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To this day selection in 3D-Environments is a challenge with no completely satisfac-
tory solution. Especially overlapping objects and reduction due to perspective pose
a difficult problem.
A new selection technique called “LenSelect” is discussed and evaluated in this the-
sis. LenSelect was examined in different test scenarios, which were designed to cover
most use-cases. It’s capability was assessed against selected state-of-the-art selec-
tion techniques in terms of effectiveness and user-experience. This assessment was
conducted with a head-mounted-display, the HTC Vive and a spatially-immersive-
display, the Powerwall.
LenSelect is based on a consideration of Fitts’ Law, which states that the time
needed to make a selection depends on the distance of the selection pointer to the
object and the width of the object in direction of said pointers movement. This ob-
servation is the basis for LenSelect, as it increases the size of objects and therefore
the target width to make selection faster and easier.
In a study it was found that LenSelect performs on par with IntenSelect, a state-of-
the-art selection technique. And both of them perform better than RaySelection.



1. Introduction

1.1. Goals of this Thesis
LenSelect, a new kind of selection technique in virtual reality, which is based on an
observation of Fitts’ Law, shall be evaluated in this thesis. It will be tested with a
head-mounted-display (HMD), the HTC Vive Pro and a spatially-immersive-display
(SID), the Powerwall.
The proposed test scenarios are supposed to cover all use cases, however objects
standing close together, so called “cluttered environments” and overlapping objects
shall be examined in particular. The selection of far away objects as well as moving
objects will also be examined and results directly compared to other state-of-the-art
selection techniques.

1.2. Motivation
Selection is one of the most basic interactions in a virtual environment [39, p. 2].
Via the selection the user chooses one or more targets for further interaction.
Research has shown that there is no superior selection technique for all situations.
Selection depends on the specific requirements of the task, the layout of the envi-
ronment and experiences and preferences of the user. For example experience with
video games (or rather 3D selection) and other cognitive features. Other factors like
tiredness, feedback, sight of the environment, the following interaction technique or
“fun” can influence the requirements of the selection technique [12, p. 635].
Therefore a variety of selection techniques have been developed throughout the years
and existing techniques refined and developed further.

1.3. Definition
In 1979 Foley proposed that an interaction task for a 2D GUI can be broken down
into basic interaction tasks. Following this approach Bowman proposes four univer-
sal interaction tasks for virtual environments [8, p. 37]
These proposed interaction tasks are:

1. Viewpoint Motion Control (Navigation)

2. Selection

1



1. Introduction 1.3. Definition

3. Manipulation

4. System Control

Viewpoint Motion Control refers to the task of orienting and positioning ones view-
point in a virtual environment. In VR head tracking is usually used to determine
the viewpoint orientation, so the user is mostly concerned with translation, or in
other words navigation through the virtual environment [8, p. 37].
Selection refers to the designation of objects by the user [8, p. 42].
Manipulation describes setting the rotation and position, and possibly other char-
acteristics such as shape or color, of a selected object [8, p. 42].
System Control is comprised of other commands to accomplish work within the ap-
plication (such as delete the selected object, save the current location, load a new
model, etc.). Bowman also notes that, at a low level, System Control tasks can be
characterized as selection and/or manipulation tasks [8, p. 38].
In this thesis only selection tasks will be considered.

2



2. State-of-the-Art

2.1. Fitts’ Law
Fitts’ Law describes a formula that can predict the amount of time a human needs
for the selection of a target in regards to distance to the target and width of the
target. “In the decades since Fitts’ original publication, his relationship, or law,
has proven one of the most robust, highly cited, and widely adopted models to
emerge from experimental psychology.” [35, p. 93]. Over the years Fitts’ Law played
a central role in empirical studies of the human as an information processor [35,
p. 93]. The formula looks as follows:

MT = a+ b · ID (2.1)

Where MT needed time for a selection, a the intercept in seconds and b the slope
in bits per second [34, p. 353]. These are typically empirically determined. ID
describes the Index of Difficulty, how difficult a given selection is.

ID = log2

(2A
W

)
(2.2)

Where A amplitude, the distance of the object to the pointer, W width of the object
in movement direction of the pointer. Fitts called this amplitude the “movement
tolerance”, the error the user is allowed to make to still select the object [34, p. 350].
Throughout the years different forms of this equation have been developed and
published. MacKenzie proposes one such other form of the formula which he calls
Shannon formulation:

ID = log2

(
A

W
+ 1

)
(2.3)

“In 1989, it was shown that Fitts deduced his relationship citing an approximation of
Shannon’s theorem that only applies if the signal-to-noise ratio is large. [...] Besides
the improved link with information theory [...] the Shannon formulation provides
better correlations compared to the Fitts [...] formulation.” [34, p. 354].
However this derivation is not without controversy as Drewes argues: “MacKenzie
claims that his formula [...] shows better correlation values for experimental data.
This seems to be true [...] However, correlation does not tell much and the correlation

3



2. State-of-the-Art 2.1. Fitts’ Law

gets even better if adding 2 instead of 1 [...].” [16, p. 8]. Drewes goes on to say:
“MacKenzie criticizes Fitts’ introduction of factor 2 to and argues that adding 1
instead of multiplying with 2 will guarantee positive values for the ID. He refers to
Shannon’s theorem 17, a formula given as a footnote in Fitts’ publication, which
has the desired +1 and then he does a ‘direct analogy’ without further explanation.
In his analogy the bandwidth (measured in bits/second) shall be analog to time
(measured in seconds) and power shall be analog to amplitude (power is proportional
to the square of the amplitude). There is no justification for such analogy.” [16, p. 8]
In fact there is a debate about useful- and correctness of all of these formulations
[17] [25] [37], but even though the derivation is controversial, over the years it proved
itself as the most popular and widely used form of Fitts’ Law [16, p. 8].
So, despite all this MacKenzies formula is used in this thesis.

2.1.1. Determining the Distance
There seems to be a bit of confusion on how amplitude and width are measured.
According to Buxton and MacKenzie the minimum for A is W

2 , otherwise the pointer
is inside the object [36, p. 220]. This means A is the distance from the pointer’s
position to the edge of the object plus half the width of the object.
However they also go on to say: “If the targets are circles (or perhaps squares),
then the 1D constraint in the model remains largely intact (because the ”width” of
a circle is the same, regardless of the angle of measurement). However, if targets
are rectangles, such as words, the situation is confounded. The amplitude is still
the distance to the center of the target; but the role of target width is unclear.” [36,
p. 220]
This can only be the case if we assume the amplitude to be measured from the
pointer’s position to the center of the object. However, if we assume the amplitude
to be the distance of the pointer’s position to the border of the object plus half the
object’s width in movement direction of the pointer, the parameter’s stay one di-
mensional and are captured accurately no matter the shape of the object (s. Figure
1.
This is how the parameters are calculated in this thesis, with the exception that the
distance ends at the object’s border.

Figure 1.: Determining the distance for Fitts’ Law

4



2.1. Fitts’ Law 2. State-of-the-Art

Then there is also the case of partially occluded movement paths for the pointer.
When another object occludes the target object, the occluded parts, of course, can
not be selected and therefore should not add to the width. The easiest way would
be to just add up all the parts along the cursor’s movement in which the object can
be selected and count this as the object’s width.
But there might be a psychological effect at play here. Users might subconsciously
weigh these distinct selection parts and decide on which is easiest to select, taking
into account distance and width of the respective parts. They might than target this
specific part, even going as far as ignoring other selectable parts of the target. These
other parts could be selectable earlier, before the user targeted part or they could
be ignored when the user overshoots the desired part and instead opts to correct in
the opposite direction.
Sadly, to the author’s knowledge, there have been no studies on this possible phe-
nomenon. And of course this is also just speculation. So in this thesis the parts are
added up to generate an effective target width.

Figure 2.: Determining the Effective Target Width

2.1.2. Index of Performance
Fitts’ idea encapsulates two notions, that the difficulty of a selection task can be
quantified by interpreting it as information, using bits as measurement and second
that the act of selecting a target is similar to transmitting information through a
channel [34, p. 350].
Fitts called this transmission rate the Index of Performance, though nowadays the
term throughput is used [34, p. 450].

IP = ID

MT
(2.4)

With ID measured in bits and MT measured in seconds, so the unit of the Index
of Performance is bits

s
. A higher IP means a better Performance, as more data is

“computed” in the same amount of time. Fitts theorizes that with changes of ID,
MT changes accordingly, so the IP stays constant [34, p. 351].

5



2. State-of-the-Art 2.1. Fitts’ Law

2.1.2.1. Index of Performance Adjusted for Accuracy

However it can be argued that this only is an approximation of what happens dur-
ing a selection [34, p. 358]. Not only is there the assumption that participants
instructed to select targets quickly and accurately, can balance the demands of the
task correctly. But it also fails to take into account the user’s attitude. If a user
slows down to focus on accuracy the task changes, the same can be said for a user
that focuses on acquisition speed [34, p. 357]. “In summary, Fitts’ Law is a model
for rapid, aimed movements, and the presence of a nominal yet consistent error rate
in participants’ behavior is assumed, and arguably vital [34, p. 357].”
Crossman proposes a normalization of target width by calculating the standard de-
viation of cursor endpoints when selection ended for the participant. “The idea
was first proposed by Crossman in 1957 in an unpublished report [...]. Use of the
adjustment was later examined and endorsed by Fitts [...] [34, p. 355].” Under this
assumption movement amplitudes are analogous to “signal” and endpoint variability
is analogous to “noise”. The theorem that builds the basis for Fitts’ Law assumes
that the signal is “perturbed by white noise”, so the analogous requirement in motor
tasks is a normal distribution of hits. A property, according to MacKenzie, observed
by numerous researchers [34, p. 355].

IPe = IDe

MT
(2.5)

IDe = log2

(
A

We

+ 1
)

(2.6)

The entropy in a normal distribution is log2
(√

2πe · σ
)

= log2(4.133 · σ). Splitting
the constant 4.133 into a pair of z-scores, one finds that 96% of the total area is
bounded by −2.066 < z < 2.066. So the assumption is that 96% of hits fall within
the target, while 4% miss, according to MacKenzie [34, p. 355].
There are now two methods to determine effective target width. Either by calcu-
lating the standard deviation for all endpoints or via the discrete-error method [34,
p. 355].
If the standard deviation is known just multiply it by 4.133.
The discrete-error method is used when only the error percentage is known. It uses a
table of z-scores for areas under the unit-normal curve. The method goes as follows:
If n percent of errors are observed for a given condition, determine z such that ±z
contains 100 - n percent of the area under the unit-normal curve. Then multiply W
by 2.066

z
to get the effective target width We (not to be confused with the effective

target width in Figure 2) [34, p. 355].
This way users that try to make an accurate selection are rewarded, since target
endpoint variability is reduced, the effective target width also diminishes which leads
to a rise in the Index of Difficulty [34, p. 355].
This technique dates back to 1957, but according to MacKenzie has been largely
ignored in the research that followed [34, p. 356].

6
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Figure 3.: Method of adjusting target width based on distribution of selections.
Source: [34, p. 356].

2.1.2.2. Criticisms

Zhai argues these equations are ill-defined, however. His, very simple, argument is
that, since both variables in IP depend on the value of ID (IP = ID

MT
= ID

a+b·ID ),
these definitions cannot be constants. A change in ID will alter the result of IP, this
means a comparison can not be drawn between selection techniques.
So Fitts’ Law studies should instead rely on and report both a (intercept) and b
(slope), since they are true constants [62, pp. 791–792]. Zhai discusses three possible
interpretations of how the throughput TP can be obtained according to ISO 9241-9.

TPa = IDMean

MTMean

(2.7)

TPb = 1
b

(2.8)

TPc = TPMean = 1
N

N∑
i=1

IDi

MTi
(2.9)

While TPa first calculates the means of all selection times and IDs and then cal-
culates the throughput from there, TPc calculates the throughput for every single
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selection and obtains the mean throughput from there [62, p. 795].
But since the above observation applies to both of them they may change with the
experimental setup. A direct comparison is no longer possible. [62, p. 797].
Zhai proposes three remedies for this problem:

1. Using a standard ID set in the study.

2. Using both a and b in modeling and TPb as a matter of convenience for
throughput or IP.

3. Excluding all non-informational aspects of pointing in the model.

Solution one is not feasible for this study, as the basis of LenSelect is exactly the
change in ID that is supposed to lead to easier selection. Solution two is the easiest
approach and seems to be favored by Zhai as well: “If we need to use the concept
of throughput or index of performance, it should be defined as a simple inversion
of the information coefficient b, and be used together with the a parameter, the
information-independent aspect of pointing [62, p. 805].”

2.1.2.3. Consequence

As shown there are a lot of problems with and different viewpoints on what through-
put even is and how it should be calculated. It is also of note that, to the author’s
knowledge, most of the time IP or TP is not included in the analyses of selection
techniques. Most papers don’t even mention them.
For the purposes of this study Zhai’s solution two seems to be the most suitable.
Additionally an IP in the form of TPc is also included for comparison’s sake, however
it is not adjusted for pointing accuracy.

2.1.3. Two-part formulation of Fitts’ Law
In 2012 Shoemaker, Tsukitani, Kitamura and Booth described limitations of one-
part models of Fitts’ Law when it comes to different levels of control-display gain
(s. p. 14 Isomorph vs Non-Isomorph Mapping) [48]. To account for this two-part
formulations of Fitts’ Law have been proposed. Welford et al. suggest that two
control processes need to be considered. A motor, or distance-covering phase and a
visual, homing-in phase [59, p. 10].

MT = a+ b · log2(A)− c · log2(W ) (2.10)

Shoemaker et al. reformulate this equation to match the form of equation 2.1.

MT = a+ b · log2

(
A

W k

)
(2.11)
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Where k = c
b
, which allows A and W to have a different impact on the equation and

model the two control processes this way. [48, p. 7].
Since the selection techniques used in this thesis have a control-display ratio of 1:1
these equations will not be used.

2.1.4. Fitts’ Law in Higher Dimensions
The above form of Fitts’ Law only accounts for one dimensional selection tasks,
though it is often applied to 2D target selection as well. In cases like this the
movement angle of the selection is ignored, instead the selection is reduced to a one
dimensional selection by only considering the pointer’s distance to the target and
the width of the target in movement direction of the pointer. Since both of these
are measured along the same axis, the formula stays one dimensional [36]. This of
course is dependent on the user’s perspective in a virtual 3D environment.

2.1.4.1. 2D-Selection

Figure 4.: 2D-Selection

It was found by Murata and Iwase that the selection of targets in the direction above
the pointer took longer than that of lower and horizontal targets [41, p. 802]. This
can possibly be attributed to the effect of gravity. Iwase and Murata conclude that
therefore the current Model of Fitts’ Law is not suited for real-world 3D pointing
tasks [41, p. 802].
Iwase and Murata propose an empirically derived model, that exclusively models
the effects of θ.

ID = log2

(
A

W
+ 1

)
+ c · sin(θ) (2.12)

Where c is an arbitrary constant to be determined through linear regression [41,
p. 800].
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Expanding on the findings of Zhai and Accot [1] Grossman and Balakrishnan propose
an euclidean model that can model the effects of θ separately per dimension [20,
p. 450].

IDWtEucθ = log2

√fW (θ)
(
A

W

)2
+ fH(θ)

(
A

H

)2
+ 1

 (2.13)

2.1.4.2. 3D-Selection

Formula 2.13 can be easily extended for 3D-pointing tasks.

IDWtEucθ = log2

√fW (θ)
(
A

W

)2
+ fH(θ)

(
A

H

)2
+ fD(θ)

(
A

D

)2
+ 1

 (2.14)

2.1.4.3. Problems:

All these models use empirically determined constants that are easy to calculate
“after the fact”. Formulas 2.13 and 2.14 are also complex for a simple task, while
not taking into account objects that are not shaped like rectangles/boxes or rectan-
gles/boxes whose dimensional axes might not be aligned to the coordinate axes.
While Formula 2.12 is independent of the object’s alignment it’s not clear if the
angles impact should be applied to the Index of Difficulty or as a separate factor
exclusively to determine selection time. It is also not clear how much the weighting
constant might differ from person to person, as muscle mass coupled with the weight
of the pointing device would be important considerations if gravity is the deciding
factor.
In the end using Fitts’ formula for one dimensional tasks seems like the better ap-
proach, since most objects in this thesis will be underneath the pointer anyway.
The formulae seem either too complicated while not taking into account all possibil-
ities or the problem they try to solve does not come up regularly enough to warrant
their inclusion in this thesis.

2.1.5. Fitts’ Law for Moving Targets
Even though research into Fitts’ Law for moving targets is already rather old (Ja-
gacinski, Repperger, Ward and Moran researched it in 1980 [29]), resources are
scarce.
Multiple papers derived different equations, often building onto the formulas found
by Jagacinski, et al. and evaluated their merit sometimes with the data of Jagacin-
ski, et al. and sometimes with user data from different experiments.
It is clear that the Index of Difficulty must be modified to capture the time needed for
the selection of moving objects [29, pp. 229–230]. In Jagacinski, et al.’s publication
[29] the following formula is proposed among others:
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MT = a+ b · A+ c · (V + 1) ·
( 1
W
− 1

)
(2.15)

Where V is the object’s velocity and c another empirically derived constant.
This formula apparently is a good fit for the data presented, however as the authors
mention, the data comes from a small sample size and the given equation is just
an approximation for this data [29, p. 231]. In their experiment an object was
considered selected if the cursor stayed inside it for 350 ms. The authors also
propose another equation to consider this capture time duration Tc.

MT = a+ b · log2

(2A
W

)
+ c · log2

 V
W
Tc

+ 1
 (2.16)

This model is very different to equation 2.15 and simply reduces to Fitts’ Law for
V = 0. But also provided a worse fit for their data. A third model was proposed as
well, but also failed to provide a better fit [29, p. 232].
Using a first order control system Hoffmann derived an ID for moving targets closer
in form to Fitts’ original ID.

ID = log2

(
A+ V

K
W
2 −

V
K

)
(2.17)

Where V is dependent on the movement direction of the target, negative when the
target is approaching the pointer and positive else, Hoffmann defines an approaching
target as having “negative” velocity in his paper [24, p. 211]. He also provided a
two-part formulation for his model.

MT = a+ b · log2

(
A+ V

K

)
+ c · log2

(
W

2 −
V

K

)
(2.18)

In both cases Hoffmann’s formulas performed worse than those of Jagacinski, et al.
with fits of 0.92 vs 0.97 and 0.98 vs. 0.99, although both of them still present an
excellent fit. [24, pp. 217–218].
K serves to determine the critical speed Vcrit at which deliberate target acquisition
is no longer possible.

Vcrit = W ·K
2 (2.19)

Hoffmann calculated the value of K in two different ways, first by regression analysis
and second by observing the critical speed at the “threshold” for loss of the target
object (50% of not capturing the target) [24, p. 219].
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The latter being dependent on the percentage of successful captures, means outside
factors can have high influence on the value.
The regression on the other hand is very specialized and again can be only calculated
“after the fact”.
Both are also highly dependent on the design of the experiment.
In 2011 Hajiri, Fels, Miller and Ilich again investigated different models for capture
of moving targets. By modeling target acquisition time they derive a similar equa-
tion as Hoffmann [23, p. 148]. This model again providing a good fit for the given
data [23, p. 156].
There of course have also been forays into 2D target acquisition for moving targets,
however since the formula for stationary targets in this thesis is already one dimen-
sional, these will not be considered. Instead Hoffmann’s or Hajiri, et al’s formula is
used.

2.2. Selection Technique Categorization
Selection Techniques can be categorized in different ways depending on their prop-
erties.

2.2.1. Taxonomies

Figure 5.: Taxonomy for selection techniques
Source: Based on [10, p. 77].

2.2.1.1. Feedback

Feedback gives the user an indication if an action was successful. There is both pos-
itive (an action was successful) and negative feedback (an action was unsuccessful).
There are different types of feedback as well, the most common being graphical
feedback, a change in color, the object disappearing/changing etc. The second most
common type is audio feedback, here a sound is played to inform the user. Force/-
tactile feedback is used less often, since the hardware does not always support it.
Both of these belong to the group of haptic feedback, the difference is that tactile
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feedback is a force felt on the fingers, while force feedback can be felt anywhere on
the body. This can for example be a vibration of the controller.

2.2.1.2. Indication of Object

How is the object indicated by the user?
This can happen via simply touching the object. Or by pointing at the object. The
object can be pointed at either in 2D or 3D space and also via the user’s hand or
by the user looking at the object.
Another possibility is to draw a frame around the object again either in 2D or in
3D via a bounding volume/area. Or the object can simply be occluded by a user
controlled object.
Indirect selection describes a form of selection in which the user does not directly
interact with the object, like choosing it from a list.

2.2.1.3. Indication to Select

The indication to select describes how the actual selection is triggered. Different
mechanisms can have different effects on the selection outcome. For example pressing
a button can lead to a tremble in the user’s hand, if the object is indicated by pointing
this might lead to the user missing the object and therefore lead to selection errors
[61, p. 1].

2.2.2. Immediate Selection vs Iterative Refinement

Figure 6.: Categories of selection techniques
Source: Based on [45, p. 3].

