
I N V E R S E R E I N F O R C E M E N T L E A R N I N G A N D
A F F O R D A N C E S

A master thesis about Imitation Learning in the context of Affordances

jan-philipp schramm

matriculation number : 4516495

1 . reviewer : prof . dr . gabriel zachmann

2 . reviewer : dr . felix putze

Computer Graphics and Virtual Reality Research Lab
Faculty 03: Mathematics/Computer Science

University of Bremen

December 2024

Jan-Philipp Schramm: Inverse Reinforcement Learning and Affordances, A
master thesis about Imitation Learning in the context of Affordances,
© December 2024

D E C L A R AT I O N

Nachname: Schramm Matrikelnr.: 4516495

Vorname.: Jan-Philipp

A) Eigenständigkeitserklärung
Ich versichere, dass ich die vorliegende Arbeit selbstständig verfasst
und keine anderen als die angegebenen Quellen und Hilfsmittel ver-
wendet habe. Alle Teile meiner Arbeit, die wortwörtlich oder dem
Sinn nach anderen Werken entnommen sind, wurden unter Angabe
der Quelle kenntlich gemacht. Gleiches gilt auch für Zeichnungen,
Skizzen, bildliche Darstellungen sowie für Quellen aus dem Inter-
net, dazu zählen auch KI-basierte Anwendungen oder Werkzeuge.
Die Arbeit wurde in gleicher oder ähnlicher Form noch nicht als
Prüfungsleistung eingereicht. Die elektronische Fassung der Arbeit
stimmt mit der gedruckten Version überein. Mir ist bewusst, dass
wahrheitswidrige Angaben als Täuschung behandelt werden.

□✗ Ich habe KI-basierte Anwendungen und/oder Werkzeuge genutzt
und diese im Anhang "Nutzung KI basierte Anwendungen"
dokumentiert.

B) Erklärung zur Veröffentlichung von Bachelor- oder Masterar-
beiten
Die Abschlussarbeit wird zwei Jahre nach Studienabschluss dem
Archiv der Universität Bremen zur dauerhaften Archivierung ange-
boten. Archiviert werden:

1. Masterarbeiten mit lokalem oder regionalem Bezug sowie pro
Studienfach und Studienjahr 10 % aller Abschlussarbeiten

2. Bachelorarbeiten des jeweils ersten und letzten Bachelorabschlusses
pro Studienfach und Jahr

□✗ Ich bin damit einverstanden, dass meine Abschlussarbeit im
Universitätsarchiv für wissenschaftliche Zwecke von Dritten
eingesehen werden darf.

□ Ich bin damit einverstanden, dass meine Abschlussarbeit nach
30 Jahren (gem. §7 Abs. 2 BremArchivG) im Universitätsarchiv
für wissenschaftliche Zwecke von Dritten eingesehen werden
darf.

□ Ich bin nicht damit einverstanden, dass meine Abschlussarbeit
im Universitätsarchiv für wissenschaftliche Zwecke von Dritten
eingesehen werden darf.

C) Einverständniserklärung zur Überprüfung der elektronischen
Fassung der Bachelorarbeit / Masterarbeit durch Plagiatssoftware
Eingereichte Arbeiten können nach § 18 des Allgemeinen Teil der
Bachelor- bzw. der Master- prüfungsordnungen der Universität Bre-
men mit qualifizierter Software auf Plagiatsvorwürfe untersucht wer-
den.
Zum Zweck der Überprüfung auf Plagiate erfolgt das Hochladen
auf den Server der von der Universität Bremen aktuell genutzten
Plagiatssoftware.

□✗ Ich bin damit einverstanden, dass die von mir vorgelegte und ver-
fasste Arbeit zum oben genannten Zweck dauerhaft auf dem ex-
ternen Server der aktuell von der Universität Bremen genutzten
Plagiatssoftware, in einer institutionseigenen Bibliothek (Zugriff
nur durch die Universität Bremen), gespeichert wird.

□ Ich bin nicht damit einverstanden, dass die von mir vorgelegte
und verfasste Arbeit zum o.g. Zweck dauerhaft auf dem exter-
nen Server der aktuell von der Universität Bremen genutzten
Plagiatssoftware, in einer institutionseigenen Bibliothek (Zugriff
nur durch die Universität Bremen), gespeichert wird.

Mit meiner Unterschrift versichere ich, dass ich die obenstehenden Erk-
lärungen gelesen und verstanden habe und bestätige die Richtigkeit
der gemachten Angaben.

