
Faculty 3: Mathematics and Computer Science
Master’s Program of Computer Science

Realistic 3d Terrain Generation Through
Procedural Water Bodies Using Artificial

Drainage Basins

Master’s Thesis

Judith Boeckers
ju_bo@uni-bremen.de

Enrollment Number: 4218612

December 5, 2021

1st Assessor: Prof. Dr. Gabriel Zachmann
2nd Assessor: Prof. Dr. Rainer Malaka

Supervisor: M.Sc. Roland Fischer

Declaration

I hereby declare that this thesis is my own unaided work and has not been partially or fully
submitted ad graded academic work. Only the mentioned sources and references were used.
All parts that use sources according to their wording or their meaning are declared as such.

Bremen, December 5, 2021
. .

(Judith Boeckers)

CONTENTS I

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Challenges . 2
1.3 Goals . 2
1.4 Structure . 3

2 Theory and Principles 4
2.1 Digital Terrain and Procedural Generation . 4

2.1.1 Representation of Digital Terrain . 4
2.1.2 Voronoi Diagrams . 5
2.1.3 Noise . 6
2.1.4 Pathfinding Algorithms (A*) . 10

2.2 Physical Terms and Processes . 11
2.2.1 Drainage Basin . 11
2.2.2 Fluid Dynamics . 13
2.2.3 Erosion . 13
2.2.4 Plate Tectonics . 14

3 Concept 16
3.1 Possible Methods and Techniques . 16

3.1.1 General Considerations . 16
3.1.2 Potential Approaches . 18

3.2 Final Concept . 20

4 Implementation 23
4.1 General Structure . 23

4.1.1 Data Structures . 24
4.2 Implementation Details . 24

4.2.1 Ocean Border . 25

CONTENTS CONTENTS

4.2.2 Regions . 28
4.2.3 River Networks and Lakes . 30
4.2.4 Heightmap . 34
4.2.5 Visual Representation and Output . 36

5 Evaluation 38
5.1 Complexity Analysis . 38

5.1.1 Time Complexity . 38
5.1.2 Space Complexity . 42

5.2 Performance Evaluation . 42
5.2.1 Ocean Borders . 43
5.2.2 Regions . 44
5.2.3 Rivers and Lakes . 45
5.2.4 Heightmap . 47
5.2.5 Visualization . 48
5.2.6 Complete Algorithm . 49

5.3 Visual Evaluation . 50
5.3.1 Results . 50
5.3.2 Comparison with Reality . 51

6 Conclusion 54

Bibliography 56

II

1 Introduction 1

Chapter 1

Introduction

This thesis deals with the generation of realistic landscapes in a semi automatic way. The user
can define a set of parameters that control the way the landscape is constructed. The process
then builds the landscape automatically based on those parameters. Different approaches
were experimented with until the algorithm proposed in this thesis was implemented. The
basic idea is to reproduce natural processes for terrain generation in a simplified manner. The
best results were achieved when first generating water bodies like rivers, lakes and oceans
and then basing the constructions of the terrain on those water bodies. After finishing the
generation process, the final landscape can be visualized and exported. The data can then
be used in various applications such as the generation of huge landscapes for video games or
as test data for simulations.

1.1 Motivation

Procedural generation of landscapes is a topic of great relevance in research. Many studies
have been performed to analyse structures of real terrain. (Jenson and Domingue, 1988) and
(Costa-Cabral and Burges, 1994) are examples of algorithms proposed to analyse the topo-
logical structure and drainage basins of digital elevation models. Most of that research was
done on real terrain data. Should it be possible to create data that structurally resembles real
landscape then it would be feasible to use that data to run simulations in order to confirm
theories without the need of a large pool of real data.
Alongside the application in the field of research, generating landscapes is also a very impor-
tant focus in the development of computer games. In the past, games were mostly restricted
to a linear storyline with relatively small areas and abstracted landscapes to explore. This
was mostly due to the restricted power of older hardware. With the increasing calculation
capacity of modern computers, the possibility for bigger and more realistic worlds emerged.
This materializes in the increasing number of so-called open world games where the player
can explore the map freely and in any order. Creating realistic landscapes by hand of a scale

1.2. CHALLENGES Introduction

that constantly increases is a very slow and expensive process. Procedural terrain generation
could potentially reduce the time and cost needed to create believable landscapes. It could
also provide the possibility to create even larger maps without the need for more data storage
space, as the terrain itself does not have to be stored. Only the parameters for the algorithm
would have to be saved. Even if the results would not be used directly, they could provide a
solid base that respects physical factors and that artists can build upon.

1.2 Challenges

Several approaches of procedural terrain generation already exist. They focus on different
goals and follow different methods. This often leads to the problem of fulfilling only some
aspects of the goals for procedural terrain. While methods based on simulations of natural
phenomena produce very realistic results, they lack in the possibility of influence a user can
have on the generated results. Besides, simulations are often very demanding computationally
and thus take a long time to calculate. (Cordonnier et al., 2016) proposed an algorithm for
creating large scale realistic terrain based on tectonics and erosion. This approach shows
realistic results but does not give a lot of control over the outcome. Other methods often
make heavy use of noise functions. This approach is normally faster and can produce a
lot of different outcomes for different parameters. The problem is the abstractness of those
parameters as it is difficult to influence the result in a specific way. In (Fischer et al., 2020)
multi-biome landscapes are generated by simulating wind, temperature and precipitation.
The focus there is more on those simulations and dividing the landscapes into different
biomes, so the heightmap generation does not produce very realistic results, as it creates
the terrain using only noise functions. The challenge is to develop an algorithm that finds
a balance between the different demands. Realism must be balanced against efficiency and
automation against control.
A lot of research has been done in the field of river networks and drainage basins, for example
in (Rosgen, 1994) who classified river shapes based on terrain slope and terrain type. (Rigon
et al., 1993) performed a study on optimal channel networks in river basins. While a lot of
work has been done to analyse existing structures, the focus in procedural terrain generation
is often less on the generation of realistic river networks and other water bodies and more
on the calculation of a heightmap. In this thesis both aspects will be combined to generate
realistic terrain result with the focus on water bodies.

1.3 Goals

The goal of this thesis is to develop an algorithm which generates various and divers land-
scapes that resemble reality in a believable way. While doing that the algorithm should focus
on creating realistic water bodies. It should furthermore fulfil a set of requirements. To do
so some compromises have to be made.

2

1.4. STRUCTURE Introduction

On the one hand, it is desired to generate landscapes that are as realistic or as believable
as possible. On the other hand, the computation time should not take too long. This is to
ensure that it is possible to do multiple iterations with different parameters in an acceptable
amount of time. As there are various demands for different areas of application, it should be
possible to balance these two aspects with the use of parameters the user can set.
Another compromise needs to be made is the balance between the control of the user over
the result and the amount of automation in the generation process. While great extend of
user control makes it possible for them to achieve exactly the results they want, it also defies
the purpose of this thesis. Furthermore, it would lead to large amount of time the user has
to invest and also require a great deal of knowledge to create something realistic. A full
automation, on the other hand, leads to the problem of results not matching the desired
specification for a certain application. For example, in computer games it is often required to
divide the map into regions based on different characteristics in a certain layout. This would
not be possible if everything was constructed completely without user input.

1.4 Structure

This thesis is divided in six chapters. The second chapter explains the theoretical background
of the methods and algorithms used in procedural generation in literature and in this study
specifically. Additionally, some physical terminology and processes will be illustrated that
play a role in the natural formation of landscapes. In the third chapter, the underlying concept
of the developed algorithm will be presented. Furthermore, different possible approaches and
methods will be analysed and discussed based on the goals defined in section 1.3. In the
fourth chapter the final implementation of the most promising approach will be explained
in detail. The fifth chapter begins with a complexity analysis in respect to time and space.
After that, the theoretical considerations will be compared with test results. Afterwards an
evaluation of how closely a section of a real landscape can be recreated with the developed
algorithm will be performed. The thesis then ends with the sixth chapter in which the results
are summarised and possible enhancements for future work will be presented.

3

2 Theory and Principles 4

Chapter 2

Theory and Principles

2.1 Digital Terrain and Procedural Generation

2.1.1 Representation of Digital Terrain

There are different methods to represent digital terrain. The most common one is to store
terrain data in form of so-called heightmaps. In the simplest version of this technique, the
map is represented by a function

f : N2 ⊃M → R,

where M is a 2-dimensional grid. This means that each cell in M contains the information of
the height at the corresponding position. For more complex information, one could extend
the right side of the function to a tuplet and thus store as much information as needed
(e.g. terrain type, toughness, etc.). An example for terrain representation in games using
heightmaps is shown in figure 2.1

Figure 2.1 Example for heightmap terrain in the Microsoft Flight Simulator1

1Heightmap is taken from https://www.flightsimulator.com/media/ on 12/05/2021

https://www.flightsimulator.com/media/

2.1. DIGITAL TERRAIN AND PROCEDURAL GENERATION Theory and Principles

Another common possibility to represent terrain is to use voxels. A voxel is the 3-dimensional
equivalent of a pixel. Analogously to before, we can describe the terrain through a function

f : N3 ⊃M → N,

where M is a regular 3-dimensional grid and N an arbitrary set. Because the height of the
terrain is inscribed in the third dimension of the domain, it leaves the option to store different
data in the image of the function. This can include the type of terrain, the softness, the flow
direction of a water cell, or every other feature of a terrain voxel that is needed for the
application. The Terrain can then be displayed as a 3-dimensional mesh, where each voxel is
represented by a cube, connected to the rest of the map. In contrary to the representation
with heightmaps, this approach allows for more advanced structures such as caves or cliffs.
An example for this kind of terrain representation is displayed in figure 2.2. The information
each voxel contains include the type and hardness of the corresponding block. Different types
of blocks are represented by different textures on the mesh.

Figure 2.2 Example for voxel terrain generated in the game Minecraft

2.1.2 Voronoi Diagrams

A Voronoi diagram is a method to divide a plane or an area in different regions. To calculate
the diagram over the given region one needs to start with a set of so calleed Voronoi sites.
These sites will be distributed over the area (randomly or manually). A Voronoi region is a
subset of the area and belongs to a Voronoi site. It includes all the points that are closer to
its site than to all other sites. If all the regions are calculated, then the area is the union
of all the disjoint regions. Borders between two regions are called Voronoi edges and the
intersections of three or more regions are named Voronoi points.
The diagram can be calculated by using different metrics which lead to visually different
results. Two examples with the standard Euclidean distance and the Manhattan distance are
shown in figure 2.3. The choice of the appropriate metric depends always on the application
the diagram is used for.

5

2.1. DIGITAL TERRAIN AND PROCEDURAL GENERATION Theory and Principles

Figure 2.3 Two Voronoi diagrams with the same area and same set of sites but different metrics.
The diagram on the left is calculated using the Euclidean distance (Ertl, 2015a)
while the one on the right uses the Manhattan distance (Ertl, 2015b).

These diagrams can be used in many different applications. A typical utilisation would be to
use it as areas of influence. If, for examples, a chain of supermarkets represents their already
existing stores as Voronoi sites, then the best candidates for new market locations would be
the Voronoi points, because they represent the points that are farthest from the tree ore more
closest markets.
Another interesting application is the procedural generation of textures. For instance, if the
distance to the closest Voronoi edge is calculated and mapped to a colour value, it can be
used to generate a stylised water or lava texture. Furthermore, the sites could be moved over
time to give the illusion of moving waves.

2.1.3 Noise

The term noise describes the random distribution of values over a defined base space. The
space can be of any dimension. The most commonly used variation is 2-dimensional noise.
Therefore, the focus in the following section will be on only two dimensions, but it can be
easily extended to any desired dimension using the same concepts. There exist many kinds
of noise. Many references on this topic can be found in literature. For example, a wide range
of the most common noise types was discussed by (Lagae et al., 2010). These types including
white noise, perlin noise, cellular noise and fractal noise will be presented below.

White Noise For each cell of an n × n-grid, a random value between 0 and 1 will be
generated. Thus, every cell stands on its own and has no relation to the neighbouring cells.
Besides, each value appears with the same probability. Therefore, the noise is the realisation
of n2 identical and independently distributed random variables. An example of white noise

6

2.1. DIGITAL TERRAIN AND PROCEDURAL GENERATION Theory and Principles

can be seen in figure 2.4.

Figure 2.4 Example of 2-dimensional white noise on a 128x128 grid. The image was generated
with the software FastNoiseSIMD from (Peck, 2020).

White noise is the most basic form of noise. Because neighbouring cells are not dependent
on each other, the difference between adjacent noise values can vary considerably. Moreover,
it is almost impossible to get an outcome with smooth transitions along any direction of the
grid. Even though this form or noise is very fast to compute, it is normally not used for
applications that need smooth noise maps, like the generation of digital terrain.