Immediate selection is self-explanatory, the highlighted object(s) will be selected as
soon as the user confirms the selection. For a raycast this means the intersected
object will be selected. Often these selection techniques come with a few disadvan-
tages like reduced pointing precision (s. p. 15, Hand Jitter).
In contrast techniques with iterative refinement add extra steps to the selection.
Grossman and Balakrishnan’s Depth Ray, for example, adds a depth marker that
can be moved along the ray by the user, thus adding an extra step to selection [21].
While Cashion, Wingrave and LaViola’s SQUAD puts objects of interest determined
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in a first selection step into quadrants. By iterative selection of these quadrants a
single object for selection is determined (s. p. 21, SQUAD) [12, p. 636]. Since
these techniques involve more steps they are usually slower than techniques with
immediate selection.

2.2.3. Isomorph vs Non-Isomorph Mapping
The control-display ratio describes how translation and rotation of the input device
is transferred to the selection tool [3, p. 126]. A direct mapping (1:1) between
pointing device and selection tool is called isomorph, while a non-direct mapping is
called non-isomorph [3, p. 126].
It’s also possible to take advantage of this insight for better user interaction, as the
PRISM (s. p. 27, PRISM) interaction technique shows [19].

2.2.4. Multiple vs. Single Selection
Usually most selection techniques can only select a single object at a time. Some-
times selection techniques can select multiple objects at once, these techniques typ-
ically use a volume for selection.
In this thesis only selection techniques for single selection are considered.

2.2.5. Selection Tool
There is also the question of how the selection is visualized to the user. This could
be a virtual hand at the same position as the user’s controller in the virtual environ-
ment. A ray, a cone or more elaborate means. Some of these could even be invisible
to the user, a selection technique could use a raycast to select an object, while not
actually showing the cast ray to the user.

2.2.6. Disambiguation
Some selection techniques also use a disambiguation mechanism to determine the
object the user most likely wants to select. IntenSelect (s. p. 20, IntenSelect), for
example, calculates a score for all objects according to their angle to the pointing
device and hovers the object with the highest score for the user to select. [22, p. 204].

2.3. Problems of 3D Selection
There are some additional problems further complicating the selection in 3D envi-
ronments.
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2.3.1. Hand Jitter
As 3D selection usually happens in mid-air there is also the problem of the user
not being able to rest their hands on a surface, which introduces a constant shaking
to the user’s hand and therefore the cast ray [31, p. 604]. Different enhancements
are often included to combat this. These enhancements reach from input filtering,
using area cursors instead of point cursors, the ability to zoom in on an area to the
ability to control cursor speed [31, p. 604]. These enhancements also add complexity
which might lead the user to develop different strategies to achieve their goal. So
performance might depend on whether the user chose the correct approach. [31,
p. 604].
As already pointed out above, the act of pressing a button to indicate selection can
also lead to hand jitter. According to Wolf, Gugenheimer, Combosh and Rukzio
this effect accounts for 30.45% of errors for selection, they call it the “Heisenberg
Effect of Spatial Interaction” [61, p. 1]. Their experiment also shows that smaller
targets lead to a higher error in regard to this effect [61, p. 9]. Since all selection
techniques used in this study are ray-based and use the same button to trigger
selection they should have (roughly) the same amount of error, therefore this effect
is not accounted for in this study.

2.3.2. Noise
Similar to hand jitter the tracking of a given device can also introduce a “shakiness”
to the virtual tool. Even when laying the device down on a table tracking noise
may be observed in the virtual tool, depending on how precise the tracking is. It’s
impact is, of course, also highly dependent on the severity of said noise.

2.3.3. Eye-Hand Visibility Mismatch
Another problem is the mismatch between the objects that are (un)occluded for the
user’s eyes and the user’s hand, for techniques where the ray originates at the user’s
hand. Objects might differ in “visibility” for these differing positions. [4, p. 43].
These issues have mostly been ignored in contemporary research and it’s effects on
selection performance have not been studied in depth [4, p. 43]. Another problem
of this is that the user might point at the object directly and not it’s visible screen
projection, which means a further decrease in accuracy [4, p. 44].

2.4. Standards and Guidelines
Even though research in this part of human-computer-interaction has a long history,
experiments usually don’t follow many formal guidelines. There are general guide-
lines for how experiments should be set up, but they often are ignored in formal
studies. Standard test scenarios, on the other hand, are hard to come by. Usually
researchers opt for primitives like cubes and spheres as objects for the selection.
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Sometimes more complex objects are used to simulate an actual use case or a more
natural environment, like fruits in a fruit stand. Sometimes the objects move by
themselves or stand on another object that moves/rotates.
How the experiment is conducted is often not clear as well. Like how, or if, the
distance between initial pointer position and the object was calculated. Did the
pointer need to be at a certain location before the selection could be started? Did
the user get a moment to get accustomed to the scene? How long was that moment,
how was it measured/accounted for in the experiment? These questions often go
unanswered.
Bowman, Johnson and Hodges propose test beds to evaluate selection techniques
for universal interaction tasks [10, p. 78]. They propose a methodology based on
taxonomies, performance metrics and outside factors [10, pp. 76–78].
Poupyrev, Weghorst, Billinghurst and Ichikawa identify a list of different factors
that should be considered in the measurement of a selection technique’s perfor-
mance. They call these factors task parameters [44, p. 22]. These parameters can
depend on different sources, like the user, the device, the interaction technique, the
application and even the task context [44, pp. 22, 23].
Both Bowman et. al. and Poupyrev et. al. propose additional performance criteria.
Not only completion time and error rate should be considered in the experiment
but also additional factors typically found in the research field of human-computer-
interaction. Such as: Ease of use, ease of learning and presence, as these will also
be important to the success of an interface [10, p. 78], [44, p. 24].
A lot of different factors should be considered, to make selection techniques truly
comparable, however most experiments don’t seem to take these conclusions into
consideration.

2.4.1. ISO 9241
ISO 9241-9 evaluates user performance, comfort and effort in an attempt to define
a procedure for selection technique evaluation. The standard recommends using the
Index of Performance as the sole measure of performance for a selection technique.
It uses the IPe formulation for it’s Index of Performance
Furthermore the standard provides six tasks: one directional (horizontal) tapping,
multi-directional tapping, dragging, free-hand tracing, free-hand input (hand written
characters or pictures) and grasp and park (homing, device switching). The tasks
used should be determined by the intended use of the device [15, p. 216]. It also
provides a questionnaire [15, p. 217].
Douglas, Kirkpatrick and MacKenzie endorse the standard. According to them in
recent years the effective width has replaced the measured width in the computation
of the Index of Performance. However the authors feel that separate measures of
speed as movement time and accuracy as error rate can not be replaced by a single
measure. They also criticize the standard for not incorporating learning effect. The
standard recommends a sample size of 25, they however claim 12 for each between-
subject condition is standard practice for pointing device performance experiments.
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One-directional selection task Reciprocal selection task
Source: [15, p. 216] Source: [51, p. 50]

Figure 7.: Selection of selection tasks proposed by ISO 9241-9

In addition, apparently the 7-Point Likert scale was finer than participants could
distinguish [15, pp. 220–221]. It is of note that the standard was written for one
and two dimensional pointing tasks.
The standard was superseded by ISO 9241-411 in 2014, but still uses the same
definition for throughput and the same selection tasks.
As already mentioned in Chapter 2.1.2.2 Criticisms on p. 7 the throughput proposed
by this standard is problematic. In addition the selection tasks are not well suited
for 3D selection, since they weren’t designed for it. The questionnaire is written
to assess usability but I feel a more general questionnaire specific for measuring
usability, like QUESI, is more suitable for this task.

2.4.2. User Personalization
LaCoche, et al. investigated the use of machine learning to select the selection
technique best suited to the user’s needs and preferences. Their results show that
the user’s preference can have a big impact on performance [32, p. 48]. It is not
hard to imagine that further personalization of parameters of a specific selection
technique could also have an impact. Of course adjusting all these factors by hand
for a study is excessive and not feasible, additionally it makes comparison between
selection techniques impossible.
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3.1. Selection Techniques Used in the Study
In this section the different selection techniques used in the final study of this thesis
will be introduced. Of course this is only a small selection of all the selection
techniques that have been developed through the years. The selection techniques
described here are all pointing based, an iterative selection technique is also included.

3.1.1. Raycast
Casting a ray is one of the most simple and widely used selection techniques [12,
p. 643]. A ray is cast from the input device into the scene, the hit object is selected
when the user activates the selection. This method is quick and easy to understand
for users but is problematic for the selection of small or occluded objects [12, p. 643].
Raycasting does not provide high-precision pointing with visually small targets,
because small movements of the user’s hand result in larger movements of the end
of the ray as the distance along the ray increases [5, p. 785].
Raycast serves as a baseline in this thesis.

3.1.2. LenSelect
LenSelect is a new type of selection technique for virtual environments. It is based
on the idea of dynamically scaling up targets depending on their proximity to the
projected point from the users pointing device [45, p. 13]. This point is projected via
a raycast. In a certain radius around the hit point of this raycast a percentagewise
enlargement is made, this way the object’s width gets bigger, therefore, according
to Fitts’ Law the selection is easier and faster [45, p. 13].
Cluttered environments and the selection of far away objects are LenSelects desig-
nated use-cases. LenSelect is intuitive since its basic premise does not differ much
from a simple raycast and the basic selection is still the same.
However the implementation from the bachelor thesis comes with a few flaws. Float-
ing objects for example, do not profit from this technique at all, since without any
reference objects for the ray to hit the object will be resized only after it was already
hit by the ray. Objects with a difficult selection context, like objects behind a hill,
where it’s hard to get the hit point close enough to the object are also problematic.
Different vectors of approach of the ray also lead to different results. If a big object
is in front of the target and the ray approaches from the front, the target could
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be occluded by said object. If the ray approaches from behind the target object
however, that same object will not be scaled and therefore won’t occlude the target.
Also in cluttered environments scaling the objects up can lead to higher occlusion
between objects than before the scaling.
So in this thesis the “lens shape” (e.g. the bounding volume in which objects are
scaled) was reworked and different scaling algorithms were tested in a prestudy.

3.1.3. IntenSelect
IntenSelect was designed to tackle three main aspects: Selection accuracy, selection
ambiguity and selection complexity [22, p. 2].
IntenSelect uses a cone where the tip rests inside the pointing device and it’s base
points in the direction of the ray emitted by the pointing device. For all objects in
the scene an “inside”-test is performed [22, p. 204]. For this test the vector between
the middle point of the object and the tip of the cone is calculated. With this the
angle between the ray and this new vector is compared to the opening angle of the
cone. If the angle is smaller than the cone’s opening angle the object is inside the
volume [22, p. 204].

Figure 8.: Determining whether point P is inside the selection volume.
Source: [22, p. 204].

For all objects inside the cone a score based on the relation between the angle
between object and ray and the cone’s opening angle is calculated. The object with
the highest score is then selected.
One of the simplest scoring functions would be:

s = 1− α

β
(3.1)

Where, α the angle between the ray and the vector to the middle point of the object
and β the opening angle of the cone.
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However “during testing trials it quickly became obvious that, using this scoring
metric, it is easier to select distant objects than it is to select nearby objects [22,
p. 204]. That is because the use of α implies a growing distance perpendicular to
the ray the further away the object is along the vector between the tip of the cone
and the middle point of the object.
So the authors introduced a scoring function that took this discrepancy into account:

s = 1−
atan

(
dperp

dproj
k

)
β

(3.2)

With dperp, the distance of point to the ray and dproj, the distance of the object to
the tip of the cone along the ray and k, a compensation constants [22, p. 205].
With similar scores a fast switching behavior between objects can be observed [22,
p. 205]. So additionally a score accumulation over time was implemented.

scontrib(t) = 1−
atan

(
dperp(t)
dproj(t)k

)
β

(3.3)

stotal(t) = stotal(t− 1) · cs + scontrib(t) · cg (3.4)

The contribution score remains unaltered only it now denotes the score at time step
t. The total score is defined by the total score of the previous time step and the
current contribution score. Both are multiplied by constant scaling factors cs and
cg, these typically define the “stickiness” and “snappiness” of the selection.
The total score is progressively reduced by the cs factor so scores of previous frames
get slowly faded out [22, p. 205].

3.1.4. SQUAD

“SQUAD is a selection technique that uses progressive refinement for narrowing the
choice of objects to select from.” [12, p. 636]. This is done by doing a sphere trace
and arranging copies of all objects contained in it on the screen in quadrants. With
each progressive selection the objects get rearranged into quadrants until only one
is left, this object will finally be selected [12, p. 636].
The strong suit of this selection technique is that even highly occluded objects can
be easily selected, a disadvantage is that selection becomes difficult if there are
multiple objects that look the same and therefore can not be differentiated by their
looks alone [12, p. 636]. Depending on the amount of objects in the sphere trace,
selection times can also be long [12, p. 636].
SQUAD is not used directly in this study, rather it’s evolution Expand is.
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3.1.5. Expand
Expand is a refinement of SQUAD and an iterative approach to object selection.
It tries to alleviate the problem of losing the original context of the objects. This
was mostly done so it is easier to discern similar looking objects [12, p. 636]
Instead of quadrants copies of the objects inside the sphere cast are aligned on a
grid on the screen. This grid is dynamically arranged depending on the number of
objects that need to be placed in it and fills the screen [12, p. 636].
Although one of it’s goals is to keep original context between objects, the copies don’t
seem to be sorted in a way to keep their relationship intact. A possible sorting could,
for example, be their location in the x-y plane. So the implementation described
in the paper is inefficient, in that the user will have to search for their target in
the grid. It also seems like the user still has to point at object’s in the grid, this is
inefficient, as pointing at the cell containing the object would lead to better selection
times. However the original implementation is used in this thesis.

3.2. Further Selection Techniques
A bigger selection of researched selection techniques, that are not used in this thesis,
is discussed here.

3.2.1. Ballon Selection
The metaphor used is a helium balloon on a string, this string is held by the user’s
hands. The dominant hand moves the position of the balloon (the other hand is
following along). While the second hand changes the balloon’s height by moving
the string closer or farther away from the dominant hand. The object overlapping
the virtual sphere will be selected [7, p. 80]. This way a 3DOF positioning task can
be broken down into a 2DOF position task on the ground plane and a 1DOF task
to control the balloons height [7, pp. 80–81].
Ballon Selection showed less errors than the Wand technique and only slightly more
than a simple keyboard. At the same time the technique is about as fast as the
Wand technique, as the experiment shows [7, p. 84].

Figure 9.: The Balloon Selection technique.
Source: Based on: [7, p. 81]
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3.2.2. Bubble Cursor
Bubble Cursor uses a volume cursor in the form of a sphere, the object inside the
volume will be selected. At the same time this activation volume is required to be
unambiguous, so the sphere dynamically resizes such that only one object falls inside
it. If a single object can’t be captured within the bubble then an additional bubble
is rendered around the closest object. A cross hair is drawn in the center of the
sphere to indicate it’s current position [57, p. 119]. Similar to depth ray a marker
can be moved up and down the ray emitted by the pointing device. Distances to
objects are calculated relative to this marker. With this the user can also select
occluded objects [57, p. 120].

Figure 10.: Bubble change depending on surrounding targets.
Source: Based on: [52, p. 281]

Figure 11.: Bubble change depending on surrounding targets. Extended to 3D.
Source: [57, p. 119]

The circle’s size is determined by calculating an intersecting and containing distance
for all targets T1, T2, ...Tn.
Intersecting Distance i (IntDi):
The length of the shortest distance between the center of the circle and any point
on target Ti.
Containing Distance i (ContDi):
The length of the longest distance between the center of the circle and any point on
the target Ti
Set i = index of closest target by intersecting distance
Set j = index of second closest target by intersecting distance
Set radius of bubble cursor circle = min(ContDi, IntDi)
If the radius is smaller than ContDi an additional circle is drawn at the center of
object Ti that contains it fully [52, p. 283].
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In a study Bubble Cursor performed better than Point Cursor, but slightly worse
than Depth Ray [57, pp. 122–124].

3.2.3. Bubble Ray
Bubble Ray is an alternative version of Bubble Cursor for selection in 3D environ-
ments. While Bubble Cursor uses the euclidean distance between objects to calculate
the distance Bubble Ray uses the angular distance instead. Lu, Yu and Shi argue
depth perception in VR is too poor to use a direct representation of distance [33,
p. 36]. They also altered the visual design of the bubble. It’s now a disc projected
on a sphere centered on the user’s eyes and the disc is tangent to the user’s eyes.
Furthermore a curved ray to the object that will be selected was added for better
target indication [33, p. 37].
The study showed slightly better performance for the angular version of Bubble Cur-
sor over the euclidean version. It also performed better than other tested techniques
and overall was preferred by users [33, pp. 39–41].

Figure 12.: a) Conceptual design of the bubble. b) Bubble Ray in the 3D environ-
ment.

Source: Based on: [33, pp. 35, 37]

3.2.4. Depth Ray
Depth Ray is basically a normal ray cast, only that a depth marker is positioned
along the ray that can be moved by the user. The object that is intersected by the
ray, that is closest to the depth marker, is ready for selection by the user. The depth
marker is controlled by moving the hand backwards/forwards [58, p. 120].
In Grossman and Balakrshinan’s experiment Depth Ray performed the best of all
tested selection techniques [53, p. 10]. The other selection techniques in that study
tried to improve upon the design of the Depth Ray but failed to do so.
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3.2.5. Double Bubble
Double Bubble is similar to Expand, only it uses Bubble Cursor for the initial
selection, instead of a sphere trace, but the sphere of the Bubble Cursor can only
be reduced to a predefined threshold. If there is more than one object in the bubble
Expand is used for further refinement [2, p. 61].
In Bacim’s experiments Double Bubble produces, on average, less errors than Bubble
Cursor and is faster as well [2, pp. 80, 81].

3.2.6. Flower Ray
Flower Ray is a two-step selection technique designed for volumetric displays. When
the user pushes a button all objects intersected by a ray change their positions and
“flower” out so they become unobstructed by each other, while other objects are
made transparent, so as not to occlude the relevant objects [53, p. 7]. When this
new “menu” appears a 2D cursor is drawn in the center of the menu. Additionally
a circle is drawn around the cursor. This circle represents the minim movement
distance for a selection, if the cursor is moved outside the circle the closest object
to the cursor is highlighted. By letting go of the button the user selects the high-
lighted object [53, p. 8]. All objects intersected by the ray are colored green, while
the object that will be selected is colored red [53, p. 7].
Interestingly the Flower Ray had the smallest selection time but the longest disam-
biguation time in Grossman and Balakrishnan’s results [53, p. 10].

Figure 13.: The Flower Ray selection technique.
Source: [53, p. 7]

3.2.7. Hook
Hook was developed to aid in the selection of moving targets. It assists the user
with a heuristic which includes time as a factor. The calculated score changes with
the distance to targets. The target with the highest score is considered as “hooked”
a visual feedback shows the user that this target is selectable [43, p. 120].
Each time step the the score is calculated for each object, the objects are ordered in
a list of increasing distances. Scores are increased/decreased according to that list,
to avoid system inertia only a number of closest targets (NCT) will have their score
increased, the rest has theirs decreased. To maintain stability on hooking a small
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number of NCT is beneficial. The NCT was established by user observation. It was
observed that the cursor is following the target at a certain distance, the faster the
target moved the bigger the distance. If this distance is considered as the possible
space of deliberate target acquisition, all objects within a radius around the cursor
will be considered possible targets the user wants to select [43, p. 200]. NCT “[...] is
then dependent on: (1) the total number of targets (TT), (2) the spherical volume of
the surrounding (SV) and (3) the global frame volume (FV) in which targets move.
So: NCT = TT · SV

FV
. [43, p. 200]”

The added or subtracted amount of score is dependent on time and rank in the
ordered list. For NCT targets equation 3.5 is used, the rest use 3.6. NCT is the
number of closest targets and i the target’s number in the list.

TiScore(t) = TiScore(t− 1) + (NCT − i) ·∆t (3.5)

TiScore(t) = TiScore(t− 1)− NCT

2 ·∆t (3.6)

3.2.8. Lock Ray
Lock Ray is another technique separated into two phases. It works mostly like Depth
Ray, only the user first determines the location and rotation of the ray, then while
holding the button the depth marker can be moved back and forth. At this time
moving the ray is not possible, it is locked. The depth marker is always placed
in the center of the ray initially. The object closest to the depth marker will be
selected when the button is released. Should the user miss the target when the ray
is locked they can move their hand perpendicular to the ray to cancel the selection.
All objects on the ray are colored green, while the current selection target is colored
red [53, p. 7].

3.2.9. PRECIOUS
PRECIOUS uses iterative refinement for out-of-reach selection. It uses a cone as a
selection metaphor. By rotating the wrist the user changes the opening angle and
by extending or pulling back their hand user’s can change the cones depth (height)
[38, p. 237].
When multiple objects intersect the cone during selection the user is moved closer
to them via teleportation. How the point for teleportation is determined is not
described in the paper, however [38, p. 237]. If only two objects remain, a disam-
biguation canvas is used, where both objects are placed side by side in front of the
user for easier selection. After the selection the user is teleported back to their initial
position [38, p. 238].
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The technique shows high ease-of-use and satisfaction according to the experiment
in the paper, however users also reported high physical and visual discomfort [38,
p. 238].