Bremen, den 19.12.2024

Ort, Datum Unterschrift

iv

A B S T R A C T

Manually creating a reward function can be difficult. Instead, alterna-
tive techniques known as imitation learning can bypass this step. This
thesis investigates the effectiveness of imitation learning in learning
reward functions or policies to imitate experts behavior for affordances
within a virtual environment. Various categories in imitation learn-
ing leverage a small set of expert demonstrations as the sole input
for imitation; however, this introduces problems with sparse rewards
and generalization. Techniques to counter that are task rewards and
hyperparameter optimization. This research uses these techniques
and imitation learning algorithms that operate in continuous space
and model-free environments. An implementation in Unreal Engine,
combined with a VR headset for trajectory recording and Python for
training, is the base for evaluation. While the algorithms did not exe-
cute the task reliably despite using task reward, using hyperparameter
optimization in some cases surpassed manually tuned hyperparame-
ters.

Z U S A M M E N FA S S U N G

Die manuelle Erstellung einer Belohnungsfunktion kann schwierig
sein. Stattdessen kann dieser Schritt durch alternative Techniken, die
als Imitationslernen bekannt sind, umgangen werden. Diese Arbeit
untersucht die Effektivität des Imitationslernens beim Erlernen von
Belohnungsfunktionen oder Policies, um das Verhalten von Experten
für Affordances in einer virtuellen Umgebung zu imitieren. Verschie-
dene Kategorien des Imitationslernens nutzen einen kleine Menge an
Expertenvorführungen als einzigen Input für die Imitation. Dies führt
jedoch zu Problemen mit spärlichen Belohnungsfunktionen und Gene-
ralisierung. Techniken, die dem entgegenwirken, sind Aufgabenfunk-
tionen und Hyperparameter-Optimierung. Diese Arbeit verwendet
diese Techniken und Imitationsalgorithmen, die im kontinuierlichen
Raum arbeiten und modellfrei sind. Eine Implementierung in der Un-
real Engine, kombiniert mit einem VR-Headset für die Aufzeichnung
von Trajektorien und Python für das Training, bildet die Grundla-
ge für die Bewertung. Während die Algorithmen die Aufgabe trotz
der Verwendung der Aufgabenfunktion nicht zuverlässig ausführten,
übertrafen sie mit der Hyperparameter-Optimierung in einigen Fällen
manuell eingestellte Hyperparameter.

v

When a configuration is reached for which the action
is undetermined, a random choice for the missing data

is made and the appropriate entry is made in the description,
tentatively, and is applied. When a pain stimulus occurs all

tentative entries are cancelled, and when a pleasure stimulus
occurs they are all made permanent.

— Alan Turing [65]

A C K N O W L E D G M E N T S

I would like to thank Prof. Dr. Gabriel Zachmann, who advised me
on my approach. I’m also highly grateful to my supervisor, Hermann
Meißenhelter, who always stood by me with help and advice and
provided valuable guidance throughout my work.

I sincerely thank all the people who helped me make the exist-
ing software for a newer version of Unreal Engine work, and those
who provided valuable feedback on my approach. Your support and
insights have been invaluable to me.

Lastly, I would like to mention my family, especially my brother,
who helped me with the VR hardware.

