

angle/translation value in meters and compared for each user and generally for all

participants.

The data from the Kennedy Simulator Sickness Questionnaire (SSQ) [1] was imported in Excel,

and both parts before and after the experiment were at first evaluated separately and then

compared with each other for each user.

The data from the questionnaire part, which included personal estimation and additional

comments, was evaluated on a question-by-question basis. See complete data in attachment

(Personal estimation data).

Debug.Log ("Left");

 BlinkRotationExperimentTrial

trial = ec.CurrentTrials[ec.CurrentTrialIndex] as

BlinkRotationExperimentTrial;

 trial.result = 0;

 results += "s" +

ec.participantID + "_" + getAxis(trial.Axis) + "_"

+ getAngle(trial.Degree) + " = " + trial.result +

";\r\n";

Figure 19 Part of the Unity3D source code for rotation trial

23

4.8 Results

This section provides information about the evaluated data received during the user study

from the experiment and from the questionnaires which were completed by the participants

before and after the experiment. The first two parts describe the results received directly

during the experiment and provide participants’ answers about the direction of

manipulations. The following parts provide evaluation of the questionnaires: personal

estimation and the Kennedy Simulator Sickness Questionnaire (SSQ) [1].

4.8.1 Rotation

This part provides an evaluation of the data received from the part of the experiment where

participants were rotated around 3 axes. Participants gave the answers about the direction of

the current rotation using a SteamVR Controller. This data was sorted by each axis and each

angle of rotation, compared for each user and in general for all axes, angles and participants.

The data shown in Table 1 includes the following information: the first column contains

participants’ ID numbers, values in the second column stand for the X-axis, values in the third

column stand for -15 degrees, and values in the fourth column are an average of 8 answers

for 8 runs of rotation around the same axis. When a participant chose the positive direction,

the value was 1, when the negative direction, the value was 0; all 8 answers for the same axis

and the same direction were then added up and divided by 8.

Table 1 Data received for rotation around the X-axis by -15°

User ID Axis Value Answer

s0 0 0 1
s1 0 0 1

s2 0 0 1

s3 0 0 0,75

s4 0 0 0,625

s5 0 0 1

s6 0 0 0

s7 0 0 0,875

s8 0 0 0,5

s9 0 0 1

s10 0 0 1
Average: 0.795

24

As we can see from the diagram (Figure 21), most participants (81%) selected the negative

direction when they were rotated by -15 degrees around the X-axis. Only 9% of participants

selected the wrong direction in 100% of cases. The total average of all answers for the rotation

around the X-axis by -15 degrees is 0.102, which means that participants were 90% likely to

estimate the manipulation correctly.

The next rotation around the X-axis was by -10 degrees. As we can see from the diagram

(Figure 20), 63% of participants selected the right direction, 27% chose the correct answer in

most cases, and 9% of participants were wrong in 50% of cases. The total average of the

0

0,2

0,4

0,6

0,8

1

1,2

S0 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

A
n

sw
e

r
va

lu
e

User ID

Rotation -15° X

Figure 21 Rotation results -15° X

0

0,2

0,4

0,6

0,8

1

1,2

S0 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

A
n

sw
e

r
va

lu
e

User ID

Rotation -10° X

Figure 20 Rotation results -10° X

25

answers for the rotation around the X-axis by -10 degrees is 0.10, which means that

participants were with 90% probability able to estimate the manipulations correctly.

The next rotation around the X-axis was by -5 degrees. As we can see from the diagram (Figure

22), 27% of participants chose the correct answer in 100% of cases. 9% of participants chose

the right answer in 50% of cases, and 9% of participants believed in most cases that they were

rotated in the positive direction. 54% of participants chose the correct answer in almost all

cases.

The total average of the answers for the rotation around the X-axis by -5 degrees is 0.2, which

means that participants were able to estimate the manipulations correctly up to 80% in almost

all cases.

0

0,2

0,4

0,6

0,8

1

1,2

S0 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

A
n

sw
e

r
va

lu
e

User ID

Rotation -5° X

Figure 22 Rotation results -5° X

0

0,2

0,4

0,6

0,8

1

1,2

S0 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

A
n

sw
e

r
va

lu
e

User ID

Rotation 0° X

Figure 23 Rotation results 0° X

26

The next rotation around the X-axis was by 0 degree. As we can see from the diagram (Figure

23), 36% of participants believed that they were rotated in the positive direction, 45% believed

that they were rotated in the negative direction, 18% chose the negative direction in 50% of

cases and the positive direction in 50% of cases. The total average of the answers for the

rotation around the X-axis by 0 degree is 0.52.

The following rotations were in the positive direction, and the correct answer was 1. During

rotations by +5 degrees (Figure 24), 90% of participants selected the right answer in almost all

cases, and 9% of participants chose the wrong answer in most cases and believed that they

were rotated in the negative direction. On average, the answer was equal to 0.8.

In the case where the participants were rotated around the X-axis by +10 degree, 90% of

participants gave the right answer, and 9% gave the wrong answer in most cases. The average

answer was equal to 0.83 which means the correct positive direction. This tendency was

further reinforced by the rotations around the X-axis by +15 degrees where only Participant 6

selected the wrong answer in 100% of cases, which is 9% of participants. Another 9% of

participants gave the right answer in 50% of cases, and 81% of participants gave the right

answer in most cases. The average of all answers is equal to 0.79 which means the positive

direction.

0

0,2

0,4

0,6

0,8

1

1,2

S0 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

A
n

sw
e

r
va

lu
e

User ID

Rotation +5° X

Figure 24 Rotation results +5° X

27

Further, the rotations around the Y-axis are described, and the first rotation to be discussed

shall be the rotation by -15 degrees (Figure 25), i.e. to the left in the negative direction. In this

case, the majority of participants (81%) recognized in which direction they were rotated and

gave correct answers in 100% of cases, the average answer was 0.03.

Similar results were received from the rotations around the Y-axis by -10 degrees: 63% of

participants always chose the right direction, and 36% chose the right answer in most cases.

The average answer was 0.08.

0

0,2

0,4

0,6

0,8

1

1,2

S0 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

A
n

sw
e

r
va

lu
e

User ID

Rotation -15° Y-Axis

Figure 25 Rotation results -15° Y

0

0,2

0,4

0,6

0,8

1

1,2

S0 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

A
n

sw
e

r
va

lu
e

User ID

Rotation -5° Y-Axis

Figure 26 Rotation results -5° Y

28

During the rotations around the Y-axis by -5 degrees (Figure 26), 63% of participants chose the

right answer in almost all, but not all cases, while 36% of participants gave the right answer in

100% of cases. The average answer for this rotation was 0.14.

During the rotations around the Y-axis by 0 degrees (Figure 27), which means no rotation at

all, 45% of participants chose the positive direction, whereas the other 36% chose the negative

direction and 27% chose the negative direction in 50% of cases and the positive direction in

50% of cases. On average, the answer was 0.54.

The rotations in the positive direction around the Y-axis provided the following data. During

the rotations by +5 degrees (Figure 28), 90.9% of participants chose the correct direction in

most cases, and the average answer was 0.86. After the rotations by +10 degrees (Figure 29),

0

0,2

0,4

0,6

0,8

1

1,2

S0 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

A
n

sw
e

r
va

lu
e

User ID

Rotation 0° Y-Axis

Figure 27 Rotation results 0° Y

Figure 28 Rotation results +5° Y

0

0,2

0,4

0,6

0,8

1

1,2

S0 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

A
n

sw
e

r
va

lu
e

User ID

Rotation +5° Y-Axis

29

also 90.9% of participants chose the correct direction, and the average answer was 0.87. As

for the rotation by +15 degrees, 90% of participants chose the right answer in most cases, and

the average answer was 0.94. These results show that participants were very sensitive to the

rotations around the Y-axis, particularly in the negative direction.

The third axis around which participants were rotated was the Z-axis, and the rotations were

made to the left or to the right. The results of the rotations around the Z-axis by -15 degrees

showed that 81% of participants chose the right direction in most cases, and the average

answer was 0.18. When rotated by -10 degrees, 54.5% of participants chose the correct

direction in all cases, while 18% chose the right answer in most cases and 27% chose the wrong

answer in most cases. The average answer was 0.22. After the rotations by -5 degrees (Figure

31), 90% of participants chose the right answer in most cases, and the average answer was

0.21.

0

0,2

0,4

0,6

0,8

1

1,2

S0 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

A
n

sw
e

r
va

lu
e

User ID

Rotation +10° Y-Axis

Figure 29 Rotation results +10° Y

30

As to the rotations around the Z-axis by 0 degrees, the majority of participants (54%) chose

the negative direction to the left in most cases, and the average answer was 0.45. When

rotated in the positive direction by +5 degrees, 81% of participants gave the correct answer,

and the average answer was 0.75. The rotations by +10 degrees led to the result that 81% of

participants chose the direction correctly, and the average answer was 0.77. After the

rotations by +15 degrees, 100% of participants gave the correct answer in most cases, while

the average answer was 0.85. These results showed that participants were sensitive to the

rotations around the Z-axis as well, but slightly less than around the Y-axis in both positive and

negative directions.

0

0,2

0,4

0,6

0,8

1

1,2

S0 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

A
n

sw
e

r
va

lu
e

User ID

Rotation -5° Z-Axis

Figure 31 Average values for rotations

0,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1,0

-15 -10 -5 0 5 10 15

A
n

sw
e

r
va

lu
e

Rotation in degrees

Average values for rotation

X Y Z

Figure 30 Rotation results -5° Z

31

The general average for all rotations by all angles around all axes is shown in Figure 31. The bar

chart in Figure 32 shows the percentage of the participants’ sensitivity to the rotations in

general. It can be seen from the chart that participants were more sensitive to the rotations

around the Y-axis and less sensitive to the rotations around the Z-axis, while also being more

sensitive to the rotations in the negative direction.

Further data from this part of the experiment, which is not covered here, is included in the

attachment (see Rotation results).

4.8.2 Translation

This part provides data received from the part of the experiment where participants were

translated along three axes. Participants gave the answers about the direction of the current

translation using a SteamVR Controller. This data was sorted by each axis and each value of

translation, similar to the data from the rotation part.

The answers of the participants were recorded as 0 for the negative direction and 1 for the

positive direction. Each translation by each value along each axis was repeated eight times for

each participant, and then all these answers were added up and divided by 8 to calculate

the average for each user, value and axis.

90 90

80

48

80 83
79

97
92

86

46

86 87
94

82
78 79

55

75 77
85

0

10

20

30

40

50

60

70

80

90

100

-15 -10 -5 0 5 10 15

P
e

rs
e

n
ta

ge
 o

f
co

rr
e

ct
 a

n
sw

e
rs

Rotation in degrees

Percentage of correct answers for rotations

X Y Z

Figure 32 Percentage of correct answers for rotations

32

Unfortunately, a failure occurred during the experiment, and the received data contained only

two values (0 and 3) for distance reference instead of 7 values from 0 to 6, where 0 is equal

to -0.15m, 1 is equal to -0.10m, 2 is equal to -0.5m, 3 is equal to 0m, 4 is equal to +0.5m, 5 is

equal to +0.10m, and 6 is +0.15m. After analysing the data, it was found that the value 3 was

equal to 0m as expected, but 0 was equal to other distance references: -0.15m, -0.10m, -0.5m,

+0.5m, +0.10m, +0.15m. As a result, the data received from the translation experiment part

was analysed for three axes and all users, but only for two distances: for zero and for other six

values. Therefore, it makes sense to compare the data by axes.

0

0,2

0,4

0,6

0,8

1

1,2

S0 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

Translation in X (>0>)m

User ID

Figure 33 Translation along the X-axis over (>0>) meters

Figure 34 Translation along the X-axis by 0 meters

0

0,2

0,4

0,6

0,8

1

1,2

S0 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

Translation X (0m)

User ID

33

The translations along the X-axis to the right or to the left by 0m (Figure 34) showed that

participants (63%) tended to choose the negative direction to the left, and the average answer

was 0.46. During the translations over bigger distances along the X-axis (Figure 33) to the right

or to the left, the average answer value was 0.48, which means approximately equal

distribution of answers in favour of both directions.

The translations up and down along the Y-axis by 0m showed that 72% of participants were

more likely to choose the negative direction, i.e. down, and the average answer was 0.39. The

answers for the translations over all other distances were divided almost equally, while the

average answer was 0.48.

The translations forward and backward along the Z-axis by 0m showed that 72% of

participants tended to choose the positive direction, i.e. forward, and the average answer

was 0.62. As for the translations over all other distances, the answers were divided almost

equally with an average value of 0.53; only 18% frequently selected the positive direction.

The general average for all translations along all axes is shown in Figure 35. This bar chart

shows that participants in general were more likely to choose the positive direction,

i.e. forward, when they were moved 0m along the Z-axis, and the negative direction,

i.e. down, when they were moved 0m along the Y-axis. For all other directions and values, the

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

>0> m 0m

A
n

sw
e

rs

Translation in meter°

X

Y

Z

Average answers for translations

Figure 35 General average for translations

34

answers were divided equally with a slight difference in the Z-axis, where the tendency was

towards the positive (forward) direction, as in the case with 0m.