3.2.10. PRISM
Although designed for object manipulation PRISM is a good example for non-
isomorph mapping. The idea is to use two distinct modes, one in which the control-
display-ratio (CD-ratio) is increased to allow for more precise pointing, while the
other provides direct and unconstrained interaction [19, p. 2].
The hand speed of the user is used to dynamically switch between these modes. As
discussed in the Two-part formulation of Fitts’ Law (p. 8) a selection can be divided
into two control processes. The distance-covering phase tries to cover the distance
to the object as fast as possible, while precise selection happens in the homing-in
phase. PRISM tries to take advantage of this.

Figure 14.: CD-ratio adjustment for PRISM at different speeds.
Source: [19, p. 5]

PRISM uses three thresholds to determine the CD-ratio. A minimum speed MinS,
this is used to filter out hand jitter, as the user is not moving their hand with
purpose, motion below this speed could also be tracking error. The next threshold
is the Scaling Constant SC, if the user’s motion is slower than this speed the user
likely has a precise goal in mind. The CD-ratio is inversely proportional to the
speed at which the user’s hand moves. So the closer the user is to MinS the
slower a manipulated object would move. The closer to SC the closer the CD-ratio
resembles a 1:1 mapping. SC is the speed at which the CD-ratio becomes 1. A third
constant MaxS also triggers offset recovery, used to let the object catch up to the
hand, of course this is not needed if PRISM is used as a selection technique.

3.2.11. Ray Cursor
Ray Cursor acts similar to Bubble Cursor, it uses a depth marker that the user can
move along the ray.
Even though described as a new selection technique it is basically Bubble Cursor
with filtering of hand jitter and a non-linear transfer function for the movement of
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the depth marker.
Additionally different ways of highlighting the object to select were investigated as
were different gain functions for the marker movement. For the filtering the 1€-
Filter was used [6, pp. 3–4].
The cursor speed is calculated as follows:

vcur = g(vpad, dcur) · vpad (3.7)

Where vcur the current speed of the marker, vpad the speed of the contact point on
the pad in m/s, dcur distance between hand and cursor in m and g the used gain
function.
Two gain functions were examined one based on finger speed, which uses a higher
gain at high speeds and a lower gain at low speeds:

V itLerp(vpad) =


k1, if x ≤ v1

k2, if x ≥ v1

k1 + k2−k1
v2v1 · (vpad − v1), otherwise

(3.8)

The other depends on cursor position:

DistDep(dcur) = k ·
√
d2
cur + d2 (3.9)

Both were investigated in a separate experiment as was a combination of the two
[6, p. 4].
Highlighted objects show less selection errors, while RopeCursor + Highlight had
the lowest selection time in the experiment shown in the paper [6, p. 6].
VitLerp showed the lowest error rate of all gain functions while having the lowest
selection times, or at least selection times on par with the combination of both gain
functions [6, p. 7].

3.2.12. Shadow Cone
Shadow Cone is designed for the selection of multiple objects. An implicit bounding
volume is created by the user by moving a cone attached to their hand. All objects
that are always inside the cone for the duration of the motion, and therefore this
implicit bounding volume, are selected. The user presses a button, then targets the
objects, if they release the button the objects are selected [49, p. 166].
This is implemented as follows: When the user presses a button the target set is
initialized with all objects within a target angle of the ray from the hand. Each
frame any object who’s angle is no longer inside the target angle is removed from
the set. Objects are not re-added to this initial set. When the user releases the
button all objects within the target set are selected [49, p. 166].
The technique performed about on par with the normal Cone Selection for head-
tracked tasks and worse for the non-head-tracked tasks [49, p. 168].
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3.2.13. Smart Ray
Smart Ray memorizes the intersection of a single ray over a length of time. The
disambiguation phase does not lie in the hand of the user anymore instead a predic-
tive algorithm is used. The algorithm weights the targets based on their proximity
to the target cursor. The closer the ray gets to the center of the target, the higher
the weight increase will be. The intersected targets are highlighted green, while
the current selection target is highlighted red [53, p. 8]. This technique takes away
control from the user, but could potentially speed up selection. At least in theory,
as Grossman and Balakrishnan’s results show the selection, curiously, takes much
longer than the other selection techniques [53, p. 10].

3.2.14. Starfish
Starfish was designed to operate in sparse and dense scenes. The name comes from
the closed volume that is freely positioned by the user. Which is built on the union
of several branches, starting from a pointer to a set of close targets [28, p. 102]. The
user controls the head of the Starfish, the pointer from which the branches start.
These branches are dynamically rebuilt while the head is moved. When one of the
desired targets is reached the user can lock the shape. The head is still controlled
by the user but constrained to the volume. Then the user moves the head along a
branch to select the object at it’s end when the button is released [28, p. 102].
For Starfish to work a set of preselected targets must be calculated. Three filters
are used to achieve this:

1. Distance Filter: All targets whose euclidean distance is bigger than a pa-
rameter Rmax are rejected.

2. Angle Filter: A small angle between two branches may lead to difficulties in
entering the correct branch. So if the angle between two preliminary targets is
smaller than a given Θmin, the farthest is rejected. Tests show that an angle
larger or equal to π

8 feels comfortable.

3. Quantity Filter: Finally only a set amount of Nmax targets is accepted. The
closest targets will be preferred.

The surfaces for Starfish’s extremities are dynamically calculated at run time, with
a target at the end of each [28, p. 102].
According to the paper Starfish has been deemed fun and comfortable as well as
showing promising selection times. However no data of these experiments is shown
in the paper [28, p. 104].

3.2.15. Go-Go
Go-Go is an arm extension technique. An area is defined at some distance from
the user, inside this area the virtual hand moves at the same rate the user’s hand

29



3. Related Work 3.2. Further Selection Techniques

does. When the hand is moved outside this area the virtual hand moves increasingly
faster, following a non-linear, increasing function [9, p. 36]. This way the user can
grab objects outside of their reach, while keeping one of the most natural selection
metaphors, as the only action required are arm movement and grabbing, like in the
real world [9, p. 36].

3.2.16. Wand
Wand is an incredibly simple technique. The user holds a wand in their hand, at
the tip a sphere is rendered in the virtual environment. The user can change the
radius of the sphere. The object inside the sphere is selected if a button is pressed
[7, p. 83].

3.2.17. Virtual Hand
The virtual hand is exactly that: A virtual hand whose movements correspond to
those of the user. This selection technique can be very intricate, with complete
tracking of the hand including finger tips, or very rudimentary, where only the
hand’s position is tracked and the object is selected by a simple gesture.

3.2.18. Zoom
Zoom encompasses multiple different selection techniques, that magnify a certain
portion of the screen for easier selection. Some use a fish-eye lens with certain
mappings [46] to magnify the area while others may distort the object itself [11].
Zoom-and-Pick, built for hand-held projectors, was designed to alleviate jitter and
resolution limitations. It uses a square fish eye lens, with adjustable zoom level,
centered on the pointer. The widget also follows the pointer. To address the jitter
problem a dead zone within the bounds of the lens is defined, as long as the pointer
remains inside the dead zone the widget will not move [18, p. 75].
In the experiment Zoom-and-Pick shows a mostly reduced selection time compared
to a regular ray cast and drastically reduced error rate [18, p. 78].

Figure 15.: Zoom-and-Pick magnification
Source: [18, p. 75]
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4. Solution
A user study will be conducted to compare the different selection techniques and
analyze their usefulness. A within-subjects design is used in the study, the par-
ticipants will encounter nine test scenarios in which they select different objects.
The test scenarios were designed with analyzing different aspects of the selection
techniques in mind. Quantitative data, like selection time and Index of Difficulty,
will be recorded for each selection. Additionally subjective data in the form of a
questionnaire is also collected.

4.1. Study Design
In the study participants will conduct simple selections of various objects. They will
fill in a questionnaire before, during and after the study. After they are finished with
one selection technique they fill in the corresponding page(s) of the questionnaire.
Participants are instructed to stay in a marked square on the floor as to assure a
similar distance for each participant. They are also instructed to use their dominant
hand for pointing.
To avoid learning effects the latin square method [60] is used to iterate through
combinations of selection techniques and test scenarios.
The participant’s height can mean a change in perspective and hence overlap for
the target object, however since these changes are accounted for by Fitts’ Law user
height is not recorded.
The experiment was designed in a way that color blind people would not have
problems to participate. The highlight color for the target object (the one the
participant is supposed to select) in particular was chosen to be yellow, in accordance
to the perceived color spectrum shown on page 62 of [30]. As the author knows no
people with color blindness however the intended effect of these measures could not
be confirmed.

4.2. Study Procedure
Participants will enter a “practice mode” for each new selection technique intro-
duced. Here they can practice how to operate the new selection technique, they
can practice as much as they want, with all test scenarios available. However they
can not switch selection techniques. Data is not recorded in this mode. After the
participant feels comfortable to go ahead the actual study begins with the practiced
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selection technique.
The target object participants are supposed to select is highlighted with a yellow
border. This object will be selected first. The “ID-Helper”, a red sphere, will then
appear. Participants will then select the ID-Helper, this will make the timer for the
selection start. The timer stops when the target object is selected again. Selection
errors will only be counted in the phase between the selection of the ID-Helper and
the target object. This is to make sure the participants know where the target ob-
ject is. So that only the selection time is measured and search time not included.
The ID-Helper is supposed to ensure a minimum distance for the selection and a
common starting point for all participants.

4.3. Test Scenarios
Unfortunately there does not seem to be an agreed upon set of standard test sce-
narios for selection techniques in 3D selection (other than the ones proposed by the
ISO standards and those are designed for 2D pointing), therefore nine test scenarios
will be introduced, each designed for testing a certain condition.
The shown test scenarios are supposed to cover all use-cases. They were designed
to test different aspects of object selection. The parameters identified in [44] were
used as a basis for the design of the test scenarios. These include: Distance to target
object, size of the target object, occlusion, density and movement [44, p. 23]
Figure 16 on page 34 shows pictures of all used test scenarios.

Propane Tanks Close and Far
Two of the scenarios use five propane tanks sorted in two rows, three tanks in the
front and two in the back alternating between both rows. One of the scenarios is
placed farther away from the user than the other. These are designed to test the
selection techniques for low density environments. By comparing both of these with
each other it is also possible to get an idea of how suitable the technique is for
distant-pointing tasks.

Floating Spheres
Twelve rotating spheres were placed a certain distance from a center point so that
they form a circle. These spheres rotate around said center point. The idea is to
have slow moving objects that are also predictable in their movement. This scenario
is similar to the standard test scenario shown in ISO 9241 in Figure 7 on page 17.

Miscellaneous
This scenario uses all kinds of different forms and sizes of objects, to replicate a
more natural context for a selection. The objects have different sizes and dimen-
sions and are more or less randomly placed but also in a way to simulate a more or
less cluttered environment.
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Erratically Moving Spheres
In a certain area ten spheres move around slowly but also randomly change direc-
tion, these spheres can overlap a lot. The idea here is to have moving objects, that
are also unpredictable in their movement.

Fast Moving Single Sphere
A single sphere moves fast in a certain area. Like the erratically moving spheres
this sphere is unpredictable in it’s movement, but since it is a single sphere it will
not be overlapped by other objects.

Stacked Cubes
An amount of cubes were put in a line with two more rows stacked upon each other.
The goal here is to simulate medium occlusion.

Densely Placed Cans
Three rows of cans were put closely behind each other, these should simulate high
density selection with no movement.

Rotating Cans
Multiple circles of cans were placed atop a rotating table. The goal is to simulate a
high density selection with slow movement.
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Propane tanks for close and far selection. Rotating spheres.

Miscellaneous objects. Spheres moving in an erratic fashion.

Single, fast moving sphere. Stacked cubes.

Rows of cluttered cans. Cans on a rotating table.

Figure 16.: The different test scenarios used in the study.
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4.4. Performance Analysis
The study consists of two parts, the data collected during selection of the objects
and a questionnaire for the users to fill out.

4.4.1. Fitts’ Law Analysis
For this analysis three values are recorded: Time needed for the selection, the Index
of Difficulty and the errors per selection, in accordance with [44, p. 24]. This data is
collected per selection technique and test scenario, so it’s possible to compare how
selection techniques fared with different test scenarios. Additionally the Index of
Performance is calculated from the selection time and the Index of Difficulty.

4.4.2. Questionnaire
As suggested in [44, p. 24] and [10, p. 78] data on how the user feels about the se-
lection technique is also gathered. These include: Ease-of-use, ease-of-learning and
sense of presence. QUESI is used for this purpose in this study.
QUESI is designed to measure the subjective consequences of intuitive use and user
satisfaction with a product [42, p. 401]. It connects intuitive use with effective in-
teraction by the user [42, p. 401], hence it poses a good basis for the user’s thoughts
on a selection technique.
QUESI consists of 14 questions, each corresponds to one of the following five scales:
Cognitive Load, Perceived Achievement of Objectives, Perceived Learning Effort,
Familiarity/Preknowledge and Perceived Error Rate [42, p. 401]. The mean of cor-
responding questions is the score for each scale. A single score, the QUESI Total
Value, can be used for direct comparisons. It’s equal to the mean of all five scales
[42, p. 401].
The questions: “How complex did you find the selection technique?” and “Using
the selection technique is fun.” were added as additional items to the questionnaire.
QUESI uses performance-based and cognitive measures to quantify intuitive use [54,
p. 60]. As stated in [54, p. 46] an intuitive system surpasses user expectations, in-
teraction with it feels special, magical in a way. This describes the sense of presence
mentioned in [44, p. 24] pretty well and is included in the INTUI questionnaire.
QUESI lacks a measure like this. So this additional scale was added to the ques-
tionnaire.
According to INTUI four items correspond to this scale [54, p. 78], however one of
these items directly asks if the interaction felt magical to the participant. This ques-
tion is vague, as “Magical Experience” is a fuzzy term and therefore would need to
be explained to participants beforehand. Additionally definition and interpretation
of the term can vary wildly, this makes comparison difficult. For this reason the
item is removed from the questionnaire and only the remaining ones are used.
In addition to all this the user is asked to rank the different selection techniques
directly. Where first lace is the favorite selection technique and last is the least
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favorite selection technique. For calculation in the evaluation each technique will
get a certain amount of points according to it’s rank. The least preferred selection
technique gets one point, the second to last gets two and so on.
Furthermore age, dominant hand, color blindness and profession of the user is doc-
umented. In a prequestionnaire the participant is asked if they have experience
with the task at hand, with VR in general and if they can use their dominant hand
without problem.
A postquestionnaire is used to determine if a participant had problems with the
study itself or the system used to conduct the study.
The questionnaire used can be found in Appendix 4.4.2. Questionnaire on page 35.
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Unreal Engine version 4.21.2 was used to realize the implementation of the ex-
periment. Scene and objects were adopted from Florian Rohde’s bachelor thesis,
although the test scenario was changed.
The implementation was mostly done in C++ although some parts were also real-
ized in Unreal Blueprints.
For this thesis multiple versions of LenSelect were developed and some dropped
early on, after determining they were not promising enough. Additionally different
possibilities for extra parameters were explored.

5.1. LenSelect Lens Types
The lens describes a volume, objects inside this volume will be scaled, objects outside
this volume will keep their original size. The lens needs to calculate the normalized
distance dn for the scaling functions, since this is dependent on the shape of the lens
the corresponding equations will be given there as well. Since objects outside the
lens are not considered for the calculation of dn it can only assume values [0, 1].

5.1.1. Lens Sphere
The original LenSelect as described in Florian Rohde’s bachelor thesis uses a sphere
for the lens [45, p. 13]. The normalized distance for objects is calculated as follows:

dn = ds
rs

(5.1)

Where ds the distance of the closest point of the object to the center of the sphere,
rs the radius of the sphere.
In practice the spherical lens showed a number of problems as outlined in chapter 2
State-of-the-Art. This lead to switching to a conical lens.

5.1.2. Lens Cone
A cone was the natural next step for a lens volume. A multitude of other selection
techniques use cones for selection, such as IntenSelect [22].

dn = dc
rc

(5.2)
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Where dc the closest distance between object and ray and rc the radius of the cone
at the depth of the closest point to the object along the ray.
dc and rc can be determined with simple trigonometry:

dc = sin(α) · c1 (5.3)
rc = sin(β) · c2 (5.4)

Where c1, c2 length of the respective Hypotenuse, α the angle between ray and the
Hypotenuse and β the opening angle of the cone.
Analogous to how IntenSelect handles it’s calculations (s. Figure 8 on p. 20).
All in all the conical lens feels more natural and solves most of the problems of the
spherical lens (objects floating in the air benefit from the scaling, less dependent on
selection context and the vector of approach of the ray makes less of a difference).

5.2. LenSelect Scaling Functions
Different scaling functions were tested in a prestudy, to determine which works best.
Most of them use the normalized distance dn for further calculations. This distance
is measured in outward direction, meaning the center of the lens has a normalized
distance of zero, whereas the surface of the lens has a normalized distance of one.
Every object has a maximum scaling factor which can be changed independently for
each object.

s = so + fs · sm (5.5)

Where s the final scale of the object, so the original scale of the object, fs the scaling
factor as determined by one of the scaling functions (between 0 and 1) for this object
and sm the maximum scaling factor for this object.

5.2.1. Linear Scaling
Linear scaling uses dn directly:

fs = 1− dn (5.6)

So objects on the surface of the cone will have no scaling applied, while objects hit
by the ray will have maximum scaling applied.

5.2.2. Root Scaling
The idea behind this scaling function is to discriminate stronger against objects that
are farther away from the ray. In theory this would make selection easier as objects
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farther away from the ray will have less overlap with the object the user wants to
select.

fs = 1− 4
√
dn (5.7)

The fourth root was deemed to work best after some testing, as the scale falls rapidly
for the first 10% of the distance but still keeps a good size for objects that fall outside
those initial 10%.

5.2.3. Same-Screen-Size Scaling

The idea here is to scale all objects inside the lens so that they keep to a certain
size on the screen, no matter how far away they are from the camera.

Figure 17.: Same-Screen-Size Scaling: The object is scaled so that no matter the
distance to the camera it occupies the same space on screen.

For the object to keep it’s size on screen the ratios between screen and object and
view frustum and object need to be the same:
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Wo

Wf

= Ws

Wv

(5.8)

Wo = Wf ·Ws

Wv

(5.9)

Wf (d) = 2 · tan
(
γ

2

)
· d (5.10)

Where Wo the object’s width in world-space, the size to which the object needs to
be scaled. Wf the width of the view frustum at depth d, Ws the object’s width on
the screen in pixels and Wv the width of the view port in pixels. γ the angle between
the view vector and the vector between camera and object.
The width the object takes on the screen is than dependent on Ws. Since it would
be tedious to adjust this value by hand for every object and for better control the
additional variable “Focus Depth” is introduced. It describes the depth for which
Ws is calculated for each object.

Ws(fd) = Wo ·Wv

Wf (fd) (5.11)

The formula follows from equation 5.9. Basically we assume fd to be the distance
at which an object keeps it’s original scale. If an object is farther away than fd
it will be scaled up, if it’s closer it will be scaled down. Choosing df is also more
intuitive than choosing Ws.
In another observation smaller objects benefit more from a bigger scaling than ob-
jects that are already big. This will be considered as well.

Ao = Xo + Yo + Zo
3 (5.12)

fa = 1 + 1
Ao

(5.13)

Where Ao the average of the extents of the object and Xo, Yo, Zo the objects extents.
This adds an additional scaling factor in favor of smaller objects and is directly
applied to Ws(fd).
So in the calculation for the final scale both of these are considered:

Ww = Ws(fd) · fa (5.14)

s = Wf ·Ww

Wv

(5.15)

Where Ww the wanted size of the object in screen-space. By inserting Ww into
equation 5.9 we get the scale of the object in world-space.
Note that this scaling function does not return a scaling factor but the final scale of
the object.
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5.2.4. Combined Scaling
This scaling function combines the Same-Screen-Size scaling with Root scaling.

s = ss − sm + sr · sm (5.16)

Where ss the object scale given by Same-Screen-Size scaling, sm the maximum scal-
ing factor of this object, sr the scaling factor given by Root scaling.
Basically Same-Screen-Size scaling determines the maximum size of the object.
While Root scaling determines how much of the maximum scaling factor applies
to this object. The minimum scale of an object is therefore ss− sm, while the max-
imum scale is ss.
Note that, again, this is the object’s final scale not a scaling factor.

5.3. TelescopeSelect
TelescopeSelect was an early prototype based on the Depth Ray [21, p. 454] selection
technique. With TelescopeSelect a sphere could be moved along the ray coming from
the pointing device. Objects inside this sphere would be resized for easier selection.
It was ultimately dropped because it was cumbersome and slow to move the sphere.

5.4. IntenSelect
Since a cone that can check for object overlaps was already implemented there was
no need to check the angles for the selection volume test as suggested in [22, p. 204]
All objects will be selected with the conic scoring function and temporal score accu-
mulation. But the phase in which the user selects the ID-Helper after selecting the
target object for the first time uses the normal RaySelection. This is to make sure
the selection stays inside the ID-Helper, hence keeping roughly the same distance
to the target for all selection techniques.
A red bending ray shows the user which object is currently hovered in addition to the
usual highlighting. This ray disappears if no object would be selected. It’s derived
from Unreal’s USplineMeshComponent and basically sets the start tangent to dproj
and the end tangent to dperp for a given object’s midpoint. So the ray originates
from the pointing device and it’s tip is at the midpoint of the given object.