vi

C O N T E N T S

i Context and Foundations
1 Introduction 3

2 Background 5

2.1 Definitions . 5

2.1.1 Affordances . 5

2.1.2 Markov Decision Process 5

2.1.3 Reward Function 8

2.1.4 Reinforcement Learning 8

2.1.5 Trajectory . 10

2.2 Limitations in Reinforcement Learning 10

2.2.1 Time Complexity 10

2.2.2 Reward Function 11

2.2.3 Local Optima and Generalization 11

2.3 Introduction to imitation learning 11

2.3.1 Behavioral Cloning 12

2.3.2 Inverse Reinforcement Learning 12

2.3.3 Definition . 12

2.3.4 Adversarial Approach 15

3 Related work 17

ii Methodology
4 Approach 23

4.1 Problem Definition . 23

4.2 Affordances . 23

4.3 Unreal Engine and USemLog 24

4.4 Discrete Idea . 25

4.5 Task Reward . 25

4.6 Existing Machine Learning software 26

4.7 Optuna . 27

4.8 Inter-process Communication 27

4.9 Implementation Design 28

4.9.1 Pseudo-Code . 28

4.9.2 Processes . 29

4.9.3 Interaction . 30

5 Implementation 33

5.1 Unreal Engine . 33

5.1.1 Client Implementation 33

5.1.2 Executing Python 34

5.1.3 Action and State Space 34

5.1.4 Available Functions for Python 36

5.1.5 User Interface and Scenes 37

5.1.6 Training Environments 38

vii

viii contents

5.1.7 Virtual Reality . 40

5.1.8 Reading and Writing Data 40

5.2 Python . 41

5.2.1 Server Implementation 41

5.2.2 Task Reward . 41

5.2.3 Reading Trajectories 42

5.2.4 Environments, Action and State Space 42

5.2.5 Learning Algorithms 43

5.2.6 Hyperparameter Tuning 44

5.3 Testing . 44

5.4 Usage . 45

5.4.1 Unreal Engine . 45

5.4.2 Configuration Files 46

5.5 Unsolved Problems . 46

iii Evaluation and Conclusion
6 Evaluation 49

6.1 Data Collection . 49

6.1.1 Recording . 49

6.1.2 Training and Runtime 50

6.2 Result . 51

6.2.1 Covering . 56

6.2.2 Insert . 56

6.2.3 Stacking . 57

6.3 Discussion . 58

7 Conclusion 59

7.1 Summary . 59

7.2 Future Work . 60

iv Appendix
a Appendix 63

a.1 Task Rewards . 63

a.1.1 Insert . 63

a.1.2 Stacking . 64

a.2 Implementation Usage 64

a.2.1 General . 65

a.2.2 VR recording . 66

a.2.3 IRL training . 68

a.3 Hyperparameters . 73

a.3.1 Manually Tuned 73

a.3.2 Automatically Tuned 73

a.4 Nutzung KI basierte Anwendungen 76

Bibliography 77

L I S T O F F I G U R E S

Figure 3.1 Standard Gymnasium environments used to
compare various learning algorithms [64]. . . . 18

Figure 4.1 Picture showing the head-mounted display and
controller (HP Reverb G2). 29

Figure 4.2 Communication between Python and Unreal
Engine for IL. 31

Figure 4.3 Communication between Python and Unreal
Engine for hyperparameter tuning. 32

Figure 5.1 Discrete visualization of the state space using
the AGridActorVisualizer in Unreal Engine. . . . 34

Figure 5.2 The impact of AGridActorVisualizer in Unreal
Engine. 35

Figure 5.3 Images showing the effect of using the grasp
value in ABP_MannequinsIRL from the C++ im-
plementation. 36

Figure 5.4 Unreal Engine Editor with EnvManager. 38

Figure 5.5 Images showing the different scenes that are
available for user selection. 38

Figure 5.6 All environments implemented in Unreal En-
gine with the initial pose of all objects. One
common element is the hand, which represents
the learning agent. 39

Figure 5.7 Complete view of EnvManager in Unreal Engine. 46

Figure 6.1 Each column represents the best trajectory gath-
ered from the environment’s final best perform-
ing policies. Four stages visualize the progress
and show success in some cases. The following
configurations produced these results: covering
manually GAIL λ = 0.7, insert automatically
GAIL λ = 0.5, stacking automatically GAIL
λ = 0.5. 52

Figure 6.2 Results of covering: Both configurations with
AIRL seemingly reach a local optimum early
during training, while GAIL show more promis-
ing results. The manually tuned results learn
faster and get higher results at this task. None
of these results reach the expert’s mean return. 53

ix

Figure 6.3 Results of insert: Only the automatically in-
duced hyperparameter set seems to struggle
using AIRL. All other configurations start to
learn the behavior of the expert. While not
by a considerable margin, the automatically
induced hyperparameter set for GAIL is the
best-performing configuration. However, none
of these results reach the expert’s mean return. 54

Figure 6.4 Results of stacking: While training stabilizes
the agent’s movement within the simulation, all
configurations struggle to imitate the behavior
just once. The plots also reflect this situation,
where none of the configurations increase the
mean return over time. 55

Figure A.1 Shows how to visualize the state space in State
Space/State Space Parameters. 65

Figure A.2 Shows how to switch the current project mode
in Modes. 65

Figure A.3 Shows the options for the environment section
within EnvManager. 66

Figure A.4 Showing VR mode options when selected and
when not. 67

Figure A.5 Message on screen outlined in red appears
when recording in VR is ready. The number
represents the ID of the current trajectory. . . . 67

Figure A.6 Structure of the directories generated by the VR
recording. 68

Figure A.7 Shows the configuration menu for IRL mode. . 69

Figure A.8 Shows the configuration menu for IRL training. 71

Figure A.9 After hitting UE’s Play button, the training will
start with two windows, as seen above. 72

Figure A.10 Viewing sacred experiments is done with Om-
niboard and indicates how the run went. . . . 72

