
so
ftw

ar
e

(d
ef

in
iti

on
)

so
ftw

ar
e

as
 a

n
an

im
al

so
ftw

ar
e

as
 a

 fo
od

so
ftw

ar
e

as
 a

 p
er

so
n

fa
vo

ur
ite

 m
us

ic
ha

te
d

m
us

ic
ro

le

A
ut

om
at

is
ie

ru
ng

 v
on

A

rb
ei

ts
sc

hr
itt

en
 z

ur

E
rle

ic
ht

er
un

g
un

d
E

ffi
zi

en
zs

te
ig

er
un

g
A

lb
at

ro
s

- a
lt

un
d

sc
hn

el
l

K
nä

ck
eb

ro
t

al
t,

si
eh

t d
oo

f a
us

,
tro

tz
de

m
 e

rfo
lg

re
ic

h
K

la
vi

er
Te

ch
no

E
nt

w
ic

kl
er

D
ie

 S
pi

tz
ha

ck
e

de
s

m
od

er
ne

n
M

an
ne

s
E

ie
rle

ge
nd

ew
ol

lm
ilc

hs
au

N
ud

el
sa

la
t

S
up

er
m

an
S

uc
ce

ss
fu

ll
bl

in
k

C
on

so
le

 P
ie

p
E

nt
w

ic
kl

er

S
of

tw
ar

e
so

ll
ei

ne
 L

ös
un

g
zu

 e
in

er
 b

es
ch

rie
be

ne
n

A
uf

ga
be

 re
pr

od
uz

ie
rb

ar

be
re

its
te

lle
n

K
ra

ke
n

da
 d

ie
 T

he
m

at
ik

 re
ch

t t
ro

ck
en

 is
t

-
H

ou
se

, E
le

ct
ro

ni
c

H
ip

-H
op

, D
ea

th

M
et

al
Te

st
er

-

E
in

e
ha

ar
lo

se
 b

ös
e

K
at

ze
, d

ie

ni
ch

t m
ac

ht
 w

as
 m

an
 s

ag
t u

nd

al
le

s
ka

pu
tt

m
ac

ht
 w

en
n

m
an

m

al
 n

ic
ht

 h
in

gu
ck

t

Irg
en

de
tw

as
 d

as
 a

uf
w

en
di

g
in

de

r H
er

st
el

lu
ng

 is
t,

ab
er

 n
ic

ht

sc
hm

ec
kt

.
-

H
ea

vy
 M

et
al

,
R

oc
k

-
ha

up
sa

ch
e

ro
ck

ig

un
d

la
ut

S
ch

la
ge

r,
B

al
le

m
an

n-
H

its
E

nt
w

ic
kl

er
A

ut
om

at
is

ie
ru

ng
 v

on

P
ro

ze
ss

en
 b

ez
og

en
 a

uf

D
at

en
K

ro
ko

di
l -

 a
n

La
nd

 la
ng

sa
m

, i
m

W

as
se

r s
ch

ne
ll

N
us

s
- i

nn
en

 w
ei

ch
, a

us
se

n
ha

rt
-

E
le

ct
ro

, J
az

z,

Fu
nk

P
un

k,
 H

ea
vy

 M
et

al
E

nt
w

ic
kl

er

E
in

 P
ro

du
kt

, w
el

ch
es

 m
it

H
ilf

e
ei

ne
s

C
om

pu
te

rs
 e

in
e

ab
st

ra
kt

e
Id

ee
 u

m
se

tz
t

E
in

 E
le

fa
nt

, d
a

es
 s

ch
w

ie
rig

 is
t

w
äh

re
nd

 d
er

 E
nt

w
ic

kl
un

g
di

e
R

ic
ht

un
g

zu
 ä

nd
er

n.

M
cD

on
al

ds
 B

ur
ge

r -
 s

ie
ht

 g
ut

au

s,
 s

ch
m

ec
kt

 n
ic

ht
.

-
R

oc
k,

 a
lle

s
w

as

m
ir

ge
fä

llt
S

ch
la

ge
r

Te
st

er

H
ar

dw
ar

e
+

M
en

sc
he

n
m

ite
in

an
de

r v
er

kn
üp

fe
n

P
ap

ag
ei

, w
ei

l g
em

ac
ht

e
Fe

hl
er

vo

n
C

he
ck

po
in

t v
on

 C
he

ck
po

in
t

w
ei

te
rg

eg
eb

en
 u

nd
 im

m
er

w

ie
de

rh
ol

t w
er

de
n.

C
ur

ry
w

ur
st

 o
hn

e
C

ur
ry

 -
ha

lt
m

it
Fe

hl
er

R
oa

dr
un

ne
r

To
nb

an
dg

er
ät

E
le

kt
ro

P
ro

du
ct

 O
w

ne
r,

A
nf

or
de

ru
ng

sm
an

ag
em

en
t

A
lle

s,
 w

as
 a

uf
 e

in
em

C

om
pu

te
r l

äu
ft

un
d

ni
ch

t
H

ar
dw

ar
e

is
t

C
ha

m
el

eo
n,

 w
ei

l j
ed

er

A
nw

en
de

r u
nd

 A
nf

or
de

r e
tw

as

an
de

re
s

da
rin

 s
ie

ht
P

iz
za

, m
it

je
de

r M
en

ge
 B

el
ag

,
ab

er
 n

ic
ht

 a
us

ge
w

og
en

D
ie

 g
ut

e
M

är
ch

en
fe

e,

w
ei

l j
ed

er
 s

ic
h

w
as

an

de
re

s
w

ün
sc

ht
B

lu
es

, S
w

in
g,

S

ou
l,

R
oc

k
H

ea
vy

 M
et

al
P

ro
du

ct
 O

w
ne

r,
A

nf
or

de
ru

ng
sm

an
ag

em
en

t

-
S

pi
de

r

P
ile

 o
f w

he
at

 -
m

at
er

ia
l i

s
st

or
ag

e,
 y

ou
 c

an
 m

ak
e

a
lo

t o
f

th
in

gs
 fr

om
fo

lk
, p

op
cl

as
si

cs
E

nt
w

ic
kl

er
, A

pp
lic

at
io

n
m

an
ag

em
en

t
Li

ef
er

t f
ür

 e
in

e
fe

st

de
fin

ie
rte

 E
in

ga
be

 e
in

e
fe

st

de
fin

ie
rte

 A
us

ga
be

(m

ög
lic

hs
t f

eh
le

rfr
ei

 u
nd

pe

rfo
rm

an
t)

E
tw

as
 g

ro
ße

s
w

as
 a

lle
s

ka
nn

S
tin

ke
nd

er
 K

äs
e

-
P

un
k

R
oc

k,
 M

et
al

Fo
lk

 u
nd

 P
op

E
nt

w
ic

kl
erMetaphors for

 Software
Visualisation

Master Thesis Documentation
by Lucia Mendelova

University of the Arts Bremen
Master of Arts in Digital Media (MA)
WS 2016/2017

Supervisors:
Prof. Andrea Sick, Prof. Dennis Paul,
Prof. Gabriel Zachmann

What is software?

“What you
don’t see
is what
you get.”
(somebody at Reddit 2015)

TABLE OF CONTENT

Abstract

Preface

1.1. Defining the Scope of Work

1.2. Introduction

1. 3. Related Work: 3D metaphors for
Software visualisation

2.1 Readme / Data

2.2 Development // Chronicles
of Failures or How I Worked
with Data

2.3. Methodology: VRID Approach

3.1. Giant Dwarfs and Other
Soft Objects

3.2. VRID Model for the Metaphor
“Giant Dwarfs and Other Soft Objects“

3.3. The Little Big Helpers
or What the Giant Dwarfs Could
Be Good For

3.4. Soft World

3.5. VRID Model for
the Metaphor “Soft World“

Discussion // All I Wanted

Epilogue

Bibliography

24
26

28
30

32

3437
38

910
11

12
14

19
21

18

8 ←

Acknowledgements

My gratitude goes first to my supervisors, Prof. Andrea Sick for patient
listening and translating my thoughts into sort of understandable line of
arguments, Prof. Dennis Paul for his open support for whatever crazy idea
I came up with and Prof. Gabriel Zachmann for giving me a chance without
knowing what to expect. I am especially indebted to HEC GmbH, the bravest
traditional software development company, to support me during my studies
even when I kept repeating that I would not produce anything useful. Heiko
Mueller, Juergen Schaefer and my colleagues at HEC who got my back, answered
my questions and helped where they could.
I profited greatly from support, help, fun and discussion with my classmates
and friends, from whom I have learned almost the most during my studies.
To mention just those without whom this thesis would not be possible: I am
very grateful to Lukas Seiler for help with shader scripting, Lennart Jäger
for a patience by blocking DK2 for couple months, Kristina Karabova for
prompt proofreading and many other friends and family for their support
and inspiration.
Most importantly, I thank my life-companion Ufo, for whom all hardware must
be as silent as it gets and without whose patience and support I would not
be able to finish my very last studies. Thank you for your humour when I lost
mine (I do not remember if I ever have one ha ha, see?).

→ 9

Abstract
Software visualisation makes the intangible tangible. It shows abstract and com-
plex structures of code translated to graphical representation of entities and their
relations. To do so, software visualisation uses metaphors. Similar to figures of
speech are visual metaphors like figures of digital interface. The former support
through patterns of speech patterns for thought, the latter through visual patterns
supports structure attention and multitude of cognitive processes (see Tinell 2015).
Not that there would be a single magical picture or a metaphor of a system which
would explain every nuance of the software development, but through generating
interactive and narrative images, we can talk about systems. This is important not
only for specialized software developers, but for the growing amount of differ-
ent social groups. Current situation is significantly marked by rising production of
high-complex software which in turn creates and shapes a constitutive part of our
lives. To gain understanding of software development with help of experimental
visual metaphors and tools could be more than useful. The main research question
of this thesis is therefore: what kinds of metaphors and interactions can be used for
visualising software in virtual environments? The goal is to deliver experimental
software visualisation models (based on different metaphors) in VR which will help
discuss software within different users.

10 ←

Preface

“Software is deeply woven into contemporary life – economically, culturally,
creatively, politically – in manners both obvious and nearly invisible. Yet,
while much is written about how software is used, and the activities that
it supports and shapes, thinking about software itself has remained largely
technical for much of its history. Increasingly, however, artists, scien-
tists, engineers, hackers, designers, and scholars in the humanities and
social sciences are finding that for the questions they face, and the things
they need to build, an expanded understanding of software is necessary.”
(Bratton 2015, p.12)

Coming to the field of digital media with a background in the philosophical
theory of knowledge and design, with the topic for my Master thesis I fulfil
all the cliché necessary to fit in the Bratton’s quotation. I am not sure
if this is why Prof. Zachmann asked me if I can imagine to work on the
topic of “Immersive Metaphors for Software Visualisation” – either way, I
answered “yes”. Working with the weird, hyped, fascinating and highly com-
mercialized technology of virtual reality which I got to during my studies
almost accidentally and could not get over it (reassembling S e g w a y
or a stock photo has many philosophical problems
and is more fun to play with than pro- c e s s -
ing because of the god’s feeling you get walking
through the worlds you have created), I decided to look
at the software de- velopment and its tools from within. To
taste the corporate life completely, I also accepted a scholarship of one
of the biggest local software development companies and started my life
behind two big screens, well-formed business chair, grey carpets and great
coffee. What follows is also a partial documentation of my experience in VR
and software development.

→ 11

1.1. Defining the Scope of Work
The official task of this thesis was to find metaphors for software visualisation in
VR for software developers. In the process of getting familiar with the topic I was
searching for metaphors which would help me understand what software devel-
opment actually consists of. This way, the final project turned out to be more of
a software visualisation for beginners than for professionals. It introduces software
in a simplified and playable way, so that different users coming to the code later in
its life can understand, memorize and discuss the software structure.
In summary, deliverables comprise the literature review on (1.) the contextual
information about 3D software visualisation. Such research is used to establish
the rationale for (2.) the creation of a model of visual metaphors in VR in order to
measure the advantages and limitations of the medium when used for the software
visualisation of complex systems (testing will happen between submitting and pre-
senting the thesis).
The structure of this report is following: Chapter one introduces the field of research
and related work; defines the key terms in this research area (software visualis-
ation, metaphors, current state of 3D and VR/AR software visualisation); Chapter
two describes used dataset, scatch out the working process and finally introduces
the methodology for designing VR interfaces. This methodology is then applied to
created metaphors which are introduced and described in Chapter three. The final
chapter shows the discussion on the further development possibilities; at the end
comes a short epilogue.

12 ←

1.2. Introduction

“Software is intangible, having no physical shape or size.”
Thomas Ball, Stephen Eik 1996

Do not think of a pink elephant. Do not think of V i s u a l
metaphors do not provide so much freedom for imagina- tion, but
often catch more attention, are easy to remember and serve as
a common reference. Ball and Eik made a good point t h i r t y
years ago and so are today’s software usually pink el- ephants,
big bowls of mud, octopuses as well as schemes of connected triangles and
rectangles in UML style. Even people working everyday within the realm of
software development report how hard it is sometimes to get familiar with
a software they have not seen before. Imagine you are standing in front of
a running giant mechanism built out of 60k small parts which somebody else
created nine years ago and many others have been working on since then, and
now you just have to fix “this small bug”. Imagine you cannot stand in front
of that mechanism, because there are no parts to see – all that you are
facing are lines of code on your screens. As time passes by, you learn to
see all the objects and their functions in the code quite quickly. However,
this is how other integral actors (not necessarily developers), i.e. impor-
tant parts of the software development processes, can feel about it – and
you need to talk together about the bug to fix it.