Perlin Noise Perlin noise is an example of procedural noise that uses adjacency information
to generate smooth transitions over neighbouring noise values. The first step in the generation
of the noise for a 2-dimensional base set is to overlay it with a grid. The size of the grid
determines the frequency of the resulting noise. For every corner point of the grid, a (pseudo)
random 2-dimensional normalized vector is generated. To get the noise value for a point p,
the grid cell is determined in which p is contained. Then, for each corner of that cell, the
dot product between the corresponding random vector and the offset of p to that corner is
calculated. By linearly interpolating these four values regarding the relative position of p in
the cell, the final noise value is calculated. An example result for this procedure is shown in
figure 2.5.
Because of the way this kind of noise is calculated, it produces a smooth result. Therefore,
and because of its relatively simple calculation steps, it is a popular choice for procedural
terrain, texture or surface generation.

7

2.1. DIGITAL TERRAIN AND PROCEDURAL GENERATION Theory and Principles

Figure 2.5 Example of 2-dimensional perlin noise on a 256x256 grid with a frequency of 0.05.
This corresponds to a size of 256 · 0.05 = 12.8 pixels. The image was generated
with the software FastNoiseSIMD from (Peck, 2020).

Fractal Noise Fractals are structures where the whole structure can be found in subsets
of themselves. Fractal noise takes this key concept to generate noise based on other noise
generation procedures. Different versions of the same noise are stacked on top of each other.
Each layer adds noise with increased frequency but lower amplitude. Therefore, the first
layer determines the global structures, while each subsequent layer adds smaller, local details.
These layers are called octaves. The higher the number of octaves, the closer the result gets
to an actual fractal. Examples with different numbers of octaves based on the perlin noise
are shown in figure 2.6.

Figure 2.6 Example of 2-dimensional fractal noise on a 256x256 grid. The noise function used
is perlin noise with a base frequency of 0.05. The number of octaves from left to
right are 1, 2 and 3. The images were generated with the software FastNoiseSIMD
from (Peck, 2020).

Fractals are structures which are found in different parts of nature, because construction rules
can be both applied globally and locally. Therefore, using fractal noise in the generation of
natural objects can lead to more realistic and natural results.

8

2.1. DIGITAL TERRAIN AND PROCEDURAL GENERATION Theory and Principles

Cellular Noise Cellular Noise, as the name suggests, is a form of procedural noise that cal-
culates its values by dividing the area into smaller cells. This can be done in multiple ways,
but the most common way is to use Voronoi diagrams, which are explained in detail in section
2.1.2. Depending on the used distance function, the cells are generated in a different way.
There are multiple possibilities of assigning values to the cells. Each point of a cell can have
the same value. This value can be chosen either randomly or by using another noise function
like perlin noise. By looking up the noise value of the generating points of the Voronoi regions
and then assigning that value to the whole region, a less arbitrary result is produced. It is
not smooth like perlin noise, but neighbouring cells follow a kind of gradient. This is only the
case if the frequency of the underlying noise function is set appropriately. If the frequency
is too high, the results are very random again. This form of cellular noise can be used, for
example, to divide a map into different territories. Figure 2.7 shows examples of both options.

Figure 2.7 Example of 2-dimensional cellular noise on a 256x256 grid with a base frequency
of 0.05. Each cell has a fixed value. On the left, the values are chosen randomly,
while on the right the values are defined by an underlying perlin noise texture. The
frequency of the perlin noise is 0.2. The images were generated with the software
FastNoiseSIMD from (Peck, 2020).

Instead of assigning a fixed value to each cell, it is also possible to use a value that depends
on the distance of a point to the corresponding cell border. The distance function chosen for
that again has an influence on the appearance of the result. Examples for those options are
displayed in figure 2.8.
By interpolating between different colours based on the values, this type of noise could po-
tentially be used for water textures in games with a more stylized graphic style. Instead of
using a static texture, an animated one can be produced by moving the generating Voronoi
points over time. This can create the illusion of moving waves.

9

2.1. DIGITAL TERRAIN AND PROCEDURAL GENERATION Theory and Principles

Figure 2.8 Example of 2-dimensional cellular noise on a 256x256 grid with a frequency of
0.05. The distance to the border of each cell is used to calculate the values. The
image on the left uses the Euclidean distance, while the image on the right uses the
Manhattan distance. The images were generated with the software FastNoiseSIMD
from (Peck, 2020).

2.1.4 Pathfinding Algorithms (A*)

Pathfinding algorithms are a form of search algorithm on graphs. Beginning from a starting
state, the algorithm searches until it finds a state which is included in a set of target states.
Search algorithms can be separated into two different categories, informed and uninformed
search. A search is called informed when it uses information about the current state to
its advantage. If it does not use additional information, it is called uninformed. A typical
example of an uninformed search is the so-called Dijkstra search algorithm, which operates
on weighted graphs and only takes the cost of the path to the next node in consideration. The
A* search algorithm (often seen as an extension to the Dijkstra algorithm) can be classified
as informed. It makes use of a heuristic function to not only evaluate the cost to the adjacent
node of the graph, but also an approximation of the final cost. A* first evaluates the node n

which minimizes

f(n) = g(n) + h(n),

where g(n) is the cost of the path from the start to node n and h(n) is the value of the
heuristic, which approximates the cost from n to the target.
A heuristic function h is called admissible if it fulfils

h(n) ≤ h∗(n) for all n,

with h∗(n) being the optimal cost for a path from n to the goal. If the A* algorithm uses an

10

2.2. PHYSICAL TERMS AND PROCESSES Theory and Principles

admissible heuristic, it is guaranteed that the result of the search is optimal. If h is monotone,
meaning that it satisfies the condition

h(m) ≤ c(m, n) + h(n) for all m, n,

the algorithm also finds the solution without evaluating a node twice. Hereby c(m, n) repre-
sents the cost from node m to node n.
The choice of the heuristic depends on the application. A heuristic that is admissible in one
scenario can behave differently in another one. For example, in the case of fining the shortest
route on a grid from one point to another, the Manhattan distance between a point and the
goal is admissible. On the other hand, in the application of finding routes on a map, the
Euclidean distance between two points is always shorter or equal to the Manhattan distance.
In this case. the same heuristic would not be admissible.
Pathfinding algorithms can be used for a lot of applications, like navigation systems. With
the right cost and heuristic functions, it could also be a good candidate for calculating rivers
paths.

2.2 Physical Terms and Processes

2.2.1 Drainage Basin

An area that collects precipitation and channels it to a single outlet is called drainage basin.
Multiple terms exist for the same mechanism. These include catchment areas and water
sheds. The different terms are used interchangeably in the following. The water collected
can be from rain, melting snow or other sources like rivers or subsurface sources. The outlet
which the precipitation connects to can be a river, a lake, the ocean or a point where the
water dissolves into the earth. Each basin can be divided into smaller basins in that there
exists a hierarchical structure of catchment areas where one is included in multiple ones of
higher order. Individual basins are separated by higher elevations like mountains or hills
forming a natural border. Figure 2.9 shows a simplified structure of a drainage basin.

11

2.2. PHYSICAL TERMS AND PROCESSES Theory and Principles

Figure 2.9 A schematic showing the general structure of a drainage basin (Lin et al., 2006)

A lot of different approaches were made to extract catchment areas from existing terrain data
based on the heightmap. The most common data representation hereby is a regular grid with
a height value for each cell of the grid. Most algorithms on those grids work by calculating the
amount of water flowing through a cell and then assume that cells above a certain threshold
belong to a water stream. A problem that arises in most cases is the existence of local minima
in the elevation data. For example (Jenson and Domingue, 1988) tried to work around this
by making use of a depression filling algorithm. Another challenge is that different areas may
produce the optimal result with different thresholds. (Lin et al., 2006) proposes a method to
extract the optimal thresholds automatically by means of using a fitness index.

Figure 2.10 A 3-dimensional model of an area of terrain divided into drainage basins
(Asybaris01, 2011)

12

2.2. PHYSICAL TERMS AND PROCESSES Theory and Principles

2.2.2 Fluid Dynamics

Fluid dynamics refer to the description of the flow of fluids. The term fluid refers to liquids,
such as water, or gases, e.g. air. It is based on sets of equations which describe the physical
rules that control the flow. Those equations build on the assumption that energy, mass
and momentum are conserved. Different factors need to be considered when analysing and
calculating fluid behaviour. In addition to properties of the fluid itself, such as the viscosity,
density and its momentum, also outside forces have to be included. As the calculation of
fluid motion can be very complex, simplifications of the model are often made. A common
practice is to assume the fluid is incompressible. (Harris, 2003) bases their approach on this
assumption and uses the commonly used Navier-Stokes equations

∂u⃗

∂t
= −(u⃗ · ▽)u⃗− 1

ρ
▽p + v▽2u⃗ + F⃗

▽ · u⃗ = 0,

where ρ is the fluid density, v the kinematic viscosity and F⃗ the vector describing all external
forces acting on the fluid. The whole model is based on a velocity vector field with vectors
u⃗. These equations can simulate the movement of fluids over time

2.2.3 Erosion

In geology the term erosion refers to the process of removing material like stone or soil by
breaking it into smaller pieces through movement. It is a process that appears on the surface
and is caused, for example, by rainfall, movement of water bodies (such as oceans or rivers)
and wind. The material is removed in one place and transported to another. These different
types of erosion have a different effect on the landscape they interact with. Flowing water,
for example, forms riverbeds and rain and wind can cause terrain masses to break and slide
down a hill or form a cliff. Different types of material behave differently under the influence
of the same movement. In the case of flowing water, softer materials like soil are removed
much easier than, for example, stone. If a river traverses from hard terrain to soft terrain,
the softer one is eroded a lot faster which, over time, can lead to gaps and as a consequence
to waterfalls. These differences in soil composition together with the slope of the terrain also
have an effect on the shape of riverbeds. (Rosgen, 1994) proposed a classification of stream
types based on those factors. This is shown in figure 2.11.

13

2.2. PHYSICAL TERMS AND PROCESSES Theory and Principles

Figure 2.11 Classification of rivers by cross section and plane view (Rosgen, 1994)

A lot of different algorithms were developed to simulate the process of erosion. A common
approach is to begin by distributing water randomly on an existing terrain. The flow of
the water is then simulated and that simulation is then used to calculate the movement of
material. Several different approaches to perform this simulation were proposed. (Musgrave
et al., 1989) were the first in this area. They proposed an algorithm that works on a mesh
of vertices with a fractal approach. They were followed by more studies, including (Mei
et al., 2007), who chose a more physical approach by using a shallow-water model for the
flow simulation which is based on the Navier-Strokes equations (see section 2.2.2).

2.2.4 Plate Tectonics

Plate tectonics have been the subject of many studies. (Viitanen, 2012), (Le Pichon et al.,
2013) and (Cox and Hart, 2009) explain the process in more detail. The earth consists of
multiple different layers. The outermost layers are called the lithosphere and are responsible
for the process that is called plate tectonics. Figure 2.12 shows this concept of the layers in a
cutout of the earth. The lithosphere contains different plates which move very slowly over a
very long time. This movement shapes the terrain in different ways and can also have some
other influences.

14

2.2. PHYSICAL TERMS AND PROCESSES Theory and Principles

Figure 2.12 A schematic illustrating the different layer of the earth (Viitanen, 2012)

The relative movement of two plates is categorized into different types. Plate boundaries
that move towards each other are called convergent, while those which move away from each
other are called divergent. The type of movement where two plates slide alongside each
other is called transform. This is illustrated in figure 2.13. These different types shape the
terrain in various ways. Mountains or ridges can be constructed over time. Earthquakes
or volcanic activities are another possible effect of this movement. The influence of plate
tectonics normally happens on a larger scale than other geological terrain shaping effects
such as erosion.

Figure 2.13 A schematic showing the different types of plate boundary interactions (Vigil.,
1997)

Plate tectonics have also been researched for the use of physically based procedural terrain
generation. In (Viitanen, 2012), an algorithm is proposed to simulate the movement of plates
and generate terrain using the collision information. Another example for the use of plate
tectonics is (Cordonnier et al., 2016) who used plate tectonics as well as erosion to create
realistic landscapes based on a vector representation of the map.

15

3 Concept 16

Chapter 3

Concept

This chapter is dedicated to developing a concept for the most optimal algorithm giving the
specifications made in section 1.3. First different general options like the representation of
data will be discussed. This is followed by a section evaluating different methods for the actual
algorithm based on the decisions made in the first section. Finally, the strategy pursued in
the following implementation will be revealed and the reasons leading to these decisions will
be explained.