Further data from this part of the experiment, which is not covered here, is included in the

attachment (see Translation results).

4.8.3 Personal estimation

After the experiment, participants were asked to answer 10 questions about their personal

estimation of the experiment, related to the immersion into the virtual scene and directly

aimed at the main task of the experiment. A number of statements had to be evaluated on a

scale from 1 to 5, where 1 was the minimum point and 5 was the maximum point. For other

questions, detailed answers were required. Full data from this part is provided in the

attachment (see Personal estimation data).

The first question in this section was: “How sure are you that you always chose the correct

answer?” The participants had to evaluate, on a 5-point scale, the correctness of their own

answers about the rotation and translation direction that they gave during the experiment.

No one rated the correctness of their answers at 5 or 1, and all values were between 2 and 3.

To be more specific, 27% of participants gave a rating of 4, while 54.5% of participants gave

a rating of 3 and another 18% of participants rated the correctness of their answers at 2. Based

on this data, it can be concluded that most participants were 62% sure that they had given

right answers, except Participant 5 and Participant 8.

The next question was directly aimed at the main task of the experiment and was about the

cognitive strategy used by the participants to detect rotations and translations. This question

required a detailed answer. All participants pointed out that they saw some evidences of their

reorientation. The majority of participants (63%) wrote that they were concentrated on some

specific points, lines and edges in the scene or the initial position of the objects, which helped

them to detect in which direction they were rotated or translated. Participant 6 “tried to build

a new impression for each trial”, while Participant 2 used the question text that appeared

after the manipulation to detect the reorientation direction. Participant 10 was focusing on

the general room geometry: “If the room moves in one direction, choose the other one.”

35

However, this strategy was useful not for all directions of manipulations. Participant 1 wrote:

“Looking straight ahead at some lines, if they rotate or move it is easy to detect if I was rotated.

Translating/Rotating up and down was harder to detect.”

An interesting and detailed assessment was given by Participant 9 whose main strategy to

detect the translations was to compare images before and after manipulations. To detect the

translations to the left and to the right, this participant used the windows in the virtual scene,

and to detect the up and down movements, the participant tried to focus on the position of

the image centre. It was difficult, but still possible for the participant to detect the translation

forward and backward if attention was focused on the image perspective. As for the rotations,

this participant used the difference between real orientation of the head and the presented

view and between the sense of balance and the presented view. The rotation around the Y-

axis was also pointed out: “This was very hard to recognize, often I was lost and didn't know

which orientation is real.”

Based on the information above, it can be concluded that the main tools to detect the

reorientations were the features in the presented virtual indoor environment, like the legs of

the table or window edges, and the displayed question text that unfortunately was also

rotated/translated with the participant’s field of view. It is interesting to see that some

participants were able to evaluate their own feelings, like head position and sense of balance,

in order to detect some manipulations.

The next question (No 2) deals with the immersion into the virtual scene: “Please rate your

sense of being in the virtual environment.” The participants had to evaluate their own sense

of “being there” on a 5-point scale, where 5 represents their normal experience of being in

a place, which means the maximum degree of immersion. No one rated the sense of being

there at minimum; Participants 1 and 2 rated their immersion at maximum value 5, while

54.5% of participants gave a rating of 4, another 18% of participants gave a rating of 3, and

Participant 6 rated it at 2. This data indicates a high level (76%) of participants’ immersion into

the virtual scene.

The next question (No 3) referred to the immersion as well. The participants were asked to

evaluate on a 5-point scale if there were times during the experiment when the virtual

environment felt like reality for them. Only Participant 1 rated this statement at the highest

36

level of 5 just as the previous question, while 36% of participants gave the same rating of 4

and another 36% rated it at 3. Interestingly, Participant 2 also gave a rating of 3, whereas the

previous question regarding the sense of presence he rated at the maximum level; the same

refers to Participant 0. In total, the virtual environment was the reality for participants during

the experiment for 64%, thus the grade of immersion falls down by 10% compared to the

previous question.

The following question (No 4) was also related to the immersion. The participants were asked

to evaluate the virtual scene on a scale from 1 to 5. They could choose between the virtual

scene appearing as a simple image to them (point 1) or more like a place they physically visited

(point 5). 27% of participants rated the virtual scene at 5, while 45% of participants rated it

at 4, 18% at 3, and 9% at 2. All in all, the majority of participants evaluated the scene as a place

that they visited, followed by the evaluation as an image that they have seen. The immersion

level increased up to 78%.

The following two questions were aimed at awareness of staying in the virtual world. In the

first question (No 5), participants were asked to rate the sense of being in the virtual

environment or elsewhere on a 5-point scale. No one gave the maximum rating, 72% of

participants gave a rating of 4, 18% rated it at 2 and 9% at 3, which means that participants

had a sense of being elsewhere at 70% and were not aware that they were actually in the

virtual environment. In the second question (No 6) concerning the awareness of being in the

virtual environment, participants were asked to rate how often they thought during the

experiment that they were really standing in the virtual environment. The point scale for this

question was 1 to 5, where 1 means strongly disagree with the statement and 5 means

strongly agree. Only 18% of participants did not agree with the statement and gave a rating

of 1, while 9% of participants totally agreed with the statement, 54.5% of participants gave

a rating of 4, 9% rated it at 3 and another 9% at 2. Overall, participants were 65% sure that

they were actually in the virtual environment; however, this result contradicts with the

previous one because in this case the higher was the number, the less was the immersion.

The last of immersion-related questions (No 7) was about memorizing, imagination and visual

memory of the virtual environment. The participants were asked to evaluate if the virtual

environment could be remembered and imagined just like any other real places the

37

participants had been to during the day. The point scale for this question was 1 to 5, where 1

means strongly disagree with the statement and 5 means strongly agree. No one gave a rating

of 1 or 2, while 18% of participants rated the statement at the highest level of 5, 54.5% of

participants rated it at 4 and 27% at 3. In total, the virtual environment was memorized and

remembered 78% as good as the real places where participants had been the same day.

To calculate the total level of immersion, questions No 2, 3, 4, 5 and 7 were considered, and

the total score for the immersion reached 73%.

The following question refers to the attention during the experiment. The participants were

asked to evaluate their level of attention on a 5-point scale. All participants reported a high

level of attention: 27% of participants rated their attention at 5, 63.6% of participants at 4,

and 9% of participants at 3. The total score for the attention was evaluated at 83%, which

means that participants were very concentrated during the experiment.

Next, participants were asked about their opinion if the experiment took too long. The point

scale for this question was 1 to 5, where 1 means strongly disagree with the statement and

5 means strongly agree. No one gave a rating of 1, 18% of participants rated this statement

at 5, 18% of participants at 4, 45% of participants at 3, and 18% of participants at 2. The total

score for the duration of the experiment was 67%, which indicated that participants felt that

the experiment took too much time and was too lengthy.

In the last part of the questionnaire, participants were given an opportunity to write some

additional comments about the experiment. This information is also useful for general

evaluation of the experiment; unfortunately, not all of the participants provided feedback.

As an additional comment, participant 1 wrote about the personal feeling that is was hard to

stand the whole time. Participant 5 wrote about the seen image and the noticeability of

reorientations: it was easier to recognize rotations because a new segment of the space could

be seen after rotations which was not the case with translations.

Participant 9 summed up the results of the experiment as follows: “the success rate of the

sensor is improved when staring at the "right" position. With perfect timing when the changes

in the scene occurred exactly during the eyes shut period, was really difficult to recognize the

changes in the environment.”

38

4.8.4 Motion sickness evaluation

Before and after the experiment, participants filled in the Kennedy Simulator Sickness

Questionnaire (SSQ) [1] to measure the VR induced side effects and symptoms, which lead to

three general factors: nausea, oculomotor distress and disorientation. This information is

important for the experiment because even when participants did not notice the reorientation

manipulations, their brain detected discrepancies between the actual movements, the sense

of balance and the virtual visual input. These discrepancies cause discomfort, such as nausea

and vertigo, which are the evidence that the manipulations were actually noticed.

The Kennedy Simulator Sickness Questionnaire contains 16 statements describing possible

side effects of visual simulators which have to be rated on a 4-point scale: none, slight,

moderate, severe. The questionnaire was presented to the participants in two languages:

German and English (see Simulator Sickness Questionnaire in attachment). The data was

collected before and after the experiment to compare the initial and final physical condition

of the participants.

To evaluate the SSQ results (see Personal estimation data in attachment), the answers and

symptoms were coded in numbers: 0 for none, 1 for slight, 2 for moderate and 3 for severe

(Table 2), and then converted into a bar chart to visualise the data (Figure 36, Figure 37).

At the beginning of the experiment (Table 2, Figure 36), the majority of participants did not

have any symptoms from the SSQ, except for Participant 10 who reported having some

symptoms, like headache, general discomfort, sweating and others. Participant 5 was also

tired.

0
0,5

1
1,5

2
2,5

3
3,5

4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

SSQ average before experiment

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16Symptoms

Figure 36 Kennedy SSQ results before the experiment

39

Table 2 Kennedy SSQ before the experiment

After the experiment (Table 3, Figure 37), the majority of participants reported having some

of the symptoms in varying degrees. Only 36% of participants did not show any symptoms.

The worst results of all were shown by Participant 7 who had all the symptoms, some of which

were strongly expressed. Participants 6 and 8 were also affected by most of the side effects.

Table 3 Kennedy SSQ after the experiment

Kennedy SSQ before

Symptoms/ User ID 0 1 2 3 4 5 6 7 8 9 10

1 General discomfort 0 0 0 0 0 0 0 0 0 0 1

2 Fatigue 0 0 0 0 0 1 0 0 0 0 1

3 Headache 0 0 0 0 0 0 0 0 0 0 1

4 Eyestrain 0 0 0 0 0 0 0 0 0 0 1

5 Difficulty focusing 0 0 0 0 0 0 0 0 0 0 1

6 Increased salivation 0 0 0 0 0 0 0 0 0 0 0

7 Sweating 0 0 0 0 0 0 0 0 0 0 2

8 Nausea 0 0 0 0 0 0 0 0 0 0 0

9 Difficulty concentrating 0 0 0 0 0 0 0 0 0 0 1

10 Fullness of head 0 0 0 0 0 0 0 0 0 0 1

11 Blurred vision 0 0 0 0 0 0 0 0 0 0 1

12 Dizzy (eyes open) 0 0 0 0 0 0 0 0 0 0 0

13 Dizzy (eyes closed) 0 0 0 0 0 0 0 0 0 0 0

14 Vertigo 0 0 0 0 0 0 0 0 0 0 0

15 Stomach awareness 0 0 0 0 0 0 0 0 0 0 0

16 Burping 0 0 0 0 0 0 0 0 0 0 0

Kennedy SSQ after

Symptoms/ User ID 0 1 2 3 4 5 6 7 8 9 10

1 General discomfort 0 1 0 0 0 1 1 2 1 0 1

2 Fatigue 0 2 1 0 0 1 1 3 1 0 2

3 Headache 0 0 0 0 0 1 1 2 0 0 2

4 Eyestrain 0 1 1 0 0 0 2 2 0 0 2

5 Difficulty focusing 0 0 0 0 0 0 1 2 0 0 1

6 Increased salivation 0 0 0 0 0 0 1 2 0 0 0

7 Sweating 0 2 0 0 0 0 1 2 1 1 1

8 Nausea 0 0 1 0 0 0 1 1 1 0 0

9 Difficulty concentrating 0 0 0 0 0 0 1 3 0 0 0

10 Fullness of head 0 0 0 0 0 0 1 3 1 0 0

11 Blurred vision 0 0 0 0 0 0 1 2 0 0 0

12 Dizzy (eyes open) 0 0 0 0 0 0 1 2 1 1 0

13 Dizzy (eyes closed) 0 0 0 0 0 0 1 2 1 1 0

14 Vertigo 0 0 0 0 0 0 1 1 0 1 0

15 Stomach awareness 0 0 0 0 0 0 1 1 0 0 0

16 Burping 0 0 0 0 0 0 1 1 0 0 0

40

Finally, all users’ symptoms were combined into two groups to obtain general information

about the side effects of the experiment: nausea and oculomotor distress, according to the

Validation of the French-Canadian version of the SSQ developed by the UQO Cyberpsychology

Lab [24]. Symptoms 1 + 6 + 7 + 8 + 12 + 13 + 14 + 15 + 16 fall into the category of nausea, and

symptoms 2 + 3 + 4 + 5 + 9 + 10 + 11 into the category of oculomotor distress. First, the average

value was calculated for each symptom, and then the values for particular symptoms were

added up. As a result, the following values were obtained: for nausea 0.364 in the beginning

and 3.909 in the end; for oculomotor distress 0.636 before the experiment and 7.454 after the

experiment.

These results indicate that the reorientation manipulations were detected by the brain areas

responsible for the sense of balance because of the discrepancy between the actual

movements and the virtual visual input.