If the main challenge besides the complexity is the intangibility of soft-
ware (often referred as the “Ball’s Dilemma”), the way how to visualise
it, is the use of metaphors. “The essence of metaphor is understanding
and experiencing one kind of thing in terms of another.” (Lakoff & Johnson
1980). Using one symbolical representation to refer to something else is
what computer science terminology is also strongly based on. We use windows,
documents, folders, packages without even registering they do not refer to
the corresponding physical objects but to the user interface visual rep-
resentation of the computer functionality. A “visual metaphor” is an image
based on analogy to the rhetorical figure of metaphor. (Yet) instead of
a lexical term, it uses a particular graphical representation to trans-
fer some abstract information to a new context. Graphical representation
can refer to the illustration of abstract entities or to models in a spa-
tio-temporal three dimensional realm. This is what happens when we start to
think about metaphors for “post-wimp” interfaces – e.g. for virtual reality.
We move into a computer-generated three dimensional space and there comes
the very justified question: why to do so, actually?
Answering in a very simplified manner: firstly, human perception has a strong
spatio-temporal affinity – so to say, we are optimised for seeing the world
and patterns in three dimensions. Since VR operates by simulating 3D en-
vironment it has a huge immersive potential and as such “leads to a de-
monstrably better perception of a data-scape geometry, more intuitive data
understanding, and a better retention of the perceived relationships in the
data.” (Davidoff&Norris 2014, IEEE) That is to say, if we simulate conditions
which are familiar to the interaction and orientation in our embodied envi-
ronments, we could gain the understanding of abstract structures. Secondly,

→ 13

a decision to play with virtual reality and simulation was inspired by the
concept of habitability (Gabriel 1996), which within software development
refers to the feeling of being inside of the software system, looking at
the code and feeling comfortable because you are confident about it (it’s
easy to change it, for you know what is where and how it works, you are at
“home” there). According to Gabriel, software needs to be habitable, because
it always has to change. Requirements change with the context, parts of
the design are proven wrong by experience and rather than about technical
issues, the unpredictable events are often more about people and society
(ibid, p. 12). Software varies and develops under the demands of different
personal, institutional and market pressure. Comfortable understanding of
the software structure which reassembles the way how we learn and acquire
knowledge through our embodied actions in the world can bring the necessary
flexibility and comfort in changing the systems. And lastly, it is really fun.

Abstraction levels and corre-
sponding entity and relationship
types used to create views on the
software structure and its parts.
Dotted arcs indicate the mapping
between entities of different
abstraction level (Riva, 2004).

Entities:	
module

Relations:	
uses, generalisation

Hierarchy:	 contains

Entities:	
directory, file, package, 	
class, method, function, 	
attribute, variable

Relations:	
inherits, aggregates, 		
invokes, accesses

Hierarchy:	 contains

Entities:	
programming lan-
guage constructs

Relations:	
syntactic nesting,
links

Hierarchy:	 contains

A
RC

H
IT

EC
TU

RE

D
ES

IG
N

CO
D

E
SO

U
RC

E
TE

XT

14 ←

1.3. Related Work
Software Visualisation & Its 3D Metaphors

According to Diehl a narrow definition of software visualisation is “a visualisation
of algorithms and programs” and the wide one is: “a visualisation of artifacts relat-
ed to software and its development process” (Diehl 2007). Software visualisation
approaches in general can be categorized into three distinctive groups: static vis-
ualisation, dynamic visualisation, and evolution visualisation.
Static visualisation deals with static parts and relations of the system which can be
visualized without running the program, like source-code, data structures, static
call graphs, and system modules.
Dynamic visualisation shows the behaviour of a programme for a given input and
has successfully been used for algorithm animation, architecture visualisation aug-
mented with run-time information, and visual debugging and testing.
Evolution visualisation depicts how software changes over the time usually based
on metrics such as code age, number of bug fixes, structural change, and evolution-
ary coupling (ibid, p. 4-7).

Current software visualisation is dominated by two dimensional geometrics met-
aphors such as boxes, circles, arrows and graphs (the well-known and also very
usable UML style). What follows is a brief overview of metaphors used within three
dimensional software visualisation.

“Map Metaphor” (img. 1.1) – maps are widely used as an orientation tool to display
spatial information. Humans are used to interpret such data in order to navigate
in the real world. This direction is also taken by “Landscape Metaphor” which can
be seen as a category of maps but goes further to the concrete “real-world” story
line. Here within 3D space, real-world objects such as rivers, hills or houses and
buildings represent abstract code entities. These are mostly used as a static visual-
isation, with an option to evolution visualisation or even some dynamic aspects of
software (see Teyseyre, Campo 2009).
Under the category landscape metaphor are often subsumed also the “Code Cit-
ies”, which are one of the most used 3D software metaphors. Originally created by
Richard Wettel (2009 img. 1.2), they also exist today as an open source Eclipse and
SonarQube plugin (1.3, 1.4) and also in augmented reality version (SkycrapAR at
img. 1.5) or as a start-up idea (Seerene and its “CapaCity” version of code cities –
img.1.6). Some of the city metaphors go pretty far in their level of naturalism (e.g.

→ 15

Thomas Panas – img. 1.7). “Galaxy or solar system metaphor” (img. 2) is one of the
last often used metaphors in such a narrative approach to software visualisation.
Galaxy is usually produced using algorithm for force directed graph layout or clus-
tering algorithm to place nodes in three dimensions. The relation between the nodes
is usually presented by proximity (two related nodes are placed close together).

1.1 Image of a “Code-map” (inspired by an older software cartography tool
called “Cartographer”) and Eclipse plug-in for Java (based on EclEmma).
Domain mapping: the hills represent classes, their position on the map is

determined by their vocabulary,
the size of the hill refers to
the lines of code metrics of
corresponding classes. Colours
could represent different met-
rics (see Enri&Kuhn 2010, p.73)

1.2. Domain Mapping in the
case of Code Cities (can dif-
fer within applications): pack-
ages are mapped to districts,
classes represent buildings.
A polymetric view principle ap-
plied to the classes maps on
the base size of the building
metrics representing the num-
ber of attributes and the num-
ber of methods represents the
height of the class/building.

CODE-MAP: http://scg.unibe.ch/archive/masters/Erni10a.pdf
CODE CITIES: http://www.inf.usi.ch/faculty/lanza/Downloads/Wett2010b.pdf

16 ←

1.3 – 1.4. Eclipse and SonarQube code cities plugins (both open source,
in the case of Eclipse just for
non-commercial usage). Mapping:
Folders or packages are shown
as districts, files as buildings.
The building
footprint,
height and
colour are
d e p e n d e n t
on arbitrary sonar or eclipse
metrics.

1.5. S K Y C R A P A R
An Augmented Real-
ity Visualisation
that employs the
city metaphor to
represent evolving
software

1.6. S E E R E N E corporate
style software-visual-
isation. Big words, flat
graphics, user-friend-
ly interface and an idea
which has been tested in
many open-source plugins.
“CodeCity metaphor” this
time as a “CapaCity”
startup package.

ECLIPSE: https://marketplace.eclipse.org/content/codecity
SkycrapAR: http://reuse.cos.ufrj.br/wbvs2012/papers/wbvs03.pdf
SEERENE: https://www.researchgate.net/publication/4026411_A_3D_metaphor_for_soft

→ 17

1.7. A very narrative code city version by Thomas Panas showing hot execution
spots and work distribution.

1.8. A Solar System Metaphor for 3D Visualisation of Object Oriented Soft-
ware Metrics. The main code entities (i.e., packages and classes) are rep-
resented as planets encoding software metrics in the planets’ size and
colour. This visualisation represents the software as a virtual galaxy
consisting of many solar systems. Each solar system represents a package.
The central star of each solar system represents the package itself, while
the planets in the orbit around it represent classes
within the package.

1.9. Not really software visualiza- tion, but a 3D HTML
interpretation. L I T T L E B R O W -
S E R is an experimental web brows-
er and game engine hybrid. Made with
Processing 3 and using the ProHTML
library by Tex, an autonomous crawl-
er navigates web pages and trans-
late their main elements into game
objects: links become gates, divs are
clouds, images turn to trees…

GALAXY: http://dl.acm.org/citation.cfm?id=1082108&dl=ACM&col
quotation source: https://arxiv.org/ftp/arxiv/papers/1601/1601.07742.pdf
PANAS: https://www.researchgate.net/publication/4026411_A_3D_metaphor_for_soft
LITTLEBIGBROWSER: https://frm.fm/a/n_o_r_m_a_l_s/l_i_t_t_l_e_b_r_o_w_s_e_r

18 ←

2.1. Readme: Data

The current version of modelled environments is based on the data about BKB
Distributions Portal, a logistic tool for Carriage Company B+K
Group from Krefeld (Germany) for shipping their consignments
to Aldi stores. I have always been drawn by political themes
and I basically live in Aldi, so this fits well. This software
was developed in Java at HEC Software Development between 2015
– 2016 as an extension of B+K Group native distribution soft-
ware. General data about the software (out of Snapshot 1.2.3.
from 16th July 2016 on which most of the static data visual-
isation are based): 23k lines of code, 325 files and 363 Java classes, 80,6%
coverage through 139 unit tests, and all this in layered architecture (da-
ta-bank, than business logic and UI on the top as well as a small Web app).

Data Metrics about the system comes from SonarQube, an open source quali-
ty management platform. Data were delivered as a Csv export of ten stat-
ic snapshots of the software evolution. Each of the snapshots delivered
the following data about each file: LAYERDIRECTORY, FILENAME, DATEOFLASTCOM-
MIT, LINES, LINESOFCODE, LINESOFCODEPERLANGUAGE, FILES, ISSUES, CRITICALIS-
SUES, MAJORISSUES, MINORISSUES, OPENISSUES, CODESMELLS, BUGS, TECHNICALDEBT,
MAINTAINABILITYRATING, SQALEDEVELOPMENTCOST, TECHNICALDEBTRATIO, STATEMENTS,
COMMENTLINES, COMMENTLINESPROCENT, RELIABILITYREMEDIATIONEFFORT, RELIABILI-
TYRATING, SECURITYRATING, FUNCTIONS, CLASSES, CLASSDISTRIBUTIONCOMPLEXITY,
COMPLEXITYFUNCTION, COMPLEXITYCLASS, COMPLEXITYFILE, COVERAGE, OVERALLCOVER-
AGEHITSBYLINE, COVERAGEHITSBYLINE, ITCOVERAGEHITSBYLINE, COVERAGEONNEWCODE,
COVEREDCONDITIONSBYLINE. Strikethroughs were not delivered (but are optional
metrics in SonarQube). There were no data about dependencies, even if this
would be one of the most interesting aspects to visualize (changes of the
system with respect to class or method dependencies).

Since dataset already forms possible ways of visualisation, the developed
metaphors concern mainly the following: static visualisation of the size
of classes (LOC, statements and methods), test coverage and code smells.
The last mentioned, code smells, are automatically detected by SonarQube,
as defined by its documentation as “A maintainability-related issue in the
code. Leaving it as-is means that at best maintainers will have a harder
time than they should making changes to the code. At worst, they’ll be so
confused by the state of the code that they’ll introduce additional errors
as they make changes.“ (http://docs.sonarqube.org/display/SONAR/Concepts).
According to Grandma Beck and Martin Fowler “a code smell is a surface in-
dication that usually corresponds to a deeper problem in the system” so it
is obvious that smell definition is context-dependent and it is disputable
in many cases. Automatically detected smells in SonarQube are distinguished
to “blockers”, “major” and “minor” issues most of which are small violations
of good practices (unused private fields, missing methods in constructor, tab
characters etc.). The broader understanding of code smells outside the realm
of predefined metrics is part of outcome of the thesis. One of the few things
the visualisation for beginners has shown is the potential of searching and
identify code patterns and smells as described by Fowler (SOURCE).

→ 19

2.2. Development // Chronicles of Failures or How I Worked With
Data

The Metaphors (as models of VR environment) are in their current version
developed in Unity 5.5.0f3 and running on VIVE SteamVR platform which proved
to be the most user-friendly and stable environment to work with and to
test. The process of finding a solution could also be well described as
a small chronicle of failures. First
version of the test environment – so
to say the first level and the first met-
aphor (working title “Dwarfs”) – has
been developed in Unity 5.3.5 as a desk-
top environment (all the interaction
with a keyboard and mouse). All models

were created manually since
there was no database yet. I
basically checked against the local server SonarQube statistics
and copy/paste values I needed.

Although all the interaction worked properly on the desktop, the
step to VR environment was painful. For working with the second developer
kit from Oculus, it was necessary to downgrade Unity because the only ver-

sion working with DK2 was 5.3.4p1. What did not brake, needed to
be rewritten – basically all the interaction code since there is
no mouse in the VR world-space. Even though there is a way around,
I did not want to base all the interaction on the keyboard and
mouse, VR would not make any sense in that case. DK2 also does
not have controllers, so I needed a couple of days to get Orion
update for LeapMotion SDK working with the old SDK for Oculus.