L I S T O F TA B L E S

Table 6.1 System specification for both trajectory record-
ing and imitation learning as well as the system
specification for the hyperparameter tuning. . 49

Table 6.2 Mean return of each environment when taking
the expert’s trajectories. 51

x

Table A.1 A table showing all relevant hyperparameters
used in the hyperparameter config file, man-
ually tuned for IL training. These values are
used in all environments. 73

Table A.2 Automatically tuned hyperparameters for the
GAIL covering environment. 74

Table A.3 Automatically tuned hyperparameters for the
GAIL insert environment. 74

Table A.4 Automatically tuned hyperparameters for the
GAIL stacking environment. 75

Table A.5 Automatically tuned hyperparameters for the
AIRL covering environment. 75

Table A.6 Automatically tuned hyperparameters for the
AIRL insert environment. 76

Table A.7 Automatically tuned hyperparameters for the
AIRL stacking environment. 76

L I S T O F L I S T I N G S

2.1 The IRL algorithm as a template modeled after
Aora et al. [5]. 13

4.1 The pseudo-code of the task reward for covering. 26

4.2 Pseudo-code that describes the procedure of the
planned algorithm. For clarity, only the relevant
parameters are provided as input. 28

A.1 The pseudo-code of the task reward for insert. . 63

A.2 The pseudo-code of the task reward for stacking. 64

A C R O N Y M S

AGI Artificial general intelligence

AIL Adversarial imitation learning

AIRL Adversarial inverse reinforcement learning

BC Behavioral cloning

GAIL Generative adversarial imitation learning

GAN Generative adversarial networks

IL Imitation learning

IRL Inverse reinforcement learning

MDP Markov decision process

xi

PPO Proximal policy optimization

RL Reinforcement learning

TCP Transmission control protocol

UDP User datagram protocol

UE Unreal Engine

VR Virtual reality

G L O S S A RY

Adversarial inverse reinforcement learning
AIL algorithm that infers both the reward function and a
policy based on the demonstrations [24].

Adversarial imitation learning
An approach to recover the reward function or policy based
on a set of demonstrations, but this with an algorithm that
uses GAN to infer said products [69].

Affordance
At its core, this refers to the capability an object offers. For
example, a chair affords to sit on, or a bottle opener affords to
open a bottle.

Artificial general intelligence
Algorithm that can reason or learn any skills and tasks that a
human being can perform [53].

Behavioral cloning
BC is an IL algorithm that directly maps states to available ac-
tions. Most commonly, only using the expert’s demonstrations
[67].

Blueprint
Blueprints allow for visual scripting of gameplay elements
within an interface inside the Unreal Engine Editor [21].

Creabots
A master project that, among other things, evaluates the suit-
ability and limitations of virtual environments implemented
in different physics engines for simulating affordances and
training RL algorithms on them [12].

Demonstration
A list of tuples representing the change of states over action
done by an expert in a certain environment (recording is done,
e.g., with VR).

Dense reward
Contrary to sparse rewards, this function always gives new
information to better reinforce behavior [22].

Generative adversarial networks

xii

Glossary xiii

A combination of two CNNs called generator and discrimina-
tor that compete against each other to create realistic images
or voices, for example.

Generative adversarial imitation learning
Similar to AIRL, this is also an AIL algorithm but only offers
the capability to infer the policy [33].

Gymnasium
A standard interface implementation for RL environments
that also offers standardized environments for comparison of
algorithms [64].

Imitation
Python module containing a collection of different imitation
learning algorithms [28].

Imitation learning
Imitation learning is an umbrella term for the category of
algorithms that try to imitate the behavior of an expert solely
by their demonstrations or a policy [69].

Inverse reinforcement learning
An algorithmic approach to infer the reward function just by
expert demonstrations for later RL training [5].

Learning Agents
A plug-in for Unreal Engine to train machine learning agents
in an UE environment to train via RL or IL algorithms [9].

Markov decision process
A stochastic control problem is typically defined as a 4-tuple
containing states, actions, transitions, and a reward function.

MindMaker
Unreal Engine plugin to enable UE to function as a Gymna-
sium environment for machine learning algorithms. [41].

MongoDB
MongoDB is a database that is required for the use of USem-
Log [47].

MuJoCo
Physics engine used in different areas, including machine
learning [63].

Omniboard
A web dashboard to display sacred experiments with all in-
formation. Also, it can create plots of selected metrics [66].

Optuna
API to search a pre-defined hyperparameter space for the best
set of hyperparameters for an algorithm in a defined number
of runs [3].