0

0,5

1

1,5

2

2,5

3

3,5

4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

SSQ average after experiment

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16Questions

Figure 37 Kennedy SSQ results after the experiment

41

5 Discussion

The main purpose of this study was to prove the hypothesis that the Redirected Walking in VR

is possible during eye blinking. The findings suggest that participants were able to recognize

the manipulations in most cases, but the results were affected by limitations of the

experiment.

The first possible explanation for the received results is the static position of the participants

as they were standing in one place during the whole experiment. The virtual scene and the

objects were static too because a stable body position was expected to ensure more precise

measurement of the user’s sensitivity to the manipulations than a dynamic one. The reason

for this is that attention to small changes is lower during body motion. Due to this static

position, the users were able to compare two seen images of the virtual scene before and

after the manipulations. They were looking at the same part of the scene all the time, so they

focused their attention on some particular points or edges, and this helped them to detect the

changes.

As indicated by the participants in the personal estimation part concerning the cognitive

strategy used to detect rotations and translations, the main tools to detect the reorientations

were the features, such as furniture, windows and other objects in the virtual indoor

environment, which was an exact replication of the laboratory where the experiment was

conducted. Some features of the experiment design, like the question with the answers, which

appeared in front of the participants, also moved during the manipulations and helped the

participants to recognize the correct direction of the reorientation. However, this was only

possible due to the fact that the participants’ position was stable; therefore, they were able

to fix the gaze on a single point to define the rotation or to see changes of perspective in the

VR scene picture and generally to compare two VR scene pictures after and before the

reorientation.

In addition, this static position caused discrepancies between the actual movements and the

virtual visual input, which were detected by the brain areas responsible for the sense of

balance and resulted in increased nausea and oculomotor distress according to the Kennedy

SSQ. One participant directly pointed out the discrepancy between the head position and the

42

sense of balance. Based on this, it can be assumed that a more appropriate method would

have been to add the reorientations to the actual movements, so that the participants were

rotated by 30 degrees in the real world and by 40 degrees in the virtual scene.

As an additional comment, Participant 1 wrote about his own feeling that is was hard to stand

the whole time. Besides, most participants indicated that the experiment was too long. The

experiment included all in all 356 runs of translations and rotations, each followed by

a question which appeared 1.5 seconds after the manipulation and had to be answered. It

took the participants a few seconds to answer the questions in VR; as a result, one part alone,

with rotations or translations, took 20 to 30 minutes. In addition, the participants needed

a break between these two parts because the HTC Vive HMD has no cooling and gets warm

after a certain period. Again, there was an additional heat source, the LED, so these conditions

were unpleasant for extended periods. In addition to that, the user study included another

part with questionnaires, which the participants had to fill in, and this task also took up to 30

minutes.

Basically, to decrease the experiment time and improve the experiment, only two axes could

be involved into the reorientation; the rotations around the X- and Z-axes, for example, were

not necessary in the case of RW, and the translations along the Y-axis could also be omitted.

Another time-consuming and difficult process during the experiment was the sensor

calibration. First, the position of the LDR had to be adjusted and the threshold related to the

closed eyelid had to be determined for each participant because of different head size and

facial morphology. It was difficult to correctly position and secure the LDR inside the HMD due

to hindered access and limited space. Consequently, two participants could not continue to

participate in the experiment. Also, not each blinking movement was detected by the sensor,

so participants sometimes had to blink more than once, and this took plenty of time and was

unpleasant because the normal human blinking frequency is approximately once per 4-

6 seconds.

Sometimes the blinking was detected not during the closing, but during the opening of the

eye, so that the participant was rotated or translated while the eyes were already open and

the redirection that occurred at this moment was seen directly. The evidence of this problem

is the answer of Participant 1 from the personal estimation part about the cognitive strategy

43

to recognize the rotations and translations. This participant saw the rotations and translations

while opening the eyes, but the particular reason for this disadvantage is not clear. Maybe it

was just delay in performance, maybe the blink was detected when the eyes started to open,

or the chosen threshold that was supposed to differentiate the two eye states was not

completely correct and was reached by opening the eyes instead of closing. Maybe it was

influenced by particular features of the eyes of this certain participant. Likewise, Participant 9

noticed that the exact sensor position influenced the success of the experiment.

Additionally, the experiment was influenced by the eye blink sensor function and the

algorithm time and force. As some participants pointed out, with the correct sensor position

and the perfect timing of the eye shutting and reorientation it was difficult to recognize the

changes in the virtual environment.

44

6 Conclusion

The main objective of the bachelor thesis was to prove the hypothesis that the Redirected

Walking in VR is possible during eye blinking. In particular, it was expected that participants

would not be able to notice manipulations by changing their position by rotation and

translation if these manipulations occurred during eye blinking. This hypothesis was based on

the theory about neural mechanism of blink suppression [12] [13] and the theory that the

human brain believes that the world is stable during the eye movements [9].

To implement this project, it was necessary to detect the moment when a person is blinking,

namely when the eyelid starts to go down or is already closed, to start the algorithm. Several

available EOG and video-based eye trackers were investigated with a view to be used for this

task. However, due to their complexity or shortcomings: EOG is difficult to procure and to use,

and the given Eye Tribe eye tracker [16] was too bulky and unsuitable for use in the HMD, it

was decided to solve this problem in a more efficient and cheaper way. Based on the eye

characteristics, an eye blink sensor was developed and used for the experiment.

The next step was to design an experiment in the virtual environment during which

participants were rotated about or translated along three axes by various angles and over

various distances. During the experiment, participants were staying in one place because it

was assumed that this position should ensure precise measurement of the user’s sensitivity

to the manipulations and that attention to small changes is lower during body motion because

of human cognitive abilities [6]. The participants were asked directly in the VR environment

after each manipulation in which direction they were rotated or translated; this data contains

the information about participants’ ability to recognize the manipulation. Additionally, the

ability to detect the reorientations was proved by the physical side effects, which were

evaluated by the Kennedy SSQ questionnaire [1], and the personal estimation questions.

The data received from the answers given directly during the experiment in the VR

environment showed that participants in general were sensitive to the rotations, in particular

more sensitive to the rotations around the Y-axis, less sensitive to the rotations around the Z-

axis, and generally more sensitive to the rotations in the positive direction around all axes. In

45

the personal estimation part, 62% of participants responded that they were sure that they

gave right answers.

When rotated around the X-axis by -15 and -10 degrees, 90% of participants were able to

determine the direction of the manipulation correctly. After the rotations by -5, 5, 10 and

15 degrees, 85% of participants, on average, gave correct answers.

When rotated around the Y-axis by ±15 and -10 degrees, over 90% of participants were able

to detect the correct direction of the manipulation. After the rotations by ±5 and +10 degrees,

the score was over 85%.

When rotated around the Z-axis by ±15 degrees, over 80% of participants were able to

determine the correct direction of the manipulation, and during the rotations around the

same axis by other angles, the score was over 75%.

During the translation part of the experiment, a failure occurred so that the data was received

for only two distances: for translation by 0m and by all others (±0.15, ±0.10, ±0.5).

Nevertheless, it was possible to evaluate the data, and it was found that participants in general

were more likely to choose the positive direction, i.e. forward, when they were translated

along the Z-axis by 0m, and the negative direction, i.e. down, when they were translated along

the Y-axis by 0m. For all other directions and values, the answers were divided equally with

a slight difference in the Z-axis, where the tendency again was towards the positive direction.

Some of the participants pointed out in the personal estimation part that it was difficult to

detect translations up and down (along the Y-axis) and rotations up and down (around the X-

axis). In addition, some participants found it difficult to detect translations forward and

backward.

The Kennedy SSQ [1] evaluation showed that the physical side effects had increased after the

experiment: the nausea value grew from 0.3 to 3.9, and the oculomotor distress value grew

from 0.6 to 7.4. This data shows that the brain was able to notice the manipulations because

of the discrepancy between the actual movements and the virtual visual input. Additionally,

some participants could detect the manipulations based on the difference between the head

position and the sense of balance.

46

The performance of the virtual scene and the HTC Vive HMD was good. According to the

personal estimation part, the participants felt immersed in the virtual world. The total score

for the immersion calculated from the participants’ responses was 73%.

Based on the results listed above, it can be concluded that the initial hypothesis was confirmed

only partly, but this can be attributed to the specifics and limitations of the experiment. The

data received from the questionnaires and during the experiment clearly showed that not the

reorientation itself, but the changes in the seen part of the virtual scene and the discrepancy

between the real and virtual movements were recognizable. Unfortunately, sometimes the

manipulations were seen directly, as the algorithm started at the wrong moment. However,

some participants of the pre-study and the final experiment argued that they did not notice

the reorientations when they occurred synchronously with the eye closure.

The above-mentioned facts lead to the conclusion that reorientation during eye blinking is

possible with the limitations and findings of this experiment taken into account. First and

foremost, perfect synchronization of sensor reaction, eyelid closure and reorientation is

needed. Secondly, the changes in the virtual scene have to be introduced exactly during the

eyes shut period. Another important factor is the user’s body and head motion; one way to

hide the discrepancy between the body motion and the sense of balance is to load cognitive

abilities and to prevent users from focusing on static scene objects because during the natural

locomotion the user’s FOV is constantly changing. With all the above factors taken into

account, successful redirection is possible.

6.1 Future Work

Based on the findings of this study, it is suggested for future experiments involving eye blink

detection that a good eye tracker specially designed to work with the HMD be used, such as

the “Pupil” from Pupil Labs [25], which has an extra Monocular Add-on Cup for Oculus Rift

DK2. Alternatively, the eye blink sensor developed in this study can be improved by a high-

precision positioning system with three degrees of freedom. Yet another way is to use two or

more sensors for both eyes to obtain more accurate data; for example, the reorientation

algorithm could start, only if both sensors generated the same output.

47

It is also worth mentioning that people blink infrequently, once per 4–6 seconds, and that is

not often enough to perform redirections in small rooms [12].

Another point that should be considered for future experiments is that changes are more

easily detected in a small virtual indoor environment than in a virtual outdoor environment,

like nature.

It is necessary to involve all possible human perception channels to reduce cognitive abilities

and attention to details. Therefore, it can be suggested for future experiments that

participants walk and move their body and head freely; this would also make the experiment

more interesting and easier for participants. In addition, the scene should contain sounds and

some changing details, such as butterflies or sea waves, like in the Tuscany demo scene for

Oculus Rift DK2 [19], to capture the users’ attention and distract them from small

manipulations.

To avoid the discrepancy between real and virtual movement and to decrease the motion

sickness effect, the reorientation should be added to the actual movements.

Finally, to save time and improve the efficiency of the RW experiment, the number of rotations

and translations could be cut. The experiment conducted in this study showed that it would

be enough to perform only the rotations around the Y-axis (left, right) and the translations

along the X-axis (left, right) and the Z-axis (forward, backward).

48

7 References

[1] R. S. Kennedy, N. E. Lane, K. S. Berbaum and M. G. Lilienthal, 1993. [Online]. Available:

http://w3.uqo.ca/cyberpsy/docs/qaires/ssq/SSQ_va.pdf. [Accessed July 2016].

[2] S. Razzaque, M. C. Whitton and Z. Kohn, “Redirected walking.,” Proceedings of

EUROGRAPHICS., pp. 105-106, 09 2001.

[3] S. Razzaque, D. Swapp, M. Slater, M. Whitton and A. Steed, “Eight Eurographics

Workshop on Virtual Environments.,” Proceeding EGVE '02., pp. 123 - 130, 2002.

[4] F. Steinicke, G. Bruder, J. Jerald, H. Frenz and M. Lappe, “Estimation of detection

thresholds for redirected walking techniques. Visualization and Computer Graphics,”

IEEE Transactions on, vol. 16, pp. 17-27, 2010.

[5] C. T. Neth, J. L. Souman, D. Engel, U. Kloos, H. H. Bulthoff and B. J. Mohler, “Velocity-

dependent dynamic curvature gain for redirected walking,” Visualization and Computer

Graphics, IEEE Transaction, vol. 18 (7), 2012.

[6] G. Bruder, P. Lubos and S. F., “Cognitive Resource Demands of Redirected Walking.,” In

Visualization and Computer Graphics, 2015 IEEE VR, vol. 21, pp. 539-544, 23 03 2011.

[7] E. A. Suma, S. Clark, D. Krum, S. Finkelstein, M. Bolas and Z. Warte, “Leveraging change

blindness for redirection in virtual environments,” In Virtual Reality Conference (VR),

2011 IEEE, pp. 159-166, 03 2011.

49

[8] T. Peck, H. Fuchs and M. C. Whitton, “An Evaluation of Navigational Ability Comparing

Redirected Free Exploration with Distractors to Walking-in-Place and Joystick

Locomotion Interfaces.,” in Proc. IEEE Virtual Real Conf. 2011 Mar., 2011.

[9] B. Bolte and M. Lappe, “Subliminal Reorientation and Repositioning in Immersive Virtual

Environments using Saccadic Suppression.,” Visualization and Computer Graphics., 23 03

2015.

[10] “riftinfo.com,” 25 Dezember 2015. [Online]. Available: http://riftinfo.com/oculus-rift-

motion-sickness-11-techniques-to-prevent-it. [Accessed 10 Januar 2016].