However great the newest upgrade for a small infrared controller for hand
interaction in real time is (and it is!), it has worked just partly and,
unfortunately, was not stable at all. No tests are possible if most of the
time, the same gesture barely managed to work two times in a row. In any
case, this was the setup which was used at the beginning of modelling the
second metaphor (working title “Soft World” – yes, I started to watch the
“West World“ series at that time). I also got statistics in csv
format for the current snapshot to play with (although there
are possibilities to work with a broad range of data input with-
in unity – json, xml, or even real-time data transfer between
applications through OSClis- tener,
my technical skills felt well at the level of
csv). Csv data tables were then translated to bit-

maps (picked data columns rep-
resented in gray-scala pixels)
and those
bitmaps again
within Unity to terrains (I used
heat-map code generating ter-
rain, a free JavaScript snippet
which does the translation for
you after small cosmetic chang-
es). In this way generated data

20 ←

terrains look great, but are not very effective (too heavy for performance,
too inflexible for interaction).

At that time, I started trying to create data objects procedurally, gener-
ate them directly out of the code with help of shaders. You could use one
data set to generate a heat-map mesh (vertex shader, in Unity
called “parallax map“), i.e. the geometry of objects and anoth-
er data set for creating textures. The texture could not only
bring colours generated out of code, but small 3D effects as
well. The so called bump-map effect (in Unity called “normal
map“) creates optical illusion of 3rd dimension through the way
how light reflects and diffracts on surfaces. Using shaders and

procedural meshes would actually be a proper way
how to create virtual worlds out of huge data sets
(even in real time). I imagine this like something
between Git Extension and No Man’s Sky for VR, mul-
ti-player, of course. Ha. In reality, I needed to ask
for help by writing a shader (Unity uses mono devel-
opment, a mono version of c# net, but shaders are
written in a shading language, which I would not get running at all with-
out the help of Lukas Seiler). On the 3rd level, which is not part of this
report, but which you can test at the presentation, you can play with the
surface and its texture created procedurally out of a data set.

→ 21

2.3. Methodology
 VRID Approach

VRID stands for Virtual Reality Interface Design and it refers to the methodology
for developing VR interfaces suggested by (Tanriverdi&Jacob 2001). VR interfaces
are more complex than the traditional one, there is a huge variety of possibilities
and responsibilities and only a small range of user interface rules which are “hard-
ened” as the “intuitive” standard. Most of the UI/UX best practices are still being
developed on the go, depending on the input from the current boom of the consum-
er versions of VR devices. In this context, it can be quite helpful to check some of
the older research articles (from the era of the first VR hype) to learn from what was
once a topic of interest. (with the benefits of today’s GPU/CPU power).

VR interface design methodology identifies two main phases within VR interface
architecture and in the corresponding software visualisation architecture.
1, High-Level Design Phase, whose main tasks are to:
a., Identify data elements
b., Identify objects
c., Formulate general specification in graphics, behaviours, interactions, internal
and external communications for each object
2, Low-Level Design Phase
Detailed specification in graphics, behaviours, interactions, internal and exter-
nal communications for each object. These factors together create the core of the
approach, so called “VRID Model”.

The “VRID Model” is a set of key constructs that designers should think about
while designing VR experiences.
1, The graphics component – specify graphical representation of interface objects.
Or for the all objects /entities according to data input and functionality of the soft-
ware visualisation which needs to have their representation in VR.
2, The behaviour component – The first task is to break the complex behaviours
down into simple physical and/or magical behaviours. (Grabbing an object is a phys-
ical behaviour, highlighting when grabbed is a magical one.) Breaking the complex
behaviours down into simple ones can help build a library of behaviours which can
be reused (grabbing can be used on a different object with or without highlighting).
Distinction between the physical and magical behaviours can also help communi-
cate the design decision.

22 ←

3, The composite behaviours – describing behaviours which consist of a series of
simple physical and magical behaviours (can be seen as extension of the previous
point which significantly helps with coding).
4, The interaction component – specifies the origin of inputs for interaction and
their effects on the objects in VR. A conceptual distinction between interaction and
their implications for the object behaviours (for grabbing, I need one script for an
object and another one for the controller). When behaviours are de-coupled it also
increases the reusability (highlighting an object can be called on trigger by pressing
enter, whereby trigger can be a hand controller, another object or even an eye-ray-
caster – it is important to specify and check necessary condition for each case).
5, The mediator component – ensures loose coupling between the components, helps
with controlling, communication and avoiding conflicts in the object behaviours.
In most of cases, this is already built in the way how Unity scripting references are
organised.
6, The communication component – is for the external communications of the
object with other objects, data elements, or other applications.
In order to decompose the design task into a smaller task, comprehensive planning
is the “takeaway message” for designing VR experiences. However, it is hard to
plan when you do not know what is possible and what you can built properly. What
worked out for me was the “ping-pong style“. Plan something, decompose it and try
to implement. By slipping up and searching for workarounds get other ideas about
possible interaction, go back to VRID plan and adapt or extend it. Your skills and
technology will shape your outcomes.

What follows is a short description of VR setup and a scenario for each of
the metaphors (in this case they are built as separate levels between which user
can move). Later on, a VRID model table list out data elements and interactions
for each of them.

→ 23

METAPHOR 1:
Giant Dwarfs
and Other
Soft Objects
(the micro view)

METAPHOR 2:
Soft World
(the macro view)

Play

Play

24 ←

3.1. Giant Dwarfs and Other Soft Objects

Consider a virtual reality system developed for training software devel-
opment and software architecture basics. It includes a virtual surface and
virtual objects created from software statistics and a gesture interaction
system. The user wears a head-mounted display, and uses two hand controllers
in order to interact with the room-scale virtual environment. The HMD and
controllers communicate 3D coordinates of the user’s hands and head to the
VR system. Coordinate data are used to interpret actions of the user. The
3D model of the software system is placed in front of the user, when she
can interact with it.

Giant Dwarfs
In front of the user, there is a table, above which floats a couple of green,
flat shaped objects in different sizes. Some of them have red or yellow
coloured diamond shapes on their surface. When the user points against the
object, an information layer reveals that we are looking at the objects
representing code files (filename, x, y, z values). The height of the objects
(y) has two values, which creates sharp endings of otherwise rectangu-
lar shapes. It represents lines of code (y1) and lines (y2) which is more
or less higher number because all the comments are counted in. The width
(x value) maps the statements* used in Java file. The depth (z - value) repre-
sents methods**. The colour changes from green to blue gradient getting more
intensive, as it is covering a base of the objects. The text layers tell us
that the gradient colour represents the % amount of comments in the file.
Pointing at the diamond-shaped objects reveals a label which shows infor-
mation about “smells” (based on metrics from SonarQube). The text reveals
when the “smel”l was detected, by whom and in which code row it is to be
found. It shows also the SonarQube icon used for labelling smells as minor
or major (minor green, major red circle).
There are buttons on the table: Resize and Play. Pressing “resize” creates
the same objects ten times bigger around the user, who can now walk around
and examine also the small objects properly. Pressing “play” activates
a Raycast which slowly goes through the objects from right to the left
activating them. Each part of the objects play its melody.

* Definition of Statements according to SonarQube: “Number of statements as defined in
the Java Language Specification but without block definitions. Statements counter gets
incremented by one each time a following keyword is encountered: if, else, while, do,
for, switch, break, continue, return, throw, synchronized, catch, finally. Statements
counter is not incremented by a class, method, field, annotation definition, pack-
age declaration and import declaration.” http://docs.sonarqube.org/display/SONAR/Met-
rics+-+Statements

** Methods are functions in SonarQube. Definition: “Methods represents number of func-
tions. Depending on the language, a function is either a function or a method or a
paragraph.” http://docs.sonarqube.org/display/SONAR/Metric+Definitions

x: statements

smells

class 2class 1

comments

z: methods

y1: lines
y2: lines of code

Object:
one file with
two classes

26 ←

BKB Distributionsportal Sonar Qube statistics
Data elements Description Data sources Objects Graphics Behaviours Interactions Internal communication External communication

name;
metrics or other
data from
sonarQube

GOAL: to identify
software data inflows
coming into the VR
interface.
INVOLVES: a, defining
the data source;
b, describing what the
data represents;
c, specifying the data
set or other data parsing
possibilities

GOAL: to identify
data source coming
into the VR interface.
INVOLVES: The
interface can receive
data from three
sources: user /
physical
devices / other VR
systems /

GOAL: to identify
objects that have well
defined roles and
identities in the
interface.
INVOLVES: a)
identifying potential
objects mentioned in the
interface description;
b) deciding on legitimate
objects; describing
aggregate objects and
its parts; c)
distinguishing between
virtual and physical
objects (the virtual ones
are generated by
computer, the physical
ones are physical
entities that interact with
VR system – they may
or may not require
modelling).

GOAL: to model the
virtual objects
identified in previous
steps; specify a
description of
graphical needs of
virtual objects.
INVOLVES:
description of what
kinds of graphical
representations are
needed for each
object, and its parts, if
any

GOAL: to identify
behaviours exhibited by
objects; classify them into
simple physical, simple
magical, or composite
behaviour categories; and to
describe them in enough
detail for designers to
visualize the behaviours.
INVOLVES: a) identifying
the behaviours from the
description; b) classifying
the behaviours into simple
and composite categories;
c) classifying the simple
behaviours into physical and
magical behaviour
categories; d) for composite
behaviours, specifying the
sequences in which simple
behaviours are to be
combined for producing the
composite ones.

GOAL: to specify where
inputs of interface
objects come from and
how they change object
behaviours.
INVOLVES: a) identifying
interaction requests to
objects; b) identifying the
behavioural changes
caused by these
requests and which
behavioural components
will be notified about
these changes.

GOAL: to specify control
and coordination needs for
internal communications
among the components of
objects in order to avoid
potential conflicts in object
behaviour
INVOLVES: a) examining
all communication requests
and behavioural changes
that are caused by these
requests; b) identifying
communication requests
that may cause potential
conflicts; c) deciding how to
prioritize, sequence, hold or
deny the communication
requests to avoid potential
conflicts.

GOAL: to specify control and
coordination needs for
external communications of
the objects.
INVOLVES: a) identifying
communication inflows into
the object, and their sources;
b) communications outflows
from the object, and their
destinations; c) describing
time and buffering semantics
of external communications of
the object.

File size and
“smells” – issues
on files (metrics
from SonarQube).

Input: data from
SonarCube about the
file size, comment
percentage and code
smells. Visualizes the
pre-defined issue
reports out of
SonarQube, but through
the graphical
representation of the file
size also other
“standard” smells (see
Fowler) are identifiable.
Metrics from onarQube
size statistics;
Size Metrics:
File, number of classes,
LOC, Lines, methods,
statements (in JAVA:
Number of statements
as defined in the Java
Language Specification
but without block
definitions. Statements
counter gets
incremented by one
each time a following
keyword is encountered:
if, else, while, do, for,
switch, break, continue,
return, throw,
synchronized, catch,
finally. Statements
counter is not
incremented by a class,
method, field,
annotation definition,
package declaration and
import declaration;
Methods are functions in
SonarQube. Definition:
“Methods represents
number of functions.
Depending on the
language, a function is
either a function or a
method or a paragraph.”
http://docs.sonarqube.
org/display/SONAR/Met
ric+Definitions)
Smells: issue amount,
sing/icon, (label - since
when (from whom), tag

The general source
of data on the level of
user and physical
devices is HMD and
controllers which give
us the position of a
user and the way she
interacts with the
environment. This will
be specified in
behaviours and
interactions section.
Focusing on data
from SonarQube, in
the current state we
have mostly static
visualisation where
the data set is loaded
once and not
dynamically changed
at runtime.

Potential objects for UI
are: Data files as flat
geometrical 3D shapes
are virtual (computer-
generated out of data)
and aggregated (they
have audio, collider,
data layer showing
textual information,
potentially child objects
– smells). Smells are
also legitimate objects
which are aggregate
(have sounds, colliders,
text-labels). “Play-
raycast” is a 3D object,
movable, has a collider
and triggers the audio
on other data objects. It
has classical UI
elements – buttons with
functionality to activate
objects. Physical
objects are HMD
(CameraRig) and hand
controllers, which also
have their virtual
representation (not
necessary to model, we
are using prefabs in this
case).

The data objects were
modelled by hand, but
ideally, they would be
generated
algorithmically out of
data. The texture is
also currently created
manually, but could
be generated data as
well. The table is
based on simple
geometrical shapes,
has no interaction, is
created directly in
Unity with a standard
material. The Raycast
is also a primary
shape modelled in
Unity with a
transparent material.
UI buttons are based
on Unity GUI with own
sprites and custom
fonts. The small
objects have box
colliders, also created
directly in unity with a
custom sprite texture
imported from
Photoshop.

Behaviours are: (1.)
Activating the textual layer
on each object (simple
gesture, magical and
physical – needs to listen for
the hand controller pointing
gesture); (2.)
Showing/hiding the text
label to smells (the same as
previous) (3.) Play –
activating and moving of the
“Play-raycaster” object
(composite, magical and
physical – activates on UI
button click provided by
hand controller) (4.)
Teleporting – is a simple
magical as well as physical
behaviour, based on the
pointer of the left hand
controller.