5.5. Expand
Just as IntenSelect, Expand uses RaySelection for selecting the target and the ID-
Helper before the actual selection starts.
After that a red cursor appears. A sphere-trace is performed from the camera
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location through this cursor. Copies of all objects are than put on a grid, while the
original objects are made transparent and inaccessible to participants. All objects
that were inside the sphere-trace are selectable, while objects that were outside the
sphere-trace are transparent and inaccessible as well [12, p. 636]. Participants than
finally select the target object from the grid and the selection is finished.
Although this is how it’s described in the paper, the purpose of putting all objects
on the grid, instead of just those that were hit in the sphere-trace is unclear. As
these are inaccessable anyway. The only real purpose would be to keep the original
context between objects, but the object positions on the grid are random so the
context is lost anyway. As keeping the original context was the primary drive in
developing this selection technique [12, p. 636] these are two obvious starting points
for improvements regarding this selection technique. Regardless the implementation
as described in [12] is used in this thesis.

5.6. Fitts’ Law Implementation
For the analysis of Fitt’s Law two parameters are needed: Width of the object and
distance of the pointer’s initial position to the object. These parameters can be
measured directly in a 2D plane and directly used in the one-dimensional form of
Fitts’ Law.
An easy way is to make a screen shot of the selection and count the pixels for both
parameters. This is easily doable with Unreal’s SceneCaptureComponent. This
component is attached to the camera and dimensions and field-of-view of the camera
can be applied to it. So the screen shot matches the view of the participants.

5.6.1. Modifying the Screen Shot
To better distinguish between target object, occluding objects and surroundings,
Unreal’s custom stencil buffer is used. Object’s that are activated for this special
depth buffer can be assigned a stencil value, this way objects can be distinguished
and a custom color can be applied to them when the buffer is read. Occluding
objects are colored cyan, target objects yellow. Everything else is colored black.

5.6.2. Calculating the Pixel Location
To count the pixels we need to know the start and endpoint for the selection.
Since the basic raycast all selection techniques use also returns the exact world
coordinate of the hit point, we can use these to calculate the pixel coordinates on
the screen shot for them.
To achieve this goal we project the given points on a plane in front of the camera,
the distance of this plane to the camera is arbitrary as we only care for the relative
distances between points. We can project the point on the plane by calculating the
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vector between camera location and the given point. The projection itself is handled
by a simple intersection calculation with the normal-form plane.

5.6.2.1. Calculating the Canvas Dimensions

By rotating the camera’s forward vector by half of the vertical field-of-view and half
of the horizontal field-of-view respectively and projecting them onto the plane as
well, we know the location of the top and left points of the canvas. With these we
can also calculate the dimensions of the canvas by calculating the distance between
them and the midpoint (given by the camera’s forward vector multiplied by the
distance of the plane we are projecting onto). If we double these distances we get
the height and width of the canvas, in world coordinates.

5.6.2.2. Calculating the Pixel Coordinates

Given the intersection point’s relative location to the canvas’s width and height,
where the top left corner is (0,0) and the bottom right corner is (1,1), we can obtain
it’s pixel coordinates by multiplying these coordinates with the screen shot’s pixel
dimensions.
To achieve this we need to calculate the point’s distance to the top and left points,
since the plane is oriented freely in space (depending on the camera’s orientation)
this is not completely trivial.
So first we calculate the respective hypotenuse between the points and the intersec-
tion point. With this and the corresponding directional vector of the canvas we can
determine the distance.
We can get the directional vectors directly from the camera (right vector for left
point and down vector for top). By calculating the dot product between the hy-
potenuse and the respective vector we can get the orthogonal distance between point
and vector. For example by calculating the dot product of the hypotenuse and the
down vector we can determine how much of the hypotenuse points down in respect
to the canvas. Keep in mind that two distinct hypotenuses are used, relative to the
top and left point on the canvas.

Figure 18.: Calculating the intersecting point’s relative location on the canvas.
Where the hypotenuses are depicted in green and the wanted distances
in red for two points P1 and P2.
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We can then obtain the percentages by dividing these distances with the dimensions
of the canvas.
If we multiply these percentages with the screen shots width and height in pixels we
obtain the coordinate of this pixel in the screen shot.
If any of the percentages are bigger than one or smaller than zero the point lies
outside the screen shot. If the start or end point of a selection is outside the screen
shot the ID can not be calculated.

5.6.3. Counting the Pixels
Counting the pixels is a simple matter of calculating the vector between start and
endpoint and then checking each pixel’s color along that vector in the screen shot.
As long as the color is black the pixel still counts towards the distance, if the color is
yellow we reached the target. Since we can’t tell if we reached the end of the target
or if there are more segments coming, we need to check all pixels until we reach the
border of the screen shot.

Figure 19.: Cropped debug screen shots for the ID calculation. Where the white
pixels show start and endpoint of the selection, the blue line the distance
and the red line(s) the target width. a) RaySelection, b) LenSelect with
Root scaling, c) LenSelect with Combined scaling.

We save the beginning and end for each of these segments as a 2D vector so we can
easily determine their length. Lastly we add up all of the segments inside the target
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to acquire the target width.
The caveat here is, of course, that both start- and endpoint of the selection must be
visible to the camera when the screen shot is taken and targets are not allowed to
be partially or fully outside the screen shot. So we need additional checks for these
conditions, especially since they can lead to an array-index-out-of-bounds exception
for the screen shot (s. a. Figure 19 on page 44).

5.6.4. Expand
For Expand we will need the full selection path from the start point (inside the
ID-Helper) to the middle point (the one where the user determines which objects
will be selectable on the grid) to the endpoint (inside the target object on the grid).
So we will need to save the point between start and endpoint as well.

Figure 20.: Cropped screen shot for the ID calculation of Expand.

5.6.4.1. Calculating the Additional Points on the Selection Path

For this we first save the location and pointing direction of the device, at the time
of each selection, for each of these additional points. When the selection is done we
can calculate the intersection points with the plane the same way we did for start
and endpoint and save the intersection points between them in an array to form a
selection path.

5.6.4.2. Counting the Pixels for the Selection Path

This makes calculating the distance and width a bit more complicated however. We
iterate through the selection points and use the current point as the start of this
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segment and the following point as it’s end. We will only need to check the target
width for the last segment, so we can split width and distance calculation into two
separate functions.
When we reach the last segment we again will have to do both the distance and
width calculation. As we need to determine where the distance ends and the target
begins.
The width calculation will now also have to consider that it might have already
started inside the target. Apart from that the calculations stay the same.

5.6.5. IntenSelect
For IntenSelect the screen shot is insufficient, since the region in which objects be-
come selectable is not limited to the actual objects.
Instead the screen shot is created manually and the regions for the selection calcu-
lated with IntenSelect’s scoring function. This leads us to a problem, the selectable
region is always relative to the pointing device and it’s cast ray. There is no other
solution than to create the screen shot relative to the pointing device, unlike the
other moonshots which are created from the camera’s view (s. a. Chapter 5.6.6
Digression on p. 48).

Figure 21.: Cropped screen shot for the ID calculation of IntenSelect. Note that
all pixels were checked for this screen shot, not just the ones inside the
target region.

5.6.5.1. Calculating the Selection’s Endpoint for IntenSelect

First we need to calculate the location of the endpoint on the canvas, since the user
does not have to actually point at the object we can no longer get this from the cast
ray.
Instead we simulate a plane at the target object’s location and orient it so that the
pointing device’s forward vector is orthogonal to it. By calculating the intersection
point with this plane we get the endpoint for the selection.
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5.6.5.2. Calculating the Target Region

We actually don’t need to check every pixel, since only a small amount of pixels on
the screen are of interest to us (those which may potentially lead to selection of the
target object). We can do this by calculating the radius of the cone at the depth of
the plane and calculating the pixels inside this circle.
Since close objects can have an effect on the target region we will also have to check
against them.
To do this we project the target object’s midpoint onto the canvas, next we calculate
the radius of the cone for the given depth. For conic scoring the radius will be to
big if we use the distance from pointing device to the plane. So instead we use the
same decrease with dprojk as in Equation 3.2 for the calculation of the angle between
ray and object.
Note that the radius does not completely match the one Equation 3.2 would provide,
it produces a slightly bigger radius, but having a bit of buffer in case of rounding
mistakes is desirable.
With center point and radius it’s easy to determine which pixels are inside the
circle. First subtract the radius from the Y-component of the center point, this is
the highest part of the circle. Then we only need to go through each line until we
reach the line with the center point again, since we can just mirror the rest. For each
line we can calculate the extents in x direction with the Pythagorean equation. We
know the Hypotenuse in form of the radius and the height in form of the distance
between the current line and the center point.
Lastly we just add the pixels inside the extents for this line and do the same for the
mirrored line.

5.6.5.3. Calculating the Scores for each Pixel

Finally we need to calculate the scores for each pixel inside the target region, for all
objects. If this pixel would select the target object color it yellow, if it would select
another object color it cyan, else color it black.
To do this we will need to calculate the directional vector between the camera
location (the location of the pointing device at the time of taking the screen shot)
and each pixel. We calculate the top-left point of the canvas with the same method
shown in Chapter 5.6.2 Calculating the Pixel Location on p. 42. We will also need
to know how big a pixel on the screen shot is in world coordinates so we divide
the dimensions of the screen shot in world space with the amount of pixels in both
directions.
We then can construct a 3D vector representing the location of the pixel in relation
to the top-left corner of the canvas. Then we orient this vector correctly by rotating
it to match the pointing devices rotation in world space. With this the canvas now
is orthogonal to the forward vector of the pointing device.
Lastly we calculate the point’s world location by adding the canvas vector to the
vector representing the top left point of the canvas in world space. We get the

47



5. Implementation 5.6. Fitts’ Law Implementation

directional vector by subtracting the pointing devices location from this point and
then normalizing it.
With this we can use the given scoring function of IntenSelect to calculate which
object would be selected by this pixel.

5.6.6. Digression
It’s not fully clear if the screen shots should be taken from the pointing device’s
perspective or that of the camera. An argument can be made for both. Taking the
screen shot from the camera’s perspective makes sense, since that is the view the
user’s decisions stem from. At the same time the view from the pointing device
shows the view for the “actual” selection. So it’s the same problem as the eye-hand
visibility mismatch described in chapter 2.3.3 on p. 15.
It’s unclear if ID’s calculated from these views are comparable. One view could
potentially see things that are occluded in the other or be closer to an object. At
the same time the pointing device usually is held somewhat close to the user’s view
point for pointing tasks.
This might, potentially, lead to a disparity between the IDs of IntenSelect and those
of the rest of the selection techniques.
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6. Evaluation
Two prestudies were conducted before the final study. The first to determine the
most promising version of LenSelect, the second to find the most suitable parame-
ters. All studies were conducted separately for the HMD and the Powerwall. The
parameters of the test (like the distance of the objects, movement speed, etc.) were
kept the same between HMD and Powerwall for each study.
The only difference for the Powerwall was a change of the ground texture, as the
Powerwall has less contrast than the Vive Pro. So the grass tetxture was changed
to a water texture to provide better contrast between objects and the yellow border.
Tests on the Powerwall showed that filtering for location and rotation of the input
device is neccesary, because the tracking system sometimes showed latency and/or
tracking issues. The 1€-Filter [13] was implemented to combat this, to keep compa-
rability, the same filter was applied to the Vive controller with the same parameters.
After a bit of testing a “Focus Depth” of 400 was chosen for the Same-Screen-Size
and Combined scaling, this value was kept throughout all studies.
A square was affixed to the ground with duct tape, participants were not allowed
to step outside this square during selection. This was done so participants had an
equivalent in the real world to the brown square they see in Virtual Reality. With
the Powerwall participants could not see the square on the ground in virtual reality
so a real counterpart was necessary. The square had a distance of 2 meters to the
Powerwall.
For the sake of brevity only relevant figures are presented here, as showing all figures
would lead to unreasonable bloat.

6.1. Apparatus
The HTC Vive Pro was used for the HMD study. It provides a resolution of 1440x800
pixels per eye. It was used in conjunction with Windows 10 and an NVidia Titan
V with 64 GB RAM and an Intel Core i7 7800X with 3.5 GHz.
The same hardware was used for the Powerwall. Optitrack, the system used for
tracking the wand, used for selection, ran on a separate computer with an Intel
Core 2 Duo processor with 6700 GHz. It had 6 GB of RAM and used an NVidia
GeForce GTX 680. It also ran Windows 10.
The pointing device for the Powerwall was made of the cardboard roll that comes
with kitchen paper. Affixed on this cardboard roll were the markers used for the
tracking. The selection was indicated via a mouse that was held in the empty non-
dominant hand. This means the Heisenberg Effect of Spatial Interaction does not
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apply for the Powerwall studies.

6.2. Statistical Analysis
Equivalence testing is used for further investigation into the data. The python pack-
age Pingouin [56] is used for these analyses.
The purpose is to find evidence that differences between two groups are indeed real
and the data is not just differing by pure chance. To do this it demonstrates that
mean differences between groups are small enough that they can be considered prac-
tically unimportant.
The null hypothesis of these tests is that populations are equal. A probability for
this null hypothesis is calculated. If this probability is lower than a significance level
α the null hypothesis is rejected and differences between groups are considered to
be significant [50, 69f].
This α is usually chosen to be 0.05, it signifies the risk of mistakenly concluding a
difference exists even though no actual difference exists between groups.
These analyses come with a few assumptions: Normality of sampling distributions
of means, independent errors, homogeneity of errors and absence of outliers [50,
pp. 86–90].
Both normality testing with the Shapiro-Wilk test and visualizing the data as a
histogram shows that sampling distributions are not necessarily normal for Fitts’
data and the questionnaire. The Levene test also shows homoscedasticity does not
always apply for Fitts’ data, while it mostly does for data from the questionnaire.
Sample sizes can also be unequal for Fitts’ data.
After some consideration Welch’s ANOVA with subsequent Games-Howell post-hoc
test was chosen for Fitts’ data. This is because Cribbie, Fiksenbaum and Keselmann
recommend the Welch test if distribution is not normal and variances are unequal
[14, p. 70]. Welch’s ANOVA is independent of variances but still assumes normal
distribution. However: “Several studies have demonstrated that the original James
and Welch procedures are generally robust (with respect to Type I errors and power)
when group variances and sample sizes are extremely unequal [...] and further that
the test is robust to unequal variances and non-normal data, as long as the non-
normality is mild to moderate” [14, p. 57]. All of which is a concern for Fitts’ data.
Welch’s ANOVA is not suited for comparison of data with no variance, as that would
lead to division by zero. So groups with zero variance will be removed from the test.
The Games-Howell post-hoc test is recommended after a Welch ANOVA by pin-
gouin’s documentation [55]. Like Welch’s test it works with unequal variances and
is robust to non-normality. But might be liberal when variances are equal and con-
servative when they differ, it might also be too liberal if sample sizes are too small
(< 15) [47, 25f].
The Kruskal-Wallis test with subsequent Tukey post-hoc test will be used for the
questionnaire. Mircioiu and Atkinson show that parametric and non-parametric
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methods for Likert scale data for large sample size (> 15) perform equally well [40,
p. 1].
However sample sizes are often smaller than this for the presented data, therefore
the Kruskal-Wallis test is chosen. The Kruskal-Wallis test is a non-parametric test
and does not assume normality, which fits Likert scale data well, but assumes equal
variances. Mircioiu and Atkinson’s findings, however, show for a large number of
situations both normality and homogeneity of variance do not play much of a role.
This applies to situations with the following characteristics: The sample sizes are
(nearly) equal or the assumed underlying population distributions are of the same
shape or nearly so [40, p. 11].
The Tukey post-hoc test is recommended by the pingouin library after a Kruskal-
Wallis test [55]. The Games-Howell post-hoc test is not suited for this data, because
it might be too liberal if sample size is too small.
Outliers as seen in the boxplots are generally not removed without good reason.
Welch’s ANOVA is somewhat robust to outliers [27, p. 275]. The same goes for the
Kruskal-Wallis test as long as the amount of outliers is small [26, p. 468].
When a significant difference is found between groups they are connected by a red
line, the amount of stars on said line shows the significance level:

* if p <= 5e−2 and p > 1e−2

** if p <= 1e−2 and p > 1e−3

*** if p <= 1e−3

If a test could not be calculated for whatever reason a blue star is added to the
figure in the upper left or beside the label.
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6.3. Prestudy
The prestudy serves to determine the most promising version of LenSelect. The
compared selection techniques are LenSelect with all scaling functions discussed in
Chapter 5.2: LenSelect Scaling Functions, while RaySelection serves as a baseline.
All nine test scenarios were used. An opening angle of 15° was used for all lenses.

6.3.1. Vive
The study had n=7 participants, all of which self-identified as male and were either
students, trainees or research assistants. One person was left handed and none had
a form of color blindness. Their ages ranged from 19 to 30 with a mean age of 24.86
and a standard deviation of 4.02 and a median age of 26.
Participants were asked to rate the following statements on a Likert Scale ranging
from 1 to 5, where 5 is complete agreement and 1 complete disagreement:

Question Mean Median Standard
Deviation

I’m playing video games often. 3.857 4 1.125
I’m often playing first person shooters. 2.714 3 1.385
I have experience with 3D-pointing devices. 3.429 3 1.294
I’m skilled at video games. 3.857 4 0.833
I have experience with HMD. 3.429 4 1.678

Table 1.: Vive PreStudy: Familiarity of participants with the presented tasks.

Participants showed a medium to high familiarity with the presented tasks and with
VR in general.

Hypothesis 1: LenSelect Root will perform best of all selection techniques.
Hypothesis 2: LenSelect Root will be the preferred selection technique of partici-
pants.

6.3.1.1. Questionnaire Data

The QUESI Total is comprised of the five QUESI scales: Cognitive Load, Familiar-
ity, Perceived Achievement of Objectives, Perceived Error Rate, Perceived Learning
Effort. In addition the Magic Experience scale is also incorporated.
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Complexity and Fun:

Figure 22.: Vive Prestudy: Average complexity and fun rating per selection tech-
nique. A lower value is better for complexity, while a higher value is
better for the fun rating.

Root scaling is the closest in complexity to RaySelection according to participants.
However, according to the Kruskal-Wallis test none of these findings are significant
H(4) = 9.21, p = 0.056. This could be a sign that LenSelect is generally about as
complex as RaySelection, no matter the scaling function. LenSelect SameScreen-
Size shows the highest complexity rating, while RaySelection shows the lowest. All
LenSelect techniques perform similarly and somewhere between RaySeelction and
LenSelect SameScreenSize.
The Kruskal-Wallis test is significant for the “fun” rating between selection tech-
niques (H(4) = 12.62, p = 0.013). The Tukey post-hoc test only shows a significant
difference between LenSelect Root (M = 3.86, SD = 1.07) and LenSelect Same-
ScreenSize (M = 2.0, SD = 0.82). The former has the highest rating, the latter
the lowest. Other selection techniques lie somewhere between. Still both LenSelect
Linear (M = 3.29, SD = 1.25) and LenSelect Combined (M = 3.43, SD = 0.98) are
rated higher than RaySelection (M = 2.43, SD = 0.79) even if not significantly so.

QUESI Total and User Ranking:

Figure 23.: Vive Prestudy: QUESI Total and user ranking per selection technique.
A higher value is better.
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A significant effect can be observed for the QUESI Total (H(4) = 9.92, p = 0.042).
Post-hoc tests show that LenSelect Root (M = 4.30, SD = 0.46) again performs sig-
nificantly better than LenSelect SameScreenSize (M = 3.23, SD = 0.82). LenSelect
Root again performs best of all techniques. LenSelect Linear(M = 3.82, SD = 0.66)
shows a similar rating to RaySelection (M = 3.52, SD = 0.96). While LenSelect
Combined’s rating (M = 4.03, SD = 0.46) is closer to that of LenSelect Root.
The User Ranking shows a significant effect (H(4) = 14.85, p = 0.005). This time
post-hoc tests reveal LenSelect Root (4.43, SD = 0.53) shows a significantly higher
user ranking compared to RaySelection (M = 2.57, SD = 0.98) and LenSelect
SameScreenSize (M = 1.57, SD = 0.79). LenSelect Combined (M = 3.29, SD =
1.70) shows a significantly higher rating than LenSelect SameScreenSize. LenSelect
SameScreenSize performs worst of all tested selection techniques. LenSelect Linear
(M = 3.14, SD = 1.35) shows a similar ranking to LenSelect Combined, but is not
significant compared to any other technique.

Perceived Achievement of Objectives:

Figure 24.: Vive Prestudy: Average ranking according to Perceived Achievement of
Objectives per selection technique. A higher value is better.

In the Perceived Achievement of Objectives rating (H(4) = 13.14, p = 0.010) both
LenSelect Root (M = 4.38, SD = 0.59) and LenSelect Combined (4.43, SD = 0.25)
show a significantly better rating than RaySelection (M = 3.1, SD = 0.92). Both
are the highest rated selection techniques, with LenSelect Combined rated only
slightly higher than LenSelect Root RaySelection is the lowest rated selection tech-
nique. LenSelect Linear (M = 3.71, SD = 0.89) and LenSelect SameScreenSize
(M = 3.52, SD = 0.81) perform similarly and are not significant compared to any
selection technique.