[11] “www.enzyklo.de,” 2014. [Online]. Available: http://www.enzyklo.de/Begriff/Lidschlag.

[Accessed 21 November 2015].

[12] F. H. Adler, “Physiology of the eye, clinical application.,” St. Louis, Mosby, 1953, pp. 8-

15.

[13] D. Bristow, J. Haynes, R. Sylvester, C. Frith and G. Rees, “Blinking suppresses the neural

response to unchanging retinal stimulation.,” Current Biology., vol. 14, p. 1296–1300,

2005.

[14] C. Sforza, M. Rango, D. Galante, N. Bresolin and V. Ferrario, “Spontaneous blinking in

healthy persons: an optoelectronic study of eyelid motion.,” Ophthalmic Physiol. Opt.,

vol. 28(4), p. 345–353, Jul 2008.

[15] A. Al-Rahayfeh and M. Faezipour, “Enhanced Frame Rate for Real-Time Eye,” Systems,

Applications and Technology Conference (LISAT), IEEE Long Island, pp. 1 - 6, May 2013.

50

[16] “http://theeyetribe.com/,” [Online]. Available: www.http://theeyetribe.com/.

[Accessed August 2015].

[17] M. Dr. Wittlich, “TROS Laserstrahlung Teil 3: Maßnahmen zum Schutz vor Gefährdungen

durch Laserstrahlung.,” in Technische Regel zur Arbeitsschutzverordnung zu künstlicher

optischer Strahlung - TROS Laserstrahlung, Vols. [Nr. 12-15], GMBl, Ed., 2015, p. 281 .

[18] RS Components , “Data Sheet Light dependent resistors,” RS Components , Corby,

Northants, 1997.

[19] “developer3.oculus.com,” [Online]. Available:

https://developer3.oculus.com/downloads/. [Accessed February 2016].

[20] “store.steampowered.com,” [Online]. Available:

http://store.steampowered.com/about/. [Accessed June 2016].

[21] “unity3d.com,” [Online]. Available: http://unity3d.com/. [Accessed June 2016].

[22] “www.arduino.cc,” [Online]. Available: https://www.arduino.cc/. [Accessed Mai 2016].

[23] “www.virtual-reality-brillen-vergleich.de,” [Online]. Available: http://www.virtual-

reality-brillen-vergleich.de/vr-brillen-vergleich/oculus-rift-vs-htc-vive. [Accessed Juli

2016].

[24] S. Bouchard, G. Rouillard and P. Renaud, “Revising the factor structure of the Simulator

Sickness Questionnaire,” Acte de colloque du Annual Review of Cyber Therapy and

Telemedicine, vol. 5, pp. 128-138, 2007.

51

[25] “https://pupil-labs.com/pupil/,” [Online]. [Accessed 30 Juli 2016].

[26] “learn.adafruit.com,” [Online]. Available: https://learn.adafruit.com/adafruit-neopixel-

uberguide/arduino-library. [Accessed July 2016].

[27] “www.arduino.cc,” [Online]. Available: https://www.arduino.cc/en/Guide/HomePage.

[Accessed July 2016].

[28] “forum.arduino.cc,” [Online]. Available:

http://forum.arduino.cc/index.php?topic=40001.0. [Accessed June 2016].

[29] “http://www.crsltd.com,” [Online]. Available: http://www.crsltd.com/tools-for-vision-

science/eye-tracking/bluegain-eog-biosignal-amplifier/. [Accessed August 2015].

[30] “widi-elektronik.de,” [Online]. Available: http://widi-elektronik.de/Widi-

Katalog%202012-1012.pdf. [Accessed Juni 2016].

52

8 Attachment

8.1 Arduino source code

This script contains the code for Arduino Uno to control the Adafruit NeoPixel LED strip RGBW

and LDR4 [26] [22] [27]

#include <SPI.h>

#include <Adafruit_NeoPixel.h>

#include <avr/power.h>

#include<stdlib.h>

#define PIN 5

#define LEDNUM 3

#define SET_PIXELS_COLOR 0

#define SET_STRIP_COLOR 1

#define UPDATE_STRIP 2

Adafruit_NeoPixel strip = Adafruit_NeoPixel(LEDNUM, PIN, NEO_GRB +

NEO_KHZ800);

unsigned char mode;

unsigned char index;

unsigned char red;

unsigned char green;

unsigned char blue;

int light = 0;

int light_sensitivity = 500;

void setup()

{

 #if defined (__AVR_ATtiny85__)

 if (F_CPU == 16000000) clock_prescale_set(clock_div_1);

 #endif

 strip.begin();

 //strip.setBrightness(255);

 strip.show(); // Initialize all pixels to 'off'

 Serial.begin(57600);

 //Photocell code;

 pinMode(0, INPUT);

 Serial.begin (57600);

}

void loop()

{

 if(Serial.available() >= 5)

 {

 mode = Serial.read();

 index = Serial.read();

 red = Serial.read();

 green = Serial.read();

 blue = Serial.read();

 if(mode == SET_PIXELS_COLOR)

53

 {

 setColor(index, red, green, blue);

 }

 else if(mode == SET_STRIP_COLOR)

 {

 for(uint16_t indexLED=0; indexLED<strip.numPixels(); indexLED++)

 {

 setColor(indexLED, red, green, blue);

 }

 updateStrip();

 }

 else if(mode == UPDATE_STRIP)

 {

 updateStrip();

 delay(10);

 }

 }

 //Photocell code;

 light = analogRead(0);

 Serial.write(light);

 //Serial.println(light);

 delay(33);

}

void setColor(unsigned char index, unsigned char red, unsigned char green,

unsigned char blue)

{

 if(index >= strip.numPixels()) return;

 setColor(index, strip.Color(red, green, blue));

}

void setColor(unsigned char index, uint32_t color)

{

 if(index >= strip.numPixels()) return;

 strip.setPixelColor(index, color);

}

void updateStrip()

{

 strip.show();

}

8.2 Unity3D source code

8.2.1 Unity3D source code for communication with Arduino

This C# script is part of Unity3D application and is designed to establish connection with

Arduino via Communication Port (COM7) to receive the data from the LDR and to control the

LED colour and intensity [28].

using UnityEngine;

using System;

using System.Collections;

using System.Collections.Generic;

using System.Text;

using System.IO.Ports;

using System.Threading;

54

public class LED2 : MonoBehaviour

{

 public static byte SET_PIXELS_COLOR = 0;

 public static byte SET_STRIP_COLOR = 1;

 public static byte UPDATE_STRIP = 2;

 private static byte[] data = new byte[5];

 public float intensityFactor = 0.25f;

 System.Random rnd = new System.Random();

 [SerializeField] //to control the values on GUI;

 TranslationTrainingState translationTraining;

 [SerializeField]

 TranslationTrialState translationTrial;

 [SerializeField]

 RotationTrainingState rotationTraining;

 [SerializeField]

 RotationTrialState rotationTrial;

 [SerializeField]

 String portName = "COM7";

 [SerializeField]

 int baudRate = 57600;

 private SerialPort sp;

 public int ArduinoLight; // output for GUI

 [SerializeField]

 int thresholdBlink = 0;

 [SerializeField]

 int timeout = 1;

 public bool blocked = false;

 void Start()//open connection with COM7 Port;

 {

 sp = new SerialPort(portName, baudRate, Parity.None, 8,

StopBits.One);

 sp.ReadTimeout = 1;

 sp.Open();

 }

 void Update()//read the data from LDR;

 {

 StartCoroutine

 (

 AsynchronousReadFromArduino(processSensorValue, timeout)

);

 }

 public void processSensorValue(int value)

 {

 try

 {

 //start the reorientation trials;

if (value == thresholdBlink && blocked == false)

 {

 blocked = true;

 translationTraining.userHasBlinked = true;

 translationTrial.userHasBlinked = true;

 rotationTraining.userHasBlinked = true;

 rotationTrial.userHasBlinked = true;

 }

 }

55

 catch (Exception e)

 {

 Debug.Log("Error processing sensor value: " + e.Message);

 }

 }

 public IEnumerator AsynchronousReadFromArduino(Action<int> callback,

float timeout)

 {

 DateTime initialTime = DateTime.Now;

 DateTime nowTime;

 TimeSpan diff = default(TimeSpan);

 do

 {

 // A single read attempt

 try

 {

 ArduinoLight = sp.ReadByte();

 }

 catch (Exception e)

 {

 Debug.Log("Error " + e.Message);

 }

 if (ArduinoLight != 0)

 {

 callback(ArduinoLight);

 yield return null;

 }

 else

 yield return new WaitForSeconds(0.05f);

 nowTime = DateTime.Now;

 diff = nowTime - initialTime;

 } while (diff.Milliseconds < timeout);

 yield return null;

 }

 // Close connection with Arduino;

 public void Close()

 {

 sp.Close();

 }

 public void OnGUI()

 {

 if (Input.GetKeyDown(KeyCode.Space))

 {

 setStripColor

 (

 (byte)(rnd.Next(0, 255) * intensityFactor),

 (byte)(rnd.Next(0, 255) * intensityFactor),

 (byte)(rnd.Next(0, 255) * intensityFactor)

);

 }

 else if (Input.GetKeyDown(KeyCode.Z))

 {

 setStripColor(0, 0, 0);

56

 }

 else if (Input.GetKeyDown(KeyCode.G))

 {

 setStripColor(0, 255, 0);

 }

 else if (Input.GetKeyDown(KeyCode.W))

 {

 setStripColor(255, 255, 255);

 }

 else if (Input.GetKeyDown(KeyCode.A))

 {

 byte[] colors = new byte[12]

 {

 0, 255, 0, 0,

 1, 0, 255, 0,

 2, 0, 0, 255

 };

 setPixelsColor(colors);

 }

 }

 private void setPixelsColor(byte[] indexColorValue)

 {

 if (indexColorValue.Length % 4 != 0) return;

 for (int i = 0; i < indexColorValue.Length / 4; i++)

 {

 data[0] = SET_PIXELS_COLOR;

 data[1] = indexColorValue[(4 * i) + 0];

 data[2] = indexColorValue[(4 * i) + 1];

 data[3] = indexColorValue[(4 * i) + 2];

 data[4] = indexColorValue[(4 * i) + 3];

 sp.Write(data, 0, data.Length);

 Debug.Log("PIXELS COLOR >>> " + data[1] + " : " + data[2] + " :

" + data[3] + " : " + data[4]);

 }

 data[0] = UPDATE_STRIP;

 data[1] = data[2] = data[3] = data[4] = 255; // index and RGB values

are discarded

 sp.Write(data, 0, data.Length);

 }

 private void setStripColor(byte red, byte green, byte blue)

 {

 data[0] = SET_STRIP_COLOR;

 data[1] = 255; // index is discarded

 data[2] = red;

 data[3] = green;

 data[4] = blue;

 sp.Write(data, 0, data.Length);

 Debug.Log("STRIP COLOR >>> " + red + " " + green + " " + blue);

 }

}

57

8.2.2 Unity3D source code for rotation

8.2.2.1 Unity3D source code for rotation experiment controller

using UnityEngine;

using System.Collections;

using System.Collections.Generic;

using System;

public class BlinkRotationExperimentController : ExperimentController {

 [SerializeField]

 List<Transform> possibleTransforms;

 private List<Vector3> possibleAxises;

 private List<float> possibleDegrees;

 private int repetitions;

 // Use this for initialization

 void Start () {

 possibleAxises = new List<Vector3>();

 possibleAxises.Add (Vector3.up);

 possibleAxises.Add (Vector3.right);

 possibleAxises.Add (Vector3.forward);

 possibleDegrees = new List<float>();

 possibleDegrees.Add (-15f);

 possibleDegrees.Add (-10f);

 possibleDegrees.Add (-5f);

 possibleDegrees.Add (0f);

 possibleDegrees.Add (5f);

 possibleDegrees.Add (10f);

 possibleDegrees.Add (15f);

 repetitions = 8;

 FillTrials();

 }

 // Update is called once per frame

 protected override void Update()

 {

 base.Update();

 }

 protected override void FillTrials()

 {

 currentTrials = new List<ExperimentTrial>();

 trainingTrials = new List<ExperimentTrial>();

 for (int i = 0; i < 10; i++)

 {

 int chosenTransform = UnityEngine.Random.Range(0,

possibleTransforms.Count - 1);

 int chosenAxis = UnityEngine.Random.Range(0,

possibleAxises.Count - 1);

 int chosenDegree = UnityEngine.Random.Range(0,

possibleDegrees.Count - 1);

 TrainingTrials.Add(new BlinkRotationExperimentTrial(i,

possibleAxises[chosenAxis], possibleDegrees[chosenDegree],

58

possibleTransforms[chosenTransform]));

 }

 int trialNumber = 0;

 for(int i = 0; i < possibleAxises.Count; i++)

 {

 for(int j = 0; j < possibleDegrees.Count; j++)

 {

 for(int k = 0; k < repetitions; k++)

 {

 int chosenTransform = UnityEngine.Random.Range

(0, possibleTransforms.Count - 1);