Showing Text
information on object
calls on the box colliders
and needs a trigger
(hand controller pointer
which also has a rigid
body). This collision
notifies the “text-node”
object, which will then be
activated. “Playing”
works similar, but uses
the graphical user
interface button element
as a mediator. Hand
controller collides with
the button, on click
activates the UI event
system, which then calls
the code on the ray-
caster object. This is a
simple c# script which
performs the movement
based on iTween library
(an open source
animation system based
on a simple hash-table
rule set of transition
which are called within
script when needed).

Potential conflicts are on
“playing” function of the
ray-cast object: originally,
there should be also an
option to pause and rewind
(It would be interesting if
we had much more objects
and heard something which
caught our attention and
needed to find the source
of the sound). In the current
version, this option is not
working due to improper
storing of the last played
position which causes
conflicts with a new call.

Communication inflow are
mostly the 3D coordinates of
the user's head and hands in
the room-scale VR, most of
the technological
requirements (buffer
semantics, collision detection)
are regulated by the provider
of the HMD software and its
development environment
(VIVE, SteamVR and Unity).
However it is important to
program carefully, plan and
test the user interaction so
that there are no glitches. To
paraphrase a VR filmmaker
Eran Amir, the risk of creating
bad VR experiences is not
just that people would not like
them or be bored, but they
can get sick by motion
sickness. And this is not to
underestimate.

3.
2.
 V

R
I
D
 M

od
el
 f

or
 t
he
 M

et
ap

ho
r

→ 27

BKB Distributionsportal Sonar Qube statistics
Data elements Description Data sources Objects Graphics Behaviours Interactions Internal communication External communication

name;
metrics or other
data from
sonarQube

GOAL: to identify
software data inflows
coming into the VR
interface.
INVOLVES: a, defining
the data source;
b, describing what the
data represents;
c, specifying the data
set or other data parsing
possibilities

GOAL: to identify
data source coming
into the VR interface.
INVOLVES: The
interface can receive
data from three
sources: user /
physical
devices / other VR
systems /

GOAL: to identify
objects that have well
defined roles and
identities in the
interface.
INVOLVES: a)
identifying potential
objects mentioned in the
interface description;
b) deciding on legitimate
objects; describing
aggregate objects and
its parts; c)
distinguishing between
virtual and physical
objects (the virtual ones
are generated by
computer, the physical
ones are physical
entities that interact with
VR system – they may
or may not require
modelling).

GOAL: to model the
virtual objects
identified in previous
steps; specify a
description of
graphical needs of
virtual objects.
INVOLVES:
description of what
kinds of graphical
representations are
needed for each
object, and its parts, if
any

GOAL: to identify
behaviours exhibited by
objects; classify them into
simple physical, simple
magical, or composite
behaviour categories; and to
describe them in enough
detail for designers to
visualize the behaviours.
INVOLVES: a) identifying
the behaviours from the
description; b) classifying
the behaviours into simple
and composite categories;
c) classifying the simple
behaviours into physical and
magical behaviour
categories; d) for composite
behaviours, specifying the
sequences in which simple
behaviours are to be
combined for producing the
composite ones.

GOAL: to specify where
inputs of interface
objects come from and
how they change object
behaviours.
INVOLVES: a) identifying
interaction requests to
objects; b) identifying the
behavioural changes
caused by these
requests and which
behavioural components
will be notified about
these changes.

GOAL: to specify control
and coordination needs for
internal communications
among the components of
objects in order to avoid
potential conflicts in object
behaviour
INVOLVES: a) examining
all communication requests
and behavioural changes
that are caused by these
requests; b) identifying
communication requests
that may cause potential
conflicts; c) deciding how to
prioritize, sequence, hold or
deny the communication
requests to avoid potential
conflicts.

GOAL: to specify control and
coordination needs for
external communications of
the objects.
INVOLVES: a) identifying
communication inflows into
the object, and their sources;
b) communications outflows
from the object, and their
destinations; c) describing
time and buffering semantics
of external communications of
the object.

File size and
“smells” – issues
on files (metrics
from SonarQube).

Input: data from
SonarCube about the
file size, comment
percentage and code
smells. Visualizes the
pre-defined issue
reports out of
SonarQube, but through
the graphical
representation of the file
size also other
“standard” smells (see
Fowler) are identifiable.
Metrics from onarQube
size statistics;
Size Metrics:
File, number of classes,
LOC, Lines, methods,
statements (in JAVA:
Number of statements
as defined in the Java
Language Specification
but without block
definitions. Statements
counter gets
incremented by one
each time a following
keyword is encountered:
if, else, while, do, for,
switch, break, continue,
return, throw,
synchronized, catch,
finally. Statements
counter is not
incremented by a class,
method, field,
annotation definition,
package declaration and
import declaration;
Methods are functions in
SonarQube. Definition:
“Methods represents
number of functions.
Depending on the
language, a function is
either a function or a
method or a paragraph.”
http://docs.sonarqube.
org/display/SONAR/Met
ric+Definitions)
Smells: issue amount,
sing/icon, (label - since
when (from whom), tag

The general source
of data on the level of
user and physical
devices is HMD and
controllers which give
us the position of a
user and the way she
interacts with the
environment. This will
be specified in
behaviours and
interactions section.
Focusing on data
from SonarQube, in
the current state we
have mostly static
visualisation where
the data set is loaded
once and not
dynamically changed
at runtime.

Potential objects for UI
are: Data files as flat
geometrical 3D shapes
are virtual (computer-
generated out of data)
and aggregated (they
have audio, collider,
data layer showing
textual information,
potentially child objects
– smells). Smells are
also legitimate objects
which are aggregate
(have sounds, colliders,
text-labels). “Play-
raycast” is a 3D object,
movable, has a collider
and triggers the audio
on other data objects. It
has classical UI
elements – buttons with
functionality to activate
objects. Physical
objects are HMD
(CameraRig) and hand
controllers, which also
have their virtual
representation (not
necessary to model, we
are using prefabs in this
case).

The data objects were
modelled by hand, but
ideally, they would be
generated
algorithmically out of
data. The texture is
also currently created
manually, but could
be generated data as
well. The table is
based on simple
geometrical shapes,
has no interaction, is
created directly in
Unity with a standard
material. The Raycast
is also a primary
shape modelled in
Unity with a
transparent material.
UI buttons are based
on Unity GUI with own
sprites and custom
fonts. The small
objects have box
colliders, also created
directly in unity with a
custom sprite texture
imported from
Photoshop.

Behaviours are: (1.)
Activating the textual layer
on each object (simple
gesture, magical and
physical – needs to listen for
the hand controller pointing
gesture); (2.)
Showing/hiding the text
label to smells (the same as
previous) (3.) Play –
activating and moving of the
“Play-raycaster” object
(composite, magical and
physical – activates on UI
button click provided by
hand controller) (4.)
Teleporting – is a simple
magical as well as physical
behaviour, based on the
pointer of the left hand
controller.

Showing Text
information on object
calls on the box colliders
and needs a trigger
(hand controller pointer
which also has a rigid
body). This collision
notifies the “text-node”
object, which will then be
activated. “Playing”
works similar, but uses
the graphical user
interface button element
as a mediator. Hand
controller collides with
the button, on click
activates the UI event
system, which then calls
the code on the ray-
caster object. This is a
simple c# script which
performs the movement
based on iTween library
(an open source
animation system based
on a simple hash-table
rule set of transition
which are called within
script when needed).

Potential conflicts are on
“playing” function of the
ray-cast object: originally,
there should be also an
option to pause and rewind
(It would be interesting if
we had much more objects
and heard something which
caught our attention and
needed to find the source
of the sound). In the current
version, this option is not
working due to improper
storing of the last played
position which causes
conflicts with a new call.

Communication inflow are
mostly the 3D coordinates of
the user's head and hands in
the room-scale VR, most of
the technological
requirements (buffer
semantics, collision detection)
are regulated by the provider
of the HMD software and its
development environment
(VIVE, SteamVR and Unity).
However it is important to
program carefully, plan and
test the user interaction so
that there are no glitches. To
paraphrase a VR filmmaker
Eran Amir, the risk of creating
bad VR experiences is not
just that people would not like
them or be bored, but they
can get sick by motion
sickness. And this is not to
underestimate.

3.2. “
G
I
A
N
T

D
W
A
R
F
S

A
N
D

O
T
H
E
R

S
O
F
T

O
B
J
E
C
T
S
“

28 ←

3.3. What the Giant Dwarfs Could Be Good For
// The Little Big Helpers

1, Large scale problem comprehension – surrounded by a hundred of gi-
ant dwarfs, we could start to recognize patterns in packages and classes.
Visually quickly recognisable differences in the size of files can be traced
even in our small example. Giant files meet small classes of Util.test – could
be a trace of refactoring attempt – Unit-tests can help deal with huge class-
es; it is classical advice to write tests for each method before extracting
it to ensure you don’t break functionality. After asking for the purpose of
small Util.test files, it has been found that they were actually misplaced.
With the next snapshot, they were moved in a separate directory.

2, Displaying software defects or problems – we could even build a catego-
risation of some patterns. Take the two big files in our example, let us call
them Giant Dwarfs. Even if in Java projects each class is usually its own
file, here we have two examples of large double-class files. Both of them have
a lot of lines of code and many statements. They are potential god classes
in the system – the object that knows too much or does too much. The god
objects are examples of an anti-pattern, something which should be avoided.
A common programming technique is to separate a large problem into several
smaller problems (a divide and conquer strategy) and create solutions for
each of them. Once the smaller problems are solved, the big problem as a
whole has been solved as well. Our Giant Dwarfs are also quite flat – having
not so many methods, but a lot of attributes which they define – they could
also be just data classes (data containers – for the data used by other
classes). Such classes do not contain any additional functionality and can-
not independently operate on the data they own. A closer look to the source
code or more exact visualized data could help specify the case. If we had
statistics about lines of code per method, we could use colour blocks to
identify all the methods bigger than 20 loc as those are potentially hard
to understand and maintain (so-called brain methods). We could even look at
the huge amount of statements, pull out the if ones and identify the “Most
Promising” classes, through which their creators too often asked “Why should
I create a new method for each process if I can only add an if?“

From our small example we could also sort out Dummies – an overly commented
code (>40%) which is not necessarily a blessing, as it can be considered
“an insult to the intelligence of the reader” (Spoida 2002, online). Such
classes could have a potential for refactoring: “whenever we feel the need
to comment something, we write a method instead” writes Fowler when he
calls for more decomposing of methods (Fowler, p. 64). On the other hand,
the opposite of them, very poorly commented files (where the percentage of
comment is lower than 20%) could also be the “Hugger-muggers“ – a “secret”
code with unclear functionality. The less commented code can also be the
exact opposite; those brilliantly named files, which use small methods and
names them so clearly they do not need comments. Only as a side note: when
I started learning programming, what I found most impressive was that there
is good and bad – good means it runs, bad – it does not. I still cannot
really program, but I know, that “to run” or “not to run” are quite? far
from the criteria for a good and bad code. Without additional information
on the context and content, or more experience, we can see patterns without
being sure about their interpretation.

→ 29

30 ←

3.4. Soft World
Consider a virtual reality system developed for training software devel-
opment and software architecture basics. It includes a virtual surface and
virtual objects created from software statistics and a gesture interaction
system. The user wears a head-mounted display, and uses two hand controllers
in order to interact with the room-scale virtual environment. The HMD and
controllers communicate 3D coordinates of the user’s hands and head to the
VR system. Coordinate data are used to interpret actions of the user. The
3D model of the software system is placed in front of the user, where she
can interact with it.

In front of the user is a terrain which represents a specific software
directory, its files are peaks, where height (y) represents lines of code,
the width (x) are statements and depth (z) are methods. Data set used for
creating terrains is the same as in case of objects in level one, but is
easily replaceable. The user stays on a plateau and around her there are
more terrains which are in a the size of islands, one for each directory:
there is Api, Business, UI, Util, Webapp. One terrain (in this case a Utility
directory) is displayed as a small model in the table size in front of the
user and all five models are around the plateau as big walkable terrains.
With the right controller she points to the small terrain and the outlines
of a square prism are highlighted (on the small as well as on the big mod-
el). A text label appears on the top of the prism, which shows information
about the file (the file name and the values of x, y and z). Simultaneously,
a screen is shown where she can scroll up and down through the source code
of the highlighted file.
She can walk around the small model. With the left hand controller, she can
also teleport in the further locations. On her right side, there are cubes
with icons and labels of all five terrains which work on click as direct tele-
ports to selected terrains. The terrains have different colours, according
to the test coverage data. Where there was no unit tests, the terrain is
black. Where it has been tested, the colour and additional objects show the
results of testing. Green slot means tested, a text node shows the result of
testing and a floating circle (similar to a 3D pie chart diagram) represents
the % value of unit test. Where there was a unit test written but covered
0% of code, the area is red. Thus, she can walk around and explore further
followed by all the data labels facing her, so she can read them anytime if
they were a bit bigger (OOh, we need the resize function here, too).

x: statements

z: methods

node & colour:
test coverage

UI
Layer

BUSINESS
Layer

UTIL
Layer

WEBAPP
Layer

API
Layer

box collider:
class / file

terrain:
files in a directory
/ package

y: lines of code

32 ←

BKB Distributionsportal Sonar Qube statistics
Data elements Description Data sources Objects Graphics Behaviours Interactions Internal communication External communication

name;
metrics or other
data from
sonarQube

GOAL: to identify
software data
inflows coming
into the VR
interface.
INVOLVES: a,
defining the data
source;
b, describing what
the data
represents;
c, specifying the
data set or other
data parsing
possibilities

GOAL: to identify
data source
coming into the
VR interface.
INVOLVES: The
interface can
receive data from
three sources:
user / physical
devices / other
VR systems /

GOAL: to identify objects
that have well defined
roles and identities in the
interface.
INVOLVES: a) identifying
potential objects
mentioned in the interface
description;
b) deciding on legitimate
objects; describing
aggregate objects and its
parts; c) distinguishing
between virtual and
physical objects (the
virtual ones are generated
by computer, the physical
ones are physical entities
that interact with VR
system – they may or may
not require modelling).