3.1 Possible Methods and Techniques

3.1.1 General Considerations

Software The algorithm that will be developed is a tool to generate landscapes so it is
natural to have a way to display the produced results in a graphical way. It would be
possible to write all the code to do that, but the logical step to take is to use a tool that is
already designed to do this, because it is not the aim of this thesis to develop a rendering
algorithm. Since an important application for the results of this paper is in the field of game
development, a game engine as the development environment will be used. 3d rendering is
included there so the main focus will be on the relevant parts. Furthermore, this yields the
important advantage of a lot of useful tools like already implemented vector math and mesh
generation tools.
There are a lot of Game Engines capable of accomplishing this task. In this project the Unity
3d Engine will be used. It is one of the most used engines in the game industry and also
includes a free licence. It supports the programming language C# in which this algorithm
will be programmed.

Online/Offline The decision whether the algorithm should be implemented to be used on-
line or offline affects the way it can be used in applications. Online implies that all calculation

3.1. POSSIBLE METHODS AND TECHNIQUES Concept

are done in realtime. For this, the generation of the terrain would then be split into separate
sections which can be calculated independently of one another and then be connected. This
leads to the advantage of infinite landscapes that can be generated live when a player ex-
plores a game. This approach is pursued for example in the game Minecraft. There the map
is split into chunks which will be generated when the player comes close to them. Offline
algorithms, on the other hand, are executed asynchronously without life information. This
means that in the case of terrain generation the terrain would be generated completely in
advance. With this strategy it is not possible to construct infinite landscapes. The advantage
for this approach is that more time can be spend on the generation and different parts of the
terrain can share information about each other.
In this thesis, the approach of an offline algorithm will be followed. One reason for that
is the generation of river networks which are connected globally and would have to share
information to be created in a believable way. Furthermore, the developed algorithm should
be designed to not produce completely procedurally terrain, but also give a lot of control to
the user about the global layout and other features. Using an online approach would make
more sense if the goal were to generate infinite terrain. This does not work well with terrain
that should be controlled by the user. The last important point is, that offline methods allow
for the opportunity to use more time for complex calculations which are probably needed to
follow the idea of creating realistic terrain.

Terrain Representation An important decision that has to be made before the actual
algorithm can be worked out is how to represent the digital terrain. Two different methods
commonly used will be discussed here. Both are explained in more detail in chapter 2.1.1.
The first method is to use so-called heightmaps. This method uses a 2-dimensional grid
and stores the height information for each cell. This is relatively simple compared to other
methods which use a higher dimension for the base set. This also means that calculations
concerning neighbouring cells are faster because there are only neighbours in two dimensions.
Furthermore the data can be stored easily as image data with grey levels in each pixel for
the height information in the corresponding cell. This yields the advantage of simple porta-
bility of data between different applications without one knowing about the implementation
details and data structure of the other. Additionally heightmaps are the method that is most
commonly used in game development and is supported by most of the game engines.
The second possibility of storing terrain data to be discussed here is the method of using
voxel representation. Voxels are 3-dimensional pixels which means that the terrain is stored
in a 3-dimension grid instead of a 2-dimensional one as in the heightmap approach. Each
voxel can then store the type of terrain that is represented. The most simple way would be
to store just a boolean for each voxel to indicate whether there is land or air. For a more
complex approach one could store the exact type of terrain like for example rock, sand or
water. This method offers more possibilities for different shapes of terrain because of the
third dimension. This allows the generation of structures like caves or cliffs that would not

17

3.1. POSSIBLE METHODS AND TECHNIQUES Concept

be possible otherwise. On the other, hand this increases the complexity and time that is
needed to perform calculations.
After considering advantages and disadvantages of both options, it was decided to base the
algorithm developed in this thesis on the use of heightmaps. The most important reason for
that is the compatibility with game engines. The most important application for this kind
of algorithms is to generate terrain for games ,therefore, it is beneficial to have it integrated
well. With this approach the possibility to generate cliffs and similar structures is lost but it
provides the opportunity for faster runtime which leads to more iterations to get to desired
results.

3.1.2 Potential Approaches

Creating digital landscapes can be realised with different approaches. These can be divided
into three categories. One option is to generate water bodies and terrain simultaneously.
The other possibility is to generate both parts individually. This leads to a second approach
to first generate terrain and then water bodies on top of it. The third option would be to
generate the landscape in reverse order. In this section, these different strategies will be
presented, and their advantages and disadvantages will be discussed.
The first possibility to create everything simultaneously is normally realised with the use of
simulations. This means that, instead of defining several steps that are performed one after
another, the program defines a set of rules and then in a certain amount of time each part
of the simulation acts according to those rules. These rules can represent a wide variety of
phenomena and depend on the context of the simulation. In the context of terrain generation,
this would probably include simulations of plate tectonics (chapter ??) or erosion (chapter
2.2.3). With the use of fluid simulation (refer to chapter ??), water, soil and stone can be
represented by particles and the rules define how each particle moves depending on its state
and how it interacts with other parts of the environment. This includes, for example, how
easily water particles can remove and carry different kinds of terrain particles to simulate
erosion (refer to chapter 2.2.3). In this manner, it is possible to emulate natural processes
very closely. The major advantage is the realism that can be achieved with this approach.
This requires a lot of complex rules, a large amount of particles and many calculation steps,
all of which lead to the problem of long computation times. Depending on the number of
simulated systems and the desired degree of realism, this can sometimes take several days.
Another issue is the lack of control over the result of the simulation. This can be a problem
when the generated landscape has to meet, for example, specific layout criteria. To fulfil those
criteria, either more systems have to be implemented or the simulation has to be controlled
in other ways.
The other option would be to generate different parts of the terrain separately. This can
also be divided into different possible strategies. The main difference between them is the
order of actions and how to perform each step. Because this thesis puts an important focus on
procedural water bodies, the generation of those items can be classified as one important step.

18

3.1. POSSIBLE METHODS AND TECHNIQUES Concept

Another one is the generation of the heightmap. Each of those steps can then be partitioned
even more, but the main question is in which order to perform those main steps. Since there
are two steps, two possibilities arise for the order of them. The first option would be to
generate the terrain and then place the rivers on top of it. The terrain could be generated
for example with the utilization of noise functions introduced in chapter 2.1.3. Most types
of 2-dimensional noise produce a map with smooth transitions that can be used directly as a
heightmap. Different types of noises can be combined with different settings to create a vast
amount of shapes for the terrain. After constructing a heightmap the next step would be to
generate water bodies on top of it. Because the water level of the ocean is always at the same
height, the easiest way to generate it would be to classify each cell as ocean, that is located
under a specific height threshold. This requires a good set-up of terrain height distribution
from the previous step to generate convincing coast lines. Without that, it can result in a
large quantity of separate ocean regions such as big lakes.
Creating river networks can be accomplished with different approaches. First, there is the
possibility to place river sources (either manually or by means of randomization) on the map
and then create the river by calculating the flow directions using path finding algorithms as
described in chapter 2.1.4. Path finding algorithms can not only be used to calculate the
shortest or fastest route to a target position. With the right cost functions, it can be applied
to many problems. Rivers, for example, generally flow along the path which takes the least
amount of energy. This does not always mean the shortest path. Consequently, finding a
cost function that leads to that behaviour is important. It includes the distance travelled
but also the steepness of the path. The advantage of this approach is that lakes can be
generated along the way by including both the result of the algorithm but also the searched
area. For that purpose, the A* algorithm explained in chapter 2.1.4 could be used with a
fitting heuristic. A result of this procedure is depicted in figure 3.1.

Figure 3.1 Section of a river network with lakes generated with A*. Dark blue depicts river
cells resulting from the shortest path calculated. The lighter blue areas represent
the areas searched by the path finding resulting in lakes.

Another way to define river networks would be to analyse the catchment areas of the terrain.
This was done, for example, in (O’Callaghan and Mark, 1984). By following the steepest
slopes, for each cell the amount of water flowing through it is calculated. Based on that,
every cell that lies over a specified threshold can then be classified as cell. This approach
holds the advantage of not generating river sources in unrealistic location like the middle of

19

3.2. FINAL CONCEPT Concept

a valley or the immediate vicinity of an ocean. The issue is that while it works well on real
terrain it can face major problems when dealing with randomly generated terrain. Because
rivers merely flow the steepest slope downhill, a river stops if it runs into a local minimum.
This means, that either a depression filling algorithm has to be performed after the random
heightmap generation or the rivers would have to be connected afterwards. A possibility for
the latter would be to fill the depression with a lake until it overflows. The only problem
then is to find another river afterwards to connect to. Also, because every cell is categorized
separately, there is no information about neighbouring cells. This means an extra step has
to be done to find those dead ends. Additionally, when placing rivers in this fashion, the way
they are generated is determined almost completely by the previous step. This reduces the
possibilities for the user to take control over the process and influence it to their liking.
A problem that both approaches have in common is that they work well with real terrain,
but can produce unrealistic results when the terrain is generated in an arbitrary way without
respecting natural procedures. This means finding a way to create realistic terrain in the first
step would be necessary.
The last option which should be discussed here is to also generate heightmaps and water
bodies separately but in reverse order in comparison to the last approach. Creating the
water bodies would be the first step and based on that, the heightmap would be created.
Even if this is not a simulation, the natural process of erosion, described in chapter 2.2.3, is
approximated slightly more. Erosion means, that over time rivers take parts of the terrain
with them when they flow. This leads to lower heights where there are or have been river
beds. Here a kind of opposite process would be performed. Instead of taking height away
in water regions, height is added between them. With the appropriate strategy, this could
potentially create realistic looking hills and mountains between river networks. This would
have to include a random factor, so that the mountains would not look to similar to each
other. Furthermore, the terrain should not be created in the same way everywhere. Other
geographical phenomena like plate tectonics (see chapter 2.2.4) shape the landscape in a
different way for different regions. There have to be regions that are flat and regions that
have bigger elevations up to very high mountain ranges. This could either be produced by
another random step or could be potentially controlled by the user.
Before the terrain between the rivers is lifted, there first have to be river networks. These
also have to be generated.

3.2 Final Concept

Even though this algorithm does not aim for a generation in realtime, short generation times
would be ideal. The goal of this project is to develop a procedure that allows multiple quick
iterations with different settings for prototyping until the desired results are achieved. This
is problematic when deciding on the physical simulation approach. As discussed previously,
simulations normally are significantly slower than other procedural generation approaches.

20

3.2. FINAL CONCEPT Concept

Even if one run takes just a few minutes, this will be a very long waiting time, if the user is not
sure what result he wants exactly or how to achieve them. Furthermore, fluid simulations are
done best with the use of particle systems. Because the algorithm should be designed to work
well for game development, it would be necessary to transform the results in a heightmap
so it can be used with most terrain tools in game engines. These considerations have led
to the decision to not employ this approach. Instead, different parts of the terrain will be
generated separately in the form of a pipeline. The relevant questions here are the steps in
which the generation will be split into and the order of those steps. The parts that have to
be implemented are the different types of water bodies and the height of the terrain. There
are different factors that can influence this decision. One the one hand, there are the results
that can be achieved with each possibility and, on the other hand, the kind of control the
user could have over each part. One important thing the user should be able to define is
the general shape of the landmass. This means that everything else has to depend on this.
Consequently the separation of ocean and landmass (and with that the coastline) has to be
the first step.
The other area that the user should have a lot of influence on is the decision about what the
general structure of the landmass should be. This should not be too specific but provide the
possibility to decide roughly on where to generate mountains or other types of terrain. These
different terrain types can then have an influence on how later steps perform. For example,
different regions can have different height distributions or different ways of generating rivers.
Using cellular noise introduced in chapter 2.1.3 is an option to divide the map into different
kinds of regions. The problem with this is that it leaves not enough control over the distri-
bution of terrain types. Hence it was decided to apply a more manual approach, by means
of which the user can specify exactly where to place different regions. Randomization can
then be performed in the calculation of the border between different regions. Different region
types should, for example, enable the option of dryer types like deserts, where no rivers are
generated. Also flat landscapes and mountainous areas should be a possibility.
The next step in the pipeline should then be the generation of river networks. This should be
a mostly procedural process. It ought to be possible to specify some parameters that have an
influence on the general shape or number of rivers, but it is not desired to set, for example,
every single river source or outlet. Parameters for the user should also take in considera-
tion the different regions generated in the previous step. The density of the networks or the
amount of branching could be possible options that could be also set differently for different
region types. Rivers should grow in strength and width over time as they do in reality. This
can then also affect other properties like the size of lakes they flow in and out of.
Although lakes rarely exist without a connected river, it is a rather rare phenomenon. This
lead to the decision to not have an extra step for the lake generation but instead to include
it in the process of river generation. Lakes should generate randomly along the river courses
and vary in size and shape. The user should have an influence over the amount, size and
general shape of lakes, without having to specify this for single lakes.
The last part of the actual terrain generation would have to be the calculation of the

21

3.2. FINAL CONCEPT Concept

heightmap. As discussed in the previous chapter for this approach, the terrain should grow
between the water bodies. The amount of growth, and with that the final height, should
be something the user can control. Also it should be possible to have different settings for
different terrain types. A problem that has to be addressed is the interpolation between the
different regions. Having a hard transition of steepness at the borders between terrain types
would lead to unrealistic results. Furthermore, growing the terrain straight from the rivers
would make every hill and mountain look the same and would result in an unrealistic look.
For that reason some kind of randomization should be employed to give the heightmap a
more natural flow. Using noise textures would be a good first idea on tackling this problem.
By setting different parameters of the noise functions, this can also give the user another way
of controlling the outcome.
Finally, there has to be a visualization step. Even though this is not part of the actual terrain
generation, it serves an important purpose. Without some form of graphical representation,
the user has no possibility to verify if the results they achieved with the parameters set is
what was intended or not. There has to be an option to evaluate the outcome. This can
be done in form of showing textures, like the heightmap, but a 3-dimensional representation
would be more advantageous. Therefore, a 3-dimensional mesh should be generated to give
the possibility to view the generated terrain from different angles. To improve the visualiza-
tion, textures should be generated for the mesh to outline different properties of the terrain
in a better way. This should include information about height and terrain types. These
textures ought to be exported and store all the relevant information to recreate the terrain
with other programs such as game engines or other terrain creation tools.
Figure 3.2 illustrates the order of the steps that were discussed in this chapter.