 CurrentTrials.Add(new

BlinkRotationExperimentTrial(trialNumber, possibleAxises[i],

possibleDegrees[j], possibleTransforms[chosenTransform]));

 trialNumber++;

 }

 }

 }

 ExtensionMethods.Shuffle (CurrentTrials);

 }

}

8.2.2.2 Unity3D source code for rotation trial

using UnityEngine;

using System.Collections;

public class BlinkRotationExperimentTrial : ExperimentTrial {

 public int result;

 private Vector3 axis;

 private float degree;

 private Transform transform;

 public Vector3 Axis

 {

 get

 {

 return axis;

 }

 }

 public float Degree

 {

 get

 {

 return degree;

 }

 }

 public Transform Transform

 {

 get

 {

59

 return transform;

 }

 }

 public BlinkRotationExperimentTrial(int trialnum, Vector3 _axis, float

_degree, Transform _transform) : base(trialnum)

 {

 axis = _axis;

 degree = _degree;

 transform = _transform;

 }

}

8.2.2.3 Unity3D source code for rotation training state

using UnityEngine;

using System.Collections;

using UnityEngine.UI;

public class RotationTrainingState : ExperimentState

{

 [SerializeField]

 Transform userPosition;

 [SerializeField]

 Transform userPositionAfterBlink;

 [SerializeField]

 LED2 led;

 [SerializeField]

 Canvas c;

 [SerializeField]

 Text text;

 [SerializeField]

 Text leftButton;

 [SerializeField]

 Text rightButton;

 private bool blinked = false;

 public bool userHasBlinked = false;

 public override ExperimentState HandleInput(ExperimentController ec)

 {

 if ((Input.GetKeyDown(KeyCode.LeftArrow) && blinked) ||

(SteamVR_Controller.Input(SteamVR_Controller.GetDeviceIndex(SteamVR_Control

ler.DeviceRelation.FarthestRight)).GetPressDown(SteamVR_Controller.ButtonMa

sk.Grip) && blinked)) // 2AFCT left

 {

 Debug.Log("Left");

 ec.TrainingTrialIndex++;

 blinked = false;

 led.blocked = false;

 // Hide 2AFCT question

 c.gameObject.SetActive(false);

 userPositionAfterBlink.rotation = Quaternion.identity;

 }

 if ((Input.GetKeyDown(KeyCode.RightArrow) && blinked) ||

(SteamVR_Controller.Input(SteamVR_Controller.GetDeviceIndex(SteamVR_Control

60

ler.DeviceRelation.FarthestRight)).GetPressDown(SteamVR_Controller.ButtonMa

sk.Trigger) && blinked)) // 2AFCT right

 {

 Debug.Log("Right");

 ec.TrainingTrialIndex++;

 blinked = false;

 led.blocked = false;

 // Hide 2AFCT question

 c.gameObject.SetActive(false);

 userPositionAfterBlink.rotation = Quaternion.identity;

 }

 if (ec.TrainingTrialIndex >= ec.TrainingTrials.Count)

 {

 return nextState;

 }

 else

 {

 BlinkRotationExperimentTrial nextTrial =

ec.TrainingTrials[ec.TrainingTrialIndex] as BlinkRotationExperimentTrial;

 userPosition.position = nextTrial.Transform.position;

 userPosition.rotation = nextTrial.Transform.rotation;

 return this;

 }

 }

 public override void UpdateState(ExperimentController ec)

 {

 BlinkRotationExperimentTrial trial =

ec.TrainingTrials[ec.TrainingTrialIndex] as BlinkRotationExperimentTrial;

 if (trial != null)

 {

 if ((Input.GetKeyDown(KeyCode.Space) && blinked == false) ||

(userHasBlinked && blinked == false)) // Blink

 {

 Debug.Log("Blinked");

 blinked = true;

 userHasBlinked = false;

 userPositionAfterBlink.Rotate(trial.Axis, trial.Degree);

 text.text = "In which direction was your view rotated?";

 if (trial.Axis.Equals(Vector3.right))

 {

 leftButton.text = "SideButton = left";

 rightButton.text = "BackButton = right";

 }

 if (trial.Axis.Equals(Vector3.up))

 {

 leftButton.text = "SideButton = left";

 rightButton.text = "BackButton = right";

 }

 if (trial.Axis.Equals(Vector3.forward))

 {

 leftButton.text = "SideButton = down";

 rightButton.text = "BackButton = up";

 }

 StartCoroutine(ShowGUI()); // Show 2AFCT

question

 }

 }

 else

 {

61

 throw new UnityException("couldn't cast trial as

BlinkRotationExperimentTrial");

 }

 c.gameObject.transform.position = Camera.main.transform.position +

Camera.main.transform.forward * 2;

 c.gameObject.transform.rotation = Camera.main.transform.rotation;

 }

 IEnumerator ShowGUI()

 {

 yield return new WaitForSeconds(1);

 c.gameObject.SetActive(true);

 }

}

8.2.2.4 Unity3D source code for rotation trial state

using UnityEngine;

using System.Collections;

using UnityEngine.UI;

public class RotationTrialState : ExperimentState {

 [SerializeField]

 Transform userPosition;

 [SerializeField]

 Transform userPositionAfterBlink;

 [SerializeField]

 LED2 led;

 [SerializeField]

 Canvas c;

 [SerializeField]

 Text text;

 [SerializeField]

 Text leftButton;

 [SerializeField]

 Text rightButton;

 private bool blinked = false;

 public bool userHasBlinked = false;

 private string results = "";

 public override ExperimentState HandleInput(ExperimentController ec)

 {

 if ((Input.GetKeyDown(KeyCode.LeftArrow) && blinked) ||

(SteamVR_Controller.Input(SteamVR_Controller.GetDeviceIndex(SteamVR_Control

ler.DeviceRelation.FarthestRight)).GetPressDown(SteamVR_Controller.ButtonMa

sk.Grip) && blinked)) // 2AFCT left

 {

 Debug.Log ("Left");

 BlinkRotationExperimentTrial trial =

ec.CurrentTrials[ec.CurrentTrialIndex] as BlinkRotationExperimentTrial;

 trial.result = 0;

 results += "s" + ec.participantID + "_" +

getAxis(trial.Axis) + "_" + getAngle(trial.Degree) + " = " + trial.result +

";\r\n";

 ec.CurrentTrialIndex++;

 blinked = false;

 led.blocked = false;

62

 // Hide 2AFCT question

 c.gameObject.SetActive(false);

 userPositionAfterBlink.rotation = Quaternion.identity;

 }

 if ((Input.GetKeyDown(KeyCode.RightArrow) && blinked) ||

(SteamVR_Controller.Input(SteamVR_Controller.GetDeviceIndex(SteamVR_Control

ler.DeviceRelation.FarthestRight)).GetPressDown(SteamVR_Controller.ButtonMa

sk.Trigger) && blinked)) // 2AFCT right

 {

 Debug.Log ("Right");

 BlinkRotationExperimentTrial trial =

ec.CurrentTrials[ec.CurrentTrialIndex] as BlinkRotationExperimentTrial;

 trial.result = 1;

 results += "s" + ec.participantID + "_" +

getAxis(trial.Axis) + "_" + getAngle(trial.Degree) + " = " + trial.result +

";\r\n";

 ec.CurrentTrialIndex++;

 blinked = false;

 led.blocked = false;

 // Hide 2AFCT question

 c.gameObject.SetActive(false);

 userPositionAfterBlink.rotation = Quaternion.identity;

 }

 if(ec.CurrentTrialIndex>= ec.CurrentTrials.Count)

 {

 Debug.Log (results);

 string oldResults = System.IO.File.ReadAllText

("D:/langbehn/blink_e1.txt");

 System.IO.File.WriteAllText ("D:/langbehn/blink_e1.txt",

oldResults + results);

 return nextState;

 }

 else

 {

 BlinkRotationExperimentTrial nextTrial =

ec.CurrentTrials[ec.CurrentTrialIndex] as BlinkRotationExperimentTrial;

 userPosition.position = nextTrial.Transform.position;

 userPosition.rotation = nextTrial.Transform.rotation;

 return this;

 }

 }

 public override void UpdateState(ExperimentController ec)

 {

 BlinkRotationExperimentTrial trial =

ec.CurrentTrials[ec.CurrentTrialIndex] as BlinkRotationExperimentTrial;

 if(trial != null)

 {

 if ((Input.GetKeyDown(KeyCode.Space) && blinked == false) ||

(userHasBlinked && blinked == false)) // Blink

 {

 Debug.Log ("Blinked");

 blinked = true;

 userHasBlinked = false;

 userPositionAfterBlink.Rotate(trial.Axis, trial.Degree);

 text.text = "In which direction was your view rotated?";

 if (trial.Axis.Equals(Vector3.right))

 {

 leftButton.text = "SideButton = left";

 rightButton.text = "BackButton = right";

 }

63

 if (trial.Axis.Equals(Vector3.up))

 {

 leftButton.text = "SideButton = left";

 rightButton.text = "BackButton = right";

 }

 if (trial.Axis.Equals(Vector3.forward))

 {

 leftButton.text = "SideButton = down";

 rightButton.text = "BackButton = up";

 }

 StartCoroutine(ShowGUI()); // Show 2AFCT

question

 }

 }

 else

 {

 throw new UnityException("couldn't cast trial as

BlinkRotationExperimentTrial");

 }

 c.gameObject.transform.position = Camera.main.transform.position +

Camera.main.transform.forward * 2;

 c.gameObject.transform.rotation = Camera.main.transform.rotation;

 }

 private int getAxis(Vector3 axis)

 {

 if (axis.Equals(Vector3.right))

 return 0;

 if (axis.Equals(Vector3.up))

 return 1;

 if (axis.Equals(Vector3.forward))

 return 2;

 return 0;

 }

 private int getAngle(float angle)

 {

 if (angle.Equals(-15f))

 return 0;

 if (angle.Equals(-10f))

 return 1;

 if (angle.Equals(-5f))

 return 2;

 if (angle.Equals(0))

 return 3;

 if (angle.Equals(5f))

 return 4;

 if (angle.Equals(10f))

 return 5;

 if (angle.Equals(15f))

 return 6;

 return 0;

 }

 IEnumerator ShowGUI()

 {

 yield return new WaitForSeconds(1);

 c.gameObject.SetActive(true);

 }

}

64

8.2.3 Unity3D source code for translation

8.2.3.1 Unity3D source code for translation experiment controller

using UnityEngine;

using System.Collections;

using System.Collections.Generic;

using System;

public class BlinkTranslationExperimentController : ExperimentController

{

 [SerializeField]

 List<Transform> possibleTransforms;

 private List<Vector3> possibleAxises;

 private List<float> possibleMeters;

 private int repetitions;

 // Use this for initialization

 void Start()

 {

 possibleAxises = new List<Vector3>();

 possibleAxises.Add(Vector3.up);

 possibleAxises.Add(Vector3.right);

 possibleAxises.Add(Vector3.forward);

 possibleMeters = new List<float>();

 possibleMeters.Add(-0.15f);

 possibleMeters.Add(-0.10f);

 possibleMeters.Add(-0.05f);

 possibleMeters.Add(0f);

 possibleMeters.Add(0.05f);

 possibleMeters.Add(0.10f);

 possibleMeters.Add(0.15f);

 repetitions = 8;

 FillTrials();

 }

 // Update is called once per frame

 protected override void Update()

 {

 base.Update();

 }

 protected override void FillTrials()

 {

 currentTrials = new List<ExperimentTrial>();

 trainingTrials = new List<ExperimentTrial>();

 for (int i = 0; i < 10; i++)

 {

 int chosenTransform = UnityEngine.Random.Range(0,

possibleTransforms.Count - 1);

 int chosenAxis = UnityEngine.Random.Range(0,

possibleAxises.Count - 1);

65

 int chosenMeter = UnityEngine.Random.Range(0,

possibleMeters.Count - 1);

 TrainingTrials.Add(new BlinkTranslationExperimentTrial(i,

possibleAxises[chosenAxis], possibleMeters[chosenMeter],

possibleTransforms[chosenTransform]));

 }

 int trialNumber = 0;

 for (int i = 0; i < possibleAxises.Count; i++)

 {

 for (int j = 0; j < possibleMeters.Count; j++)

 {

 for (int k = 0; k < repetitions; k++)

 {

 int chosenTransform = UnityEngine.Random.Range(0,

possibleTransforms.Count - 1);

 CurrentTrials.Add(new

BlinkTranslationExperimentTrial(trialNumber, possibleAxises[i],

possibleMeters[j], possibleTransforms[chosenTransform]));

 trialNumber++;

 }

 }

 }

 ExtensionMethods.Shuffle(CurrentTrials);

 }

}

8.2.3.2 Unity3D source code for translation trial

using UnityEngine;

using System.Collections;

public class BlinkTranslationExperimentTrial : ExperimentTrial

{

 public int result;

 private Vector3 axis;

 private float meter;

 private Transform transform;

 public Vector3 Axis

 {

 get

 {

 return axis;

 }

 }

 public float Meter

 {

 get

 {

 return meter;