Policy
Also known as π, is a function mapping a state s ∈ S to either
a single action a ∈ A or a probability distribution over the

xiv Glossary

set of actions A. In other words, π is the (trained) ruleset that
determines the following action to take on the current state s.

Proximal policy optimization
RL algorithm that limits the amount of change in each training
step by using, e.g., a clip range [58].

Reinforcement learning
In simple terms, reinforcement learning is an approach to infer
the policy for a task by interacting with a given environment.
These interactions are evaluated by a reward function (also
known as a cost function) and considered for further policy
improvements.

Reward function
A mapping of state-action to a scalar value, which evalu-
ates the behavior and gives feedback to reinforce a particular
behavior.

Sacred
An open-source Python framework that provides functional-
ities to manage configurations, reproduce results, and more
[31].

Sparse reward
A reward function that gives sporadically positive feedback.
Most of the state-action combinations do not return more
information than the combinations before [22].

Stable-Baselines3
Package containing different RL algorithms using PyTorch
[52].

Task reward
A function that splits a task into different stages to evaluate
these individual pieces with a constant reward [72].

TCP-Unreal
Unreal Engine TCP socket wrapper [25].

Trajectory
A synonym for demonstration.

Transmission control protocol
Connection-oriented internet protocol.

Unreal Engine
A game engine developed by Epic Games [20].

USemLog
Semantic logger used in this project to record the trajectories
[55].

User datagram protocol
Connectionless internet protocol for data communication.

Virtual reality
Makes a virtual environment tangible with the help of techni-
cal aids such as a VR Headset.

Part I

C O N T E X T A N D F O U N D AT I O N S

The introduction, research context, problem statement, ob-
jectives, and essential theoretical or technical foundations.

1
I N T R O D U C T I O N

Humans usually do everyday activities like cleaning, cooking, or
putting things away. Electronic helpers like robots could help us reduce
the time we spend a day on such things. However, programming said
robots proved difficult, especially in more complex situations [39].
Thus, training them with, e.g., reinforcement learning (RL) is used
to create their policy to follow without explicitly programming every
particular case in an algorithm. Instead, a reward function gives an
agent feedback, which the algorithm wants to maximize to learn a
specific behavior [34].

In recent decades, much research has focused on RL and how to
improve it [6]. Creabots, a project from the University of Bremen, tried
to incorporate RL with affordances (e.g., covering a pot) and examined
its limitations and the capabilities of virtual environments in Unreal
Engine (UE) compared to data in the real world [12]. The definition
of affordances varies depending on the scientific field. Nevertheless,
in this case, it just means the relationship between actions, objects,
and their effects [48]. In other words, what is the capability of an
object? For example, a bottle opener can open a bottle. Busse et al.
[11] concluded in Creabots that a virtual environment is feasible as
input for learning algorithms, even though the data might require
some processing. However, more importantly, learning the policy for
affordances with RL proved more challenging than expected. One of
the reasons might be the reward function. Hence, they proposed a
taxonomy that splits the learning process into multiple components.
Abbeel et al. [1] even state that manually defining a reward function
requires much manual tweaking, which adds a barrier to RL’s success.

These problems raise the question of how to improve the RL ap-
proach to make it easier for a user to reach a satisfying policy. The
group of imitation learning (IL) algorithms is a counterpart to RL to
simplify the process. This field involves inverse reinforcement learning
(IRL), where only data recorded from an expert is used instead of a
specially defined reward function. This procedure derives a reward
function from demonstrations and the desired policy through RL [5].
Interestingly, some authors like Silver et al. [59] even argue that agent
reward maximization can contribute to a solution of artificial general
intelligence (AGI). This means that IRL may lay the groundwork for
AGI. Furthermore, IL also includes behavioral cloning (BC) and ad-
versarial imitation learning (AIL). One thing all these categories have
in common is the goal to imitate the behavior given an input, which
mainly consists of a set of trajectories. However, the algorithms in
the different categories choose different ways to achieve this goal. For
example, BC and some of the algorithms from AIL, such as generative

3

4 introduction

adversarial imitation learning (GAIL), deal directly with learning the
behavior, while other algorithms from the IRL category take a detour
via a reward function [69]. Researchers raised the category of AIL due
to issues like the computational complexity of IRL [33].