Ocean Border

Region Serparation

Rivers Lakes

Heightmap Generation

Visual Representation

Figure 3.2 The concept of the pipeline model for the algorithm

22

4 Implementation 23

Chapter 4

Implementation

This chapter provides a detailed explanation about how the final algorithm is structured.
Firstly, it begins with an overview over the general structure of the pipeline with a short
summary of the purpose of each step. This will be followed by the discussion of the data
structures that are important for calculations and exporting of information. After that, each
step of the pipeline will be explained in detail with pseudo code. Additionally, the parameters
and settings the user can control will be listed and their influence on the calculation elaborated
on.

4.1 General Structure

As described in chapter 3.2 the algorithm follows a pipeline approach. This means that it is
divided into different steps where each step builds on top of the previous one and uses the
generated data up to this point. An overview of the order of the methods in this process is
provided in algorithm 1.

Algorithm 1 General Structure
function DefineOceanRegion

generate the coastline and the underwater terrain in the ocean region
function DefineRegions

divide the land mass into different regions depending on user input
function GenerateRivers

generate river network with lakes based on regions
function GenerateHeightMap

calculate land mass between water bodies
function Visualize

visualize generated terrain inside the Unity editor

In section 3.2, the decision was made to base the terrain generation on water bodies first. As
a result these items are generated before calculating the heightmap. This process begins with

4.2. IMPLEMENTATION DETAILS Implementation

the definition of the coastline where the landmass is separated from the ocean region based
on different user settings. After the creation of the general shape of the map, the landmass
has to be divided into different regions which are responsible for the way rivers and lakes will
originate there afterwards. This gives the user control over the general placement of moun-
tains and deserts. Afterwards the river networks can then be generated in a third step. Here
a map containing the flow directions of each cell is generated and then river sources are placed
depending on regional settings. The rivers can then be followed downwards from the source
until the ocean is reached, meanwhile generating lakes on the way. Here the information from
the previous step is used to avoid generating rivers in dry regions and also to shape the rivers
depending on the regions. Rivers will also grow in strength when they combine and along the
distance they flow. To finish the terrain a heightmap is generated by growing mountains and
hills between the water bodies in a fourth step. This is also based on the regions from step
two. The last step is then the visualization of the produced terrain. This does not change
the generated information anymore but is used to represent the results of the algorithm for
the user. It generates a grid mesh and displaces the points in y-direction corresponding to
the heightmap generated from the algorithm. Finally, a texture can be applied to display
the different information and to illustrate the terrain to the user. All the different steps are
explained in more detail in 4.2.

4.1.1 Data Structures

As previously discussed, the way of representing the terrain for this algorithm is to use
heightmaps. To do this the height information is stored in a 2-dimensional float array. On
top of the height the algorithm needs to store some additional information per cell. This
includes the information of the type of terrain or the strength of a river both of which
represent data that may be interesting to be exported with the heightmap for further uses,
but also some information that is only relevant for the calculation process, for instance, the
distance to a region border. This supplementary data is also stored in 2-dimensional array
of different data types. Information that should be exported will be stored as image data.

4.2 Implementation Details

There are a few parameters that do not belong to a specific step. Those are presented in
table 4.1. These parameters are treated separately because they are used in multiple steps
or represent more global settings that are not tied to a specific step.

24

4.2. IMPLEMENTATION DETAILS Implementation

Parameter Data Type Description
size Integer Size of the calculation grid in each dimension
seed Integer Seed for the pseudo random number generator

worldWidth Integer Real world scale of border of the generated terrain
in meters

worldHeight Range The minimal and maximal real world height
of the generated terrain in meters

Table 4.1 Overview of the parameters for the general parameters used in all of the steps.

The size of the calculation grid does not influence the size of the generated mesh but only the
resolution of the generated data. Because it refers to the number of cells in the grid on each
dimension, the computational cost increases quadratically. Therefore it is recommendable
to do multiple runs on smaller grids for testing parameter settings and to do only the final
generation on a very large grid. More details about the complexity and efficiency will be
presented in chapter 5.1.1. The seed of the pseudo random function influences all the steps,
because randomness is an important factor in the whole procedure and is mostly used in the
form of noise maps (refer to chapter 2.1.3). The world width and height do not influence the
size of the mesh representing the terrain in the visualization step, but exist to give the user
the possibility to define exactly what the measurements of the produced terrain should be.
The effect can be seen in the ratio between width and height of the mesh.

4.2.1 Ocean Border

To begin the procedure of generating the terrain, the coastline between ocean and landmass
has to be defined first. To give the user the option to shape the terrain for their needs, this
step deliberately provides a lot of manual control. The user can place markers on the map
and the program then generates a closed curve out of the location and rotation information
of these points. The markers are game objects inside Unity which contain a component
that collects the data about the markers and sends it to the main object with the terrain
generation component. The position of the objects is read in relation to the main object.
The order of the marker objects in the hierarchy also defines the order in which the points
are evaluated to calculate the curve. It also contains a strength value for each point, which
affects the influence of the rotation of the marker. An example of this effect is displayed
in figure 4.2. This strength value is not a global parameter but is set individually for each
marker.

25

4.2. IMPLEMENTATION DETAILS Implementation

Figure 4.2 Effect of the influence parameter of the ocean spline points (represented by the
arrows) on the general shape of the ocean border. The influence values from left to
right are 100, 500, 1000.

The inside of the curve will then be classified as landmass, while the rest is set to be ocean.
The curve is calculated as polynomials of third degree between the marker points.

Algorithm 2 Ocean border
function DefineOceanBorder

find ocean point markers and generate curve from them
place voronoiPointsF irstIteration random points on grid and add them to queue q
for all points p do

if p is inside curve then
set cell as ocean

else
set cell as land

while q not empty do
point p← q.pop()
for all not searched neighbors n of p do

classify n the same as p
add n to q
mark n as searched

mark points at border between ocean and land as coast

The issue is that a smooth curve does not represent a realistic coastline especially for a large
map. To improve the borders, they are randomised afterwards in two refinement steps. This
refinement is done with the use of Voronoi diagrams as described in 2.1.2. A number of
random Voronoi sites are placed on the map and then the Voronoi regions are calculated for
each site by assigning to it all points that are closer to that site than to any other. Because
operations are done on a grid, the metric used here is the Manhattan distance. Then the
whole region is classified to be either ocean or land depending on whether the corresponding
site is inside or outside the curve. This step ensures that the general layout defined by the
curve is retained but the actual border is randomised. The number of sites that are placed
initially is defined by a parameter set by the user. The more points are generated the closer
the shape resembles the curve. The effect of different amounts of points placed for this step

26

4.2. IMPLEMENTATION DETAILS Implementation

can be seen in figure 4.3.

Figure 4.3 Effect of the number of Voronoi points in the first iteration of the ocean border.
Here the second iteration was not performed. Number of Voronoi points from left
to right are 20, 50, 500. The higher the number of points the closer the border
resembles a smooth curve, but the less variation is produced.

This first refinement is a good way to define a rough outline but can produce some straight
lines and is also not enough for finer structures. Because of that, an optional second refinement
can be performed to generate a more realistic coastline. There are two different options the
user can choose from. The first is to repeat the first refinement with sites placed around the
previously defined border and using the generated classification instead of the curve. The
second option is to also place the sites around the border but use a priority queue based on
noise for the growth of the regions. The advantage of the second possibility is that it produces
more variations and can also lead to small islands around the coast. Generating islands is
not possible with the first approach. The parameters for the noise function used have an
influence on how the border will look in the end. A higher frequency makes finer structures,
while increasing the number of octaves allows for a differentiation between larger and smaller
features. The disadvantage of this procedure is that the process is slower due to the use of
a priority queue. A decision here must be made between performance and realism. To allow
for more optimization in speed for different runs of the algorithm and for viewing the larger
structure of the coastline, the second iteration can be disabled completely. A comparison
between the different options for the second iteration is presented in figure 4.4. A summary
of the parameters available to the user and their functionality can be viewed in table 4.5.

27

4.2. IMPLEMENTATION DETAILS Implementation

Figure 4.4 Effect on the generation of the ocean border depending on settings for second
iteration. Left: Ocean border generation without second iteration, middle: Ocean
border generation with second iteration without using noise, right: Ocean border
generation with second iteration using noise.

Parameter Data Type Description

voronoiPointsFirstIteration Integer Number of Voronoi sites placed for the first
refinement iteration

doSecondIteration Boolean Toggle for the execution of the second
iteration

voronoiPointsSecondIteration Integer Number of Voronoi sites placed for the
second refinement iteration

maxDistFromBorder Integer Range around the border of first iteration in
which points for second iteration are placed

useNoiseInSecondIteration Boolean Toggles the mode in which the second
iteration is performed

NoiseOctaves Integer Number of octaves for noise map of second
iteration if noise is used

Table 4.5 Overview of the parameters for the generation of the ocean border which are available
for the user

4.2.2 Regions

After the separation of ocean and land is completed, it is followed by the second important
part of the pipeline. The landmass will now be divided up into regions of different types of
terrain. This step is rather a preparation for what is coming later than actually generating
terrain itself. The types of terrain that are available are flatland, mountain and desert. The
distribution is also a manual process done by the user with markers on the map as before
for the ocean border. These markers again are game objects in Unity with a component for
the region parameter. Those parameters and the position of the object in relation to the
terrain generator object are used in this step. For each marker the user has the possibility
to set the type of terrain (mountain and desert), the range of the marker and parameters for
the randomness of the region border. Every land cell that is not contained in a mountain
or desert region is automatically assigned to flatland. The priority of overlapping regions

28

4.2. IMPLEMENTATION DETAILS Implementation

depends on the order of markers in the Unity scene hierarchy. After setting the points, the
algorithm will then proceed to iterate through the map to assign the corresponding region
to each cell while skipping cells that have already been classified as ocean or shore. These
regions are the base for generating rivers and terrain later in the process. The pseudo code
for this step is shown in algorithm 3. Figure 4.6 shows an example for the regions generated
with different settings for the markers.

Algorithm 3 Regions Separation
function DefineRegions

user input
for all regions do ▷ order depends on sibling order inside Unity Editor

calculate region border based on set radius and noise parameters
for all cells marked as land do

for all regions do
if cell is in region then

set cell as corresponding region
break

Figure 4.6 Effect of region point parameters region type, range, edge noise strength and edge
noise frequency. Region points are represented by dotted circles, where the size of
the circle shows its range.
Left: Type = mountain, range = 0.2, noise strength = 0.05, noise frequency = 0.2,
middle: Type = desert, range = 0.1, noise strength = 0.05, noise frequency = 0.3,
right: Type = mountain, range = 0.2, noise strength = 0.5, noise frequency = 0.5.