 }

 }

66

 public Transform Transform

 {

 get

 {

 return transform;

 }

 }

 public BlinkTranslationExperimentTrial(int trialnum, Vector3 _axis,

float _meter, Transform _transform) : base(trialnum)

 {

 axis = _axis;

 meter = _meter;

 transform = _transform;

 }

}

8.2.3.3 Unity3D source code for translation training state

using UnityEngine;

using System.Collections;

using UnityEngine.UI;

public class TranslationTrainingState : ExperimentState

{

 [SerializeField]

 Transform userPosition;

 [SerializeField]

 Transform userPositionAfterBlink;

 [SerializeField]

 LED2 led;

 [SerializeField]

 Canvas c;

 [SerializeField]

 Text text;

 [SerializeField]

 Text leftButton;

 [SerializeField]

 Text rightButton;

 public bool userHasBlinked = false;

 private bool blinked = false;

 public override ExperimentState HandleInput(ExperimentController ec)

 {

 if ((Input.GetKeyDown(KeyCode.LeftArrow) && blinked) ||

(SteamVR_Controller.Input(SteamVR_Controller.GetDeviceIndex(SteamVR_Control

ler.DeviceRelation.FarthestRight)).GetPressDown(SteamVR_Controller.ButtonMa

sk.Grip) && blinked)) // 2AFCT left

 {

 Debug.Log("Left");

 ec.TrainingTrialIndex++;

 blinked = false;

 led.blocked = false;

 // Hide 2AFCT question

 c.gameObject.SetActive(false);

67

 userPositionAfterBlink.localPosition = Vector3.zero;

 }

 if ((Input.GetKeyDown(KeyCode.RightArrow) && blinked) ||

(SteamVR_Controller.Input(SteamVR_Controller.GetDeviceIndex(SteamVR_Control

ler.DeviceRelation.FarthestRight)).GetPressDown(SteamVR_Controller.ButtonMa

sk.Trigger) && blinked)) // 2AFCT right

 {

 Debug.Log("Right");

 ec.TrainingTrialIndex++;

 blinked = false;

 led.blocked = false;

 // Hide 2AFCT question

 c.gameObject.SetActive(false);

 userPositionAfterBlink.localPosition = Vector3.zero;

 }

 if (ec.TrainingTrialIndex >= ec.TrainingTrials.Count)

 {

 return nextState;

 }

 else

 {

 BlinkTranslationExperimentTrial nextTrial =

ec.TrainingTrials[ec.TrainingTrialIndex] as BlinkTranslationExperimentTrial;

 userPosition.position = nextTrial.Transform.position;

 userPosition.rotation = nextTrial.Transform.rotation;

 return this;

 }

 }

 public override void UpdateState(ExperimentController ec)

 {

 BlinkTranslationExperimentTrial trial =

ec.TrainingTrials[ec.TrainingTrialIndex] as BlinkTranslationExperimentTrial;

 if (trial != null)

 {

 if ((Input.GetKeyDown(KeyCode.Space) && blinked == false) ||

(userHasBlinked && blinked == false)) // Blink

 {

 Debug.Log("Blinked");

 blinked = true;

 userHasBlinked = false;

 userPositionAfterBlink.Translate(trial.Axis * trial.Meter);

 text.text = "In which direction was your view translated?";

 if (trial.Axis.Equals(Vector3.right))

 {

 leftButton.text = "SideButton = backwards";

 rightButton.text = "BackButton = forwards";

 }

 if (trial.Axis.Equals(Vector3.up))

 {

 leftButton.text = "SideButton = down";

 rightButton.text = "BackButton = up";

 }

 if (trial.Axis.Equals(Vector3.forward))

 {

 leftButton.text = "SideButton = left";

 rightButton.text = "BackButton = right";

 }

 StartCoroutine(ShowGUI()); // Show 2AFCT

question

68

 }

 }

 else

 {

 throw new UnityException("couldn't cast trial as

BlinkTranslationExperimentTrial");

 }

 c.gameObject.transform.position = Camera.main.transform.position +

Camera.main.transform.forward * 2;

 c.gameObject.transform.rotation = Camera.main.transform.rotation;

 }

 IEnumerator ShowGUI()

 {

 yield return new WaitForSeconds(1);

 c.gameObject.SetActive(true);

 }

}

8.2.3.4 Unity3D source code for translation trial state

using UnityEngine;

using System.Collections;

using UnityEngine.UI;

public class TranslationTrialState : ExperimentState

{

 [SerializeField]

 Transform userPosition;

 [SerializeField]

 Transform userPositionAfterBlink;

 [SerializeField]

 LED2 led;

 [SerializeField]

 Canvas c;

 [SerializeField]

 Text text;

 [SerializeField]

 Text leftButton;

 [SerializeField]

 Text rightButton;

 public bool userHasBlinked = false;

 private bool blinked = false;

 private string results = "";

 public override ExperimentState HandleInput(ExperimentController ec)

 {

 if ((Input.GetKeyDown(KeyCode.LeftArrow) && blinked) ||

(SteamVR_Controller.Input(SteamVR_Controller.GetDeviceIndex(SteamVR_Control

ler.DeviceRelation.FarthestRight)).GetPressDown(SteamVR_Controller.ButtonMa

sk.Grip) && blinked)) // 2AFCT left

 {

 Debug.Log("Left");

 BlinkTranslationExperimentTrial trial =

ec.CurrentTrials[ec.CurrentTrialIndex] as BlinkTranslationExperimentTrial;

69

 trial.result = 0;

 results += "s" + ec.participantID + "_" + getAxis(trial.Axis) +

"_" + getDistance(trial.Meter) + " = " + trial.result + ";\r\n";

 ec.CurrentTrialIndex++;

 blinked = false;

 led.blocked = false;

 // Hide 2AFCT question

 c.gameObject.SetActive(false);

 userPositionAfterBlink.localPosition = Vector3.zero;

 }

 if ((Input.GetKeyDown(KeyCode.RightArrow) && blinked) ||

(SteamVR_Controller.Input(SteamVR_Controller.GetDeviceIndex(SteamVR_Control

ler.DeviceRelation.FarthestRight)).GetPressDown(SteamVR_Controller.ButtonMa

sk.Trigger) && blinked)) // 2AFCT right

 {

 Debug.Log("Right");

 BlinkTranslationExperimentTrial trial =

ec.CurrentTrials[ec.CurrentTrialIndex] as BlinkTranslationExperimentTrial;

 trial.result = 1;

 results += "s" + ec.participantID + "_" + getAxis(trial.Axis) +

"_" + getDistance(trial.Meter) + " = " + trial.result + ";\r\n";

 ec.CurrentTrialIndex++;

 blinked = false;

 led.blocked = false;

 // Hide 2AFCT question

 c.gameObject.SetActive(false);

 userPositionAfterBlink.localPosition = Vector3.zero;

 }

 if (ec.CurrentTrialIndex >= ec.CurrentTrials.Count)

 {

 Debug.Log(results);

 string oldResults =

System.IO.File.ReadAllText("D:/langbehn/blink_e2.txt");

 System.IO.File.WriteAllText("D:/langbehn/blink_e2.txt",

oldResults + results);

 return nextState;

 }

 else

 {

 BlinkTranslationExperimentTrial nextTrial =

ec.CurrentTrials[ec.CurrentTrialIndex] as BlinkTranslationExperimentTrial;

 userPosition.position = nextTrial.Transform.position;

 userPosition.rotation = nextTrial.Transform.rotation;

 return this;

 }

 }

 public override void UpdateState(ExperimentController ec)

 {

 BlinkTranslationExperimentTrial trial =

ec.CurrentTrials[ec.CurrentTrialIndex] as BlinkTranslationExperimentTrial;

 if (trial != null)

 {

 if ((Input.GetKeyDown(KeyCode.Space) && blinked == false) ||

(userHasBlinked && blinked == false)) // Blink

 {

 Debug.Log("Blinked");

 blinked = true;

 userHasBlinked = false;

 userPositionAfterBlink.Translate(trial.Axis * trial.Meter);

70

 text.text = "In which direction was your view translated?";

 if (trial.Axis.Equals(Vector3.right))

 {

 leftButton.text = "SideButton = backwards";

 rightButton.text = "BackButton = forwards";

 }

 if (trial.Axis.Equals(Vector3.up))

 {

 leftButton.text = "SideButton = down";

 rightButton.text = "BackButton = up";

 }

 if (trial.Axis.Equals(Vector3.forward))

 {

 leftButton.text = "SideButton = left";

 rightButton.text = "BackButton = right";

 }

 StartCoroutine(ShowGUI()); // Show 2AFCT

question

 }

 }

 else

 {

 throw new UnityException("couldn't cast trial as

BlinkTranslationExperimentTrial");

 }

 c.gameObject.transform.position = Camera.main.transform.position +

Camera.main.transform.forward * 2;

 c.gameObject.transform.rotation = Camera.main.transform.rotation;

 }

 private int getAxis(Vector3 axis)

 {

 if (axis.Equals(Vector3.right))

 return 0;

 if (axis.Equals(Vector3.up))

 return 1;

 if (axis.Equals(Vector3.forward))

 return 2;

 return 0;

 }

 private int getDistance(float distance)

 {

 if (distance.Equals(-15f))

 return 0;

 if (distance.Equals(-10f))

 return 1;

 if (distance.Equals(-5f))

 return 2;

 if (distance.Equals(0))

 return 3;

 if (distance.Equals(5f))

 return 4;

 if (distance.Equals(10f))

 return 5;

 if (distance.Equals(15f))

 return 6;

 return 0;

 }

 IEnumerator ShowGUI()

71

 {

 yield return new WaitForSeconds(1);

 c.gameObject.SetActive(true);

 }

}

8.2.4 Unity3D source code for the feedback on the screen

8.2.4.1 Unity3D source code for experiment launch

using UnityEngine;

using UnityEngine.UI;

using System.Collections;

using System;

public class IntroState : ExperimentState {

 [SerializeField]

 Canvas c;

 [SerializeField]

 Text text;

 bool next = false;

 public bool Next

 {

 get

 {

 return next;

 }

 set

 {

 next = value;

 }

 }

 public override ExperimentState HandleInput(ExperimentController ec)

 {

 if(Next || Input.GetKeyDown(KeyCode.P))

 {

 c.gameObject.SetActive(false);

 Debug.Log("Training started");

 return nextState;

 }

 else

 {

 return this;

 }

 }

 public override void UpdateState(ExperimentController ec)

 {

 c.gameObject.SetActive(true);

 text.text = "Welcome to the experiment. When you click 'next' the

training trials will start.";

 c.gameObject.transform.position = Camera.main.transform.position +

Camera.main.transform.forward * 2;

 c.gameObject.transform.rotation = Camera.main.transform.rotation;

72

 }

}

8.2.4.2 Unity3D source code between the experiment parts

using UnityEngine;

using UnityEngine.UI;

using System.Collections;

using System;

public class BetweenState : ExperimentState

{

 [SerializeField]

 Canvas c;

 [SerializeField]

 Text text;

 bool next = false;

 public bool Next

 {

 get

 {

 return next;

 }

 set

 {

 next = value;

 }

 }

 public override ExperimentState HandleInput(ExperimentController ec)

 {

 if (Next || Input.GetKeyDown(KeyCode.P))

 {

 c.gameObject.SetActive(false);

 Debug.Log("Experiment started");

 return nextState;

 }

 else

 {

 return this;

 }

 }

 public override void UpdateState(ExperimentController ec)

 {

 c.gameObject.SetActive(true);

 text.text = "Training done. Click 'next' to start the experiment";

 c.gameObject.transform.position = Camera.main.transform.position +

Camera.main.transform.forward * 2;

 c.gameObject.transform.rotation = Camera.main.transform.rotation;

 }

}

73

8.2.4.3 Unity3D source code for experiment closing

using UnityEngine;

using System.Collections;

using System;

using UnityEngine.UI;

public class OutroState : ExperimentState {

 [SerializeField]

 Canvas c;

 [SerializeField]

 Text text;

 public override ExperimentState HandleInput(ExperimentController ec)

 {

 if(Input.GetKeyDown(KeyCode.Z))

 {

 #if UNITY_EDITOR

 UnityEditor.EditorApplication.isPlaying = false;

 #else

 Application.Quit();

 #endif

 }

 return this;

 }

 public override void UpdateState(ExperimentController ec)

 {

 c.gameObject.SetActive(true);

 text.text = "Thanks for participating!";

 c.gameObject.transform.position = Camera.main.transform.position +

Camera.main.transform.forward * 2;

 c.gameObject.transform.rotation = Camera.main.transform.rotation;

 }

}

8.3 VBA Excel Macros for data evaluation

This is the VBA script to sort the received data in Excel Microsoft Office 2013.