GOAL: to model the virtual
objects identified in previous
steps; specify a description of
graphical needs of virtual
objects.
INVOLVES: description of what
kinds of graphical
representations are needed for
each object, and its parts, if any

GOAL: to identify behaviours
exhibited by objects; classify
them into simple physical,
simple magical, or composite
behaviour categories; and to
describe them in enough detail
for designers to visualize the
behaviours.
INVOLVES: a) identifying the
behaviours from the description;
b) classifying the behaviours
into simple and composite
categories; c) classifying the
simple behaviours into physical
and magical behaviour
categories; d) for composite
behaviours, specifying the
sequences in which simple
behaviours are to be combined
for producing the composite
ones.

GOAL: to specify
where inputs of
interface objects
come from and how
they change object
behaviours.
INVOLVES: a)
identifying
interaction requests
to objects; b)
identifying the
behavioural
changes caused by
these requests and
which behavioural
components will be
notified about these
changes.

GOAL: to specify control
and coordination needs for
internal communications
among the components of
objects in order to avoid
potential conflicts in object
behaviour
INVOLVES: a) examining
all communication
requests and behavioural
changes that are caused
by these requests; b)
identifying communication
requests that may cause
potential conflicts; c)
deciding how to prioritize,
sequence, hold or deny
the communication
requests to avoid potential
conflicts.

GOAL: to specify control
and coordination needs for
external communications of
the objects.
INVOLVES: a) identifying
communication inflows into
the object, and their
sources; b)
communications outflows
from the object, and their
destinations; c) describing
time and buffering
semantics of external
communications of the
object.

File size and
“smells” – issues
on files (metrics
from SonarQube).

Input: data from
SonarCube about
the file size,
comment
percentage and
code smells.
Visualizes the pre-
defined issue
reports out of
SonarQube, but
through the
graphical
representation of
the file size also
other “standard”
smells (see
Fowler) are
identifiable.
Metrics from
onarQube size
statistics;
Size Metrics:
File, number of
classes, LOC,
Lines, methods,
statements (in
JAVA: Number of
statements as
defined in the
Java Language
Specification but
without block
definitions.
Statements
counter gets
incremented by
one each time a
following keyword
is encountered: if,
else, while, do, for,
switch, break,
continue, return,
throw,
synchronized,
catch, finally.
Statements
counter is not
incremented by a
class, method,
field, annotation
definition, package
declaration and
import declaration;
Methods are
functions in
SonarQube.
Definition:
“Methods
represents
number of
functions.
Depending on the
language, a
function is either a
function or a
method or a
paragraph.” http:
//docs.sonarqube.
org/display/SONA
R/Metric+Definitio
ns)
Smells: issue
amount, sing/icon,
(label - since when
(from whom), tag

The general
source of data on
the level of user
and physical
devices is HMD
and controllers
which give us the
position of a user
and the way she
interacts with the
environment.
This will be
specified in
behaviours and
interactions
section. Focusing
on data from
SonarQube, in
the current state
we have mostly
static
visualisation
where the data
set is loaded
once and not
dynamically
changed at
runtime.

Potential objects for UI
are: Data files as flat
geometrical 3D shapes
are virtual (computer-
generated out of data)
and aggregated (they
have audio, collider, data
layer showing textual
information, potentially
child objects – smells).
Smells are also legitimate
objects which are
aggregate (have sounds,
colliders, text-labels).
“Play-raycast” is a 3D
object, movable, has a
collider and triggers the
audio on other data
objects. It has classical UI
elements – buttons with
functionality to activate
objects. Physical objects
are HMD (CameraRig)
and hand controllers,
which also have their
virtual representation (not
necessary to model, we
are using prefabs in this
case).

The data objects were modelled
by hand, but ideally, they would
be generated algorithmically out
of data. The texture is also
currently created manually, but
could be generated data as well.
The table is based on simple
geometrical shapes, has no
interaction, is created directly in
Unity with a standard material.
The Raycast is also a primary
shape modelled in Unity with a
transparent material. UI buttons
are based on Unity GUI with
own sprites and custom fonts.
The small objects have box
colliders, also created directly in
unity with a custom sprite
texture imported from
Photoshop.

Behaviours are: (1.) Activating
the textual layer on each object
(simple gesture, magical and
physical – needs to listen for
the hand controller pointing
gesture); (2.) Showing/hiding
the text label to smells (the
same as previous) (3.) Play –
activating and moving of the
“Play-raycaster” object
(composite, magical and
physical – activates on UI
button click provided by hand
controller) (4.) Teleporting – is a
simple magical as well as
physical behaviour, based on
the pointer of the left hand
controller.

Showing Text
information on
object calls on the
box colliders and
needs a trigger
(hand controller
pointer which also
has a rigid body).
This collision
notifies the “text-
node” object, which
will then be
activated. “Playing”
works similar, but
uses the graphical
user interface
button element as a
mediator. Hand
controller collides
with the button, on
click activates the
UI event system,
which then calls the
code on the ray-
caster object. This
is a simple c# script
which performs the
movement based on
iTween library (an
open source
animation system
based on a simple
hash-table rule set
of transition which
are called within
script when
needed).

Potential conflicts are on
“playing” function of the
ray-cast object: originally,
there should be also an
option to pause and
rewind (It would be
interesting if we had much
more objects and heard
something which caught
our attention and needed
to find the source of the
sound). In the current
version, this option is not
working due to improper
storing of the last played
position which causes
conflicts with a new call.

Communication inflow are
mostly the 3D coordinates
of the user's head and
hands in the room-scale
VR, most of the
technological requirements
(buffer semantics, collision
detection) are regulated by
the provider of the HMD
software and its
development environment
(VIVE, SteamVR and
Unity). However it is
important to program
carefully, plan and test the
user interaction so that
there are no glitches. To
paraphrase a VR filmmaker
Eran Amir, the risk of
creating bad VR
experiences is not just that
people would not like them
or be bored, but they can
get sick by motion
sickness. And this is not to
underestimate.

Coverage on files
(% value of unit
test on each file
on which test has
been written) on
top of the
surfaces created
out of code size
statistics (metrics
from SonarQube).

Input: data from
SonarCube about
test coverage of
the files.
Visualises where
the test coverage
is missing. Data
set is currently in
csv format and
parsed with
HeidiSQL. The
coverage test
reports are an
additional layer of
information on
top of the terrain
(additional models
and colours).

As in the
previous
metaphor. The
only actual
interactive data
are the source
code, which are
projected on the
screen when a
file is indicated.

Potential objects for UI
are: “Terrains” created out
of the data directories:
Api, Business, Util, UI,
Webapp. All five
directories are present as
(1.) Small models –
usable for interaction (2.)
Big models – explorable
and walkable, (3.) Part of
UI menu. The “Home-
base” is a base where
small models are grouped
in front of the user; the
“Screen” to show a source
code of the files. The
“Keyboard” for simple
writing task at the code
screen. The “Teleport-
menu” a 3D UI menu for
changing location.
“PieChart-Rings” for
showing data coverage.
Aggregate objects are:
“Terrains” – consists of
the surface mesh;
“intractable box collider”
for each file, “text node”-
provides additional info;
“Screens” – shows source
code, is scrollable, is
writeable (has two
sections); “Keyboard” with
t9 can be used to write
short notices to the code
file (ideally possible to
export); “Pie-chart”
showing test coverage
have a text-node with info
about file name, % of
coverage and a pie-chart
object representing the
same % coverage but as
an object so you can see
it from further way.
Physical and Virtual
objects are all objects in
VR environment except
the hand controllers, they
are physical ones, for
which the standard
predefined virtual models
are being used. Their
functions are based on
VR tool kit (teleporting,
grabbing, pointing).

Data terrain modelled out of the
bitmap image of data. Since the
image creates grayscale pixel
out of values in a specific data
column, we can trace all files
back (x, y, z values). Each file
gets its own cubical box collider
with a middle-centered text node
which shows the file name. The
terrain needs a texture which
represents the data coverage
(black is no test, green is tested,
red is test with 0% coverage).
The texture is currently created
manually, but could also be
based on data. Pie-Chart rings
are 3D objects, they are also
representing the % of coverage
and floating over the terrain at
the place of tested files. The text
node is additional information
about the exact % of test
coverage (could be enhanced of
other information e.g. the
amount of uncovered lines or
complexity grade of file:
“VerteilungExcellImport.java;
Coverage: 78.8%; Uncovered
Lines: 21; Complexity: 52).
 The screen is a standard
canvas element with a text field
where the original source code
is loaded. It could actually be
made as an original SonarQube
browser window open in VR
(possible enhancement for the
next version). The current
version does not support a
scripting reference which is kind
of impractical for coders. The
canvas element has two parts,
left smaller one for writing, right
for showing the text. Both of
them have a title field in the
upper part of the canvas which
shows name and path of the file
as well as a snapshot number.
Possible enhancement: curved
screen for better viewing.
 Keyboard: standard keyboard
from SteamVR plugin.
 UI menu: Boxes with icons for
each of the teleport destination.
Possible enhancement – menu
on the left collider in form of
“world in hand” or in “tilt-brush”
style.

Behaviours are: (1.)
Highlighting the box colliders of
files upon pointing (highlighting
is a magical behaviour, pointing
physical, composite); (2.)
Showing/hiding the screen with
the source code (magical,
simple or part of composite b.);
(3.) Scrolling of the source code
text (physical); (4.)
Showing/hiding the keyboard
(magical, simple); (5.) Writing
(combined); (6.) Teleporting
(magical, simple as well as
composite – see further down);
(7.) Showing/hiding the
additional text info on files
(same as highlighting); (8.) All
the text nodes are facing
camera, so they are readable
(magical and physical – needs
to listen for the head position).
Composite behaviours are: (1-
2-7, with possibility of additional
3 and 4-5) on pointing to the
peak at terrain a box collider is
highlighted (ideally on both of
the models at the same time –
in front of the user both on the
small and big terrain – to show
the two are the same data,
though on a different scale) and
additional data (file name and x,
y,z axes are displayed on the
top of the box collider).
Simultaneously, the screen with
the source code appears where
the user can scroll over the
source code.
Teleporting is a simple
behaviour, but has two options.
The user can teleport between
terrains with help of UI buttons
(go directly to a selected
location) and he or she can also
walk around in the room-scale
VR through walking in a
physical environment or
teleporting with help of a pointer
bound to the left hand controller
(a bezier pointer which shows a
reachable destination for local
teleporting).

UI teleport menu
boxes also have
composite
behaviours: they are
clickable (the user
can teleport upon
the click of the
controller trigger)
and are graspable
(user can grab and
move them), too.
Grabbing gets input
from the hand
controller (side
buttons are
triggered) and
informs the box
object on which the
interaction code is
written. Highlighting:
call on box colliders,
needs a trigger
(hand controller
pointer) which
notifies the “text-
node” object (it will
be activated), the
Screen scrolling
also needs the hand
pointer and react to
the Touch-pad
scroll. The text-node
objects listen to the
head position
(camera-rig) when
facing the camera
and turn according
to its position
(quaternion is
always set to have
90-degree angle).

Potential conflicts are on
highlighting of the box-
colliders and simultaneous
activation of the screen
(too fast pointing on
different files can cause
blinking (fast changing) of
the screen, so there can
be an optional condition of
activating screen on
secondary click or not
calling the screen if the
trigger input is too short
(say under 0.5sec).

The same as with previous
model, since we are not
getting any real time data
out of other programs,
external communication
inflow are the 3D
coordinates of the user
head and hands in the
room-scale VR, for which
the technological
requirements are
regulated by the provider
of the HMD software and
its development
environment (VIVE,
SteamVR and Unity).

3.
5.
 V

R
I
D
 M

od
el
 f

or
 t
he
 M

et
ap

ho
r

→ 33

BKB Distributionsportal Sonar Qube statistics
Data elements Description Data sources Objects Graphics Behaviours Interactions Internal communication External communication

name;
metrics or other
data from
sonarQube

GOAL: to identify
software data
inflows coming
into the VR
interface.
INVOLVES: a,
defining the data
source;
b, describing what
the data
represents;
c, specifying the
data set or other
data parsing
possibilities

GOAL: to identify
data source
coming into the
VR interface.
INVOLVES: The
interface can
receive data from
three sources:
user / physical
devices / other
VR systems /

GOAL: to identify objects
that have well defined
roles and identities in the
interface.
INVOLVES: a) identifying
potential objects
mentioned in the interface
description;
b) deciding on legitimate
objects; describing
aggregate objects and its
parts; c) distinguishing
between virtual and
physical objects (the
virtual ones are generated
by computer, the physical
ones are physical entities
that interact with VR
system – they may or may
not require modelling).