Based on the previously mentioned challenges of the reward func-
tions in Creabots, this thesis tries to combine existing research in the
field of IL to learn from expert demonstrations while querying all
information needed from a virtual reality (VR) environment. Require-
ments that the algorithms should include are: works in continuous
space, does not require any feature specification, is model-free, and
has a stationary reward that does not change over time. However,
recording trajectories is time-consuming, which means a user can only
do a limited number of recordings, which might not produce a feasible
policy due to problems with generalization. To be more precise, the
intent of the demonstration does not get extrapolated to initial states
not included in the input set of the algorithm [5]. To counter this
problem, an approach known as task reward (a sparse reward func-
tion) can stabilize and accelerate the training [72]. Furthermore, the
choice of hyperparameters can significantly enhance the performance
of RL algorithms, yet scientists often overlook it [19]. Combined with
task reward, this should improve the standard approach of using an
arbitrary IL algorithm.

To evaluate this approach, task rewards and hyperparameter op-
timization with Optuna will be added to classical AIL algorithms.
So, in the end, a comparison between the classical approach and the
extension will be made. The implementation realized in Unreal En-
gine, including the training space and a virtual environment using
a VR headset for recording the trajectories, is introduced in the later
chapters, as well as an external Python script focusing on the actual
algorithmic part of cloning the behavior. Although some successes
occur, training the algorithms requires significant time.

In the next chapter, the text provides background information, in-
cluding all the terms mentioned in the introduction. Related works
follow this background. The methodology section explains the design
choices and the implementation process. Finally, the evaluation com-
pares the different approaches and concludes with suggestions for
improvements.

The summary of the objectives of this thesis:

• Integration of UE for IL algorithms and recording of trajectories
in VR.

• Testing the approach of task reward to tackle generalization prob-
lems with AIL algorithms like AIRL and GAIL and comparing
them.

• Using a hyperparameter optimization method for the individual
environments and IL algorithms, contrary to manually tuned
parameters.

2
B A C K G R O U N D

This chapter introduces the essential RL concepts, explaining impor-
tant terminology and foundational principles. It will also discuss some
of the limitations associated with this approach. Finally, this chapter
will briefly cover IL and its importance to this work.

2.1 definitions

Before delving deeper into the different fields of IL, it is essential to
define some crucial terms to lay the groundwork for understanding
how those concepts work.

2.1.1 Affordances

Gibson [26] introduced the term affordances in 1966 in his work as
a substitute for values. To clarify, he says, these can be derived from
the constant properties of an object and ultimately mean what an
object offers to an observer. In later work, he underpins this with the
example of a surface. It can be "walk-on-able," "sink-into-able," and
more depending on the physical properties relative to the creature
using it and how they perceive it (e.g., water bugs can stand on water
while other animals cannot) [27].

Researchers have conducted extensive studies on the definition
of affordances in various fields like psychology, neuroscience, and
robotics [4, 38]. This thesis will focus on affordances as the relationship
between objects and the actions that can be performed on them to
produce an effect [48].

2.1.2 Markov Decision Process

Markov decision processes (MDPs) are frameworks that are, among
other things, used as the base for the definition of RL [68]. It includes
everything to model a sequential decision-making process and to use
this model to find an optimal policy. While the formal definition
varies in the literature [34, 50, 53, 68], its essence remains consistent.
In this context, this thesis aligns closely with the equation definitions
proposed by Hu [34] with discrete time steps t ∈ {0, 1, 2, ...} and
where upper case variables at a time step (e.g., At) represent random
variables and lower case variables specify the result of these random
variables. A MDP is defined by a tuple M = {S, A, P, R} [34]. The
definition can also include the discount factor δ, making it M =

5

6 background

{S, A, P, δ, R} [53]. Each component of the tuple, including δ, will be
defined as follows [34, 53]:

• S: The set of all possible states for this particular MDP. Consider
a simple 2 × 2 grid with one entity (the agent) as an example.
The position of this entity defines the states in this case as
S = {0, 1, 2, 3}.

• A: The set of all defined actions. In the previous example, this
would be discrete movement actions (up, down, left, right).

• P : The function P is a transition mapping defined as P(s′|s, a) =
P[St+1 = s′|St = s, At = a] which gives the transition probability
to a state in s′ based on a given state s ∈ S and action a ∈ A. So,
to say, it is the way how the MDP will react to an action.

• δ: Is the discount factor, where δ ∈ [0, 1] and weights future
rewards. Introduced to eliminate the problem of infinite reward
if a task has no termination goal.

• R: Another mapping R(a, s) = E[Rt|St = s, At = a], that gives
a scalar value as an evaluation (or reward) to the given state s
and action a. R actively guides a learning agent toward correct
behavior by providing rewards and punishments.