Sub sortieren()

Call Modul1.Daten_Sortieren

End Sub

Sub Daten_Sortieren()

Dim i As Integer

Dim B0 As Integer

Dim B1 As Integer

Dim B2 As Integer

B0 = 10

B1 = 10

B2 = 10

74

For i = 1 To Cells(Rows.Count, 1).End(xlUp).Row

 If Cells(i, 2).Value = 0 Then

 Range(Cells(B0, 10), Cells(B0, 13)).Value = Range(Cells(i, 1),

Cells(i, 4)).Value

 B0 = B0 + 1

 ElseIf Cells(i, 2).Value = 1 Then

 Range(Cells(B1, 16), Cells(B1, 19)).Value = Range(Cells(i, 1),

Cells(i, 4)).Value

 B1 = B1 + 1

 ElseIf Cells(i, 2).Value = 2 Then

 Range(Cells(B2, 22), Cells(B2, 25)).Value = Range(Cells(i, 1),

Cells(i, 4)).Value

 B2 = B2 + 1

 End If

Next

End Sub

Sub Sortieren_Nach_Grad_Z()

 Dim i As Integer

 Dim C_M15 As Integer

 Dim C_M10 As Integer

 Dim C_M5 As Integer

 Dim C_0 As Integer

 Dim C_5 As Integer

 Dim C_10 As Integer

 Dim C_15 As Integer

 C_M15 = 10

 C_M10 = 10

 C_M5 = 10

 C_0 = 10

 C_P5 = 10

 C_P10 = 10

 C_P15 = 10

 For i = 10 To Cells(Rows.Count, 12).End(xlUp).Row

 If Cells(i, 12).Value = 0 Then

 Range(Cells(C_M15, 30), Cells(C_M15, 33)).Value = Range(Cells(i,

10), Cells(i, 13)).Value

 C_M15 = C_M15 + 1

 ElseIf Cells(i, 12).Value = 1 Then

 Range(Cells(C_M10, 36), Cells(C_M10, 39)).Value = Range(Cells(i,

10), Cells(i, 13)).Value

 C_M10 = C_M10 + 1

 ElseIf Cells(i, 12).Value = 2 Then

 Range(Cells(C_M5, 42), Cells(C_M5, 45)).Value = Range(Cells(i,

10), Cells(i, 13)).Value

 C_M5 = C_M5 + 1

 ElseIf Cells(i, 12).Value = 3 Then

 Range(Cells(C_0, 48), Cells(C_0, 51)).Value = Range(Cells(i, 10),

Cells(i, 13)).Value

 C_0 = C_0 + 1

 ElseIf Cells(i, 12).Value = 4 Then

 Range(Cells(C_P5, 54), Cells(C_P5, 57)).Value = Range(Cells(i,

10), Cells(i, 13)).Value

 C_P5 = C_P5 + 1

 ElseIf Cells(i, 12).Value = 5 Then

75

 Range(Cells(C_P10, 60), Cells(C_P10, 63)).Value = Range(Cells(i,

10), Cells(i, 13)).Value

 C_P10 = C_P10 + 1

 ElseIf Cells(i, 12).Value = 6 Then

 Range(Cells(C_P15, 66), Cells(C_P15, 69)).Value = Range(Cells(i,

10), Cells(i, 13)).Value

 C_P15 = C_P15 + 1

 End If

 Next

End Sub

Sub Sortieren_Nach_Grad_Y()

 Dim i As Integer

 Dim C_M15 As Integer

 Dim C_M10 As Integer

 Dim C_M5 As Integer

 Dim C_0 As Integer

 Dim C_5 As Integer

 Dim C_10 As Integer

 Dim C_15 As Integer

 C_M15 = 42

 C_M10 = 42

 C_M5 = 42

 C_0 = 42

 C_P5 = 42

 C_P10 = 42

 C_P15 = 42

 For i = 10 To Cells(Rows.Count, 18).End(xlUp).Row

 If Cells(i, 18).Value = 0 Then

 Range(Cells(C_M15, 30), Cells(C_M15, 33)).Value = Range(Cells(i,

16), Cells(i, 19)).Value

 C_M15 = C_M15 + 1

 ElseIf Cells(i, 18).Value = 1 Then

 Range(Cells(C_M10, 36), Cells(C_M10, 39)).Value = Range(Cells(i,

16), Cells(i, 19)).Value

 C_M10 = C_M10 + 1

 ElseIf Cells(i, 18).Value = 2 Then

 Range(Cells(C_M5, 42), Cells(C_M5, 45)).Value = Range(Cells(i,

16), Cells(i, 19)).Value

 C_M5 = C_M5 + 1

 ElseIf Cells(i, 18).Value = 3 Then

 Range(Cells(C_0, 48), Cells(C_0, 51)).Value = Range(Cells(i, 16),

Cells(i, 19)).Value

 C_0 = C_0 + 1

 ElseIf Cells(i, 18).Value = 4 Then

 Range(Cells(C_P5, 54), Cells(C_P5, 57)).Value = Range(Cells(i,

16), Cells(i, 19)).Value

 C_P5 = C_P5 + 1

 ElseIf Cells(i, 18).Value = 5 Then

 Range(Cells(C_P10, 60), Cells(C_P10, 63)).Value = Range(Cells(i,

16), Cells(i, 19)).Value

 C_P10 = C_P10 + 1

 ElseIf Cells(i, 18).Value = 6 Then

 Range(Cells(C_P15, 66), Cells(C_P15, 69)).Value = Range(Cells(i,

16), Cells(i, 19)).Value

 C_P15 = C_P15 + 1

76

 End If

 Next

End Sub

Sub Sortieren_Nach_Grad_X()

 Dim i As Integer

 Dim C_M15 As Integer

 Dim C_M10 As Integer

 Dim C_M5 As Integer

 Dim C_0 As Integer

 Dim C_5 As Integer

 Dim C_10 As Integer

 Dim C_15 As Integer

 C_M15 = 72

 C_M10 = 72

 C_M5 = 72

 C_0 = 72

 C_P5 = 72

 C_P10 = 72

 C_P15 = 72

 For i = 10 To Cells(Rows.Count, 24).End(xlUp).Row

 If Cells(i, 24).Value = 0 Then

 Range(Cells(C_M15, 30), Cells(C_M15, 33)).Value = Range(Cells(i,

22), Cells(i, 25)).Value

 C_M15 = C_M15 + 1

 ElseIf Cells(i, 24).Value = 1 Then

 Range(Cells(C_M10, 36), Cells(C_M10, 39)).Value = Range(Cells(i,

22), Cells(i, 25)).Value

 C_M10 = C_M10 + 1

 ElseIf Cells(i, 24).Value = 2 Then

 Range(Cells(C_M5, 42), Cells(C_M5, 45)).Value = Range(Cells(i,

22), Cells(i, 25)).Value

 C_M5 = C_M5 + 1

 ElseIf Cells(i, 24).Value = 3 Then

 Range(Cells(C_0, 48), Cells(C_0, 51)).Value = Range(Cells(i, 22),

Cells(i, 25)).Value

 C_0 = C_0 + 1

 ElseIf Cells(i, 24).Value = 4 Then

 Range(Cells(C_P5, 54), Cells(C_P5, 57)).Value = Range(Cells(i,

22), Cells(i, 25)).Value

 C_P5 = C_P5 + 1

 ElseIf Cells(i, 24).Value = 5 Then

 Range(Cells(C_P10, 60), Cells(C_P10, 63)).Value = Range(Cells(i,

22), Cells(i, 25)).Value

 C_P10 = C_P10 + 1

 ElseIf Cells(i, 24).Value = 6 Then

 Range(Cells(C_P15, 66), Cells(C_P15, 69)).Value = Range(Cells(i,

22), Cells(i, 25)).Value

 C_P15 = C_P15 + 1

 End If

 Next

End Sub

77

8.4 Experiment results

8.4.1 Rotation results

0

0,2

0,4

0,6

0,8

1

1,2

S0 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

A
n

sw
e

r
va

lu
e

User ID

Rotation -5° X

0

0,2

0,4

0,6

0,8

1

1,2

S0 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

A
n

sw
e

r
va

lu
e

User ID

Rotation -10° X

0

0,2

0,4

0,6

0,8

1

1,2

S0 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

A
n

sw
e

r
va

lu
e

User ID

Rotation -15° X

78

0

0,2

0,4

0,6

0,8

1

1,2

S0 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

A
n

sw
e

r
va

lu
e

User ID

Rotation +10° X

0

0,2

0,4

0,6

0,8

1

1,2

S0 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

A
n

sw
e

r
va

lu
e

User ID

Rotation +5° X

0

0,2

0,4

0,6

0,8

1

1,2

S0 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

A
n

sw
e

r
va

lu
e

User ID

Rotation 0° X

79

0

0,2

0,4

0,6

0,8

1

1,2

S0 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

A
n

sw
e

r
va

lu
e

User ID

Rotation +15° X

0

0,2

0,4

0,6

0,8

1

1,2

S0 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

A
n

sw
e

r
va

lu
e

User ID

Rotation -15° Y-Axis

0

0,2

0,4

0,6

0,8

1

1,2

S0 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

A
n

sw
e

r
va

lu
e

User ID

Rotation -10° Y-Axis

80

0

0,2

0,4

0,6

0,8

1

1,2

S0 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

A
n

sw
e

r
va

lu
e

User ID

Rotation -5° Y-Axis

0

0,2

0,4

0,6

0,8

1

1,2

S0 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

A
n

sw
e

r
va

lu
e

User ID

Rotation 0° Y-Axis

0

0,2

0,4

0,6

0,8

1

1,2

S0 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

A
n

sw
e

r
va

lu
e

User ID

Rotation +5° Y-Axis

81

0

0,2

0,4

0,6

0,8

1

1,2

S0 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

A
n

sw
e

r
va

lu
e

User ID

Rotation +10° Y-Axis

0

0,2

0,4

0,6

0,8

1

1,2

S0 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

A
n

sw
e

r
va

lu
e

User ID

Rotation +15° Y-Axis

0

0,2

0,4

0,6

0,8

1

1,2

S0 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

A
n

sw
e

r
va

lu
e

User ID

Rotation -15° Z-Axis

82

0

0,2

0,4

0,6

0,8

1

1,2

S0 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

A
n

sw
e

r
va

lu
e

User ID

Rotation -10° Z-Axis

0

0,2

0,4

0,6

0,8

1

1,2

S0 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

A
n

sw
e

r
va

lu
e

User ID

Rotation -5° Z-Axis

0

0,2

0,4

0,6

0,8

1

1,2

S0 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

A
n

sw
e

r
va

lu
e

User ID

Rotation 0° Z-Axis

83

0

0,2

0,4

0,6

0,8

1

1,2

S0 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

A
n

sw
e

r
va

lu
e

User ID

Rotation +5° Z-Axis

0

0,2

0,4

0,6

0,8

1

1,2

S0 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

A
n

sw
e

r
va

lu
e

User ID

Rotation +10° Z-Axis

0

0,2

0,4

0,6

0,8

1

1,2

S0 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

A
n

sw
e

r
va

lu
e

User ID

Rotation +15° Z-Axis

84

Average value

 -15 -10 -5 0 5 10 15

X 0,795 0,830 0,807 0,523 0,205 0,102 0,102

Y 0,034 0,080 0,148 0,545 0,864 0,875 0,943

Z 0,182 0,227 0,216 0,455 0,750 0,773 0,852

90 90
80

48

80 83 79

97
92

86

46

86 87
94

82 78 79

55

75 77
85

0
10
20
30
40
50
60
70
80
90

100

-15 -10 -5 0 5 10 15

P
e

rs
e

n
ta

ge
 o

f
co

rr
e

ct
 a

n
sw

e
rs

Rotation in degrees

Percentage of correct answers for rotation

X Y Z

0,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1,0

-15 -10 -5 0 5 10 15

A
n

sw
e

r
va

lu
e

Rotation in degrees

Average values for rotation

X Y Z

85

8.4.2 Translation results

0

0,2

0,4

0,6

0,8

1

1,2

S0 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

Translation X (0m)

User ID

0

0,2

0,4

0,6

0,8

1

1,2

S0 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

Translation in X (>0>)m

User ID

0

0,2

0,4

0,6

0,8

1

1,2

S0 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

Translation Y (0m)

User ID

86

0

0,2

0,4

0,6

0,8

1

1,2

S0 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

Translation Y (>0>)

User ID

0

0,2

0,4

0,6

0,8

1

1,2

S0 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

Translation Z (>0>m)

User ID

0

0,2

0,4

0,6

0,8

1

1,2

S0 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

Translation Z (0m)

User ID

87

8.4.3 Personal estimation data

Start questions

Start language en en en en en en en en en en

ID 0 1 2 3 5 6 7 8 9 10

Vision correction None Glasse

s

Conta

ct

Lenses

Glasse

s

None None None Glasse

s

None Conta

ct

Lenses

Do you suffer from a

displacement of

equilibrium or similar-

Gleichgewichtsstörung

No No No No No No No No No No

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

>0> m 0m

A
n

sw
e

rs

Translation in meter

X

Y

Z

Average answers for translations

88

Do you have a known eye

disorder- Color blindness

No No No No No No No No No No

Do you have a known eye

disorder- Night blindness

No No No No No No No No No No

Do you have a known eye

disorder- Dyschromatopsia

red-green color weakness

No No No No No No No No No No

Do you have a known eye

disorder- Strong eye

Dominance

No No No No No No No No No No

Do you have a known eye

disorder- Other

strabis

mus

Have you participated in a

study with a head-

mounted-display like the

Oculus Rift before-

No Yes No Yes Yes Yes Yes No Yes Yes

Do you have experience

with 3d computer games-

5 5 3 5 5 4 5 2 5 2

How many hours do you

play per week-

10 20 1 5 3 2 5 0 4 0

Do you have experience

with 3D stereoscopic

displays cinema, games

etc.-

4 5 3 5 4 4 5 3 5 1

Height // Körpergröße 1,84 1,73 1,61 1,78 1,6 1,83 1,69 1,75 1,85 1,78

89

Kennedy SSQ before

Experiment

General discomfort // Allg.