GOAL: to model the virtual
objects identified in previous
steps; specify a description of
graphical needs of virtual
objects.
INVOLVES: description of what
kinds of graphical
representations are needed for
each object, and its parts, if any

GOAL: to identify behaviours
exhibited by objects; classify
them into simple physical,
simple magical, or composite
behaviour categories; and to
describe them in enough detail
for designers to visualize the
behaviours.
INVOLVES: a) identifying the
behaviours from the description;
b) classifying the behaviours
into simple and composite
categories; c) classifying the
simple behaviours into physical
and magical behaviour
categories; d) for composite
behaviours, specifying the
sequences in which simple
behaviours are to be combined
for producing the composite
ones.

GOAL: to specify
where inputs of
interface objects
come from and how
they change object
behaviours.
INVOLVES: a)
identifying
interaction requests
to objects; b)
identifying the
behavioural
changes caused by
these requests and
which behavioural
components will be
notified about these
changes.

GOAL: to specify control
and coordination needs for
internal communications
among the components of
objects in order to avoid
potential conflicts in object
behaviour
INVOLVES: a) examining
all communication
requests and behavioural
changes that are caused
by these requests; b)
identifying communication
requests that may cause
potential conflicts; c)
deciding how to prioritize,
sequence, hold or deny
the communication
requests to avoid potential
conflicts.

GOAL: to specify control
and coordination needs for
external communications of
the objects.
INVOLVES: a) identifying
communication inflows into
the object, and their
sources; b)
communications outflows
from the object, and their
destinations; c) describing
time and buffering
semantics of external
communications of the
object.

File size and
“smells” – issues
on files (metrics
from SonarQube).

Input: data from
SonarCube about
the file size,
comment
percentage and
code smells.
Visualizes the pre-
defined issue
reports out of
SonarQube, but
through the
graphical
representation of
the file size also
other “standard”
smells (see
Fowler) are
identifiable.
Metrics from
onarQube size
statistics;
Size Metrics:
File, number of
classes, LOC,
Lines, methods,
statements (in
JAVA: Number of
statements as
defined in the
Java Language
Specification but
without block
definitions.
Statements
counter gets
incremented by
one each time a
following keyword
is encountered: if,
else, while, do, for,
switch, break,
continue, return,
throw,
synchronized,
catch, finally.
Statements
counter is not
incremented by a
class, method,
field, annotation
definition, package
declaration and
import declaration;
Methods are
functions in
SonarQube.
Definition:
“Methods
represents
number of
functions.
Depending on the
language, a
function is either a
function or a
method or a
paragraph.” http:
//docs.sonarqube.
org/display/SONA
R/Metric+Definitio
ns)
Smells: issue
amount, sing/icon,
(label - since when
(from whom), tag

The general
source of data on
the level of user
and physical
devices is HMD
and controllers
which give us the
position of a user
and the way she
interacts with the
environment.
This will be
specified in
behaviours and
interactions
section. Focusing
on data from
SonarQube, in
the current state
we have mostly
static
visualisation
where the data
set is loaded
once and not
dynamically
changed at
runtime.

Potential objects for UI
are: Data files as flat
geometrical 3D shapes
are virtual (computer-
generated out of data)
and aggregated (they
have audio, collider, data
layer showing textual
information, potentially
child objects – smells).
Smells are also legitimate
objects which are
aggregate (have sounds,
colliders, text-labels).
“Play-raycast” is a 3D
object, movable, has a
collider and triggers the
audio on other data
objects. It has classical UI
elements – buttons with
functionality to activate
objects. Physical objects
are HMD (CameraRig)
and hand controllers,
which also have their
virtual representation (not
necessary to model, we
are using prefabs in this
case).

The data objects were modelled
by hand, but ideally, they would
be generated algorithmically out
of data. The texture is also
currently created manually, but
could be generated data as well.
The table is based on simple
geometrical shapes, has no
interaction, is created directly in
Unity with a standard material.
The Raycast is also a primary
shape modelled in Unity with a
transparent material. UI buttons
are based on Unity GUI with
own sprites and custom fonts.
The small objects have box
colliders, also created directly in
unity with a custom sprite
texture imported from
Photoshop.

Behaviours are: (1.) Activating
the textual layer on each object
(simple gesture, magical and
physical – needs to listen for
the hand controller pointing
gesture); (2.) Showing/hiding
the text label to smells (the
same as previous) (3.) Play –
activating and moving of the
“Play-raycaster” object
(composite, magical and
physical – activates on UI
button click provided by hand
controller) (4.) Teleporting – is a
simple magical as well as
physical behaviour, based on
the pointer of the left hand
controller.

Showing Text
information on
object calls on the
box colliders and
needs a trigger
(hand controller
pointer which also
has a rigid body).
This collision
notifies the “text-
node” object, which
will then be
activated. “Playing”
works similar, but
uses the graphical
user interface
button element as a
mediator. Hand
controller collides
with the button, on
click activates the
UI event system,
which then calls the
code on the ray-
caster object. This
is a simple c# script
which performs the
movement based on
iTween library (an
open source
animation system
based on a simple
hash-table rule set
of transition which
are called within
script when
needed).

Potential conflicts are on
“playing” function of the
ray-cast object: originally,
there should be also an
option to pause and
rewind (It would be
interesting if we had much
more objects and heard
something which caught
our attention and needed
to find the source of the
sound). In the current
version, this option is not
working due to improper
storing of the last played
position which causes
conflicts with a new call.

Communication inflow are
mostly the 3D coordinates
of the user's head and
hands in the room-scale
VR, most of the
technological requirements
(buffer semantics, collision
detection) are regulated by
the provider of the HMD
software and its
development environment
(VIVE, SteamVR and
Unity). However it is
important to program
carefully, plan and test the
user interaction so that
there are no glitches. To
paraphrase a VR filmmaker
Eran Amir, the risk of
creating bad VR
experiences is not just that
people would not like them
or be bored, but they can
get sick by motion
sickness. And this is not to
underestimate.

Coverage on files
(% value of unit
test on each file
on which test has
been written) on
top of the
surfaces created
out of code size
statistics (metrics
from SonarQube).

Input: data from
SonarCube about
test coverage of
the files.
Visualises where
the test coverage
is missing. Data
set is currently in
csv format and
parsed with
HeidiSQL. The
coverage test
reports are an
additional layer of
information on
top of the terrain
(additional models
and colours).

As in the
previous
metaphor. The
only actual
interactive data
are the source
code, which are
projected on the
screen when a
file is indicated.

Potential objects for UI
are: “Terrains” created out
of the data directories:
Api, Business, Util, UI,
Webapp. All five
directories are present as
(1.) Small models –
usable for interaction (2.)
Big models – explorable
and walkable, (3.) Part of
UI menu. The “Home-
base” is a base where
small models are grouped
in front of the user; the
“Screen” to show a source
code of the files. The
“Keyboard” for simple
writing task at the code
screen. The “Teleport-
menu” a 3D UI menu for
changing location.
“PieChart-Rings” for
showing data coverage.
Aggregate objects are:
“Terrains” – consists of
the surface mesh;
“intractable box collider”
for each file, “text node”-
provides additional info;
“Screens” – shows source
code, is scrollable, is
writeable (has two
sections); “Keyboard” with
t9 can be used to write
short notices to the code
file (ideally possible to
export); “Pie-chart”
showing test coverage
have a text-node with info
about file name, % of
coverage and a pie-chart
object representing the
same % coverage but as
an object so you can see
it from further way.
Physical and Virtual
objects are all objects in
VR environment except
the hand controllers, they
are physical ones, for
which the standard
predefined virtual models
are being used. Their
functions are based on
VR tool kit (teleporting,
grabbing, pointing).

Data terrain modelled out of the
bitmap image of data. Since the
image creates grayscale pixel
out of values in a specific data
column, we can trace all files
back (x, y, z values). Each file
gets its own cubical box collider
with a middle-centered text node
which shows the file name. The
terrain needs a texture which
represents the data coverage
(black is no test, green is tested,
red is test with 0% coverage).
The texture is currently created
manually, but could also be
based on data. Pie-Chart rings
are 3D objects, they are also
representing the % of coverage
and floating over the terrain at
the place of tested files. The text
node is additional information
about the exact % of test
coverage (could be enhanced of
other information e.g. the
amount of uncovered lines or
complexity grade of file:
“VerteilungExcellImport.java;
Coverage: 78.8%; Uncovered
Lines: 21; Complexity: 52).
 The screen is a standard
canvas element with a text field
where the original source code
is loaded. It could actually be
made as an original SonarQube
browser window open in VR
(possible enhancement for the
next version). The current
version does not support a
scripting reference which is kind
of impractical for coders. The
canvas element has two parts,
left smaller one for writing, right
for showing the text. Both of
them have a title field in the
upper part of the canvas which
shows name and path of the file
as well as a snapshot number.
Possible enhancement: curved
screen for better viewing.
 Keyboard: standard keyboard
from SteamVR plugin.
 UI menu: Boxes with icons for
each of the teleport destination.
Possible enhancement – menu
on the left collider in form of
“world in hand” or in “tilt-brush”
style.

Behaviours are: (1.)
Highlighting the box colliders of
files upon pointing (highlighting
is a magical behaviour, pointing
physical, composite); (2.)
Showing/hiding the screen with
the source code (magical,
simple or part of composite b.);
(3.) Scrolling of the source code
text (physical); (4.)
Showing/hiding the keyboard
(magical, simple); (5.) Writing
(combined); (6.) Teleporting
(magical, simple as well as
composite – see further down);
(7.) Showing/hiding the
additional text info on files
(same as highlighting); (8.) All
the text nodes are facing
camera, so they are readable
(magical and physical – needs
to listen for the head position).
Composite behaviours are: (1-
2-7, with possibility of additional
3 and 4-5) on pointing to the
peak at terrain a box collider is
highlighted (ideally on both of
the models at the same time –
in front of the user both on the
small and big terrain – to show
the two are the same data,
though on a different scale) and
additional data (file name and x,
y,z axes are displayed on the
top of the box collider).
Simultaneously, the screen with
the source code appears where
the user can scroll over the
source code.
Teleporting is a simple
behaviour, but has two options.
The user can teleport between
terrains with help of UI buttons
(go directly to a selected
location) and he or she can also
walk around in the room-scale
VR through walking in a
physical environment or
teleporting with help of a pointer
bound to the left hand controller
(a bezier pointer which shows a
reachable destination for local
teleporting).

UI teleport menu
boxes also have
composite
behaviours: they are
clickable (the user
can teleport upon
the click of the
controller trigger)
and are graspable
(user can grab and
move them), too.
Grabbing gets input
from the hand
controller (side
buttons are
triggered) and
informs the box
object on which the
interaction code is
written. Highlighting:
call on box colliders,
needs a trigger
(hand controller
pointer) which
notifies the “text-
node” object (it will
be activated), the
Screen scrolling
also needs the hand
pointer and react to
the Touch-pad
scroll. The text-node
objects listen to the
head position
(camera-rig) when
facing the camera
and turn according
to its position
(quaternion is
always set to have
90-degree angle).

Potential conflicts are on
highlighting of the box-
colliders and simultaneous
activation of the screen
(too fast pointing on
different files can cause
blinking (fast changing) of
the screen, so there can
be an optional condition of
activating screen on
secondary click or not
calling the screen if the
trigger input is too short
(say under 0.5sec).

The same as with previous
model, since we are not
getting any real time data
out of other programs,
external communication
inflow are the 3D
coordinates of the user
head and hands in the
room-scale VR, for which
the technological
requirements are
regulated by the provider
of the HMD software and
its development
environment (VIVE,
SteamVR and Unity).

3.5.

“
S
O
F
T

W
O
R
L
D
“

34 ←

3.
5.

“
S
O
F
T

W
O
R
L
D
“

→ 35

Discussion & What I Wanted and Never Managed

Visualize instability
One problem of the static code visualisation I made is that it takes just
the status of the code at the moment it was committed (not even that,
in our case when the snapshot of the system has been created). We lose
a constant review of important changes. The amount of changes in the code
are important for measuring the instability of the software. Parts with many
changes, or classes showing constant overwriting are the areas of interest
for software developers. As a potential “smell”, regions need to be iden-
tified and monitored. Dynamically generated terrains (similar to what we see
in Soft World) could be used for mapping changes within the source code as
well. An example of such data mapping can be
seen at image ↘ which represents the y-axis
in + and – val- ues of the changes in the
source code. The upper part represents the
addition of LOC, the lower part represents
the removal of LOC, the colour refers to the
amount of changed LOC. The x-axis refers to the branches of the code (e.g.
master, testing, release). It also shows which the current “head” branch is.
The z-axis refers to the time and its changes.
To see what effect the changes had on the other parts of the software would
be possible through visualizing the dependencies, e.g. on methods (would
be probably easier to check on c# code). The dependencies could be shown
as bezier curved connections between the classes (peaks of the terrain).
Through the force-directed layout of those connection, we would see bridges
between classes and even between the layers or directories, (e.g. Api to
Business or to UI).