Furthermore, in addition to the current tuple definition of the MDP,
the problem statement still misses some functions for measuring the
expected return and returning the best action according to a state,
which is crucial to solving the MDP:

policy : Still missing is something to optimize the MDP. This is
the policy π, which is a function taking states as input and mapping
it to an action or the probability distribution of the set of actions.
Solving an MDP is, in other words, the search for the optimal policy
π∗, which maximizes the reward or state value for each action taken.
π, a function either discrete or stochastic, where the sum of all actions
adds to 1, is in equation (2.1) defined as follows [34]:

π(a|s) = P[At = a|St = s], for all s ∈ S, a ∈ A (2.1)

return : Equation (2.2) measures the total reward of a given se-
quence [34]:

Gt = Rt + δRt+1 + δ2Rt+2 + ... (2.2)

It accumulates the reward given a start reward and all following
rewards. The discount factor δ allows emphasizing immediate rewards
or incorporating future rewards. The larger the δ, the more it factors
future rewards into the sum Gt. A value of 0 considers only the
immediate reward. It also prevents issues with infinite sequences,
meaning tasks without a specified end.

2.1 definitions 7

state value function : The return value of a sequence alone
is not meaningful enough to improve the policy π. Since it only
represents the value that happened in this particular observation and
not the value of a state as a whole. To help an algorithm find the best
policy, the concept includes the state value function Vπ(s) defined as
[34]:

Vπ(s) = E[Gt|St = s], for all s ∈ S, (2.3)

Equation (2.3) defines the expected return of an state s when incop-
erating all possible return values Gt when following π. Solved is this
function with iterative methods that converge to the optimum.

Equation (2.4) forms the Bellman equation for the state value func-
tion, which takes only the immediate reward and discount value [34]: Notice: The Bellman

equation for a value
function helps define
the update operation
for value function in
algorithms and is the
base for many
reinforcement
learning algorithms
[34].

Vπ(s) = ∑
a∈A

π(a|s)
[

R(s, a) + δ ∑
s′∈S

P(s′|s, a)Vπ(s′)

]
, for all s ∈ S,

(2.4)

state-action value function : This function is similar to
Vπ(s), but it includes an action for the expected return of a policy π.
The equation (2.5) provides the definition [34]:

Qπ(s, a) = E[Gt|St = s, At = a], for all s ∈ S, a ∈ A (2.5)

Making this a higher resolution version of Vπ. This function also
has the excellent property that the state value function is the same as
all state-action values for a state weighted by the probability of taking
such action in a state.

Equation (2.6) defines the Bellman equation for the state-action
value function [34]:

Qπ(s, a) = R(s, a) + δ ∑
s′∈S

P(s′|s, a)Vπ(s′), for all s ∈ S, a ∈ A (2.6)

MDPs have their optimal value functions Q∗(s, a) and V∗(s) linked to
the optimal policy π∗. Theoretically, there might be multiple optimal
policies. With the optimal state-action value function, the MDP can be
simply solved by defining π∗ as [34]:

π∗(a|s) =

1, if a = arg max
a∈A

Q∗(s, a)

0, otherwise
(2.7)

Approaches to solving the MDP include dynamic programming
and Monte Carlo algorithms, which iteratively improve the value
functions to generate π∗. Those algorithms are also commonly used
in RL algorithms.

8 background

2.1.3 Reward Function

Section 2.1.2 introduced the term reward function as a simple mapping
from a state-action tuple to a scalar reward value. However, there is a
difference in the way a reward function responds. For example, the
reward function can provide more or less information at each step of
the action taken. Two different reward concepts can define the amount
of information and are commonly mentioned in literature [22, 57]:

sparse reward : As the name suggests, a sparse reward function
has its information sparsely distributed. One extreme example is when
the reward function only grants a reward upon reaching the goal. This
example means that only one state can reinforce the behavior of an
agent, which leads to numerous training steps [61]. When implement-
ing a sparse reward function, this function can also rely on a specific
condition, where meeting these conditions leads to a specific reward
upon transitioning to the next state [22]. However, only some states
give reward information, while most do not.

dense reward : Contrary to sparse reward, a dense reward func-
tion (also called intermediate rewards [57] or shaped reward [36])
includes more information and emits different rewards frequently
[22]. Unlike sparse rewards, this will make the learning process sig-
nificantly easier [57]. For example, imagine an environment where
the goal is to move in a specific direction. With this reward function,
the learning agent would gather a positive reward at each step. The
reward function could incorporate a movement vector to accomplish
such a dense reward function.