Unwohlsein

0

None

0

None

0

None

0

None

0

None

0

None

0

None

0

None

0

None

1

Fatigue // Erschöpfung 0

None

0

None

0

None

0

None

1 0

None

0

None

0

None

0

None

1

Headache //

Kopfschmerzen

0

None

0

None

0

None

0

None

0

None

0

None

0

None

0

None

0

None

1

Eyestrain //

Überanstrengung der

Augen

0

None

0

None

0

None

0

None

0

None

0

None

0

None

0

None

0

None

1

Difficulty focusing //

Probleme bei der

Fokussierung

0

None

0

None

0

None

0

None

0

None

0

None

0

None

0

None

0

None

1

Increased salivation //

Erhöhte Speichelbildung

0

None

0

None

0

None

0

None

0

None

0

None

0

None

0

None

0

None

0

None

Sweating //

Schweißbildung

0

None

0

None

0

None

0

None

0

None

0

None

0

None

0

None

0

None

2

Nausea // Übelkeit 0

None

0

None

0

None

0

None

0

None

0

None

0

None

0

None

0

None

0

None

Difficulty concentrating //

Konzentrationsschwierigkei

ten

0

None

0

None

0

None

0

None

0

None

0

None

0

None

0

None

0

None

1

Fullness of head // Kopf

voller Gedanken

0

None

0

None

0

None

0

None

0

None

0

None

0

None

0

None

0

None

1

90

Blurred vision // Unscharfe

Sicht

0

None

0

None

0

None

0

None

0

None

0

None

0

None

0

None

0

None

1

Dizzy eyes open //

Schwindelig o. Duselig bei

offenen Augen

0

None

0

None

0

None

0

None

0

None

0

None

0

None

0

None

0

None

0

None

Dizzy eyes closed //

Schwindelig o. Duselig bei

geschlossenen Augen

0

None

0

None

0

None

0

None

0

None

0

None

0

None

0

None

0

None

0

None

Vertigo //

Gleichgewichtsstörung

0

None

0

None

0

None

0

None

0

None

0

None

0

None

0

None

0

None

0

None

Stomach awareness // Den

Bauch wahrnehmen

0

None

0

None

0

None

0

None

0

None

0

None

0

None

0

None

0

None

0

None

Burping // Aufstoßen 0

None

0

None

0

None

0

None

0

None

0

None

0

None

0

None

0

None

0

None

Kennedy SSQ after

experiment

General discomfort // Allg.

Unwohlsein

0

None

1 0

None

0

None

1 1 2 1 0

None

1

Fatigue // Erschöpfung 0

None

2 1 0

None

1 1 3

Sever

e

1 0

None

2

Headache //

Kopfschmerzen

0

None

0

None

0

None

0

None

1 1 2 0

None

0

None

2

Eyestrain //

Überanstrengung der

Augen

0

None

1 1 0

None

0

None

2 2 0

None

0

None

2

91

Difficulty focusing //

Probleme bei der

Fokussierung

0

None

0

None

0

None

0

None

0

None

1 2 0

None

0

None

1

Increased salivation //

Erhöhte Speichelbildung

0

None

0

None

0

None

0

None

0

None

1 2 0

None

0

None

0

None

Sweating //

Schweißbildung

0

None

2 0

None

0

None

0

None

1 2 1 1 1

Nausea // Übelkeit 0

None

0

None

1 0

None

0

None

1 1 1 0

None

0

None

Difficulty concentrating //

Konzentrationsschwierigkei

ten

0

None

0

None

0

None

0

None

0

None

1 3

Sever

e

0

None

0

None

0

None

Fullness of head // Kopf

voller Gedanken

0

None

0

None

0

None

0

None

0

None

1 3

Sever

e

1 0

None

0

None

Blurred vision // Unscharfe

Sicht

0

None

0

None

0

None

0

None

0

None

1 2 0

None

0

None

0

None

Dizzy eyes open //

Schwindelig o. Duselig bei

offenen Augen

0

None

0

None

0

None

0

None

0

None

1 2 1 1 0

None

Dizzy eyes closed //

Schwindelig o. Duselig bei

geschlossenen Augen

0

None

0

None

0

None

0

None

0

None

1 2 1 1 0

None

Vertigo //

Gleichgewichtsstörung

0

None

0

None

0

None

0

None

0

None

1 1 0

None

1 0

None

92

Stomach awareness // Den

Bauch wahrnehmen

0

None

0

None

0

None

0

None

0

None

1 1 0

None

0

None

0

None

Burping // Aufstoßen 0

None

0

None

0

None

0

None

0

None

1 1 0

None

0

None

0

None

Self-estimation after

experiment

How sure are you that you

always chose the correct

answer

3 3 4 4 2 4 3 2 3 3

Please rate your sense of

being in the virtual

environment, on a scale of

1 to 5, where 5 represents

your normal experience of

being in a place. I had a

sense of “being there“...

3 5 5 4 3 2 4 4 4 4

To what extent were there

times during the

experience when the virtual

environment was the

reality for you- There were

times when the virtual

environment was the

reality for me...

1 5 3 4 3 2 4 3 4 3

When you think back to the

experience, do you think of

the virtual environment

more as images that you

saw or more as somewhere

that you visited- The virtual

environment seems to me

to be more like...

4 4 5 4 3 3 4 5 4 2

93

During the time of the

experience, which was the

strongest on the whole,

your sense of being in the

virtual environment or of

being elsewhere- I had a

stronger sense of...

4 2 4 4 3 4 4 4 2 4

During the time of your

experience, did you often

think to yourself that you

were actually in the virtual

environment- During the

experiment I often thought

that I was really standing in

the virtual environment...

1 5 1 4 3 2 4 4 4 4

Consider your memory of

being in the virtual

environment. How similar

in terms of the structure of

the memory is this to the

structure of the memory of

other places you have been

today- By ‘structure of the

memory’ consider things

like the extent to which you

have a visual memory of the

virtual environment,

whether that memory is in

colour, the extent to which

the memory seems vivid or

realistic, its size, location in

your imagination, the

extent to which it is

panoramic in your

imagination, and other such

structural elements. I think

of the virtual environment

as a place in a way similar to

4 5 5 4 3 3 4 4 4 3

94

other places that I have

been today...

How would you subjectively

describe your level of

attention during the

experiment-

4 4 5 5 4 4 4 4 5 3

Do you think that the

experiment took too long-

3 5 2 3 3 3 5 4 2 4

General Information

Age 25 29 26 29 26 21 37 29 34 23

Profession / field of study

Beruf / Studiengang

HCI phd

stude

nt

Stude

nt

phd

stude

nt

HCI Stude

nt

Resea

rch

assista

nt

Maste

r

Studie

s in

Comp

uter

Scienc

e

Infor

matik

MCI

Stude

nt

Gender Male Male Femal

e

Male Femal

e

Male Male Male Male Male

Self-estimation after the Experiment

ID Did you have a cognitive strategy to detect the

rotations/translations-

Additional comments

0 Looking straight ahead at some lines. if they rotate or move it was easily

to detect if i was rotated. Translating/Rotating up and down was harder

to detect

felt very buggy

95

1 I saw it when i opened my eyes again. Standing sucks!

2 Yes, looking to the text and some explicit point in the scene.

3 orientation points

4 try to look for fixed point and then compare my position to the point

whether left, right, up, down and forward, backward. I noticed that in

some conditions I am not moving at all for this I just decided randomly.

Interesting experience!

5 ich habe immer die Unterkante des Raums bzw. ein Tischbein bei den

Translationen fokussiert. Bei den Rotationen fand ich es einfacher die

Tischplatte zu beobachten; ansonsten habe ich bei jedem Trial versucht

neu einzuschätzen

die Rotationen fand ich leichter zu

bemerken, weil man einen neuen

Ausschnitt des Raums gesehen hat (sollte

bei Translationen ja eigentlich auch so

sein, aber da ist mir das nicht aufgefallen);

6 I tried to build a new impression for each trial.

7 I tried to guess based on the initial position of the objects.

8 Not all the time but I was comparing the position of the legs of the table

and make conclusions depending whether the front one is left\right

from the back one

9 Translation:

 -left and right: windows in the scene were unfortunately very helpful

 -up and down: only by remembering the center position

 -forth and backward: this was really difficult

--> main-strategy was comparing the images

Rotation:

 -pitch: only by checking the mismatch between guessed real

orientation of my head and the presented view, moderately difficult

 -roll: very easy to determine, just by recognizing the mismatch

between "Gleichgewichtssinn" and the presented view

 -yaw: this was very hard to recognize, often I was lost and didn't know

which orientation is real

The success rate of the sensor is improved

when staring to the "right" position.

With perfect timing (changing the scene

during eyes shut period) it was really

difficult to recognize the change in the

environment).

Sometimes I saw the active change of the

environment during opening phase of my

eyes, which made it easy to recognize.

96

--> main-strategy was comparing image and recognized feeling for the

presented perspective

10 If the room moves in one direction, choose the other one. I was not sure if I should tell my own

rotation as if i were a camera or of the

image i saw, i guess my own

Question/ User ID
0 1 2 3 4 5 6 7 8 9 10 Middl

%

How sure are you that you always chose the correct
answer

3 3 4 4 3 2 4 3 2 3 3 3,09090909 61,8181818

Please rate your sense of being in the virtual environment,
on a scale of 1 to 5, where 5 represents your normal
experience of being in a place. I had a sense of “being
there“...

3 5 5 4 4 3 2 4 4 4 4 3,81818182 76,3636364

To what extent were there times during the experience
when the virtual environment was the reality for you-
There were times when the virtual environment was the
reality for me...

1 5 3 4 4 3 2 4 3 4 3 3,27272727 65,4545455

When you think back to the experience, do you think of the
virtual environment more as images that you saw or more
as somewhere that you visited- The virtual environment
seems to me to be more like...

4 4 5 4 5 3 3 4 5 4 2 3,90909091 78,1818182

During the time of the experience, which was the strongest
on the whole, your sense of being in the virtual
environment or of being elsewhere- I had a stronger
sense of...

4 2 4 4 4 3 4 4 4 2 4 3,54545455 70,9090909

During the time of your experience, did you often think to
yourself that you were actually in the virtual environment-
During the experiment I often thought that I was really
standing in the virtual environment...

1 5 1 4 4 3 2 4 4 4 4 3,27272727 65,4545455

Consider your memory of being in the virtual environment.
How similar in terms of the structure of the memory is this
to the structure of the memory of other places you have
been today- By ‘structure of the memory’ consider things
like the extent to which you have a visual memory of the
virtual environment, whether that memory is in colour, the
extent to which the memory seems vivid or realistic, its
size, location in your imagination, the extent to which it is
panoramic in your imagination, and other such structural
elements. I think of the virtual environment as a place in a
way similar to other places that I have been today...

4 5 5 4 4 3 3 4 4 4 3 3,90909091 78,1818182

How would you subjectively describe your level of attention
during the experiment-

4 4 5 5 4 4 4 4 4 5 3 4,18181818 83,6363636

Do you think that the experiment took too long- 3 5 2 3 3 3 3 5 4 2 4 3,36363636 67,2727273

 Av

73,8181818

97

8.5 Simulator Sickness Questionnaire

Kennedy Simulator Sickness Questionnaire (1993) [1]

Instructions: Circle how much each symptom below is affecting you right now.

1. General discomfort None Slight Moderate Severe

2. Fatigue None Slight Moderate Severe

3. Headache None Slight Moderate Severe

4. Eye strain None Slight Moderate Severe

5. Difficulty focusing None Slight Moderate Severe

6. Salivation increasing None Slight Moderate Severe

7. Sweating None Slight Moderate Severe

8. Nausea None Slight Moderate Severe

9. Difficulty concentrating None Slight Moderate Severe

10. « Fullness of the Head » None Slight Moderate Severe

11. Blurred vision None Slight Moderate Severe

12. Dizziness with eyes open None Slight Moderate Severe

98

13. Dizziness with eyes closed None Slight Moderate Severe

14. *Vertigo None Slight Moderate Severe

15. **Stomach awareness None Slight Moderate Severe

16. Burping None Slight Moderate Severe

* Vertigo is experienced as loss of orientation with respect to vertical upright.

** Stomach awareness is usually used to indicate a feeling of discomfort which is just short of

nausea.

99

8.6 Participant information and consent form

100

101

102