When you are in VR, you want to do stuff, not just watch. Even simple task
as grasping and moving cubes have much stronger effects than long produced
surroundings with which you cannot interact. Out of such small findings,
I could start a litany of all ideas I had but never managed to create prop-
erly: a VR software architecture simulator with built elements (sort of Lego
version just with different front-end application possibilities, services,
business-logic and hosting services) which users can freely connect and play
with and plan their software architecture; to create an augmented reality
app for playing with a data shader; write own fictive version of software
development ISO norm; create dynamic visualisation for cardboard – a call
graph as a roller-coaster; a hierarchical code-tree model shaking simulator
– to get rid of dead/unused code in project files; and “Oh, I heard a bug!”
a.k.a. “Silent Code Disco” a sonification of code where sound would be gen-
erated procedurally together with the data mesh.

36 ←

LOC added
(“+ amplitude“)

LOC removed
(“- amplitude“)

attributes
(“frequency“)

colour:
changed LOC

master branch

release branch

testing branch

files (branches)
(“frequency“)

Data Metrics
preprocess
data

Github / Visual
studio

Map data to
visual
parameters

Unity 5 / Blender

Map data to
interaction
parameters

Unity 5

Visualised
Software

User
Interaction

Sonified
Software

Render

Unity 5

GUI

Unity 5

Synthetise

OSC Listener

Map data to
sound
parameters

Audacity / Unity 5

Software code

user
input

CO
D

E
LE

VE
L

D
ES

IG
N

LE
VE

L

VI
RT

U
A

L
EN

VI
RO

N
M

EN
T

Schematic
system diagram

→ 37

Epilogue
As usually by finishing, there is the fascinating mix of simultaneous relief and
frustration. Happy that it is almost over, but sad that you cannot just start now – to
work on what you wanted with all the knowledge about mistakes you made. My
motivation was optimistically naive: not just to understand the complex systems
of software development, but also to describe them, and not just to describe and
visualize them but to question them, even to question their visual representation
back again (similarly to quoted Benjamin Bratton at the beginning of the thesis).
I wanted to learn C# and software architecture basics, get more experience in cre-
ating 3D content and interaction. To summarize, even if I am quite sceptical about
the outcomes of this thesis, the ideas I got now and the knowledge I have gained
makes me satisfied. I believe there will also be a place for playing around further,
this time together with other people – we have the playground now and I got pretty
good in creating buttons and the like in VR.

Further information

http://vrsoftwareviz.tumblr.com/
http://virtualmaterialism.com/

Bibliography

Ball, T., Eik, S.(1996): Software Visualization in the large. In: Coputer, vol. 29, no. 4, IEEE
Computer Society Press. pp. 33-34.

Berrigan, R.,Grundy, J., Panas, T. (2003): A 3D Metaphor for Software Production Visualization
[online:] https://www.researchgate.net/publication/4026411_A_3D_metaphor_for_software_produc-
tion_visualization accessed: 11.5.2016

Berry, D.M., Pawlik, J. (2005): What is code? A conversation with Deleuze, Guattari and code*
In: Kritikos: an international and interdisciplinary journal of postmodern cultural sound,
text and image. Volume 2, December 2005, ISSN 1552-5112 [online:] http://intertheory.org/berry.
htm accessed: 10.12.2016

Diehl, S. (2007): Software Visualization: Visualizing the Structure, Behaviour, and Evolution
of Software. Springer.

Donalek, Djorgovski, Davidoff, Cioc, Wang, Longo, Norris, Zhang, Lawler, Yeh, Mahabal, Graham,
Drake (2014): Immersive and collaborative data visualization using virtual reality platforms.
In: IEEE Xplore: 08 January 2015 [online:] https://arxiv.org/ftp/arxiv/papers/1410/1410.7670.pdf
accessed: 2.7.2016

Enri, D., S. (2010): Codemap: Improving the Mental Model of Software Developers through Car-
tographic Visualization [online:] http://scg.unibe.ch/archive/masters/Erni10a.pdf accessed:
20.7.2016

Fowler, M., Beck, K., Brant, J., Opdyke, W., Roberts, D. (2014): Refactoring: Improving the De-
sign of Existing Code. MA: Addison-Wesley, 455p.

Gabriel, R.P. (1996): Patterns of Software: Tales from the Software Community. NY: Oxford Uni-
versity Press, 235p.

Johnson, M., Lakoff, G. (1980): The Metaphorical Structure of the Human Conceptual System. In:
COGNITIVE SCIENCE 4, 195-208 p. [online:] http://www.fflch.usp.br/df/opessoa/Lakoff-Johnson-Meta-
phorical-Structure.pdf accessed: 4.7.2016

Kosara, R., Ziemkiewicz, C., (2008): The Shaping of Information by Visual Metaphors [online:]
https://research.tableau.com/sites/default/files/Ziemkiewicz_InfoVis_2008.pdf accessed: 10.5.2016

Lanza, M., Greevy, O., Christoph Wysseier, Ch. (2006): Visualizing Live Software Systems in 3D
[online:] http://www.inf.usi.ch/faculty/lanza/Downloads/Gree06a.pdf accessed: 8.8.2016

Riva, C. (2004): View-Based Software Architecture Reconstruction. PhD thesis, Vienna University of
Technology, 2004. In: Corum ii. In Proceedings of the 5th Working Conference on Reverse Engineering,
pages 154–163, IEEE Computer Society Press.

Souza, R., Silva, B., Mendes, T., Mendonça, M. (2012): SkyscrapAR: An Augmented Reality: Visu-
alization for Software Evolution [online:] http://reuse.cos.ufrj.br/wbvs2012/papers/wbvs03.pdf
accessed: 15.8.2016

Spuida, B. (2002): The fine Art of Commenting [online:] http://www.icsharpcode.net/TechNotes/
Commenting20020413.pdf accessed: 5.12.2016

Tinnell, J. (2016): From WIMP to ATLAS: Rhetorical Figures of Ubiquitous Computing. In: Compu-
tational Culturea journal of software studies [online:] http://computationalculture.net/arti-
cle/from-wimp-to-atlas-rhetorical-figures-of-ubiquitous-computing accessed: 1.9.2016

Teyseyre, a. R., Campo, M. R. (2009): An Overview of 3D Software Visualization, In: Ieee Trans-
actions On Visualization And Computer Graphics Jan-Feb 2009, pp. 87- 105 [online]: http://iee-
explore.ieee.org/ieee_pilot/articles/01/ttg2009010087/article.html accessed: 9.4. 2016

Tanriverdi, V., Jacob, R.K. (2001): VRID: A Design Model and Methodology for Developing
Virtual Reality Interfaces. [online:] https://www.cs.tufts.edu/~jacob/papers/vrst01.tanriverdi.
pdf accessed: 14.10.2016

Tufte, E. D. (1997): Visual Explanations: Images and Quantities, Evidence and Narrative. Chesh-
ire, Connecticut: Graphic Press, 157p.

Wettel, R.(2010): Software Systems as Cities [online:] http://wettel.github.io/download/Wette-
l08a-icse-tooldemo.pdf

→ 39

40 ←

so
ftw

ar
e

(d
ef

in
iti

on
)

so
ftw

ar
e

as
 a

n
an

im
al

so
ftw

ar
e

as
 a

 fo
od

so
ftw

ar
e

as
 a

 p
er

so
n

fa
vo

ur
ite

 m
us

ic
ha

te
d

m
us

ic
ro

le

A
ut

om
at

is
ie

ru
ng

 v
on

A

rb
ei

ts
sc

hr
itt

en
 z

ur

E
rle

ic
ht

er
un

g
un

d
E

ffi
zi

en
zs

te
ig

er
un

g
A

lb
at

ro
s

- a
lt

un
d

sc
hn

el
l

K
nä

ck
eb

ro
t

al
t,

si
eh

t d
oo

f a
us

,
tro

tz
de

m
 e

rfo
lg

re
ic

h
K

la
vi

er
Te

ch
no

E
nt

w
ic

kl
er

D
ie

 S
pi

tz
ha

ck
e

de
s

m
od

er
ne

n
M

an
ne

s
E

ie
rle

ge
nd

ew
ol

lm
ilc

hs
au

N
ud

el
sa

la
t

S
up

er
m

an
S

uc
ce

ss
fu

ll
bl

in
k

C
on

so
le

 P
ie

p
E

nt
w

ic
kl

er

S
of

tw
ar

e
so

ll
ei

ne
 L

ös
un

g
zu

 e
in

er
 b

es
ch

rie
be

ne
n

A
uf

ga
be

 re
pr

od
uz

ie
rb

ar

be
re

its
te

lle
n

K
ra

ke
n

da
 d

ie
 T

he
m

at
ik

 re
ch

t t
ro

ck
en

 is
t

-
H

ou
se

, E
le

ct
ro

ni
c

H
ip

-H
op

, D
ea

th

M
et

al
Te

st
er

-

E
in

e
ha

ar
lo

se
 b

ös
e

K
at

ze
, d

ie

ni
ch

t m
ac

ht
 w

as
 m

an
 s

ag
t u

nd

al
le

s
ka

pu
tt

m
ac

ht
 w

en
n

m
an

m

al
 n

ic
ht

 h
in

gu
ck

t

Irg
en

de
tw

as
 d

as
 a

uf
w

en
di

g
in

de

r H
er

st
el

lu
ng

 is
t,

ab
er

 n
ic

ht

sc
hm

ec
kt

.
-

H
ea

vy
 M

et
al

,
R

oc
k

-
ha

up
sa

ch
e

ro
ck

ig

un
d

la
ut

S
ch

la
ge

r,
B

al
le

m
an

n-
H

its
E

nt
w

ic
kl

er
A

ut
om

at
is

ie
ru

ng
 v

on

P
ro

ze
ss

en
 b

ez
og

en
 a

uf

D
at

en
K

ro
ko

di
l -

 a
n

La
nd

 la
ng

sa
m

, i
m

W

as
se

r s
ch

ne
ll

N
us

s
- i

nn
en

 w
ei

ch
, a

us
se

n
ha

rt
-

E
le

ct
ro

, J
az

z,

Fu
nk

P
un

k,
 H

ea
vy

 M
et

al
E

nt
w

ic
kl

er

E
in

 P
ro

du
kt

, w
el

ch
es

 m
it

H
ilf

e
ei

ne
s

C
om

pu
te

rs
 e

in
e

ab
st

ra
kt

e
Id

ee
 u

m
se

tz
t

E
in

 E
le

fa
nt

, d
a

es
 s

ch
w

ie
rig

 is
t

w
äh

re
nd

 d
er

 E
nt

w
ic

kl
un

g
di

e
R

ic
ht

un
g

zu
 ä

nd
er

n.

M
cD

on
al

ds
 B

ur
ge

r -
 s

ie
ht

 g
ut

au

s,
 s

ch
m

ec
kt

 n
ic

ht
.

-
R

oc
k,

 a
lle

s
w

as

m
ir

ge
fä

llt
S

ch
la

ge
r

Te
st

er

H
ar

dw
ar

e
+

M
en

sc
he

n
m

ite
in

an
de

r v
er

kn
üp

fe
n

P
ap

ag
ei

, w
ei

l g
em

ac
ht

e
Fe

hl
er

vo

n
C

he
ck

po
in

t v
on

 C
he

ck
po

in
t

w
ei

te
rg

eg
eb

en
 u

nd
 im

m
er

w

ie
de

rh
ol

t w
er

de
n.

C
ur

ry
w

ur
st

 o
hn

e
C

ur
ry

 -
ha

lt
m

it
Fe

hl
er

R
oa

dr
un

ne
r

To
nb

an
dg

er
ät

E
le

kt
ro

P
ro

du
ct

 O
w

ne
r,

A
nf

or
de

ru
ng

sm
an

ag
em

en
t

A
lle

s,
 w

as
 a

uf
 e

in
em

C

om
pu

te
r l

äu
ft

un
d

ni
ch

t
H

ar
dw

ar
e

is
t

C
ha

m
el

eo
n,

 w
ei

l j
ed

er

A
nw

en
de

r u
nd

 A
nf

or
de

r e
tw

as

an
de

re
s

da
rin

 s
ie

ht
P

iz
za

, m
it

je
de

r M
en

ge
 B

el
ag

,
ab

er
 n

ic
ht

 a
us

ge
w

og
en

D
ie

 g
ut

e
M

är
ch

en
fe

e,

w
ei

l j
ed

er
 s

ic
h

w
as

an

de
re

s
w

ün
sc

ht
B

lu
es

, S
w

in
g,

S

ou
l,

R
oc

k
H

ea
vy

 M
et

al
P

ro
du

ct
 O

w
ne

r,
A

nf
or

de
ru

ng
sm

an
ag

em
en

t

-
S

pi
de

r

P
ile

 o
f w

he
at

 -
m

at
er

ia
l i

s
st

or
ag

e,
 y

ou
 c

an
 m

ak
e

a
lo

t o
f

th
in

gs
 fr

om
fo

lk
, p

op
cl

as
si

cs
E

nt
w

ic
kl

er
, A

pp
lic

at
io

n
m

an
ag

em
en

t
Li

ef
er

t f
ür

 e
in

e
fe

st

de
fin

ie
rte

 E
in

ga
be

 e
in

e
fe

st

de
fin

ie
rte

 A
us

ga
be

(m

ög
lic

hs
t f

eh
le

rfr
ei

 u
nd

pe

rfo
rm

an
t)

E
tw

as
 g

ro
ße

s
w

as
 a

lle
s

ka
nn

S
tin

ke
nd

er
 K

äs
e

-
P

un
k

R
oc

k,
 M

et
al

Fo
lk

 u
nd

 P
op

E
nt

w
ic

kl
er

A
bb

ild
un

g
vo

n
A

nf
or

de
ru

ng
en

 u
nd

Fu

nk
tio

ns
w

ei
se

n
in

 e
in

em

S
ys

te
m

E
le

fa
nt

P
iz

za
-

B
la

ck
 M

us
ic

,
C

ha
rts

Fo
lk

sm
us

ic
E

nt
w

ic
kl

er

S
of

tw
ar

e
is

t a
ut

om
at

is
ie

rte

K
op

fa
rb

ei
t

E
in

 N
as

ho
rn

; g
ro

ß
un

d
sc

hw
er

.
M

an
nc

ha
l w

irk
t e

s
la

ng
sa

m
,

ab
er

 e
s

ka
nn

 a
uc

h
sc

hn
el

l
re

nn
en

. U
nd

 e
s

is
t

du
rc

hs
et

zu
ng

sf
äh

ig
.