LenSelect Root is clearly the preferred selection technique by participants, usually
followed by LenSelect Combined. LenSelect SameScreenSize on the other hand is
the least preferred selection technique by a fair margin.
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6.3.1.2. Fitts’ Data

One outlier was removed for LenSelect Linear, due to the participant being dis-
tracted, resulting in a much higher selection time than usual.

Figure 25.: Vive Prestudy: Regression Data for all selection techniques.

The scatter plots shows clusters of lower IDs for LenSelect compared to RaySelec-
tion. When plotting a linear regression for this data we can see that all LenSelect
techniques start at lower IDs. LenSelect Combined and LenSelect Root also end at
lower IDs, meaning these were not encountered during the study. Still LenSelect fails
to produce lower selection times for lower IDs. Only at ∼ 3 does LenSelect Same
ScreenSize start to produce better selection times. After that LenSelect SameScreen-
Size provides the best selection times, followed by LenSelect Linear. For LenSelect
Root and LenSelect Combined it even starts at an ID of ∼ 4.
At the same these lines are not completely comparable, as LenSelect techniques
would have a smaller ID compared to RaySelection for the exact same selection, due
to scaling the objects.
It’s of note that only samples within 95% of standard deviation of selection times
around the regression line were kept for the scatter plots shown here.
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Average Index of Difficulty and Task Completion Time:

Figure 26.: Vive Prestudy: Average Index of Difficulty and task completion time per
selection technique.

RaySelection (n = 561), LenSelect Linear (n = 564), LenSelect Root (n = 572),
LenSelect SameScreenSize (n = 563) and LenSelect Combined ( n = 560).
The Welch ANOVA shows a significant effect (F (4, 1405.78) = 52.6, p < 0.001, η2 =
0.07) for the average Index of Difficulty. Where RaySelection (M = 3.02, SD = 0.93)
produces a significantly higher ID than all other selection techniques. While LenS-
elect SameScreenSize (M = 2.81, SD = 1.02) produces a significantly higher ID
than all other LenSelect techniques. The other techniques perform similarly com-
pared to each other. With LenSelect Root (M = 2.36, SD = 0.85) and LenSelect
Combined (M = 2.41, SD = 0.94) performing slightly better than LenSelect Linear
(M = 2.48, SD = 1.0)
The average task completion time also shows a significant effect (F (4, 1390.73) =
7.66, p < 0.001, η2 = 0.01). LenSelect Root (M = 0.70, SD = 0.32) performs best
and significantly better than RaySelection (M = 0.81, SD = 0.44), LenSelect Linear
(M = 0.75, SD = 0.34) and LenSelect SameScreenSize (M = 0.78, SD0.44). While
LenSelect Combined (M = 0.73, SD = 0.34) only performs significantly better than
RaySelection. LenSelect Root shows the lowest selection time. But the difference to
RaySelection seems low with only ∼ 100ms. LenSelect Combined is a close second.

Average Selection Errors and Index of Performance:
Average Selection Errors show a significant effect as well (F (4, 1399.13) = 3.3, p =
0.011, η2 = 0.006). RaySelection (M = 0.22, SD = 0.58) shows significantly more
selection errors than LenSelect Linear (M = 0.13, SD = 0.46), LenSelect Root
(M = 0.12, SD = 0.4) and LenSelect Combined (M = 0.12, SD = 0.38). It’s also of
note here, that RaySelection shows almost double the amount of errors compared
to these techniques. LenSelect SameScreenSize (M = 0.16, SD = 0.49) shows no
significant differences.
The average Index of Performance on the other hand does not seem to make much
sense in regards to the other data (F (4, 1403.97) = 21.52, p < 0.001, η2 = 0.031).
RaySelection (M = 0.42, SD = 1.59), which is outperformed in all other scales,
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does significantly better than all other selection techniques. While LenSelect Same-
ScreenSize (M = 4.09, SD = 1.38) performs better than LenSelect Linear (M =
3.56, SD = 1.41), LenSelect Root (M = 3.68, SD = 1.38) and LenSelect Combined
(M = 3.59, SD = 1.49). Generally selection techniques that perform well in the
other scales seem to perform badly here, while techniques that performed worse
seem to perform better. This figure will be removed from here on out.

Figure 27.: Vive Prestudy: Average selection errors and Index of Performance per
selection technique.

Throughput TPb:
Even the second scale for throughput (TPb) does not really align with the rest of the
data. It’s easy to tell why: TPb only takes into account the slope of the regression
and ignores that other selection techniques generally produce a lower ID. One could
argue this measure is pointless then, since usually selection techniques are designed
to reduce the Index of Difficulty for a selection. Both these scales will be ignored
for the rest of the study.
As Zhai already argued slope and intercept are the more important factors to report.
We can see that RaySelection has the lowest intercept, with the only technique com-
ing close being LenSelect Root. The other three techniques show a similar intercept.
But all LenSelect techniques show a lower slope. LenSelect SameScreenSize has the
lowest slope, while LenSelect Root has the highest among LenSelect techniques.

RaySelection LenSelect
Linear

LenSelect
Root

LenSelect
Same-
ScreenSize

LenSelect
Combined

a 0.210 0.366 0.297 0.297 0.294
b 0.178 0.134 0.154 0.139 0.167
TPb 5.617 7.457 6.514 7.206 5.975

Table 2.: Vive PreStudy: a, b and TPb for different selection techniques.

As can be seen LenSelect Combined and LenSelect Root produce, on average, a
lower Index of Difficulty and less selection errors. While the difference in selection

57



6. Evaluation 6.3. Prestudy

times is only minor, though statistically significant. Interestingly LenSelect Same-
ScreenSize still performs better in these scales than RaySelection. So the dislike
seen in the Questionnaire does not seem to stem form it’s performance but other
factors that reduce user satisfaction.

Propane Tanks Far:

Figure 28.: Vive Prestudy: Average selection errors for the “Propane Tanks Far”
test scenario.

Figure 29.: Vive Prestudy: Average Index of Performance for the “Propane Tanks
Far” test scenario.

With (n = 70).
But we can also see that LenSelect Combined performs better under certain circum-
stances than LenSelect Root, for example the “Propane Tanks Far” test scenario.
The average ID for this test scenario is highly significant. (F (4, 164.42) = 235.67, p <
0.01, η2 = 0.59). Here LenSelect Combined (M = 1.21, SD = 0.31) shows the lowest
ID and significantly lower values than RaySelection (M = 2.11, SD = 0.16), LenS-
elect Linear (M = 1.51, SD = 0.19), LenSelect Root (1.50, SD = 0.10) and LenS-
elect SameScreenSize (M = 1.43, SD = 0.38). But also shows a higher standard
deviation. While RaySelection performs significantly worse than all other selection
techniques.
But this does not show much of an effect on selection times, as significant differences
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can not be observed here by post-hoc tests, even though the Welch ANOVA is signif-
icant (F (4, 170.95) = 2.50, p = 0.044). RaySelection (M = 0.60, SD = 0.20), LenS-
elect Linear (M = 0.61, SD = 0.21), LenSelect Root (M = 0.54, SD = 0.20), LenS-
elect SameScreenSize (M = 0.65, SD = 0.31) and LenSelect Combined (M = 0.16).
The same goes for selection errors (F (4, 138) = 2.95, p = 0.022). RaySelection
(M = 0.07, SD = 0.26), LenSelect Linear (M = 0.06, SD = 0.29), LenSelect Root
(M = 0.07, SD = 0.39), LenSelect SameScreenSize (M = 0.06, SD = 0.0) and
LenSelect Combined (M = 0.0, SD = 0.0). At the same time LenSelect Combined
showed 0 standard deviation and therefore could not be included in the post-hoc
test. So it probably is significant.
So depending on the use-case, different scaling methods might be preferable.

Results:
Hypothesis 1 came true, LenSelect Root shows a smaller ID and less selection errors
than the other selection techniques. Even it’s task completion time is better, al-
though it is not clear if it is a noticeable difference. The low number of participants
could be a factor here. Hypothesis 2 also came true LenSelect Root is definitely the
preferred selection technique among users.
Also consider that sometimes the ID could not be calculated, this is the reason why
sample sizes differ.

6.3.2. Powerwall
The study had n=7 participants, all of which self-identified as male and were either
students or research associates. One person was left handed and none had a form
of color blindness. Their ages ranged from 22 to 30 with a mean age of 27.57 and a
standard deviation of 2.77 and a median age of 29.
Participants were asked to rate the following statements on a Likert Scale ranging
from 1 to 5, where 5 is complete agreement and 1 complete disagreement:

Question Mean Median Standard
Deviation

I’m playing video games often. 4.142 4 0.832
I’m often playing first person shooters. 2.857 3 1.124
I have experience with 3D-pointing devices. 4.142 4 0.638
I’m skilled at video games. 4 4 1.069
I have experience with HMD. 4 4 0.925

Table 3.: Powerwall Prestudy: Familiarity of participants with the presented tasks.

Participants show a rather high familiarity with the presented tasks.
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Hypothesis 1: LenSelect Root will perform best of all selection techniques.
Hypothesis 2: LenSelect Root will be the preferred selection technique of partici-
pants.

6.3.2.1. Questionnaire Data

None of the results seem to be significant regarding these groups. The Kruskal-Wallis
test shows no significant results for either Complexity (H(4) = 6.69, p = 0.15), Fun
(H(4) = 4.61, p = 0.33), QUESI Total (H(4) = 1.11, p = 0.89) or User Ranking
(H(4) = 8.74, p = 0.07).

Figure 30.: Powerwall Prestudy: Fun rating and user ranking per selection tech-
nique. A higher value is better.

Results are similar to those of the Vive PreStudy, only they don’t seem to be sig-
nificant. SameScreenSize scaling still performs worst of all scaling functions. Still
LenSelect Combined and LenSelect Root are the preferred selection techniques, even
if not significantly so. Furthermore, this time, LenSelect Combined shows a slightly
higher ranking than LenSelect Root.
Since equivalence analysis is inconclusive here, it is hard to say which selection
technique is the best. But as LenSelect Root and Combined still share the best
results and performed best in the previous study. It’s probably safe to assume they
performed the best here as well. Again no significant effect could be found for the
QUESI scales.
Additionally one participant reported discomfort with the visual disruption from
scaling the objects.

6.3.2.2. Fitts’ Data

Again an outlier was removed for LenSelect Root, due to the participant being dis-
tracted.
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Figure 31.: Powerwall Prestudy: Regression Data for all selection techniques.

Again LenSelect techniques show a collection of data points at an ID RaySelection
does not reach. Specifically LenSelect Combined produces a very low ID. LenSelect
SameScreenSize starts producing better selection times at an ID ∼ 2. Others take
much longer before they produce better selection times than RaySelection. Weirdly
LenSelect SameScreenSize seems to perform best according to this data. A notion
which is disproved by the following results.

Average Index of Difficulty and Task Completion Time:

Figure 32.: Powerwall Prestudy: Average Index of Difficulty per selection technique.

With RaySelection (n = 411), LenSelect Linear (n = 459), LenSelect Root (n =
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433), LenSelect SameScreenSize (n = 435) and LenSelect Combined (n = 454).
The average Index of Difficulty is highly significant (F (4, 1090.45) = 54.83, p <
0.001, η2 = 0.09). Here RaySeelction (M = 2.65, SD = 0.88) performs the worst of
all selection techniques and shows a significantly higher ID than the other tech-
niques. LenSelect SameScreenSize (M = 2.30, SD = 0.91) also performs sig-
nificantly worse than LenSelect Linear (M = 2.05, SD = 0.95), LenSelect Root
(M = 1.95, SD = 0.78) and LenSelect Combined (M = 1.90, SD = 0.48). LenSelect
Linear, LenSelect Root and LenSelect Combined seem to perform similar compared
to each other.
This data is also significant (F (4, 1074.9) = 4.18, p = 0.002, η2 = 0.007) for task
completion time. Here RaySelection (M = 1.0, SD = 0.65) shows significantly
higher selection times than LenSelect SameScreenSize (M = 0.86, SD = 0.46) and
LenSelect Combined (M = 0.85, SD = 0.58). LenSelect Root (M = 0.9, SD = 0.91)
is not significant due to an outlier, as can be seen in the high standard deviation.
Removing this outlier leads to LenSelect Root also being significant in regards to
RaySelection. So, only LenSelect Linear (M = 0.9, SD = 0.48) is not significant.
The difference here is the same as in the Vive prestudy with ∼ 100ms.

Average Selection Errors:

Figure 33.: Powerwall Prestudy: Average selection errors per selection technique.

The average selection error per selection technique is also significant (F (4, 1081.28) =
3.01, p = 0.017). LenSelect Root (M = 0.07, SD = 0.33) performs significantly
better than RaySelection (M = 0.17, SD = 0.51). All other selection techniques
show no significant differences. LenSelect Root is the only selection technique with
a significant effect. It again shows about half the selection errors that RaySelec-
tion does. LenSelect Linear (M = 0.10, SD = 0.39), LenSelect SameScreenSize
(M = 0.11, SD = 0.45).

Throughput TPb:
Again RaySelection shows a lower intercept. But the slope is much closer to that of
the LenSelect techniques. LenSelect SameScreenSize shows the lowest slope.
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RaySelection LenSelect
Linear

LenSelect
Root

LenSelect
Same-
ScreenSize

LenSelect
Combined

a 0.194 0.361 0.342 0.334 0.253
b 0.282 0.230 0.236 0.195 0.279
TPb 3.540 4.340 4.240 5.122 3.587

Table 4.: Powerwall Prestudy: a, b and TPb for different selection techniques.

LenSelect Root and Combined again seem to perform best of all selection techniques.
Although the differences in selection times are less pronounced this time. This might
be because of the lack of contrast on the Powerwall. As the lens is colored blue it
might be harder to make out if the target object can be selected already or not.

Propane Tanks Far Index of Difficulty and Task Completion Time:

Figure 34.: Powerwall Prestudy: Index of Difficulty and task completion time for
the “Propane Tanks Far” test scenario per selection technique.

With RaySelection (n = 59) and the other techniques n = 61.
LenSelect Combined again performs better than all other tested selection techniques
in certain circumstances. As is the case with the ID for the “Propane Tanks Far”
test scenario, which is highly significant (F (4, 146.95) = 11.4, p < 0.001, η2 = 0.156).
LenSelect Combined (M = 0.93, SD = 0.23) shows a significantly lower ID than all
other selection techniques. While RaySelection (M = 1.96, SD0.28) shows a sig-
nificantly higher ID than LenSelect Linear(M = 1.37, SD = 0.21), LenSelect Root
(M = 1.33, SD = 0.14), LenSelect SameScreenSize (M = 1.20, SD = 0.34) and
LenSelect Combined. At the same time a higher standard deviation can be ob-
served for LenSelect Combined compared to LenSelect Root.
This time the lowered ID also results in lower selection times, however. As task
completion times are also highly significant (F (4, 143.48) = 14.45, p < 0.001, η2 =
0.020). Here LenSelect Combined (M = 0.56, SD = 0.15) produces significantly
lower selection times than RaySelection (M = 0.79, SD = 0.20) and LenSelect Lin-
ear (M = 0.75, SD = 0.29). Removing the very high outlier for LenSelect Root
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(M = 0.96, SD = 2.10) also reveals a significant effect between it and LenSelect
Combined . At the same time LenSelect SameScreenSize (M = 0.64, SD = 0.28)
produces significantly lower selection times compared to RaySelection.

Results:
It’s not entirely clear if Hypothesis 1 and 2 came true, even though LenSelect Root
and Combined perform slightly better than other selection techniques, their results
are not always significant. At best one can say both Root and Combined scaling are
equally preferred and performed equally well.
Still, LenSelect Root and LenSelect Combined prove to be the most promising of
the tested selection techniques. And taking the results of the previous study into
account both of them will be included in the final study.
Interestingly the ID seems generally lower for the Powerwall selections compared to
those from the HTC Vive, this might be because the distance to objects does not
perfectly match that of the Vive.

Conclusion:
Both LenSelect Root and LenSelect Combined will be used for the final studies with
the Vive and Powerwall.
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6.4. Best Parameter Prestudy
This study serves to find the best parameters for the given selection techniques
from the first prestudy. As such LenSelect Root and LenSelect Combined will be
evaluated here. The goal of this study is to find the right opening angle for the lens
of both selection techniques and if said lens should be visible or not. There again
will be separate studies for Vive and Powerwall.
The opening angles to evaluate are: Small = 10°, medium = 15°, big = 20°. It only
uses five of the nine test scenarios and a reduced version of the QUESI questionnaire
with only one question per scale. The removed selection techniques are: “Propane
Tanks Close”, “Erratic Spheres” “Fast Sphere” and “Rotating Cans”.

6.4.1. Vive
The study had n=7 participants, all of which self-identified as male and were either
students, research associates or employed in a related field. One person was left
handed and none had a form of color blindness. Their ages ranged from 22 to 29
with a mean age of 23.85, with a standard deviation of 2.55 and a median age of 28.
Participants were asked to rate the following statements on a Likert Scale ranging
from 1 to 5, where 5 is complete agreement and 1 complete disagreement:

Question Mean Median Standard
Deviation

I’m playing video games often. 3.714 4 1.385
I’m often playing first person shooters. 2.428 2 1.178
I have experience with 3D-pointing devices. 4.285 5 0.88
I’m skilled at video games. 4.428 5 1.049
I have experience with HMD. 4.714 5 0.451

Table 5.: Vive Parameter Study: Familiarity of participants with the presented
tasks.

Participants show a high familiarity with the presented tasks.

Hypothesis 1: A medium-sized lens will be preferred.
Hypothesis 2: A visible lens will be preferred.

Opinions about the lens’s size seem to differ. One participant thought the small
cone is too small, another liked the small cone better than the rest. Even the lens’s
visibility is not as clear cut, one participant liked the visible cone for practice but
found it distracting for prolonged use. Another thought a visible lens was better.
It’s hard to say if the parameters are very subjective or if the data is lacking.
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6.4.1.1. Questionnaire Data Combined Scaling

Complexity and Fun:

Figure 35.: Vive Parameter Study (Combined Scaling): Average complexity and fun
rating per selection technique. A lower value is better for the complexity
rating, while a higher value is better for the fun rating.

The result for the complexity rating is not significant (H(5) = 2.19, p = 0.823). This
might be evidence that the complexity stays the same regardless of size and visibility
of the used lens. This is supported by the medians of all selection techniques being
the same.
The result for the fun rating is also not significant (H(5) = 3.09, p = 0.687). The
same conclusions as with the complexity rating apply here. Only the medians seem
to differ between visible and invisible lenses.

QUESI Total and User Ranking:

Figure 36.: Vive Parameter Study (Combined Scaling): Average QUESI Total and
user ranking per selection technique. A higher value is better.

Even the QUESI Totals (H(5) = 1.00, p = 0.962) show no significant difference with
the median staying roughly the same across lens parameters.
The QUESI Total isolated for lens visibility also shows no significant differences
between visible and invisible lenses (H(1) = 0.26, p = 0.608).
As does the total isolated for lens size H(2) = 0.72, p = 0.698.
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According to the Kruskal-Wallis test there is also no significant effect for the User
Ranking (H(5) = 6.39, p = 0.271).
The user ranking isolated for lens visibility shows no significant effect either (H(1) =
3.47, p = 0.062). Even though there is a tendency for invisible lenses to score lower
than visible ones.
Isolating for lens size also shows no effect (H(2) = 2.85, p = 0.241). Here a ten-
dency for small lenses to score lower can be observed, with medium lenses having a
tendency to perform slightly better than big lenses.

Results:
Means and medians are close together usually. So not many conclusions can be
drawn from the questionnaire. Using a medium-sized, visible lens seems like the
most agreeable course of action. As even though there is no clear preference among
users, a slight tendency toward these parameters can be observed. But the opacity
of the lens will be reduced to improve visibility of target objects. Both Hypothesis
1 and 2 came true.

6.4.1.2. Questionnaire Data Root Scaling

Complexity and Fun:

Figure 37.: Vive Parameter Study (Root Scaling): Average complexity and fun rat-
ing per selection technique. A lower value is better for the complexity
rating, while a higher value is better for the fun rating.

For LenSelect Root no significant effect could be found for the complexity rating
(H(5) = 6.76, p = 0.239) either. The same hypothesis as with combined scaling can
be made here, that the complexity does not differ with different lens parameters.
The fun rating also showed no significant effect (H(5) = 2.06, p = 0.841). This time
there seems to be a tendency for medium-sized lenses to perform better.

QUESI Total and User Ranking:
The QUESI Total shows no significant effect as well (H(5) = 4.95, p = 0.422).
Isolating for visibility (H(1) = 1.14, p = 0.285) or lens size (H(2) = 2.49, p = 0.288)
also shows no significant effect.
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There is also no significant effect for the user ranking (H(5) = 5.59, p = 0.348).
Isolating the user ranking for lens visibility also yields no significant effect (H(1) =
2.58, p = 0.108). Although, again, a tendency towards a visible lens can be observed.
Isolating for lens size also shows no significant effect (H(2) = 2.97, p = 0.227). Again
a tendency of the small lens scoring lower can be observed.