29

4.2. IMPLEMENTATION DETAILS Implementation

4.2.3 River Networks and Lakes

The next step in the pipeline is the generation of the river network. This is one of the most
important steps in the whole process, as it is the base of the heightmap generation and a
big focus of this thesis. When analysing naturally generated terrain, the landscape can be
divided in catchment areas (refer to chapter 2.2.1). These are the areas where water (for
example from rain) is collected. They are often divided by mountains or hills because the
water flows in different directions from the peak. This means that by artificially generating
those catchment areas, we know afterwards where we can place hills and mountains. The
procedure starts by placing down a several possible outlets around the coast and also around
mountain regions. The separation between those outlets happens so that the rivers can be
generated differently based on terrain type. The number of outlets can be set by the user
separately for each region type. An overview of all the different parameters used in this step
is shown in table 4.7.

Parameter Data Type Description
flatlandOutlets Integer Number of outlets placed around the flatland coast

mountainOutlands Integer Number of outlets placed around mountain regions
flatlandSources Integer Number of river sources placed in flatland regions

mountainSources Integer Number of river sources placed in mountain regions
riverGrowth Float The strength a river gains in each step

calcRiverWidth Boolean Decides if width of rivers should be calculated based
on their strength

riverMaxWidth Integer The maximal width of rivers in pixels
driedRiverChance float Chance for each river to only generate dry riverbed

Table 4.7 Overview of the parameters for the river generation available to the user

Placing outlets around desert regions is excluded in this process. To generate the catchment
area, the algorithm then proceeds to calculate the flow directions of the water for each cell
randomly and stores them in a flow map. By doing this, it procedurally connects all cells
from mountain and flatland cells in a randomly connected flow network. This process also
avoids desert regions to assure that they stay dry when placing the rivers. The number of
outlets influences the shape of the river networks. The fewer outlets are generated, the higher
the branching factor in the networks will be. This effect can be observed exemplarily in figure
4.8.

30

4.2. IMPLEMENTATION DETAILS Implementation

Figure 4.8 Effect of number of outlets in the catchment generation on the river network gen-
eration. For clarification purposes, rivers are only generated in the flatland region.
The more outlets are generated the lower is the number of connected rivers. The
picture on the left has 10 outlets and 20 sources, the picture on the right has 1000
outlets and 20 rivers. Using a certain number of outlets for the catchment genera-
tion does not necessarily result in the same number of actual outlets on the map.

Following these preparations, the algorithm can now proceed to generate actual rivers. A
possible approach for this would be to calculate the amount of water that would flow through
each cell as mentioned in section 3.1.2. This would be done by placing water evenly on the
grid and then following each water unit down in the previously generated flow directions and
adding up how many water units traverse each cell. Rivers can then be placed in every cell
that has an amount of water higher than a specified threshold. This method works but leads
to a relatively even distribution of river sources. The method which was used instead in this
algorithm is to place the river sources randomly on the map and then follow the flow direction
map until the ocean is reached. This yields the advantage of a more random distribution
of sources. Furthermore, it is possible to calculate the strength of the river and save it to
another map. The amount of river sources placed is also controlled by the user and can be
set separately for mountain and flatland. They can also set the chance for a river to generate
as a dried riverbed instead of a normal river. Each river adds a certain amount of strength to
a cell when flowing through it which leads to combining the strength of two river arms when
they join. Depending on the strength it is then possible to calculate the width of the river
and assign more cells to it. This width calculation can be skipped by setting a parameter in
the user setting. It is also possible to set a maximum width for rivers. This is useful in the
case of calculation grids with lower resolution where one cell cover a larger area of the map.
For each step of the river generation, there is a chance to generate a lake. In order to avoid
overfilling the map with too many lakes and also to give control to the user, it is possible to
set a maximum amount of lakes generated for mountain and flatland regions. In addition,
the lake generation is limited by one lake per river source.

31

4.2. IMPLEMENTATION DETAILS Implementation

Algorithm 4 River Generation
function DefineRivers

set flatlandOutlets random points at border between flatland and ocean and add them
to queue q
while q not empty do

point p← q.pop()
connect a random not yet connected neighbour n to p by setting the flow direction
from n to p
heightMap(n)← heightMap(p) + growth factor
add n to q

set mountainOutlets random points at border between mountain and flatland/ocean
and add them to q
for all mountainOutlets o do

if o is next to flatland then
connect o to random flatland neighbour n
heightMap(o)← heightMap(n) + growth factor

else
heightMap(o)← 0

while not all mountain cells are connected do
point p← q.pop()
connect a random not yet connected neighbour n to p by setting the flow direction
from n to p
heightMap(n)← heightMap(p) + growth factor
add n to q

set mountainSources random sources points on mountain cells
set riverSources random sources points on mountain cells
for all sources s do

roll if this river should be generated as dried
point p← s
while p is not ocean cell do

mark p as (dried) river
riverStrengthMap(p)← riverStrengthMap(p) + riverGrowthFactor
p← flowDirectionMap(p)
if number of lakes<flatlandLakes/mountainLakes and random condition then

GenerateLake(p, riverStrengthMap(p))
for all sources s do

follow flowdirectionMap and extend width for each cell respecting riverMaxWidth

32

4.2. IMPLEMENTATION DETAILS Implementation

The function which produces lakes takes the strength of the river cell it is generated from
into account. The higher the strength the more likely it becomes for the lake to be bigger.
In addition, the lake size is controlled by a maximum and minimum size that can be set by
the user. The pseudo code for the lake generation is shown in algorithm 5.

Algorithm 5 Lake Generation
function DefineLake(position p, river strength s)

define lake border by s, lakeNoiseStrength, lakeNoiseFrequency, lakeNoiseOctaves
add p to queue q
while q is not empty do

point p← q.pop()
for all neighbours n of p do

if n has not been checked yet and inside lake borders then
q.push(n)
mark p as lake
mark n as checked

To produce lakes that vary in shape, a noise function is used on the border of the lake. The
user can set the frequency, the strength and the number of octaves of the noise function. An
overview of the parameters for the lake generation can be seen in table 4.9. All the cells inside
the border are then classified as lake. After generating a lake, the river generation continues.

Parameter Description
flatlandLakes Integer Maximum number of lakes generated in flatland

mountainLakes Integer Maximum number of lakes generated in mountains

lakeNoiseStrength Float Amplitude of the noise function used for
lake outline variation

lakeNoiseFrequency Float The frequency of the noise function used for
lake outline variation

lakeNoiseOctaves Integer Number of octaves for the noise function used for
lake outline variation

lakeDimensions Range The minimal and maximal possible radius of lakes

Table 4.9 Overview of the parameters for the lake generation available to the user

33

4.2. IMPLEMENTATION DETAILS Implementation

Figure 4.10 Effect of calculating river width and the placement of lakes. Left: no river width,
no lakes. Right: max river width = 2, max. lake number = 10.

4.2.4 Heightmap

After finishing the river and lake generation, the next step is to generate the heightmap. This
is the last part of the actual terrain generation process. For the latter, all the information
that was produced in the steps before is needed. The terrain will be grown beginning from
the ocean, rivers and lakes. To do this, all those cells are added to a priority queue with
the priority being the height of the cells generated as a preparation in the river network
generation. When a point is removed from the queue, all the neighbours that have not been
traversed yet will receive a new height value calculated by adding a growth factor to the
height of the point. This process is illustrated in algorithm 6.

Algorithm 6 Heightmap Generation
function GenerateHeightMap

add all coast, river and lake cells to priority queue q
while q is not empty do

point p← q.pop()
for all neighbours n of p do

if n has not been checked yet and not been classified as ocean then
heightMap(n)← heightMap(current) + growth factor
q.push(n)
mark n as checked

The growth factor there is calculated by taking in account the terrain growth factor of the
region the cell is in, and a random value obtained from noise functions also depending on
the regions. The factor is also interpolated between the different region types to allow for a
smoother transition between them. The parameters available to the user can be seen in table
4.11.

34

4.2. IMPLEMENTATION DETAILS Implementation

Parameter Data Type Description

riverSlope Float The rate at which the terrain grows in river
paths

mountainSlope Float The rate at which the terrain grows in
mountain regions

flatLandSlope Float The rate at which the terrain grows in
flatland regions

mountainNoiseFrequency Float The frequency of the noise function used in the
mountain region heightmap generation

mountainNoiseStrength Float The strength of the noise function used in the
mountain region heightmap generation

mountainNoiseOctaves Integer The number of octaves of the noise function
used in the mountain region heightmap generation

flatlandNoiseFrequency Float The frequency of the noise function used in the
flatland region heightmap generation

flatlandNoiseStrength Float The strength of the noise function used in the
flatland region heightmap generation

flatlandNoiseOctaves Integer The number of octaves of the noise function
used in the flatland region heightmap generation

Table 4.11 Overview of the parameters for the generation of the ocean heightmap which are
available for the user

The effect of different growth factors for the regions are displayed in figure 4.12. The growth
factor itself does not change the final height of the terrain as it is difficult to know exactly
what the result would be. To guarantee the final height is controllable the heightmap is
scaled to fit the global world width and height parameters set by the user.

Figure 4.12 Effect of flatland slope on height generation of the map. The lower the flatland
slope in comparison to the mountain slope, the higher the hills between rivers.
Top left: Flatland slope = 0.05, mountain slope = 2.
Top right: Flatland slope = 0.2, mountain slope = 2.
Bottom: Flatland slope = 0.5, mountain slope = 2

35

4.2. IMPLEMENTATION DETAILS Implementation

4.2.5 Visual Representation and Output

The last step of the pipeline is the visual representation of the generated terrain. This is
not part of the actual terrain generation but serves an important role in giving the user
information about the results of the previous steps. This allows for evaluating the results
and changing the parameters if needed. The visualization includes two steps. The first is to
generate a mesh to represent the heightmap generated before. Each cell in the calculation
grid is represented by one vertex in the mesh. The mesh needs to be generated by calculating
the triangles between the vertices and the uv coordinates to be able to place a texture on it.
The vertices are placed at the corresponding height of the heightmap. It is also possible to
generate a completely flat mesh. The latter slightly speeds up the last part if the map has a
really high resolution. This can be useful, if the focus is on one of the earlier pipeline steps,
such as the ocean border generation, where the height information has not become relevant
yet.

Parameter Description
textureMode List of texturing options to put on the terrain mesh

colors Colour collection used for generating the textures

Table 4.13 Overview of the parameters for the visualization process

The procedure is then completed by generating textures which can be placed on the mesh.
There are different texture options the user can choose from. The normal texture displays a
gradient on terrain points that is dependent on the height. Other options include a region
mode, where a separate colour for each region is displayed and a height mode where the
normalized heightmap is chosen as a texture. Examples of the different texturing options are
shown in figure 4.14. There exists also an option that lets the user choose the colours for the
different region types. Furthermore, the region and the heightmap texture are exported to
allow for using the generated terrain in other applications.

36

4.2. IMPLEMENTATION DETAILS Implementation

Figure 4.14 Highlighting different aspects of the algorithm using different texture modes. Top-
left: Normal mode (blue for all types of water bodies, gradient for landmass based
on height), top-right: Region mode (separate colour for each region: Dark blue
for ocean, light blue for rivers and lakes, brown for mountains, yellow for desert,
green for flatland), bottom: Height mode (black and white gradient based on the
normalized height value).

37

5 Evaluation 38

Chapter 5

Evaluation

This chapter deals with the evaluation of the implemented algorithm. First, a theoretical
complexity analysis will be conducted. This is divided in two parts, the time and space
complexity. Afterwards, the results of runtime measurements of the implementation will be
presented and analysed. In another section, the quality and realism of landscapes generated
with the algorithm will be evaluated. The chapter then ends with a last section in which
visual results will be compared to reality. A comparison to other terrain generation algorithms
is difficult because the field of procedural terrain generation is very large. Most algorithms
differ in the approaches they use and thus, comparing them to this approach sensible.

5.1 Complexity Analysis

5.1.1 Time Complexity

In this section, the algorithm described in chapter 4 will be analysed for its runtime complex-
ity CX. This will be divided into the different steps of the pipeline analogously to the last
chapter. For each step, a table introducing the relevant variables will be presented. Based
on those variables, the complexity for the corresponding step will then be calculated.

5.1. COMPLEXITY ANALYSIS Evaluation

Ocean Border

Variable Description
nc Number of cells in the grid per dimension
nm Number of coastline markers placed on the map
nv1 Number of Voronoi sites in the first iteration
nv2 Number of Voronoi sites in the second iteration

Cspline Cost for one spline calculation
CtestP Cost for testing the position of a point in relation to curve
CtestR Cost for testing the position of a point in second iteration
Cclass Cost to classify a cell
CXc Complexity of the coastline calculation

Table 5.1 Variables for the ocean border time complexity

With these variables the complexity of the coastline generation can be calculated by

CXc = nm · Cspline + nv · CtestP + n2
c · Cclassify

= O(n2
c).