S
ch

ar
fe

s
C

hi
lli

 m
it

vi
el

 B
ro

t:
S

ch
m

ec
kt

 g
ut

, b
rin

gt
 d

ic
h

zu
m

S

ch
w

itz
en

. U
nd

 w
en

n
m

an
 m

it
B

ro
t "

lö
sc

he
n"

 m
öc

ht
e,

 k
an

n
se

lb
st

 d
as

 z
u

vi
el

 s
ei

n.
-

A
lte

rn
at

iv
e,

C

ou
nt

ry
Ita

lo
-p

op
P

ro
je

kt
le

itu
ng

-
A

 c
am

el
 o

r e
le

ph
an

t b
ec

au
se

th

ey
 c

an
 c

ar
ry

 p
eo

pl
e

-
-

Fa
st

 m
us

ic

(h
ar

dc
or

et
ec

hn
o

or
 m

et
al

)
S

lo
w

 m
us

ic

(e
le

ct
ro

ni
ca

l)
E

nt
w

ic
kl

er
S

ch
ni

tts
te

lle
 z

w
is

ch
en

B

en
ut

ze
r u

nd
 P

C
 u

m
 d

ie

Fu
nk

tio
ne

n,
 O

pe
ra

tio
ne

n,

et
c.

, z
u

ve
re

in
fa

ch
en

.
K

am
el

 -
ka

nn
 m

eh
re

re
 P

er
on

en

tra
ns

po
rti

er
en

B
ag

ue
tte

 -
m

an
 k

an
n

es
 b

el
eg

en
O

tto
 (S

im
ps

on
s

- t
he

bu

s
dr

iv
er

)
H

ar
dc

or
e,

 E
le

ct
ro

D
eu

ts
ch

er

"G
an

gs
te

r"
 R

ap
E

nt
w

ic
kl

er
H

el
pi

ng
 m

ak
in

g
th

in
gs

ea

si
er

E
ie

rle
ge

nd
ew

ol
lm

ilc
hs

au
-

C
hu

ck
 N

or
ris

R
oc

k
G

ab
be

r,
Te

ch
no

E
nt

w
ic

kl
er

S
et

 o
f i

ns
tru

ct
io

n
to

 s
ol

ve
 a

pr

ob
le

m
 o

r d
oi

ng
 a

 ta
sk

S
na

ke
, c

au
se

 th
e

lo
gi

c
is

 w
in

dy

an
d

cu
rv

y
an

d
no

t a
 s

tra
ig

ht
 li

ke
O

ld
 b

re
ad

, s
in

ce
 it

 is
 d

ry
 a

nd

ha
rd

S
hr

ek
, b

ec
au

se
 it

 g
ot

la

ye
rs

C
la

ss
ic

 R
oc

k
Te

ch
no

E
nt

w
ic

kl
er

E
in

 P
ro

gr
am

m
, d

as

E
rle

ic
ht

er
un

g
sc

ha
fft

 u
nd

ko

m
pl

ex
e

A
nf

or
de

ru
ng

en

lö
se

n
ka

nn
.

O
hr

w
ür

m
er

, d
a

si
e

ge
rn

e
in

so

lc
he

n
B

er
ei

ch
en

 "a
rb

ei
te

n"
.

M
ai

s
- e

in
 M

ai
sk

ol
be

n
ha

t v
ie

le

M
ai

sk
ör

ne
r,

al
so

 v
ie

le
 k

le
in

e
E

in
ze

lte
ile

 u
nd

 s
eh

r v
ie

le

In
fo

rm
at

io
ne

n
-

D
ub

st
ep

,
H

ar
dc

or
e,

 R
oc

k

G
an

gs
te

r-
R

ap
,

V
ol

km
us

ik
,

S
ch

la
ge

r,
B

lu
es

,
Ja

zz
E

nt
w

ic
kl

er

-

sc
hö

n
un

d
ei

ns
am

K
no

bi
-S

pa
gh

et
ti

(L
ec

ke
r +

E

in
sa

m
)

-
B

al
ad

en
Te

ch
no

-
N

ic
ht

 a
lle

s
N

eu
e

is
t g

ut
D

in
o

K
al

te
r K

af
fe

e
Fo

rr
es

t G
um

p
In

di
e

V
ol

ks
m

us
ik

A
pp

lic
at

io
nm

an
ag

em
en

t

-
E

se
l -

 la
ng

sa
m

 u
nd

 s
tö

rr
is

ch
,

ab
er

 b
eh

ar
rli

ch
ei

n
zä

he
s

S
tü

ck
 F

le
is

ch
: s

ch
w

er

ve
rd

au
lic

h
W

in
st

on
 C

hu
rc

hi
ll:

 a
lt,

sc

hw
er

fä
lli

g,
 c

le
ve

r
R

oc
k,

 B
lu

es
,

Ja
zz

, P
op

H
ip

 H
op

, K
le

zm
er

B
er

at
er

so
ftw

ar
e

(d
ef

in
iti

on
)

so
ftw

ar
e

as
 a

n
an

im
al

so
ftw

ar
e

as
 a

 fo
od

so
ftw

ar
e

as
 a

 p
er

so
n

fa
vo

ur
ite

 m
us

ic
ha

te
d

m
us

ic
ro

le

A
ut

om
at

is
ie

ru
ng

 v
on

A

rb
ei

ts
sc

hr
itt

en
 z

ur

E
rle

ic
ht

er
un

g
un

d
E

ffi
zi

en
zs

te
ig

er
un

g
A

lb
at

ro
s

- a
lt

un
d

sc
hn

el
l

K
nä

ck
eb

ro
t

al
t,

si
eh

t d
oo

f a
us

,
tro

tz
de

m
 e

rfo
lg

re
ic

h
K

la
vi

er
Te

ch
no

E
nt

w
ic

kl
er

D
ie

 S
pi

tz
ha

ck
e

de
s

m
od

er
ne

n
M

an
ne

s
E

ie
rle

ge
nd

ew
ol

lm
ilc

hs
au

N
ud

el
sa

la
t

S
up

er
m

an
S

uc
ce

ss
fu

ll
bl

in
k

C
on

so
le

 P
ie

p
E

nt
w

ic
kl

er

S
of

tw
ar

e
so

ll
ei

ne
 L

ös
un

g
zu

 e
in

er
 b

es
ch

rie
be

ne
n

A
uf

ga
be

 re
pr

od
uz

ie
rb

ar

be
re

its
te

lle
n

K
ra

ke
n

da
 d

ie
 T

he
m

at
ik

 re
ch

t t
ro

ck
en

 is
t

-
H

ou
se

, E
le

ct
ro

ni
c

H
ip

-H
op

, D
ea

th

M
et

al
Te

st
er

-

E
in

e
ha

ar
lo

se
 b

ös
e

K
at

ze
, d

ie

ni
ch

t m
ac

ht
 w

as
 m

an
 s

ag
t u

nd

al
le

s
ka

pu
tt

m
ac

ht
 w

en
n

m
an

m

al
 n

ic
ht

 h
in

gu
ck

t

Irg
en

de
tw

as
 d

as
 a

uf
w

en
di

g
in

de

r H
er

st
el

lu
ng

 is
t,

ab
er

 n
ic

ht

sc
hm

ec
kt

.
-

H
ea

vy
 M

et
al

,
R

oc
k

-
ha

up
sa

ch
e

ro
ck

ig

un
d

la
ut

S
ch

la
ge

r,
B

al
le

m
an

n-
H

its
E

nt
w

ic
kl

er
A

ut
om

at
is

ie
ru

ng
 v

on

P
ro

ze
ss

en
 b

ez
og

en
 a

uf

D
at

en
K

ro
ko

di
l -

 a
n

La
nd

 la
ng

sa
m

, i
m

W

as
se

r s
ch

ne
ll

N
us

s
- i

nn
en

 w
ei

ch
, a

us
se

n
ha

rt
-

E
le

ct
ro

, J
az

z,

Fu
nk

P
un

k,
 H

ea
vy

 M
et

al
E

nt
w

ic
kl

er

E
in

 P
ro

du
kt

, w
el

ch
es

 m
it

H
ilf

e
ei

ne
s

C
om

pu
te

rs
 e

in
e

ab
st

ra
kt

e
Id

ee
 u

m
se

tz
t

E
in

 E
le

fa
nt

, d
a

es
 s

ch
w

ie
rig

 is
t

w
äh

re
nd

 d
er

 E
nt

w
ic

kl
un

g
di

e
R

ic
ht

un
g

zu
 ä

nd
er

n.

M
cD

on
al

ds
 B

ur
ge

r -
 s

ie
ht

 g
ut

au

s,
 s

ch
m

ec
kt

 n
ic

ht
.

-
R

oc
k,

 a
lle

s
w

as

m
ir

ge
fä

llt
S

ch
la

ge
r

Te
st

er

H
ar

dw
ar

e
+

M
en

sc
he

n
m

ite
in

an
de

r v
er

kn
üp

fe
n

P
ap

ag
ei

, w
ei

l g
em

ac
ht

e
Fe

hl
er

vo

n
C

he
ck

po
in

t v
on

 C
he

ck
po

in
t

w
ei

te
rg

eg
eb

en
 u

nd
 im

m
er

w

ie
de

rh
ol

t w
er

de
n.

C
ur

ry
w

ur
st

 o
hn

e
C

ur
ry

 -
ha

lt
m

it
Fe

hl
er

R
oa

dr
un

ne
r

To
nb

an
dg

er
ät

E
le

kt
ro

P
ro

du
ct

 O
w

ne
r,

A
nf

or
de

ru
ng

sm
an

ag
em

en
t

A
lle

s,
 w

as
 a

uf
 e

in
em

C

om
pu

te
r l

äu
ft

un
d

ni
ch

t
H

ar
dw

ar
e

is
t

C
ha

m
el

eo
n,

 w
ei

l j
ed

er

A
nw

en
de

r u
nd

 A
nf

or
de

r e
tw

as

an
de

re
s

da
rin

 s
ie

ht
P

iz
za

, m
it

je
de

r M
en

ge
 B

el
ag

,
ab

er
 n

ic
ht

 a
us

ge
w

og
en

D
ie

 g
ut

e
M

är
ch

en
fe

e,

w
ei

l j
ed

er
 s

ic
h

w
as

an

de
re

s
w

ün
sc

ht
B

lu
es

, S
w

in
g,

S

ou
l,

R
oc

k
H

ea
vy

 M
et

al
P

ro
du

ct
 O

w
ne

r,
A

nf
or

de
ru

ng
sm

an
ag

em
en

t

-
S

pi
de

r

P
ile

 o
f w

he
at

 -
m

at
er

ia
l i

s
st

or
ag

e,
 y

ou
 c

an
 m

ak
e

a
lo

t o
f

th
in

gs
 fr

om
fo

lk
, p

op
cl

as
si

cs
E

nt
w

ic
kl

er
, A

pp
lic

at
io

n
m

an
ag

em
en

t
Li

ef
er

t f
ür

 e
in

e
fe

st

de
fin

ie
rte

 E
in

ga
be

 e
in

e
fe

st

de
fin

ie
rte

 A
us

ga
be

(m

ög
lic

hs
t f

eh
le

rfr
ei

 u
nd

pe

rfo
rm

an
t)

E
tw

as
 g

ro
ße

s
w

as
 a

lle
s

ka
nn

S
tin

ke
nd

er
 K

äs
e

-
P

un
k

R
oc

k,
 M

et
al

Fo
lk

 u
nd

 P
op

E
nt

w
ic

kl
er

L
U
C
I
A

M
E
N
D
E
L
O
V
A

D
I
G
I
T
A
L

M
E
D
I
A

H
F
K

B
R
E
M
E
N

2
0
1
6

/

2
0
1
7