Figure 38.: Vive Parameter Study (Root Scaling): Average QUESI Total and user
ranking per selection technique. A higher value is better.

Results: The results are practically identical to those of LenSelect Combined, a
visible, medium-sized lens seems to be preferred by participants. This means both
Hypothesis 1 and 2 came true.

6.4.1.3. Fitts’ Data Combined Scaling

The Welch ANOVA shows no significant effect for the Index of Difficulty (F (5, 483.88) =
0.078, p = 1.0, η2 < 0.001). The differences between lens parameters are also minus-
cule. This makes sense as a bigger or smaller lens should not have any bearing on
the Index of Difficulty, as should a visible lens, unless it makes it harder to see the
objects.
Average task completion time also shows no significant effect (F (5, 483.45) = 0.65, η2 =
0.003).
As does average errors (F (5, 479.76) = 0.29, p = 0.92, η2 = 0.001). In fact, all of
these are almost identical. The same effect can be observed in intercept and slope
for these different lens parameters.

Medium
Visible

Medium
Invisible

Big
Visible

Big
Invisible

Small
Visible

Small
Invisible

a 0.338 0.331 0.246 0.303 0.310 0.333
b 0.146 0.164 0.173 0.169 0.159 0.154
TPb 6.843 6.089 5.778 5.914 6.259 6.467

Table 6.: Vive Parameter Study (Combined Scaling): a, b and TPb with different
lens parameters.
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6.4.1.4. Fitts’ Data Root Scaling

The same observations as for Combined Scaling apply to Root Scaling.
The average ID shows no significant effect (F (5, 481.36) = 0.04, p = 1.0, η2 < 0.001).
The same goes for average task completion time (F (5, 480.52) = 1.61, p = 0.156, η2 =
0.007) and average selection errors (F (5, 480.31) = 0.56, p = 0.727, η2 = 0.004).
In the end Fitts’ data does not seem useful for deciding which lens parameters to
choose. Just as before the results are almost identical for all of these scales. And
intercept and slope are similar as well.

Medium
Visible

Medium
Invisible

Big
Visible

Big
Invisible

Small
Visible

Small
Invisible

a 0.355 0.301 0.234 0.261 0.396 0.354
b 0.170 0.196 0.215 0.202 0.134 0.142
TPb 5.865 5.086 4.647 4.939 7.455 7.038

Table 7.: Vive Parameter Study (Root Scaling): a, b and TPb with different lens
parameters.

6.4.2. Powerwall
The same conditions apply as with the Vive parameter study, but the Powerwall
test environment as described in Chapter 6.3.2 Powerwall on p. 59 is used.
The study had n=7 participants, all of which self-identified as male and were either
students, research associates or employed in a related field. Two people were left
handed and none had a form of color blindness. Their ages ranged from 22 to 29
with a mean age of 25.85, a standard deviation of 2.76 and a median age of 26.
Participants were asked to rate the following statements on a Likert Scale ranging
from 1 to 5, where 5 is complete agreement and 1 complete disagreement:

Question Mean Median Standard
Deviation

I’m playing video games often. 4 4 0.925
I’m often playing first person shooters. 2.714 2 1.277
I have experience with 3D-pointing devices. 4.428 4 1.049
I’m skilled at video games. 3.857 4 1.245
I have experience with HMD. 4.142 5 1.355

Table 8.: Powerwall Parameter Study: Familiarity of participants with the presented
tasks.

Participants show to be familiar with the presented tasks.
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Hypothesis 1: A medium sized lens will be preferred by participants.
Hypothesis 2: A visible lens will be preferred by participants.

6.4.2.1. Questionnaire Data Combined Scaling

Complexity and Fun:

Figure 39.: Powerwall Parameter Study (Combined Scaling): Average complexity
and fun rating per selection technique. A lower value is better for com-
plexity, while a higher value is better for fun.

The complexity rating is not significant again, according to the Kruskal-Wallis test
(H(5) = 0.82, p = 0.976). Again the assumption that complexity is independent of
lens parameters might be made.
No significant effect could be found for the fun rating either (H(5) = 1.47, p = 0.916).
This time the dispersion of the data is almost non-existent, this is further evidence
that the fun rating is independent of lens size and visibility, to a certain degree.

QUESI Total and User Ranking:

Figure 40.: Powerwall Parameter Study (Combined Scaling): Average QUESI Total
and user ranking per selection technique. A higher value is better.

The QUESI Total shows no significant effect, as well (H(5) = 0.52, p = 0.99). Like
the fun rating the dispersion is rather low.
Isolating for visibility (H(1) = 0.04, p = 0.85) and lens size (H(2) = 0.37, p = 0.833)
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also shows no significant effect.
The user ranking, however, does show a significant effect (H(5) = 13.65, p = 0.018).
Where the medium, invisible lens (M = 5.14, SD = 1.07) is rated significantly
higher than both of the small, visible (M = 2.57, SD = 1.81) and invisible lens
(M = 2.71, SD = 1.50). No significant effects could be observed for the other
lenses, but the medium, visible lens (M = 4.57, SD = 1.27) is almost rated equally
as high as the other medium-sized lens. Big, visible lens (M = 3.0, SD = 1.0), big,
invisible lens (M = 3.0, SD = 2.08).

User Ranking Isolated for Lens Size and Visibility:

Figure 41.: Powerwall Parameter Study (Combined Scaling): User ranking isolated
for lens size and visibility per selection technique. A higher value is
better.

Meanwhile isolating for lens size revealed a significant effect (H(2) = 13.24, p =
0.001). Where the medium lens (M = 4.15, SD = 0.63) was rated significantly
higher than the small (M = 4.05, SD = 0.63) and the big lens (M = 4.18, SD =
0.54).
Isolating the ranking for lens visibility yielded no significant effect however (H(1) =
0.20, p = 0.655). But a small tendency towards an invisible lens can be observed.

Results:
A medium lens is clearly preferred by users. Data is inconclusive for lens visibility,
however. So hypothesis 1 came true, while hypothesis 2 is unclear.

6.4.2.2. Questionnaire Data Root Scaling

Complexity and Fun:
No significant effect could be found for the complexity rating (H(5) = 3.58, p =
0.612). Like before dispersion is minimal.
The same goes for the fun rating (H(5) = 5.01, p = 0.414). As in the pages before,
results differ only slightly.
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Figure 42.: Powerwall Parameter Study (Combined Scaling): Complexity and fun
rating. A lower value is better for the complexity rating, while a higher
value is better for the fun rating.

QUESI Total:
Neither the QUESI Total (H(5) = 2.54, p = 0.770) nor isolating for either visibility
(H(1) = 0.01, p = 0.929) or lens size (H(2) = 1.07, p = 0.585) shows a significant
effect. Results shows only minor differences again.

User Ranking:

Figure 43.: Powerwall Parameter Study (Root Scaling): Average user ranking, a
higher value is better.

The User Ranking also shows no significant effect (H(5) = 10.59, p = 0.060). Even
though results differ much more than before. The p-value is almost significant even.
But isolating for lens visibility does (H(1) = 5.81, p = 0.016). Where the in-
visible (M = 4.14, SD = 1.68) lens is significantly preferred over the visible one
(M = 2.86, SD = 1.56).
Isolating for lens size does not show any effect on the other hand (H(2) = 4.45, p =
0.108). Again the p-value comes close to being significant and at least the big lens
seems to be the least preferred.

Results:
Combining the findings of LenSelect Root and LenSelect Combined shows a lens
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that is medium and invisible seems to be preferred. The sample size for this data
is rather small, this might be an explanation as to why the results seem to differ
between selection techniques. Hypothesis 1 did come true, a medium-sized lens is
preferred. But hypothesis 2 did not, an invisible lens is preferred.

6.4.2.3. Fitts’ Data Combined Scaling

No significant effect was found for the average Index of Difficulty (F (5, 486.71) =
0.05, p = 0.998, η2 < 0.001).
The Welch ANOVA also shows no significant effect for average task completion time
(F (5, 483.85) = 1.63, p = 0.150, η2 = 0.006) or average selection errors (F (5, 484.39) =
0.90, p = 0.482, η2 = 0.004).
Again only minor differences could be found for ID, task completion time, selection
errors, slope and intercept.

Medium
Visible

Medium
Invisible

Big
Visible

Big
Invisible

Small
Visible

Small
Invisible

a 0.315 0.387 0.309 0.360 0.444 0.397
b 0.284 0.255 0.263 0.263 0.189 0.228
TPb 3.514 3.914 3.797 3.796 5,279 4.383

Table 9.: Powerwall Parameter Study (Combined Scaling): a, b and TPb for different
lens parameters.

6.4.2.4. Fitts’ Data Root Scaling

Again no significant effect could be found for the average Index of Difficulty (F (5, 487.16) =
0.07, p = 0.996, η2 < 0.001). As well as average task completion time (F (5, 486.69) =
0.82, p = 0.536, η2 = 0.004) or average errors (F (5, 485.87) = 0.29, p = 0.920, η2 =
0.001).
As already remarked earlier, Fitts’ data is not suited for this comparison and will be
disregarded for this study. As clearly the results show only minor differences again.

Medium
Visible

Medium
Invisible

Big
Visible

Big
Invisible

Small
Visible

Small
Invisible

a 0.390 0.503 0.357 0.464 0.373 0.466
b 0.268 0.186 0.270 0.221 0.253 0.205
TPb 3.730 5.359 3.701 4.514 3.949 4.855

Table 10.: Powerwall Parameter Study (Root Scaling): a, b and TPb for different
lens parameters.
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Conclusion:
There isn’t much conclusive data to support a decision. However it seems an invis-
ible, medium-sized lens is preferred by participants for selection on the Powerwall.
Results are combined for both LenSelect techniques for better comparability and
because both scaling factors did not show much of a difference between each other.
Therefore it is assumed both show the same response from participants. A decision
is also harder to make due to the low number of study participants.
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6.5. Final Study
In this study LenSelect Root and LenSelect Combined will be compared to In-
tenSelect and Expand, RaySelection will again serve as a baseline. The parameters
gathered from the best parameter study will be applied to LenSelect Root and LenS-
elect Combined respectively.
After some testing the parameters for IntenSelect were chosen to be: 0.8 for the
Stickiness, 0.2 for the Snappiness and 0.9 for k.

Hypothesis 1: IntenSelect will be the most accepted selection technique.
Hypothesis 2: Expand will have the longest selection times.

6.5.1. Vive
The study had n = 20 participants, 15 of which self-identified as male and 5 as
female. Most of them were either research- or scientific assistants or students. All
of the participants were familiar in the field of Computer Science. Four people were
left handed and none had a form of color blindness. Their ages ranged from 20 to
35 with a mean age of 26.71, a standard deviation of 4.30 and a median of 27.5.
Participants were asked to rate the following statements on a Likert Scale ranging
from 1 to 5, where 5 is complete agreement and 1 complete disagreement:

Question Mean Median Standard
Deviation

I’m playing video games often. 3.8 4 0.872
I’m often playing first person shooters. 2.35 2 1.014
I have experience with 3D-pointing devices. 4.1 4 0.831
I’m skilled at video games. 3.75 4 0.942
I have experience with HMD. 3.75 4 1.260

Table 11.: Vive Study: Familiarity of participants with the presented tasks.

Participants showed a familiarity with the presented tasks.
Due to Covid-19 and the subsequent quarantine finding enough participants was
difficult. So some of the participants from previous studies also participated in the
final study. This applies to a total of 7 participants.

6.5.1.1. Questionnaire Data

Complexity and Fun:
According to the Kurskal-Wallis test a significant effect can be observed in the com-
plexity rating (H(4) = 30.63, p < 0.001). The Tukey post-hoc test reveals that
Expand (M = 3.35, SD = 1.14) is rated significantly worse than all other selection
techniques. And that IntenSelect (M = 2.45, SD = 1.15) is rated significantly worse
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than RaySelection (M = 1.5, SD = 0.83). RaySelection was rated the least complex,
followed by LenSelect Combined (M = 1.70, SD = 0.73) and then LenSelect Root
(M = 1.95, SD = 0.83). Both LenSelect techniques perform well when compared to
RaySelection.
The fun rating also shows a significant effect (H(4) = 14.70, p = 0.005). Expand
(M = 1.60, SD = 1.31) performs significantly worse than RaySelection (M =
3.95, SD = 0.94), LenSelect Root (M = 3.80, SD = 0.89), IntenSelect (M =
3.70, SD = 1.45) and LenSelect Combined (M = 3.95, SD = 0.76). The others
seem to perform equally well among themselves.

Figure 44.: Vive Study: Average complexity and fun rating per selection technique.
A lower value is better for the complexity rating, while a higher value is
better for the fun rating.

QUESI Total and User Ranking:

Figure 45.: Vive Study: QUESI Total and user ranking per selection technique. A
higher value is better.

The QUESI Total is significant as well (H(4) = 29.14, p < 0.001). RaySelec-
tion (M = 4.41, SD = 0.42) performs significantly better than IntenSelect (M =
3.64, SD = 1.0) and Expand (M = 3.22, SD = 0.86). While Expand shows a sig-
nificantly lower rating than LenSelect Root (M = 4.25, SD = 0.55) and LenSelect
Combined (M = 4.22, SD = 0.40) as well. Both LenSelect techniques are rated
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slightly lower than RaySelection, but not significantly so.
A significant effect can also be observed in the user ranking (H(4) = 26.93, p <
0.001). Here Expand (M = 1.55, SD = 1.05) is significantly less popular than
RaySelection (M = 3.40, SD = 1.27), LenSelect Root (M = 3.5, SD = 0.88), In-
tenSelect (M = 3.05, SD = 1.54) and LenSelect Combined (M = 3.40, SD = 1.35).
The other techniques are about equally popular. LenSelect Root shows the lowest
dispersion among it’s data after RaySelection. The other techniques are more con-
troversial.

Cognitive Load and Familiarity:

Figure 46.: Vive Study: Cognitive Load and Familiarity per selection technique. A
higher value is better.

The Cognitive Load also shows a significant effect (H(4) = 36.65, p < 0.001).
Expand (M = 2.88, SD = 1.07) performs significantly worse than RaySelection
(M = 4.62, SD = 0.56), LenSelect Root (M = 4.22, SD = 0.60) and LenSelect
Combined (M = 4.28, SD = 0.55). Only IntenSelect shows no significant difference
compared to Expand. While IntenSelect (M = 3.55, SD = 0.96) performs signifi-
cantly worse than RaySelection and LenSelect Combined. RaySelection is still the
best according to this scale, followed by LenSelect Root and LenSelect Combined.
The Familiarity scale is significant, too (H(4) = 40.48, p < 0.001). Where Ray-
Selection (M = 4.82, SD = 0.37) is rated highest and significantly higher than
IntenSelect (M = 3.65, SD = 1.15) and Expand (M = 3.33, SD = 0.88), which
is rated lowest. LenSelect Root (M = 4.47, SD = 0.52) and LenSelect Combined
(M = 4.53, SD = 0.48) perform significantly better than IntenSelect and Expand.

Perceived Learning Effort:
The Perceived Learning Effort scale is also significant (H(4) = 42.96, p < 0.001). Ex-
pand (M = 3.13, SD = 1.09), again, performs worst and significantly so compared
to RaySelection (M = 4.90, SD = 0.19), LenSelect Root (M = 4.55, SD = 0.52) and
LenSelect Combined (M = 4.55, SD = 0.52). IntenSelect (M = 3.77, SD = 1.14)
performs significantly worse than both LenSelect Root and LenSelect Combined.
The dispersion for RaySelection is very low as well, only the LenSelect techniques
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Figure 47.: Vive Study: Perceived Learning Effort per selection technique. A higher
value is better.

come close. IntenSelect and Expand, on the other hand, show very high dispersion.

Results:
As can be seen Expand scores lowest on all scales in the questionnaire. It’s the least
intuitive and least popular selection technique. Both LenSelect techniques are rated
higher or about the same as IntenSelect. LenSelect performs on par with RaySe-
lection and is among the most intuitive selection techniques. On all other QUESI
scales no significant effects could be found.

6.5.1.2. Fitts’ Data

Five samples had to be removed due to questions or distractions. Two for Expand,
two for LenSelect Combined and one for IntenSelect.

RaySelection LenSelect
Root

IntenSelect LenSelect
LenSelect
Combined

Expand

a 0.207 0.421 0.380 0.401 1.562
b 0.247 0.185 0.257 0.182 0.266
TPb 4.048 5.416 3.892 5.484 3.757

Table 12.: Vive Study: a, b and TPb for different selection techniques.

LenSelect and IntenSelect produce low IDs, while Expand shows much higher IDs
than the rest of the selection techniques. Expand also shows much higher selection
times than the other techniques. LenSelect produces lower selection times than
RaySelection at an ID of ∼ 3. IntenSelect shows a low intercept but a higher slope
than both LenSelect techniques. In practice this means LenSelect will perform better
than IntenSelect with higher ID. As in the prestudies RaySelection shows the lowest
intercept. But again the data is not completely comparable, as Inten- and LenSelect
will produce a lower ID for the same selection due to their target scaling compared
to RaySelection.
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Figure 48.: Vive Study: Regression Data for all selection techniques.

Again, consider that samples outside of 95% the standard deviation of selection time
around the regression were removed for the scatter plots shown here.

Average Index of Difficulty and Task Completion Time:

Figure 49.: Vive Study: Average Index of Difficulty and task completion time per
selection technique.

With RaySelection (n = 1496), LenSelect Root (n = 1499), IntenSelect (n = 1489),
LenSelect Combined (n = 1495) and Expand (n = 1446).
The Average Index of Difficulty is highly significant according to the Welch ANOVA
(F (4, 3698.82) = 668.34, p < 0.001, η2 = 0.291). According to the Games-Howell

79



6. Evaluation 6.5. Final Study

post-hoc test almost all groups are significant compared to each other. With Ex-
pand (M = 3.46, SD = 1.15) performing the worst, followed by RaySelection
(M = 2.47, SD = 0.93). Only LenSelect Root (M = 1.81, SD = 0.97) and LenSe-
lect Combined (M = 1.82, SD = 1.01) are not significant compared to each other.
While IntenSelect (M = 1.84, SD = 1.13) performs best of all selection techniques.
Even if only slightly compared to LenSelect (∼ 0.2).
The task completion time also shows a significant effect (F (4, 3624.75) = 490.05, p <
0.001, η2 = 0.366). Expand (M = 2.08, SD = 1.11) performs the worst compared to
all other selection techniques. LenSelect Root (M = 0.76, SD = 0.34) and LenSelect
Combined (M = 0.73, SD = 0.42) perform significantly better than RaySelection
(M = 0.82, SD = 0.47). While IntenSelect (M = 0.80, SD = 0.74) performs signif-
icantly worse than LenSelect Combined, but only marginally (∼ 70ms). LenSelect
Root and IntenSelect perform on par with each other. And IntenSelect is not sig-
nificant compared to RaySelection. IntenSelect does not manage to produce lower
selection times, despite it’s lower ID.

Average Selection Errors:

Figure 50.: Vive Study: Average selection errors per selection technique.

This scale shows a significant effect as well (F (4, 3686.90) = 6.38, p < 0.001, η2 =
0.004). RaySelection (0.20, SD = 0.55) performs significantly worse than LenSelect
Root (M = 0.11, SD = 0.40), IntenSelect (M = 0.13, SD = 0.59) and LenSelect
Combined (M = 0.13, SD = 0.42). Expand (M = 0.15, SD = 0.49) shows no
significant effect when compared to any other selection technique. Both LenSelect
techniques and IntenSelect show a similar amount of selection errors. Expand shows
a slightly higher amount of errors.

However results can differ with the test scenario.

Erratic Spheres:
With n = 100)
The selection errors for the “Erratic Spheres” test scenario show a significant effect
(F (4, 245.71) = 3.54, p = 0.008, η2 = 0.033). Here Expand (M = 0.12, SD =
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0.43) and IntenSelect (M = 0.08, SD = 0.37) perform significantly better than
RaySelection (M = 0.34, SD = 0.65) and the best out of all selection techniques.
LenSelect Root (M = 0.16, SD = 0.49) and LenSelect Combined (M = 0.21, SD =
0.43) show no significant effect, even though they still show less selection errors than
RaySelection. IntenSelect shows the least selection errors.

Figure 51.: Vive Study: Average selection errors for the “Erratic Spheres” test sce-
nario per selection technique.

Figure 52.: Vive Study: Average Index of Difficulty and task completion time for
the “Erratic Spheres” test scenario per selection technique.