In the worst case, the number of Voronoi sites equals the number of cells in the grid, which
means that then nv is the same as n2

c . The same is true for the second iteration. Even when
using the option that uses the priority queue, the complexity for inserting and removing ele-
ments from that is in O(log n2

c) and thus can be neglected.

Regions

Variable Description
nc Number of cells in the grid per dimension
nr Number of region points placed
Cd Cost to check the distance

CXr Complexity of the region separation

Table 5.2 Variables for the region time complexity

In the region separation, each cell of the grid needs to be checked once. In the worst case,
all cells are non-ocean cells so that for each cell the distance to the region points must be
checked. This leads to a complexity of

39

5.1. COMPLEXITY ANALYSIS Evaluation

CXr = n2
c · nr · Cd

= O(n2
c).

Rivers

Variable Description
nc Number of cells in the grid per dimension
ns Number of river sources
w Maximal river width
nl Number of lakes
dl Maximum lake diameter

CXcatchment Complexity of the catchment generation
CXrivers Complexity of the river generation
CXlakes Complexity of the lake generation

CXr Complexity of the river generation

Table 5.3 Variables for the rivers and lakes time complexity

In the worst case with reference to river and lake generation, the whole map is classified as
flatland or mountain. In this case the catchment must be calculated for the whole grid. A
second issue in the worst case scenario is that each river flows through each cell of the grid.
In normal scenarios the number of river sources should be negligible in comparison to the
size of the grid, but it would be possible to raise it to the number of cells. Sharing the same
argument for the lake generation, this leads to a complexity of

CXr = CXcatchment + CXrivers + CXlakes

= n2
c + ns · n2

c · w + nl · d2
l

= O(n2
c · ns · nl).

Heightmap

Variable Description
nc Number of cells in the grid per dimension
Ch Cost for calculating the height of a cell
Ca Cost for the height adjustment of a cell to fit real life world height span

CXT Complexity of the terrain generation

Table 5.4 Variables for the heightmap time complexity

40

5.1. COMPLEXITY ANALYSIS Evaluation

The complexity for the terrain height calculation is O(n2
c). In the worst case, the algorithm

must visit each cell of the grid once. For each cell it is required to calculate the height
based on the height of the neighbour cell and a random factor. In addition, the grid must be
traversed again to assure that the maximum and minimum height fit the user specification.
Thus, the complexity can be calculated as following

CXT = n2
c · Ch + n2

c · Ca

= O(n2
c).

Visuals

Variable Description
nc Number of cells in the grid per dimension
Ch Cost for calculating coordinates of a vertex of the mesh
Ct Cost for calculating a triangle of the mesh

CXM Complexity of the mesh generation

Table 5.5 Variables for the visualization time complexity

To allow Unity to visualize the terrain a 3-dimensional mesh must be constructed from
the results of the previous steps. Each cell of the grid is represented by one vertex of the
visualization mesh. For each vertex the coordinates must be determined to show the whole
scenery in a 1 by 1 square with the corresponding heights. In addition, a square grid mesh
of side length n consists of (n − 1)2 squares. This translates to two times the number of
triangles. Therefore, it follows that the complexity of the mesh generation can be described
as

CXM = n2
c · Ch + 2 · (nc − 1)2 · Ct

= O(n2
c).

Finally, the time complexity of the whole pipeline CX can be calculated by combining the
complexities of all the different steps by

CX = CXC + CXR + CXR + CXT + CXM

= O(n2
c · ns · nl).

In conclusion, the time complexity depends linearly on the number of river sources and the

41

5.2. PERFORMANCE EVALUATION Evaluation

number of lakes and quadratically on the number of cells in the grid per dimension.

5.1.2 Space Complexity

Variable Description
nc Number of cells in the grid per dimension
c Constant space of parameters

CXs Space complexity of the algorithm

Table 5.6 Variables for the space complexity

To run the algorithm some data must be stored on the system. The size of the data can
vary depending on the users settings. The only parameter that has an influence on this is
the number nc of cells in the calculation grid per dimension. Some data has to be stored
permanently while other data is only kept for specific parts of the algorithm’s runtime. The
permanent data includes two dimensional arrays of size n2

c to store terrain information. This
includes maps for storing the terrain type, water flow direction, river strength, terrain height
and interpolation distance. Moreover a texture must be saved.
While the algorithm is running, multiple queues of a maximum size of n2

c have to be saved
temporarily. At any time of the algorithm there exist at most four of those queues. Fur-
thermore, each step of the algorithm that traverses the map must save information about
which cells have been visited already. This is done in a 2-dimensional array of size n2

c . The
parameters that have an influence on how the algorithm is performed need a fixed amount of
space no matter what the size of the grid. This means that they are negligible for the space
complexity calculation.
Considering all these facts, the space complexity CXs is

CXs = 5 · n2
c + n2

c + 4 · n2
c + n2

c + c

= O(n2
c).

5.2 Performance Evaluation

After the theoretical considerations, it is important to measure the performance of the algo-
rithm. As discussed in chapter 5.1.1, the runtime of the algorithm depends mostly only on
the size of the grid nc. Therefore, for nc = 256, 512, 1024, 2048 the times for each part of the
algorithm are measured in milliseconds over 20 runs. To give more detailed information for
the resulting data besides the average, also the minimum, maximum and median value are
stated. Because the section of the river and lake generation also depends on the parameters
of the number of lakes and river sources, additional data are acquired where those variables

42

5.2. PERFORMANCE EVALUATION Evaluation

were changed and the grid size was kept constant.
All measurement were taken on a 64-bit Windows 10 operating system with an AMD FX(tm)-
6300 Six-Core processor with 3.5GHz, 16Gb of RAM and a GeForce GTX 960 graphics proces-
sor. Times are measured in Unity with stopwatches from the System.Diagnostic namespace.

5.2.1 Ocean Borders

Table 5.7 shows the calculation times of the ocean border calculation. The times are split into
the calculation times for the first and the second iteration. In addition, the table provides the
information for both variants of the ocean border calculation (with or without using noise).
Values in parentheses show the results for the option where noise is not used. The average
times for both variants are plotted in figures 5.8 and 5.9. As expected after the complexity
analysis, the graphs show a quadratic growth. The iteration of the variant which uses noise
takes approximately double the time of the other variant. This is not caused by the noise,
but by the use of the priority queue. The noise is only used as the priority for the elements of
the queue. In the other variant, a normal queue is sufficient, as it only implements a classic
Voronoi diagram. The second iteration takes approximately three times as long as the first
iteration. This is caused by the number of Voronoi points that are used. Because the second
iteration is intended to be a refinement of the first, a high number of points is recommended
to gain better results.

nc Minimum Maximum Average Median

256 First iteration 19 30 21 21
Second iteration 133(72) 154(87) 140(82) 138(83)

512 First iteration 80 93 86 86
Second iteration 619(289) 678(398) 636(336) 631(335)

1024 First iteration 326 356 337 335
Second iteration 2713(1145) 2915(1340) 2839(1298) 2850(1306)

2048 First iteration 1335 1496 1405 1398
Second iteration 11878(4690) 13258(5892) 12389(4848) 12504(4740)

Table 5.7 Calculated minimum, maximum, average and median times in milliseconds measured
for grid sizes nc = 256, 512, 1024, 2048. For each size, the times are separated into
the time for the first and second iteration. Numbers in parentheses are the times
for the second iteration without using noise. Times are taken from 20 runs with the
same settings.

43

5.2. PERFORMANCE EVALUATION Evaluation

0 3,000 6,000 9,000 12,000 15,000

2048

1024

512

256

Time in ms

n
c

First iteration
Second iteration

Figure 5.8 Plotted average times for first and second iteration of the ocean border generation
against grid side length nc = 256, 512, 1024, 2048. The second iteration is done
without using noise. The data is taken from table 5.7.

0 3,000 6,000 9,000 12,000 15,000

2048

1024

512

256

Time in ms

n
c

First iteration
Second iteration

Figure 5.9 Plotted average times for first and second iteration of the ocean border generation
against grid side length nc = 256, 512, 1024, 2048. The second iteration is done
with using noise. The data is taken from table 5.7.

5.2.2 Regions

The evaluation of the calculation times for the region separation is divided into two different
parts. In the first part, the map is flooded with the different region types. In the second part
the borders where different regions touch each other are extracted. The measured times for
the steps are shown in table 5.10. Both steps are relatively fast as the map must be traversed
only once and no complex calculations are needed per cells. As can be seen in figure 5.11
for resolutions up to 1024 cells per dimension, the times fit the expected quadratic curve.
For 2048 cells per dimension the map sometimes generates a lot of small islands instead of
one connected land mass. This leads to fewer cells being classified in the region filling, as all
ocean cells are skipped. The border extraction is not affected by this because it traverses the
whole map regardless of what region the cells belong to.

44

5.2. PERFORMANCE EVALUATION Evaluation

nc Minimum Maximum Average Median

256 Fill regions 13 15 14 14
Region borders 3 4 3 3

512 Fill regions 52 57 44 44
Region borders 14 17 15 15

1024 Fill regions 130 161 138 136
Region borders 38 43 40 40

2048 Fill regions 124 145 132 133
Region borders 56 62 58 59

Table 5.10 Calculated minimum, maximum, average and median times in milliseconds mea-
sured for grid sizes nc = 256, 512, 1024, 2048. For each size, the times are separated
into the time for region filling and region border calculation. Times are taken from
20 runs with the same settings.

0 50 100 150 200 250

2048

1024

512

256

Time in ms

Fill regions
Region borders

Figure 5.11 Plotted average times for region filling and calculating of region borders against
grid side length nc = 256, 512, 1024, 2048. The data is taken from table 5.10.
Note that the time does not increase as expected. This is due to less landmass
being generated for nc = 2048 in comparison to lower values of nc. This leads to
lower calculation time for region separation.

5.2.3 Rivers and Lakes

The results of the river and lake generation pipeline step are displayed in table 5.12. This step
is separated into three substeps. The first step involves the calculation of the flow direction
map. The other two parts concern the river and lake generation. In figure 5.13 the results
are plotted in a graph. It shows a quadratic growth in time when the grid length increases.
Furthermore, it can be observed that the flow direction generation takes up almost all the
time. This is because that part must traverse every cell that is not ocean or desert. The river
and lake generation operates only on the cells that are classified as those types and thus has
to traverse a significantly fewer number of cells. To be able to examine those two parts more
closely, a separate measurement of calculation times was performed, where the grid size is
fixed, and the number of total river sources and maximum number of lakes are varied. The
results for this are displayed in table 5.14. It can be observed that the times do not increase
when the maximum number of lakes exceeds the number of river sources. This is due to the

45

5.2. PERFORMANCE EVALUATION Evaluation

fact that the implementation limits the amount of lakes generated by one per river in order
not to overfill the map with lakes and to guarantee a better distribution.

nc Minimum Maximum Average Median

256
Flow directions 29 33 31 31
River generation 9 59 12 10
Lake generation 5 6 5 5

512
Flow directions 171 193 178 177
River generation 17 22 19 19
Lake generation 5 8 6 6

1024
Flow directions 695 752 708 705
River generation 23 33 26 24
Lake generation 7 19 10 8

2048
Flow directions 13003 14226 13320 13178
River generation 83 176 94 88
Lake generation 8 33 11 8

Table 5.12 Calculated minimum, maximum, average and median times in milliseconds mea-
sured for grid sizes nc = 256, 512, 1024, 2048. For each size the times are separated
into the time for flow direction calculation, river generation and lake generation.
Times are taken from 20 runs with the same settings.

0 3,000 6,000 9,000 12,000 15,000

2048

1024

512

256

Time in ms

Catchment
River generation
Lake generation

Figure 5.13 Plotted average times for flow direction calculation, river and lake generation
against grid side length nc = 256, 512, 1024, 2048. The data is taken from table
5.12.

46

5.2. PERFORMANCE EVALUATION Evaluation

nr nl Minimum Maximum Average Median

10
10 192 3632 1871 1843
100 168 3537 1861 1953
1000 169 3542 1849 1823

100
10 189 3748 1992 2066
100 251 5090 2628 2838
1000 245 4995 2463 2736

1000
10 306 6686 3480 3649
100 371 8053 4182 4377
1000 715 15233 7364 8368

Table 5.14 Calculated minimum, maximum, average and median times in milliseconds mea-
sured for all combinations of number of river sources nr = 10, 100, 1000 and
maximum lake amounts nl = 10, 100, 1000.