For the ID a significant effect was observed (F (4, 245.24) = 244.26, p < 0.001, η2 =
0.68) for the “Erratic Spheres” test scenario. Again all selection techniques are sig-
nificant compared to each other except LenSelect Root (M = 2.02, SD = 0.60) and
LenSelect Combined (M = 2.12, SD = 0.47), which are not significant compared to
each other. Expand performs the worst (M = 4.02, SD = 0.60), while RaySelection
(M = 2.89, SD = 0.47) performs better than Expand but worse than the rest of the
selection techniques. IntenSelect (M = 1.40, SD = 0.88) performs best, followed by
both LenSelect techniques.
The task completion time also shows a significant effect (F (4, 244.35) = 45.35, p <
0.001, η2 = 0.425) for this test scenario. Here Expand (M = 2.17, SD = 1.01)
takes significantly longer for a selection than all other techniques. While LenSelect
Root (M = 0.76, SD = 0.51) and LenSelect Combined (M = 0.74, SD = 0.45)
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are significantly faster than RaySelection (M = 0.98, SD = 0.59). IntenSelect
(M = 0.80, SD = 0.46) only shows a significant effect compared to Expand. Which
is peculiar, as IntenSelect performed better than all other techniques in terms of
Index of Difficulty and selection errors. LenSelect Root and LenSelect Combined
show the lowest selection times, but the difference is only minor ∼ 50ms compared
to IntenSelect.

Fast Sphere:

Figure 53.: Vive Study: Average errors for the “Fast Sphere” test scenario per se-
lection technique.

Figure 54.: Vive Study: Average Index of Difficulty and task completion time for
the “Fast Sphere” test scenario per selection technique.

With n = 100.
For the “Fast Sphere” test scenario a significant effect can be observed for the
selection errors (F (4, 207.40) = 26.64, p < 0.001, η2 = 0.157). Here IntenSelect
(M = 0.01, SD = 0.10) performs significantly better than all other selection tech-
niques. RaySelection (M = 0.87, SD = 1.03) shows significantly more selection
errors than all other selection techniques. LenSelect Root (M = 0.30, SD = 0.77),
LenSelect Combined (M = 0.33, SD = 0.71) and Expand (M = 0.14, SD = 0.40)
show no significant effect between each other, only compared to the aforementioned
selection techniques. It’s of note here that IntenSelect shows almost no errors out
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of 100 selections.
The Index of Difficulty is significant for the “Fast Sphere” test scenario (F (4, 243.49) =
505.54, p < 0.001, η2 = 0.710). Here IntenSelect (M = 0.87, SD = 0.52) shows a
significantly lower ID than all other selection techniques. While LenSelect Root
(M = 2.17, SD = 0.68) and LenSelect Combined (M = 2.14, SD = 0.70) pro-
duce significantly lower IDs than RaySelection (M = 3.10, SD = 0.80) and Expand
(M = 3.77, SD = 0.41). RaySelection still produces a significantly lower ID than
Expand.
For the task completion time we can see a significant effect, as well (F (4, 240.49) =
127.63, p < 0.001, η2 = 0.466). Again all selection techniques are significant com-
pared to each other, except for LenSelect Root (M = 0.761, SD = 0.47) and LenSe-
lect Combined (M = 0.73, SD = 0.43) which show no such effect between each other.
IntenSelect (M = 0.55, SD = 0.28) performs the best for this test scenario. Expand
(M = 1.90, SD = 0.55) shows the longest selection times, even if it minimizes se-
lection errors. RaySelection (M = 1.23, SD = 0.77) takes the second longest. Here
IntenSelect’s lower ID does lead to a faster task completion time. Overall the ID fits
well with the task completion time for this test scenario, but this is not necessarily
the case with all test scenarios

Propane Tanks Close:

Figure 55.: Vive Study: Average Index of Difficulty and task completion time for
the “Propane Tanks Close” test scenario per selection technique.

Here we can see that a lower ID might not necessarily lead to lower selection times.
With RaySelection (n = 198), LenSelect Root (n = 199), IntenSelect (n = 200),
LenSelect Combined (n = 198) and Expand (n = 197).
A significant effect (F (4, 483.92) = 1994.42, p < 0.001, η2 = 0.911) can be ob-
served for the ID of the “Propane Tanks Close” test scenario. Here LenSelect Root
(M = 0.74, SD = 0.10) and LenSelect Combined (M = 0.89, SD = 0.09,) perform
significantly better than all other selection techniques, except between themselves.
IntenSelect (M = 1.01, SD = 0.14) comes a close second, performing better than
RaySelection (M = 1.44, SD = 0.10) and Expand (M = 2.57, SD = 0.41). Expand,
again, performs worst of all selection techniques.
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None of the effects from the ID can be observed for the task completion time, how-
ever. A significant effect can be observed (F (4, 484.23) = 46.26, p < 0.001, η2 =
0.395). But it only shows that Expand (M = 1.60, SD = 1.11) needs significantly
more time than all other selection techniques. RaySelection (M = 0.52, SD = 0.17),
LenSelect Root (M = 0.55, SD = 0.21), IntenSelect (M = 0.55, SD = 0.27) and
LenSelect Combined (M = 0.52, SD = 0.17) show no significant difference between
each other. Again a better ID fails to produce better selection times.

Propane Tanks Far:

Figure 56.: Vive Study: Average Index of Difficulty and task completion time for
the “Propane Tanks Far” test scenario per selection technique.

With RaySelection (n = 200), LenSelect Root (n = 200), IntenSelect (n = 198),
LenSelect Combined (n = 199) and Expand (n = 200).
A significant effect can be observed (F (4, 486.11) = 1311.67, p < 0.001, η2 = 0.811)
for the “Propane Tanks Far” test scenario. Here Expand (M = 2.07, SD = 0.53)
performs significantly worse than all other selection techniques. RaySelection (M =
1.70, SD = 0.19) follows, performing significantly worse than the rest of the selec-
tion techniques. LenSelect Combined (M = 0.53, SD = 0.26) shows the lowest ID
and significantly lower than all other selection techniques. Followed by IntenSelect
(M = 0.56, SD = 0.19) which only performs worse than LenSelect Combined and
better than the rest. LenSelect Root (M = 0.99, SD = 0.15) performs better than
Expand and RaySelection, but worse than LenSelect Combined and IntenSelect.
For the first time a difference between both LenSelect techniques can be observed.
LenSelect Combined seems better suited to selection of far away objects.
A significant effect can be observed for the task completion time as well (F (4, 486.29) =
93.75, p < 0.001, η2 = 0.537). Again Expand (M = 1.94, SD = 0.98) needs signif-
icantly more time for a selection than all other selection techniques. LenSelect
Combined (M = 0.55, SD = 0.26) performs significantly better than all other se-
lection techniques, except for IntenSelect (M = 0.63, SD = 0.31). RaySelection
(M = 0.62, SD = 0.21), LenSelect Root (M = 0.63, SD = 0.26) and IntenSelect
show no significant difference between each other. LenSelect Combined also leads
to better selection times than LenSelect Root.
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Rotating Cans:
With RaySelection (n = 100), LenSelect Root (n = 100), IntenSelect (n = 95),
LenSelect Combined (n = 100) and Expand (n = 83).
The selection errors for the “Rotating Cans” tests scenario are significant as well.
(F (4, 229.0) = 3.01, p = 0.019, η2 = 0.056). Here IntenSelect (M = 0.85, SD =
1.56) shows significantly more selection errors than all other selection techniques.
While RaySelection (M = 0.32, SD = 0.79), LenSelect Root (M = 0.27, SD =
0.63), LenSelect Combined (M = 0.3, SD = 0.54) and Expand (M = 0.27, SD =
0.77) show no significant effect compared to each other.
The task completion time for this test scenario shows a significant effect (F (4, 223.26) =
28.54, p < 0.001, η2 = 0.190). Expand (M = 2.36, SD = 1.07) shows signifi-
cantly higher selection times than the other selection techniques. IntenSelect (M =
1.76, SD = 1.75) shows the second longest selection times after Expand and takes
significantly longer than RaySelection (M = 1.16, SD = 0.56), LenSelect Root
(M = 1.14, SD = 0.59 and LenSelect Combined (M = 1.09, SD = 0.42). The latter
don’t show significant differences between them. IntenSelect’s higher selection times
can clearly be attributed to it’s significant amount of selection errors for this test
scenario. A similar effect can be observed in the “Cluttered Cans” test scenario, but
for the sake of brevity it’s not shown here.

Figure 57.: Vive Study: Average selection errors and task completion time for the
“Rotating Cans” test scenario per selection technique.

In addition to this data the practice times were stopped for each selection technique.
As can be seen IntenSelect has a higher average this correlates with the conclusions
from the questionnaire. But does not have to mean much. If the selection technique
was more fascinating than the others, participants might have wanted to spent more
time with it. RaySelection, naturally, shows the lowest practice times, this fits well
with it’s high rating on intuitive-use. While Expand shows the longest practice
time, which is logical, since it is the most complex selection technique. LenSelect
Root and Combined are the closest to RaySelection, when it comes to practice times.
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Selection Technique Mean Median Standard Deviation
RaySelection 14.01 s 14.79 s 8.71 s
LenSelect Root 17.52 s 14.39 s 12.12 s
IntenSelect 32.06 s 24.84 s 27.72 s
LenSelect Combined 18.50 s 12.48 s 20.46 s
Expand 48.46 s 19.70 s 58.00 s

Table 13.: Vive Study: Average time spent in practice mode for each selection tech-
nique.

Participant’s Comments:
Some participants noted that overlapping objects got too big and made selection
more difficult for LenSelect. It also made it hard to distinguish the cubes in the
“Stacked Cubes” test scenario. One participant found it useful when selecting small
objects.
With IntenSelect participants noted it was not entirely clear which object is cur-
rently hovered. One participant was frustrated since pointing at a can with the
white ray not necessarily means it could be selected with IntenSelect. The cans
were incredibly difficult to select for participants. One participant found the red ray
a bit menacing.
For Expand participants remarked that it was hard to find the correct object in the
grid if objects looked similar. Another noted using this technique is exhausting. A
different participant exclaimed it actively obstructed them in reaching their goals
and was aggravating to use. The question why all objects are in the grid, even
though not all of them can be selected came up multiple times. The objects inside
the grid were also small and cumbersome to select and their placement seemed ar-
bitrary.
One participant found it incredibly difficult to select the cigarette package in the
“Miscellaneous” test scenarios with Expand. It took them 68 seconds and they made
24 selection errors. This sample was removed from the study due to being such a
vast outlier. But it still shows how flawed Expand is as a selection technique.
Also reducing the opacity of the lens seemed to be a success as one participant ex-
claimed they were not even of it, but it’s still clearly visible.

Results:
Both LenSelect techniques are popular with users and seem as intuitive as a simple
ray cast. They outperform both IntenSelect and Expand in terms of intuitive use.
Seeming more familiar to participants while also needing less time to learn and less
thought to use. The user ranking shows them to be more popular than Expand and
a slight tendency of being more popular than IntenSelect and RaySelection.
On average they produce a slightly higher ID than IntenSelect (∼ 0.2). However
LenSelect Combined produces slightly better selection times (∼ 70ms), while LenS-
elect Root shows similar selection times to IntenSelect. They also show about the
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same amount of errors as the other selection techniques, except for RaySelection,
which is outperformed by all of them. Taking a closer look reveals that LenSelect is
better suited to certain selections, while IntenSelect is better suited to others. Even
the scaling functions show a better performance for some scenarios between each
other, but most of the time they perform similarly.
It must also be noted that, for the sake of brevity, not all results for the test sce-
narios are shown. Only those indicative of a general trend. This means IntenSelect
usually shows a lower ID for all test scenarios, with a few exceptions. While at the
same time usually failing to produce better selection times. Usually IntenSelect and
LenSelect perform equally well. The same goes for selection errors.

6.5.2. Powerwall
The study had n = 17 participants, 15 of which self-identified as male and two as
female. Most of them were either research or scientific assistants or students of Com-
puter Science. One person was left handed and none had a form of color blindness.
Their ages ranged from 20 to 33 with a mean age of 25.42, a standard deviation of
3.62 and a median age of 24.5.
Participants were asked to rate the following statements on a Likert Scale ranging
from 1 to 5, where 5 is complete agreement and 1 complete disagreement:

Question Mean Median Standard
Deviation

I’m playing video games often. 3.59 4 1.141
I’m often playing first person shooters. 2.71 2 1.125
I have experience with 3D-pointing devices. 3.94 4 1.110
I’m skilled at video games. 3.59 4 0.974
I have experience with HMD. 3.71 4 1.525

Table 14.: Powerwall Study: Familiarity of participants with the presented tasks.

Participants showed a high familiarity with the presented tasks.
Again due to COVID-19 finding participants was difficult. Therefore some partici-
pants from the Vive study were asked to participate again in the Powerwall study.
Seven of the 15 participants in this study already participated in the previous study.

6.5.2.1. Questionnaire Data

One of the participants missed the question to rate the complexity for all selection
techniques but Expand.
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Complexity and Fun:
Complexity shows a significant effect (H(4) = 32.02, p < 0.001). Expand (M =
3.41, SD = 0.94) is rated significantly worse than all other selection techniques.
RaySelection (M = 1.50, SD = 0.52) is rated significantly less complex than IntenS-
elect (M = 2.63, SD = 0.81). No significant difference was found between LenSelect
Root (M = 2.06, SD = 0.68), LenSelect Combined (M = 2.25, SD = 0.93) and
IntenSelect. Yet still, LenSelect is much closer to RaySelection than IntenSelect.
No significant effect was found for the fun rating (H(4) = 8.76, p = 0.067). In fact
all results are almost identical, with the exception of Expand, which is rated a bit
lower than the rest.

Figure 58.: Powerwall Study: Average complexity and fun per selection technique.
A lower value is better for the complexity rating, while a higher value is
better for the fun rating.

QUESI Total and User Ranking:

Figure 59.: Powerwall Study: QUESI Total and user ranking per selection technique.
A higher value is better.

The Kruskal-Wallis test shows a significant effect (H(4) = 16.41, p = 0.003) for the
QUESI Total. Expand (M = 3.29, SD = 0.80) is rated significantly worse than Ray-
Selection (M = 4.12, SD = 0.46), LenSelect Root (M = 4.02, SD = 0.50) and LenS-
elect Combined (M = 3.98, SD = 0.56). Only IntenSelect (M = 3.55, SD = 0.72)
shows no significant difference. In this study LenSelect is even closer to RaySelection
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than the one before.
The user ranking showed a significant effect (H(4) = 16.92, p = 0.002). LenSelect
Combined (M = 3.82, SD = 1.19) was rated significantly higher than IntenSelect
(M = 2.12, SD = 1.27) and Expand (M = 2.12, SD = 1.27). LenSelect Root
(M = 3.35, SD = 1.32) was rated significantly higher than Expand. RaySelection
(M = 3.29, SD = 1.45) showed no significant difference between any selection tech-
nique and is rated about as high as LenSelect Root. LenSelect Combined is the most
popular selection technique, followed closely by LenSelect Root and RaySelection.

Cognitive Load and Familiarity:

Figure 60.: Powerwall Study: Cognitive Load and Familiarity per selection tech-
nique. A higher value is better.

A significant effect (H(4) = 23.45, p < 0.001) could be observed for the Cognitive
Load. Where RaySelection (M = 4.41, SD = 0.62) was rated significantly higher
than IntenSelect (M = 3.51, SD = 0.88) and Expand (M = 2.96, SD = 0.99).
There was also a significant difference between LenSelect Root (M = 4.04, SD =
0.63) and LenSelect Combined (M = 4.12, SD = 0.73) compared to Expand. In-
tenSelect (M = 3.51, SD = 0.88) was rated significantly worse than RaySelection.
Ray Selection performs best in this scale, followed by LenSelect.
Familiarity also shows a significant effect (H(4) = 23.10, p < 0.001). Here Ray-
Selection (M = 4.69, SD = 0.38) performs significantly better than IntenSelect
(M = 3.71, SD = 0.90) and Expand (M = 3.65, SD = 0.79). LenSelect Root
(M = 4.35, SD = 0.61) is rated significantly higher than Expand and IntenSelect.
While LenSelect Combined (M = 4.43, SD = 0.50) is rated significantly higher than
IntenSelect and Expand, as well.

Perceived Learning Effort:
A significant effect (H(4) = 29.00, p < 0.001) was observed for the Perceived Learn-
ing Effect as well. RaySelection (M = 4.86, SD = 0.29) is rated significantly higher
than IntenSelect (M = 4.04, SD = 0.69) and Expand (M = 3.51, SD = 0.97). LenS-
elect Root (M = 4.49, SD = 0.55) and LenSelect Combined (M = 4.55, SD = 0.53)
also performed significantly better than Expand. No significant effect could be found
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between LenSelect and IntenSelect. An almost non-existent dispersion can be seen
for RaySelection here. Other techniques show a much higher dispersion, with only
LenSelect Combied getting close to RaySelection.

Figure 61.: Powerwall Study: Perceived Learning Effort per selection technique. A
higher value is better.

Expand scores lowest of all selection techniques for the Powerwall as well. While
RaySelection performs best when it comes to intuitive use, differences between it
and both LenSelect techniques are never significant. While IntenSelect performs
significantly worse in some metrics compared to RaySelection. Only rarely is the
difference between IntenSelect and LenSelect significant.
LenSelect Combined is clearly preferred over IntenSelect and Expand, however and
LenSelect Root is preferred over just Expand. It is unclear if both or one of them
is preferred over RaySelection.

6.5.2.2. Fitts’ Data

For this final study only half the cameras were available, this lead to worse tracking
and some problems during selection.
13 samples were removed from this study due to distractions, questions and tracking
issues. Two were removed for IntenSelect, two for RaySelection, three for LenSelect
Combined, five for LenSelect Root and one for Expand.

This time IntenSelect shows the lowest intercept of selection techniques, but also a
higher slope. LenSelect Combined has the lowest slope, while LenSelect Root has a
slightly higher slope than RaySelection. LenSelect’s intercept is also closer to that
of RaySelection this time. This explains the results to an extent, with lower ID’s
selection times are very similar between selection techniques. Only when the ID gets
higher the differences can be seen and felt.
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RaySelection LenSelect
Root

IntenSelect LenSelect
LenSelect
Combined

Expand

a 0.406 0.416 0.232 0.542 0.906
b 0.306 0.353 0.561 0.244 0.494
TPb 3.272 2.835 1.781 4.106 2.025

Table 15.: Vive Study: a, b and TPb for different selection techniques.

Figure 62.: Powerwall Study: Regression Data for all selection techniques.

Average Index of Difficulty and Task Completion Time:
The average Index of Difficulty shows a significant effect (F (4, 3169.34) = 595.60, p <
0.001, η2 = 0.297) according to the Welch ANOVA. Every selection shows a signifi-
cant difference compared to the others. Only LenSelect Root (M = 1.88, SD = 1.01)
and LenSelect Combined (M = 1.83, SD = 1.07) show no such effect between
each other. IntenSelect (M = 1.60, SD = 1.03) has the lowest ID, while Expand
(M = 3.48, SD = 1.17) has the highest. RaySelection (M = 2.51, SD = 0.97) shows
the second highest ID.
The task completion time also shows a significant effect (F (4, 3120.03) = 334.23, p <
0.001, η2 = 0.213). Expand (M = 2.63, SD = 1.46) shows significantly higher selec-
tion times compared to all other selection techniques. While LenSelect Combined
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(M = 0.99, SD = 0.76) shows significantly lower selection times than all other tech-
niques. RaySelection (M = 1.17, SD = 1.01), LenSelect Root (M = 1.08, SD =
0.94) and IntenSelect (M = 1.13, SD = 1.56) show no significant differences between
each other.

Figure 63.: Powerwall Study: Average Index of Difficulty and task completion time
per selection technique.

Average Selection Errors:

A significant effect (F (4, 3131.10) = 10.83, p < 0.001, η2 = 0.008) was observed
for the average selection errors, as well. Here RaySelection (M = 0.20, SD = 0.57)
shows significantly more errors compared to LenSelect Root (M = 0.10, SD = 0.35),
LenSelect Combined (M = 0.09, SD = 0.33) and Expand (M = 0.11, SD = 0.42).
When removing the highest two outliers of nine and eight selection errors for IntenS-
elect (M = 0.14, SD = 0.60) a significant difference between it and RaySelection
could also be observed. LenSelect Combined shows significantly less errors than
IntenSelect, however removing IntenSelect’s outliers removes this effect as well.

Cluttered Cans:
With RaySelection (n = 85,), LenSelect Root (n = 83,), IntenSelect (n = 85), LenS-
elect Combined (n = 85) and Expand (n = 79)
Even though the “Cluttered Cans” test scenario shows no significant effect (F (4, 199.44) =
1.99, p = 0.098, η2 = 0.032) a slight tendency for higher errors can be observed for
IntenSelect.
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Figure 66.: Powerwall Study: Average Index of Difficulty and task completion time
for the “Cluttered Cans” test scenario per selection technique.

For the Index of Difficulty a significant effect was found (F (4, 202.93) = 151.87, p <
0.001, η2 = 0.492). Again all selection techniques show a significant difference com-
pared to each other, only LenSelect Root (M = 3.12, SD = 0.58) and LenSelect
Combined (M = 3.21, SD = 0.49) show no such effect between each other. Expand
(M = 4.67, SD = 0.46) has the highest ID, while IntenSelect (M = 2.60, SD = 1.20)
has the lowest. RaySelection (M = 3.45, SD = 0.40) performed better than Expand,
but worse than the other selection techniques.
The task completion time also shows a significant effect (F (4, 193.21) = 41.97, p <
0.001, η2 = 0.121). But here only Expand (M = 3.35, SD = 1.30) performs signifi-
cantly worse than all other selection techniques, except when compared to IntenS-
elect (M = 2.40, SD = 3.90). Removing the outlier time-sample for IntenSelect
also reveals a significant effect between it and Expand, as well as LenSelect Com-
bined (M = 1.37, SD = 0.60) and RaySelection (M = 1.42, SD = 0.52), meaning
it performs worse than those two. Otherwise groups show no significant differences,
including LenSelect Root (M = 1.66, SD = 1.55). IntenSelect’s higher selection
times again seem to be a result of higher selection errors.

Erratic Spheres :
With RaySelection (n = 85,), LenSelect Root (n = 85,), IntenSelect (n = 85), LenS-
elect Combined (n = 84) and Expand (n = 84)
The ID for the “Erratic Spheres” test scenario shows a significant effect (F (4, 207.91) =
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211.29, p < 0.001, η2 = 0.611). Again there are significant differences between all
selection techniques, except between LenSelect Root (M = 2.19, SD = 0.64) and
LenSelect Combined (M = 2.27, SD = 0.78). Expand (M = 4.07, SD = 0.52) has
the highest ID. While IntenSelect (M = 1.60, SD = 0.72) has the lowest. RaySe-
lection (M = 2.98, SD = 0.70) performs better than Expand, but worse than both
LenSelect techniques.
A significant effect (F (4, 203.02) = 17.78p < 0.001, η2 = 0.213) was found for the
task completion time of the “Erratic Spheres” test scenario. But the only significant
difference was found between Expand (M = 2.94, SD = 1.83) and all other selec-
tion techniques. No other effect was found for RaySelection (M = 1.37, SD = 1.50),
LenSelect Root (M = 1.15, SD = 0.74), IntenSelect (M = 1.20, SD = 0.79) and
LenSelect Combined (M = 1.30, SD = 1.32). This is peculiar, as the Index of
Difficulty showed so many significant differences between selection techniques and
selection errors (F (4, 206.05) = 1.73, p = 0.144, η2 = 0.017) showed no significant
effect for this test scenario.

Figure 67.: Powerwall Study: Average Index of Difficulty and task completion time
for the “Erratic Spheres” test scenario per selection technique.

Fast Sphere:
With n = 85.
For this test scenario IntenSelect performs the best
A significant effect (F (4, 204.12) = 8.92, p < 0.001, η2 = 0.106) was found for the
selection errors scale of the “Fast Sphere” test scenario. Here RaySelection (M =
0.74, SD = 1.24) shows significantly more selection errors than LenSelect Root
(M = 0.28, SD = 0.63), IntenSelect (M = 0.06, SD = 0.32), LenSelect Combined
(M = 0.28, SD = 0.50) and Expand (M = 0.13, SD = 0.37). While IntenSelect
shows significantly less selection errors than LenSelect Root and LenSelect Linear.
IntenSelect shows the least amount of errors , followed by Expand.
Another significant effect (F (4, 206.02) = 376.36, p < 0.001, η2 = 0.696 could be
found for the Index of Difficulty as well. Here Expand (M = 3.68, SD = 0.38)
shows a significantly higher ID than all other selection techniques. RaySelection
(M = 3.05, SD = 0.79) shows a significantly higher ID than the remaining selection
techniques. And IntenSelect (M = 0.90, SD = 0.56) show a significantly lower
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ID than LenSelect Root (M = 2.29, SD = 0.56) and LenSelect Combined (M =
2.29, SD = 0.64). IntenSelect shows by far the lowest ID, while both LenSelect
techniques don’t shows a significant difference between each other.
A significant effect (F (4, 207.21) = 41.66, p < 0.001, η2 = 0.20) could also be found
for the selection times of the “Fast Sphere” test scenario. Here Expand (M =
2.31, SD = 0.80) performs significantly worse than all other selection techniques,
except for RaySelection (M = 2.01, SD = 1.79). While RaySelection shows much
higher selection times than LenSelect Root (M = 1.23, SD = 1.01), IntenSelect
(M = 0.94, SD = 0.88) and LenSelect Combined (M = 1.04, SD = 0.70). While
those techniques did not show a significant difference between each other. Again
IntenSelect seems to be unable to produce better selection times, even though it’s
ID was much better than those of the others.

Figure 68.: Powerwall Study: Average selection errors for the “Fast Sphere” test
scenario per selection technique.

Figure 69.: Powerwall Study: Average selection errors and task completion time for
the “Fast Sphere” test scenario per selection technique.

Propane Tanks Close:
Where Expand (n = 168), the rest n = 170.
For the “Propane Tanks Close” test scenario LenSelect Root shows the lowest ID,
but also fails to produce lower selection times.
The Index of Difficulty shows a significant effect (F (4, 409.21) = 415.15, p < 0.001, η2 =
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0.895). Here Expand (M = 2.53, SD = 0.41) produces a significantly higher ID
than all other selection techniques. RaySelection (M = 1.48, SD = 0.16) produces
a significantly higher ID than the remaining selection techniques. While IntenS-
elect (M = 0.97, SD = 0.12) performs significantly worse than LenSelect Root
(M = 0.76, SD = 0.14) and LenSelect Combined (M = 0.87, SD = 0.14).
But both fail to produce lower selection times. The task completion time is also
significant (F (4, 409.14) = 102.28, p < 0.001, η2 = 0.353). Only Expand (M =
1.78, SD = 0.68) shows a significant difference. It performs worse than RaySelec-
tion (M = 0.78, SD = 0.94), LenSelect Root (M = 0.66, SD = 0.29), IntenSelect
(M = 0.66, SD = 0.41) and LenSelect Combined (M = 0.68, SD = 0.38). So
LenSelect can fail in producing lower selection times when showing smaller ID’s as
well.

Figure 70.: Powerwall Study: Average Index of Difficulty and task completion time
for the “Propane Tanks Close” test scenario per selection technique.

Propane Tanks Far:

Figure 71.: Powerwall Study: Average Index of Difficulty and task completion time
for the “Propane Tanks Far” test scenario per selection technique.

Where RaySelection, LenSelect Combined and Expand (n = 170) and LenSelect
Root and IntenSelect (n = 196).
The Index of Difficulty shows a significant effect (F (4, 392.58) = 1339.70, p <
0.001, η2 = 0.819). Expand (M = 2.11, SD = 0.55) performs worse than all
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other selection techniques again. RaySelection (M = 1.75, SD = 0.25) shows sig-
nificantly higher ID’s than the remaining selection techniques. While LenSelect
Root (M = 1.06, SD = 0.22) produces significantly higher ID’s than IntenSelect
(M = 0.51, SD = 0.10) and LenSelect Combined (M = 0.49, SD = 0.23). Both
IntenSelect and LenSelet Combined provide the lowest ID.
But both fail to produce lower selection times than LenSelect Root.
For the task completion time a significant effect could be observed (F (4, 415.82) =
120.55, p < 0.001, η2 = 0.47). Here Expand (M = 2.18, SD = 0.77) shows signifi-
cantly higher selection times than all other selection techniques. While RaySelection
(M = 0.89, SD = 0.48) shows significantly higher selection times than LenSelect
Combined (M = 0.72, SD = 0.77). IntenSelect (M = 0.85, SD = 0.57) and LenS-
elect Root (M = 0.79, SD = 0.39) perform significantly better than Expand. This
time both IntenSelect and LenSelect Combined failed to produce lower selection
times, despite their lower ID.

Selection Technique Mean Median Standard Deviation
RaySelection 12.90 s 5.44 s 13.75 s
LenSelect Root 16.70 s 14.23 s 13.62 s
IntenSelect 38.26 s 18.89 s 60.76 s
LenSelect Combined 22.72 s 15.44 s 24.66 s
Expand 28.94 s 16.01 s 50.88 s

Table 16.: Powerwall Study: Average time spent in practice mode for each selection
technique.

The practice mode times basically show the same result as for the Vive study and
the same conclusions apply.

Results:
The Powerwall study yielded similar results as the Vive study. LenSelect performs
similar to IntenSelect and depending on the scenario one is better then the other.
A lot of the same results can be observed here for the same test scenarios. Even
the time spend in practice mode is similar, only longer. This might be because it’s
harder to get accustomed to the Powerwall and the uncommon way to operate the
selection techniques for it. Again not all significant figures are shown. Usually the
ID is a bit lower for IntenSelect compared to LenSelect. Generally LenSelect has a
similar task completion time as IntenSelect. They also show about the same amount
of selection errors.

Participant’s Comments:
One participant noted that smaller objects could be scaled a bit bigger, while bigger
objects could be scaled a bit smaller for their taste, for LenSelect Root.
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It was noted that IntenSelect’s red ray penetrating other objects makes it hard to
see the currently hovered object. The cursor jumps too much between small objects,
noted another participant.
For LenSelect Combined, object’s sometimes became too big. The cans were easy
to select with this technique.
While searching the object in Expand’s grid was exhausting. The technique feels
noticeably slower due to the additional click needed. Another participant found it
useful for moving objects.
One participant wished to have RaySelection as the default and being able to toggle
to LenSelect when necessary.

Conclusion:
Although IntenSelect performed among the best according to Fitts’ Data, it was
not the most accepted selection technique. Both LenSelect techniques clearly out-
perform it in almost all QUESI scales and are more popular than it. Meanwhile
RaySelection is the most intuitive selection technique. So Hypothesis 1 did not
come true.
Hypothesis 2 did come true. Expand produces on average the longest task comple-
tion times. This applies to both Vive and Powerwall.
Overall LenSelect performs among the best of the tested selection techniques.
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Both LenSelect and IntenSelect often are among the best selection techniques in this
study. Overall they perform somewhat similar, even though IntenSelect generally
has a lower Index of Difficulty, it fails to produce lower selection times. LenSelect
Root shows similar selection times, while LenSelect Combined outperforms IntenSe-
lect, but only marginally with ∼ 40ms to ∼ 70ms. Comparing their selection errors
shows they, again, perform similarly. In the end it’s hard to tell if any of these
techniques is superior, as they all outperform each other in certain test scenarios.
IntenSelect works best if selection is only mildly obstructed by other objects. Mean-
while LenSelect performs more consistently among test scenarios. LenSelect Root
also performs very well with selection of far away objects.
But LenSelect was clearly rated more intuitive in it’s use compared to IntenSelect
and was more popular with participants. LenSelect often came close to intuitiveness
to RaySelection, which is logically the most intuitive, due to it’s simplicity. Expand
on the other hand performed the worst on almost all scales, except for selection
errors. Where it performed comparably to LenSelect and IntenSelect.
LenSelect performed equally well compared to IntenSelect, a state-of-the-art selec-
tion technique. And both outperformed RaySelection when it comes to selection
errors, task completion time and Index of Difficulty.
It is unclear how exactly these scales apply in practice, however. Is it better to have
a lower ID, even if this does not lower the task completion time? Is it better to
have less selection errors but take longer for a selection. An overarching scale for
comparison is missing, this makes comparison problematic.

7.1. Intuitive Use
So why does LenSelect seem more intuitive than IntenSelect? Even though their
basic premise is very similar. IntenSelect also produces no visual disruption. On
first glance IntenSelect even produces a better target area than LenSelect. LenSelect
simply resizes the object. A can, for example, will always have a bigger height than
width. Therefore horizontal cursor movement will never show as low an ID as that
of a vertical movement. IntenSelect, on the other hand, produces a circle around the
object and the ID stays the same, no matter the vector of approach. But this only
applies when there is enough space between objects. In a cluttered environment it
can even lead to a reduced target area, as can be seen in Figure 72 (a). Taking this
into account it’s harder to predict where exactly the user needs to point to select an
object.
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Another explanation might be that directly pointing at the object does not select
the object anymore. Instead the user basically tries to get as close to the center
point of the object as possible. This works fine if there is enough space between
object’s. But when center point’s of objects are overlapped by other object’s the
target area becomes harder to understand. When the target object’s center point is
overlapped by another object, a part of the target area is overlapped by this same
object. Meaning the target can be selected through the overlapping object. On the
other hand if the target object overlaps the center point of another object, point-
ing directly at this part of the object will select the overlapped object. If both of
these effects happen simultaneously the target area might lie completely outside the
visible part of the target object. This effect could be observed with the “Rotating
Cans” test scenario, for example. This way the target area is completely obscured
and a user aiming at the visible part of an object might get frustrated, since it won’t
select the desired object.
Lastly depending on how objects overlap IntenSelect’s target areas can take on
strange forms, further leading to frustration (Figure 72 (b)). Here some of the
spheres were behind the target sphere leading to a “hole” in the target area. And
two more spheres to either side squish the target area together.

However, rescaling the objects can lead to visual discomfort, so LenSelect is not
without it’s own problems. And the visual discomfort from LenSelect’s scaling was
not measured.

Figure 72.: IntenSelect’s target areas a) “Rotating Cans” test scenario, b) “Erratic
Spheres” test scenario

7.2. Caveats
Sometimes the mean also obfuscates the truth for the Index of Difficulty. Looking at
a scatter plot for the “Cluttered Cans” test scenario (Figures 73 and 74) for example
reveals distinct groups of selections.
This is because cans on the edges of the scenario have much bigger target areas than

100



7.2. Caveats 7. Discussion

those surrounded by other cans for IntenSelect. For LenSelect the cans in the front
row are easier to select, since they are unobstructed by other objects.
What’s interesting, is that we can see IntenSelect performing better for the group
that’s easier to select for it. But looking at the groups that are harder to select
LenSelect performs better and more consistently. IntenSelect almost performs the
worst for these selections, in fact.

Figure 73.: Vive Study: Scatter plot for the “Cluttered Cans” test scenario. Reveal-
ing distinct groups of selections.

Figure 74.: Powerwall Study: Scatter plot for the “Cluttered Cans” test scenario.
Revealing distinct groups of selections.
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It’s also interesting that a lower ID not always translates to a lower task completion
time. This can have multiple causes. First if a selection error occurs the selection
time will automatically be worse. This might be one explanation for test scenarios
where IntenSelect produces many more mistakes than other selection techniques,
like the “Rotating Cans” test scenario.
It is also of note that the Index of Difficulty is not always correct. For the “Stacked
Cubes” test scenario the ID is calculated only after the pointer rests on the object,
in the case of LenSelect. But the objects show big overlap during selection. In
reality the pointer must get closer to the object than the ID in that scale shows.
While IntenSelect has the same problem as with the “Cluttered Cans” test scenario
where objects at the border deflate the overall ID for objects at the center of the
test scenario.
Both the “Erratic Spheres” and “Fast Sphere” test scenarios are problematic as well.
The former shows random overlaps, so the ID depends on the overall location of the
spheres. It also shows strange target areas for IntenSelect, depending on the location
of the spheres. Both these test scenarios can randomly and sometimes drastically
change the selection task. Making it hard to find a definitive conclusion regarding
task completion time and Index of Difficulty. But still, IntenSelect seems to perform
better here than other selection techniques.

7.3. User Behaviour
Sometimes user’s would move their hand above their head to get a better angle for
selection. This happened with ray-based selection techniques and mostly for clut-
tered environments, such as the “Miscellaneous” or “Rotating Cans” test scenarios.
Even though this only happened sporadically, not for every participant and not even
consistently with the participant, it still shows a failure of the selection technique.
It basically shows that users wish to move to get a better view and angle for the
selection. Since they were not allowed to move away they instead moved their hand
to produce a better angle.
This effect could also be observed more often with the Powerwall than the Vive,
maybe the Powerwall had a flatter angle than the Vive.

7.4. Comparison Powerwall vs HTC Vive
Not much of a difference was found between Vive and Powerwall. All selection
techniques perform slightly worse and sometimes results weren’t as conclusive as
those of the Vive study. But generally speaking the results are the same.
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8. Future-Work
LenSelect seems generally promising and with further refinement of it’s object scaling
algorithm might even be able to outperform IntenSelect.
One such refinement could be dynamically changing the order of the root depending
on the amount of objects inside the cone. The more objects the higher the order.
This way selecting an object from a cluttered environment will become even easier.
A proper way to scale small objects bigger than big objects should also be researched.
Currently the respective dimensions of the object divided by three is used for this,
but doesn’t really work well.
Removing objects from the scaling whose center point does not lie inside the lens
might also be promising.
It should also be checked if the ID calculated from screen shots taken from the
camera’s and the controller’s perspective is comparable.
Maybe a better way to calculate the ID could be worked out, as it doesn’t really
work for some of the test scenarios. The problem is that these types of algorithms
depend heavily on the used selection technique. For example the current solution
works fine for RaySelection.
Furthermore looking at Figure 48 on page 79, one could make the assumption that
Fitts’ Law does not apply to IntenSelect. As the scatter plot show higher dispersion
the higher the ID becomes. But this is only speculation.
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9. Conclusion
In this thesis LenSelect a new selection technique based on rescaling objects was
evaluated. It shows a thorough examination of selection techniques. As stated in
the beginning there is no superior selection technique, no selection technique can
meet all requirements. But LenSelect, in either iteration, and IntenSelect proof to be
the most promising of the tested selection techniques, even though both show quirks
and annoyances. They all have their merits in certain circumstances, but also might
need some further improvements. Especially LenSelect is still highly experimental
and shows potential for further refinement.
It’s unfortunate that due to COVID-19 the pool of study participants was reduced to,
mainly, students and research assistants in the field of Computer Science and Digital
Media. So participants had a high familiarity with VR and general understanding
of controllers and their use in VR. In the end it’s not possible to tell if LenSelect or
IntenSelect is superior to the other.
However LenSelect showed to be more consistent among the presented test scenarios
and was more popular with participants. It also shows a higher rating on intuitive-
use, almost rivaling RaySelection.
With further refinement an easy to use, fast and reliable selection technique could
be worked out.
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Hiermit erkläre ich, an Eides statt, dass die hier vorliegende Masterarbeit von mir
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A. 3D-Object sources
Street cones
Adrian3dartist: http://www.sharecg.com/v/54478/browse/5/ 3D-Model/Street-cones

Oil barrel
Animated Heaven: PBR. http://www.sharecg.com/v/87275/browse/5/3D-Model/Oil-
Barrel-PBR

City trash and waste set
Crumpler: https://www.unrealengine.com/zh-CN/ marketplace/city-trash-and-waste-
set

Watering can
Dorland: http://www.sharecg.com/v/33034/browse/5/3D-Model/ Watering-can
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B. Questionnaire
The questionnaire used for the study, reduced to one selection technique.
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Selection Analysis - Questionnaire

Subject Number:______________________                                                Date:    ______________

Gender:              ______________________                  Age:    ______________

Dominant hand: ______________________                             Color Blindness:     ______________

Occupation:       ______________________

Prequestionnaire

Rate the following 
statements:

Fully
disagree

Mainly
disagree

Neutral Mainly
Agree

Fully Agree

I'm playing videogames 
often.

O O O O O

I'm often playing first-
person-shooters.

O O O O O

I have experience with 3D-
pointing devices (Wii-Mote, 
PS-Move, Kinect, ...).

O O O O O

I'm skilled at videogames. O O O O O

I'm comfortable pointing at 
objects with a controller. O O O O O

I have experience with Head-
Mounted-Displays (HTC 
Vive, Occulus Rift, PS 
VR, ...).

O O O O O

I can use my dominant hand 
without problem.

O O O O O

 Page 1



Selection Technique 1
How complex was the selection technique in your opnion?

Not at all Barely Moderate Considerable Exceedingly

O O O O O

Rate the following 
statements:

Fully
disagree

Mainly
disagree

Neutral
Mainly
Agree

Fully Agree

I could use the selection 
technique without thinking 
about it.

O O O O O

I achieved what I wanted to 
achieve with the selection 
technique.

O O O O O

The way the selection 
technique worked was 
immediatly clear to me.

O O O O O

I could interact with the 
selection technique in a way 
that seemed familiar to me.

O O O O O

No problems occured when 
using the selection 
technique.

O O O O O

Using the selection technique
was inspiring.

O O O O O

The selection technique was 
not complicated to use.

O O O O O

I was able to achieve my 
goals in the way I had 
imagined to.

O O O O O

The selection technique was 
easy to use from the start.

O O O O O

It was always clear to me 
what I had to do to use the 
selection technique.

O O O O O

The process of using the 
selection technique went 
smoothly.

O O O O O

 Page 2



Rate the following 
statements:

Fully
disagree

Mainly
disagree

Neutral
Mainly
Agree

Fully Agree

Using the selection technique
carried me away.

O O O O O

I barely had to concentrate 
on using the selection 
technique.

O O O O O

The selection technique 
helped to completely achieve
my goals.

O O O O O

How the selection technqiue 
is used was was clear to me 
straight away.

O O O O O

I automatically did the right 
thing to achieve my goals.

O O O O O

Using the selection technique
was fascinating.

O O O O O

Using the selection technique
is fun.

O O O O O

Additonal notes:

 Page 3



Postquestionnaire

Rate the following 
statements:

Fully
disagree

Mainly
disagree

Neutral
Mainly
Agree

Fully Agree

I felt comfortable pointing at 
objects with a controller.

O O O O O

I had enough time to practice. O O O O O

It was easy for me to point at 
objects with a controller.

O O O O O

It was always clear to me, 
what I had to do.

O O O O O

It was always clear to me, 
how to use the controller.

O O O O O

Sort the selection technqiues by popularity (Names are written on the previous pages, you can also 
just use the given numbers on those pages):

1.

2.

3.

4.

5.

Additonal notes:
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