5.2.4 Heightmap

The process of the height generation is divided into two parts for this evaluation. The first one
is the calculation of the distance map as a preparation step which is used for the interpolation
between the different regions. The second part covers the actual heightmap generation. The
times for both steps are shown in table 5.15. As can be seen in the visualization of these
results in figure 5.16, the times resemble a quadratic curve as expected. The graphic also
shows that most of the total calculation time for this step is used to generate the heightmap.
The distance map calculation takes up only a small amount of the total time. For creating
the distance map, the grid is traversed only once and only the parts of the landmass. The
heightmap generation uses a priority queue to grow the terrain from the lowest point to the
highest. This slows down the process considerably.

nc Minimum Maximum Average Median

256 Distance map 9 10 10 10
Heightmap generation 147 164 153 153

512 Distance map 36 40 37 37
Heightmap generation 574 649 592 589

1024 Distance map 107 115 111 110
Heightmap generation 1413 1540 1462 1454

2048 Distance map 623 705 660 651
Heightmap generation 7687 8756 7980 7896

Table 5.15 Calculated minimum, maximum, average and median times in milliseconds mea-
sured for grid sizes nc = 256, 512, 1024, 2048. For each size the times are separated
into the time for the distance map calculation and heightmap generation. Times
are taken from 20 runs with the same settings.

47

5.2. PERFORMANCE EVALUATION Evaluation

0 1,500 3,000 4,500 6,000 7,500 9,000

2048

1024

512

256

Time in ms

Distance map
Terrain generation

Figure 5.16 Plotted average times for distance map and terrain generation against grid side
length nc = 256, 512, 1024, 2048. The data is taken from table 5.15.

5.2.5 Visualization

The calculation times for the visualization divided into the mesh and texture generation are
displayed in table 5.17. The times are plotted in figure 5.18. It shows a quadratic growth.
The generation of the textures takes slightly longer than the mesh generation. Only one mesh
must be calculated but more than one texture needs to be generated for exportation.

nc Minimum Maximum Average Median

256 Mesh generation 18 41 23 22
Texture generation 57 128 69 65

512 Mesh generation 79 100 85 83
Texture generation 175 238 185 181

1024 Mesh generation 365 419 381 375
Texture generation 630 813 662 653

2048 Mesh generation 1417 1872 1549 1542
Texture generation 2697 3720 2885 2879

Table 5.17 Calculated minimum, maximum, average and median times in milliseconds mea-
sured for grid sizes nc = 256, 512, 1024, 2048. For each size, the times are separated
into the time for the mesh and texture generation. Times are taken from 20 runs
with the same settings.

0 1,000 2,000 3,000 4,000 5,000

2048

1024

512

256

Time in ms

Mesh generation
Texture generation

Figure 5.18 Plotted average times for mesh and texture generation against grid side length
nc = 256, 512, 1024, 2048. The data are taken from table 5.17.

48

5.2. PERFORMANCE EVALUATION Evaluation

5.2.6 Complete Algorithm

To complete the section of evaluating the calculation time results, the total times are pre-
sented in table 5.19. For each grid size, the times for the different steps are listed to provide
the possibility to compare the different steps. These results are also plotted in figure 5.20.
The graphic shows a quadratic curve as expected after the complexity analysis and the eval-
uation of the individual steps. It can be seen that the region separation takes a negligible
amount of time in comparison to the other steps. The ocean border generation takes approx-
imately a third to half of the total time. In these measurements the ocean border variant
with noise in the second iteration was used to give a better representation of the more de-
manding options. Faster times can be achieved when disabling the use of noise or the second
iteration completely as seen in section 5.2.1. The visualisation time could also be reduced by
approximately half when activating the option of generating a flat mesh, as only the textures
must be generated.

nc Minimum Maximum Average Median

256

Ocean borders 138 154 144 139
Regions 18 19 18 18

Rivers and lakes 44 49 46 45
Terrain 141 162 149 150

Visualization 85 133 92 99

512

Ocean borders 622 706 644 641
Regions 69 74 71 69

Rivers and lakes 191 245 199 195
Terrain 534 579 557 544

Visualization 267 313 279 267

1024

Ocean borders 2757 2966 2832 2798
Regions 177 193 182 177

Rivers and lakes 697 755 714 704
Terrain 1348 1478 1407 1374

Visualization 1027 1136 1059 1029

2048

Ocean borders 12804 17555 13506 14230
Regions 194 227 204 214

Rivers and lakes 13050 16050 13549 14195
Terrain 8251 10944 8662 8763

Visualization 4486 5785 4779 5320

Table 5.19 Calculated minimum, maximum, average and median times in milliseconds mea-
sured for grid sizes nc = 256, 512, 1024, 2048. For each size the times are separated
into the time for the separate steps ocean border generation, region calculation,
river and lake generation, terrain generation and visualization. Times are taken
from 20 runs with the same settings.

49

5.3. VISUAL EVALUATION Evaluation

0 5 10 15 20 25 30 35 40 45

2048

1024

512

256

Time in s

Ocean borders
Regions

Rivers and lakes
Terrain

Visualization

Figure 5.20 Plotted average times for the complete algorithm against grid side length nc = 256,
512, 1024, 2048. The time is subdivided in the sections ocean border generation,
region filling, lake and river generation, terrain generation and visualization. The
data is taken from table 5.19.

5.3 Visual Evaluation

5.3.1 Results

In order to evaluate the quality of the terrain generated with the proposed algorithm, several
landscapes were created with various settings. Some examples are shown in figure 5.21.
As seen there, it is possible to produce a vast variety of shapes for the coastline. Single
continents, as well as island groups, can be created by varying the number and position of
ocean points. Furthermore, several different height profiles can be generated. It is possible
to generate large scale maps, such as the examples in figure 5.21 but also results at smaller
scales are an option as shown in figure 5.22.
In general, the generated results look realistic. Presumably, the majority of different demands
on the produced landscapes can be satisfied.

Figure 5.21 Examples for terrain generated with the algorithm of this thesis

50

5.3. VISUAL EVALUATION Evaluation

Figure 5.22 Example for a landscape at smaller scale

5.3.2 Comparison with Reality

After analysing the algorithm for its complexity and measuring the runtime efficiency, this sec-
tion is now dedicated to considering the realism of the results. For that purpose a heightmap
image from real terrain was taken and interpreted in the program to generate a 3-dimensional
representation. The chosen terrain is a section of the Severo-Evensky District in Magadab
Obkast in Russia (61.217039, 160.218362). Based on that, an attempt was made to replicate
the real terrain as closely as possible with the algorithm of this thesis. Figure 5.23 shows
the comparison between the mesh representations of both landscapes. As seen, it is possi-
ble to recreate a similar general shape of the coastline. Because the generation is heavily
based on random components, it is impossible to generate a coastline that matches exactly.
The mountain ranges are distributed with a good approximation of the reality. It has not
been possible to find real world reference with satisfactory information about river networks.
Therefore, the map was generated only using dried riverbeds. It is not possible to perfectly
match the behaviour where terrain touches the world border. The real map is a part of a
larger landscape and thus, rivers flow through the border. The terrain generation algorithm
does not have information about the terrain outside the grid borders and thus cannot repli-
cate this behaviour. However, the inland parts of the river networks were generated in a
believable way. Even though the pathways of the riverbeds differ from the original directions,
the individual parts of river networks have similar overall shapes. This can be observed, for
instance, in the northern parts of the mountains in figure 5.23. In figure 5.24 the heightmaps
of both terrains are displayed. Figure 5.25 shows the setting used for this attempt to recreate
the real terrain. In general, it was possible to create a good approximation of the the real
terrain.

51

5.3. VISUAL EVALUATION Evaluation

Figure 5.23 Comparison between the 3d-representation of real and generated terrain. The
image on the left shows a section of the Severo-Evensky District in Magadan
Oblast in Russia. The image on the right shows the terrain generated with this
algorithm.

Figure 5.24 Comparison between a real life heightmap1(on the left) and a heightmap generated
with this algorithm (on the right).

1Heightmap is taken from https://heightmap.skydark.pl on 11/28/2021

52

https://heightmap.skydark.pl

5.3. VISUAL EVALUATION Evaluation

Figure 5.25 Settings for the algorithm that were used to create the terrain presented in figure
5.24 and figure 5.23.

53

6 Conclusion 54

Chapter 6

Conclusion

The goal of this thesis was to create an algorithm to generate realistic procedural terrain
with a focus on the generation of different kinds of water bodies. This approach should
ensure that the result looks realistic while still balancing the performance. At the same time,
the algorithm should aim for a good balance between automation and flexibility. Different
methods, such as physically based simulation or noise based approaches, to reach those goals
were analysed and evaluated in this thesis. The final result meets the expectations as were
seen in chapter 5. A large variety of realistic looking landscapes can be created using the
algorithm. The user has the possibility to change a lot of parameters for different steps of
the pipeline. With these options they can control the reasonable parts of the algorithm while
the other parts work in an automated fashion. The calculation times are also low enough to
provide the possibility of running multiple iterations so as to try different parameter sets until
the generated landscapes meets the requests. For example, ten iterations of the generation of
a landscape with a resolution of 1024x1024 can be accomplished in under a minute. Several of
those parameters control the way different water bodies are created. The user can control, for
example, the shape of the ocean border, the denseness and form of the river networks and the
shape and size of lakes. The results look realistic, and it is possible to recreate real landscapes
to a certain degree. The size and height of the created terrain is hereby variable, and the
parameters can be adapted to fit a landscape sized up to hundreds of square kilometres. The
result is also usable in multiple applications as it can be presented in a form of a heightmap,
which is the most common form of digital terrain in the game industry. It is conceivable
that landscapes generated with the algorithm proposed in this thesis will be used in the
map generation of open world games. In addition, other exported textures can, for example,
transport the information of precipitation to other applications.
Even though the implementation shows good results, it could be optimized in multiple ways.
One possible optimization could be to detect the changes in the parameters. In that case the
pipeline can be started from a later step. On doing so, some difficult steps concerning the
performance of e.g., the ocean border calculation with noise could be skipped. This would
lead to a significant improvement in the runtime.

Conclusion Conclusion

The approach of this thesis to base the height map generation on the previously calculated
river networks, could be enhanced by alternating multiple times between those two steps.
The landscape could be calculated more roughly in the first steps and refine the results in
each step. This would resemble the real procedures of terrain generation more closely but
would increase the computational effort. To make the created terrain even more realistic,
more features could be added. This could include, for example, water features such as river
deltas. Another water feature could be the addition of waterfalls although this is difficult with
respect to the use of heightmaps as they do not provide the possibility to generate overhangs
in the terrain. The selection of terrain types to place on the maps could be extended to
allow for more variety of the respective areas. Furthermore, extending the settings that can
be changed for every individual terrain point could influence the possibilities of different
landscapes being produced.
Another possible extension to this thesis could be to include the results of terrain generation
in other algorithms to add features that this thesis does not deal with. A good option for
this idea could be the algorithm from (Fischer et al., 2020). There, the focus lies more on the
climate simulation and the biome classification based on that. The basis for those approaches
is rough terrain data generated with noise maps. Replacing those terrain generating steps
with the terrain generation from this thesis and performing the simulation and classification
on top of that could lead to realistic results that also include climate and biome information.
To sum up, good results were achieved with this thesis. A fast and customizable terrain
generation system was created which leads to realistic results in a decent time. It is also
extensible as multiple features could be added in future.

55

6 BIBLIOGRAPHY 56

Bibliography

Alcaraz, S. A., Sannier, C., Vitorino, A. C., and Daniel, O. (2009). Comparison of method-
ologies for automatic generation of limits and drainage networks for hidrographic basins.
Revista Brasileira de Engenharia Agrícola e Ambiental, 13:369–375.

Asybaris01 (2011). Modelare 3d pentru bazinul raului curpanul si cotii, afluenti ai oltului,
licenced under th public domain https://commons.wikimedia.org/wiki/File:Modelare_3D_

pentru_Bazinul_Raului_Curpanul_si_Cotii,_afluenti_ai_Oltului.gif.

Balister, P., Balogh, J., Bertuzzo, E., Bollobás, B., Caldarelli, G., Maritan, A., Mastrandrea,
R., Morris, R., and Rinaldo, A. (2018). River landscapes and optimal channel networks.
Proceedings of the National Academy of Sciences, 115(26):6548–6553.

Barnes, R., Lehman, C., and Mulla, D. (2014). Priority-flood: An optimal depression-filling
and watershed-labeling algorithm for digital elevation models. Computers & Geosciences,
62:117–127.

Berends, C. J. and Van De Wal, R. S. (2016). A computationally efficient depression-filling
algorithm for digital elevation models, applied to proglacial lake drainage. Geoscientific
Model Development, 9(12):4451–4460.

Bertuzzo, E., Maritan, A., Gatto, M., Rodriguez-Iturbe, I., and Rinaldo, A. (2007). River
networks and ecological corridors: Reactive transport on fractals, migration fronts, hydro-
chory. Water Resources Research, 43(4).

Birkinshaw, S. (2010). Automatic river network generation for a physically-based river catch-
ment model. Hydrology and Earth System Sciences, 14(9):1767–1771.

Chorowicz, J., Ichoku, C., Riazanoff, S., Kim, Y.-J., and Cervelle, B. (1992). A combined algo-
rithm for automated drainage network extraction. Water Resources Research, 28(5):1293–
1302.

Cordonnier, G., Braun, J., Cani, M.-P., Benes, B., Galin, E., Peytavie, A., and Guérin, E.
(2016). Large scale terrain generation from tectonic uplift and fluvial erosion. In Computer
Graphics Forum, volume 35, pages 165–175. Wiley Online Library.

Cortial, Y., Peytavie, A., Galin, E., and Guérin, É. (2020). Real-time hyper-amplification of
planets. The Visual Computer, 36(10):2273–2284.

https://commons.wikimedia.org/wiki/File:Modelare_3D_pentru_Bazinul_Raului_Curpanul_si_Cotii,_afluenti_ai_Oltului.gif
https://commons.wikimedia.org/wiki/File:Modelare_3D_pentru_Bazinul_Raului_Curpanul_si_Cotii,_afluenti_ai_Oltului.gif

BIBLIOGRAPHY BIBLIOGRAPHY

Costa-Cabral, M. C. and Burges, S. J. (1994). Digital elevation model networks (demon): A
model of flow over hillslopes for computation of contributing and dispersal areas. Water
resources research, 30(6):1681–1692.

Cox, A. and Hart, R. B. (2009). Plate tectonics: How it works. John Wiley & Sons.

Dai, Z., Huang, Y., and Xu, Q. (2019). A hydraulic soil erosion model based on a weakly
compressible smoothed particle hydrodynamics method. Bulletin of Engineering Geology
and the Environment, 78(8):5853–5864.

Doyle, P. and McMullen, C. T. (1989). Solving the quintic by iteration. Acta Mathematica-
Stockholm-.

Erskine, R. H., Green, T. R., Ramirez, J. A., and MacDonald, L. H. (2006). Comparison of
grid-based algorithms for computing upslope contributing area. Water Resources Research,
42(9).

Ertl, B. (2015a). Euclidean vornonoi diagram, licenced under creative com-
mons attribution-share alike 4.0 international https://commons.wikimedia.org/wiki/File:

Euclidean_Voronoi_diagram.svg.

Ertl, B. (2015b). Manhattan vornonoi diagram, licenced under creative com-
mons attribution-share alike 4.0 international https://commons.wikimedia.org/wiki/File:

Euclidean_Voronoi_diagram.svg.

Ewen, J., Parkin, G., and O’Connell, P. E. (2000). Shetran: distributed river basin flow and
transport modeling system. Journal of hydrologic engineering, 5(3):250–258.

Fischer, R., Dittmann, P., Weller, R., and Zachmann, G. (2020). Autobiomes: procedural
generation of multi-biome landscapes. The Visual Computer, 36(10):2263–2272.

Freeman, T. G. (1991). Calculating catchment area with divergent flow based on a regular
grid. Computers & geosciences, 17(3):413–422.

Galin, E., Guérin, E., Peytavie, A., Cordonnier, G., Cani, M.-P., Benes, B., and Gain, J.
(2019). A review of digital terrain modeling. In Computer Graphics Forum, volume 38,
pages 553–577. Wiley Online Library.

Génevaux, J.-D., Galin, É., Guérin, E., Peytavie, A., and Benes, B. (2013). Terrain generation
using procedural models based on hydrology. ACM Transactions on Graphics (TOG),
32(4):1–13.

Grimaldi, S., Nardi, F., Di Benedetto, F., Istanbulluoglu, E., and Bras, R. L. (2007). A
physically-based method for removing pits in digital elevation models. Advances in water
Resources, 30(10):2151–2158.

57

https://commons.wikimedia.org/wiki/File:Euclidean_Voronoi_diagram.svg
https://commons.wikimedia.org/wiki/File:Euclidean_Voronoi_diagram.svg
https://commons.wikimedia.org/wiki/File:Euclidean_Voronoi_diagram.svg
https://commons.wikimedia.org/wiki/File:Euclidean_Voronoi_diagram.svg

BIBLIOGRAPHY BIBLIOGRAPHY

Grimaldi, S., Petroselli, A., Alonso, G., and Nardi, F. (2010). Flow time estimation with
spatially variable hillslope velocity in ungauged basins. Advances in Water Resources,
33(10):1216–1223.

Harris, M. J. (2003). Real-time cloud simulation and rendering. The University of North
Carolina at Chapel Hill.

Jenson, S. K. and Domingue, J. O. (1988). Extracting topographic structure from digital
elevation data for geographic information system analysis. Photogrammetric engineering
and remote sensing, 54(11):1593–1600.

Kurowski, M. (2012). Procedural generation of meandering rivers inspired by erosion. In The
20th International Conference in Central Europe on Computer Graphics, Visualization and
Computer Vision. Citeseer.

Kweon, I. S. and Kanade, T. (1994). Extracting topographic terrain features from elevation
maps. CVGIP: image understanding, 59(2):171–182.

Lagae, A., Lefebvre, S., Cook, R., DeRose, T., Drettakis, G., Ebert, D. S., Lewis, J. P.,
Perlin, K., and Zwicker, M. (2010). A survey of procedural noise functions. In Computer
Graphics Forum, volume 29, pages 2579–2600. Wiley Online Library.

Le Pichon, X., Francheteau, J., and Bonnin, J. (2013). Plate tectonics, volume 6. Elsevier.

Leopold, L. B. and Maddock, T. (1953). The hydraulic geometry of stream channels and
some physiographic implications, volume 252. US Government Printing Office.

Lin, W.-T., Chou, W.-C., Lin, C.-Y., Huang, P.-H., and Tsai, J.-S. (2006). Automated
suitable drainage network extraction from digital elevation models in taiwan’s upstream
watersheds. Hydrological Processes: An International Journal, 20(2):289–306.

Martz, L. W. and Garbrecht, J. (1998). The treatment of flat areas and depressions in
automated drainage analysis of raster digital elevation models. Hydrological processes,
12(6):843–855.

Mei, X., Decaudin, P., and Hu, B.-G. (2007). Fast hydraulic erosion simulation and visualiza-
tion on gpu. In 15th Pacific Conference on Computer Graphics and Applications (PG’07),
pages 47–56. IEEE.

Montgomery, D. R. and Foufoula-Georgiou, E. (1993). Channel network source representation
using digital elevation models. Water Resources Research, 29(12):3925–3934.

Musgrave, F. K., Kolb, C. E., and Mace, R. S. (1989). The synthesis and rendering of eroded
fractal terrains. ACM Siggraph Computer Graphics, 23(3):41–50.

Nardi, F., Grimaldi, S., Santini, M., Petroselli, A., and Ubertini, L. (2008). Hydrogeomor-
phic properties of simulated drainage patterns using digital elevation models: the flat area

58

BIBLIOGRAPHY BIBLIOGRAPHY

issue/propriétés hydro-géomorphologiques de réseaux de drainage simulés à partir de mod-
èles numériques de terrain: la question des zones planes. Hydrological sciences journal,
53(6):1176–1193.

O’Callaghan, J. F. and Mark, D. M. (1984). The extraction of drainage networks from digital
elevation data. Computer vision, graphics, and image processing, 28(3):323–344.

Pan, J., Wang, M., Li, D., and Li, J. (2009). Automatic generation of seamline network
using area voronoi diagrams with overlap. IEEE Transactions on Geoscience and Remote
Sensing, 47(6):1737–1744.

Peck, J. (2020). Fast noise simd https://github.com/Auburn/FastNoiseSIMD.

Peytavie, A., Dupont, T., Guérin, E., Cortial, Y., Benes, B., Gain, J., and Galin, E. (2019).
Procedural riverscapes. In Computer Graphics Forum, volume 38, pages 35–46. Wiley
Online Library.

Quinn, P., Beven, K., Chevallier, P., and Planchon, O. (1991). The prediction of hillslope
flow paths for distributed hydrological modelling using digital terrain models. Hydrological
processes, 5(1):59–79.

Rigon, R., Rinaldo, A., Rodriguez-Iturbe, I., Bras, R. L., and Ijjasz-Vasquez, E. (1993).
Optimal channel networks: a framework for the study of river basin morphology. Water
Resources Research, 29(6):1635–1646.

Rinaldo, A., Rigon, R., Banavar, J. R., Maritan, A., and Rodriguez-Iturbe, I. (2014). Evolu-
tion and selection of river networks: Statics, dynamics, and complexity. Proceedings of the
National Academy of Sciences, 111(7):2417–2424.

Rinaldo, A., Rodriguez-Iturbe, I., and Rigon, R. (1998). Channel networks. Annual review
of earth and planetary sciences, 26(1):289–327.

Rosgen, D. L. (1994). A classification of natural rivers. Catena, 22(3):169–199.

Seibert, J. and McGlynn, B. L. (2007). A new triangular multiple flow direction algorithm for
computing upslope areas from gridded digital elevation models. Water resources research,
43(4).

Št’ava, O., Beneš, B., Brisbin, M., and Křivánek, J. (2008). Interactive terrain modeling using
hydraulic erosion. In Proceedings of the 2008 ACM SIGGRAPH/Eurographics Symposium
on Computer Animation, pages 201–210.

Tarboton, D. G., Bras, R. L., and Rodriguez-Iturbe, I. (1988). The fractal nature of river
networks. Water Resources Research, 24(8):1317–1322.

Teoh, S. T. (2008). River and coastal action in automatic terrain generation. In CGVR,
pages 3–9. Citeseer.

59

https://github.com/Auburn/FastNoiseSIMD

BIBLIOGRAPHY BIBLIOGRAPHY

Vigil., J. F. (1997). Tectonic plate boundaries, licenced under th public domain https:

//commons.wikimedia.org/wiki/File:Tectonic_plate_boundaries.png.

Viitanen, L. (2012). Physically based terrain generation: Procedural heightmap generation
using plate tectonics.

Woodward, F. I., Lomas, M. R., and Kelly, C. K. (2004). Global climate and the distribution
of plant biomes. Philosophical Transactions of the Royal Society of London. Series B:
Biological Sciences, 359(1450):1465–1476.

Zhang, H., Qu, D., Hou, Y., Gao, F., and Huang, F. (2016). Synthetic modeling method for
large scale terrain based on hydrology. IEEE Access, 4:6238–6249.

Zhang, J., Wang, C.-b., Qin, H., Chen, Y., and Gao, Y. (2019). Procedural modeling of rivers
from single image toward natural scene production. The Visual Computer, 35(2):223–237.

60

https://commons.wikimedia.org/wiki/File:Tectonic_plate_boundaries.png
https://commons.wikimedia.org/wiki/File:Tectonic_plate_boundaries.png

	1 Introduction
	1.1 Motivation
	1.2 Challenges
	1.3 Goals
	1.4 Structure

	2 Theory and Principles
	2.1 Digital Terrain and Procedural Generation
	2.1.1 Representation of Digital Terrain
	2.1.2 Voronoi Diagrams
	2.1.3 Noise
	2.1.4 Pathfinding Algorithms (A*)

	2.2 Physical Terms and Processes
	2.2.1 Drainage Basin
	2.2.2 Fluid Dynamics
	2.2.3 Erosion
	2.2.4 Plate Tectonics

	3 Concept
	3.1 Possible Methods and Techniques
	3.1.1 General Considerations
	3.1.2 Potential Approaches

	3.2 Final Concept

	4 Implementation
	4.1 General Structure
	4.1.1 Data Structures

	4.2 Implementation Details
	4.2.1 Ocean Border
	4.2.2 Regions
	4.2.3 River Networks and Lakes
	4.2.4 Heightmap
	4.2.5 Visual Representation and Output

	5 Evaluation
	5.1 Complexity Analysis
	5.1.1 Time Complexity
	5.1.2 Space Complexity

	5.2 Performance Evaluation
	5.2.1 Ocean Borders
	5.2.2 Regions
	5.2.3 Rivers and Lakes
	5.2.4 Heightmap
	5.2.5 Visualization
	5.2.6 Complete Algorithm

	5.3 Visual Evaluation
	5.3.1 Results
	5.3.2 Comparison with Reality

	6 Conclusion
	 Bibliography