2.1.4 Reinforcement Learning

RL is briefly introduced here, with a few key terms essential for un-
derstanding IRL in the following sections. RL is a subcategory of
machine learning with the addition of an agent that can navigate in
a defined environment freely [68]. Given a reward function that gets
maximized, it answers which action is the best for an environment.
The rules of such an environment might be unknown to the learning
agents. In other words, a learned policy π gets gradually improved
over sequences of action taken by the agent in the trial-and-error learn-
ing procedure. Agent and environment constantly exchange actions
from the agent and, in addition, observation and reward from the
environment until the learned policy converges to π∗. In this context,
MDP (as seen in section 2.1.2) models this reinforcement learning
problem of training π. However, as already said, a learning algorithm
might not have access to variables of the MDP (e.g., P), so the agent

2.1 definitions 9

has to learn through trial and error to learn about the MDP to solve it
[57].

The following explanations outline some critical differences in the
properties of reinforcement learning algorithms:

online vs . offline : According to Winder [68], an online algo-
rithm directly accesses the environment and updates its policy using
data from observations returned by the environment, discarding the
data once the algorithm utilized it. In contrast, as Winder noted,
offline algorithms learn from logged interactions, preventing real-
time environment computation. However, the available data limits
the algorithm’s exploration capabilities, as it cannot interact with the
environment in real-time.

on-policy vs . off-policy : Defines how an algorithm updates
their policy during training. An on-policy algorithm will constantly
improve one policy, while off-policy algorithms have two policies
[34]. One keeps track of the output of the environment and updates
their policy according to good actions, while simultaneously, the
other generates the trajectory, which represents the output of the
environment [34].

model-free vs . model-based : Russell et al. [57] note that an
algorithm is model-free if the agent does not know about the transition
function P and will not learn an estimation of it. Instead, for example, it
leverages interaction with the environment to develop a value function
for learning. This is in contrast to model-based algorithms. They define
it as algorithms that use a given P, or even learn P during runtime,
for decision-making.

value-based vs . policy-based : Algorithms vary in their use
of value functions. Some might even do training without a value
function, which introduces the policy-based algorithms. This approach
optimizes a policy represented by parameters directly in training
without a value function [34]. On the other hand, value-based means
using such a value function to learn a policy [34].

The RL algorithm used by most of the IL algorithms in the later
chapters uses proximal policy optimization (PPO) as the standard to
solve the forward problem. PPO itself is a model-free, on-policy, online
algorithm that optimizes its policy policy-based (from actor-critic-
strategy). Schulman et al. [58] proposed this learning algorithm. It tries
to optimize the policy each step as much as possible but with limits
to not cause any harm to the already achieved performance. They
presented two methods to optimize the policy: one with a clipping

10 background

function and another that introduces a penalty for Kullback-Leibler
divergence.

2.1.5 Trajectory

A trajectory (also called demonstration) in the context of RL and IL
in general describes the history of state-action pairs taken by either
a policy π or an expert. Of course, in this thesis context, a dedicated
expert creates these trajectories. Taking the definition from Arora
et al. [5], the set of trajectories is D with trajectories defined as <

(s0, a0), ..., (sj, aj) > and denoted as τ.

2.2 limitations in reinforcement learning

Often, when discussing RL and consequently IL, the focus is on high-
lighting successes while pushing problems into the background. For
that reason, it is essential to know about the limitations of this research
field in order to have a realistic approach in this area. Consequently,
Irpan [36] as well as Hu [34] criticized some general approaches or
views on RL in his book. This thesis will also address their concerns
in the following sections and mention where IL could offer valuable
support.

2.2.1 Time Complexity

The time complexity of RL relies on the algorithm’s sample efficiency
and the training environment’s performance. A physical training
environment typically faces limitations due to the real-time operation
of robotic arms. Similarly, the computer hardware powering such an
algorithm limits a physics engine in virtual space. An environment
like UE is not developed with machine learning in mind, even though
they now offer some plug-ins for machine learning [9]. Resulting in
the number of samples outputted limited by the number of frames
per second during training.

So, in the end, reducing the number of needed samples (increasing
the sample efficiency) for the training of RL is an essential step for
reducing the time complexity. However, RL needs many samples to
achieve the desired results, especially in environments with large state
spaces [34]. For example, Hessel et al. [32] compare different DQN
architectures and a combination with impressive results. However, in
the end, the number of samples needed for human-level performance
exceeds 10 million.

Hu [34] mentions some techniques, such as off-policy learning
or function approximation, that can reduce the number of samples
needed for policy learning.

2.3 introduction to imitation learning 11

2.2.2 Reward Function

Using a reward function is essential in RL, whether self-defined or
provided by the training environment, to generate π. Towers et al.
[64] already offer with Gymnasium a standardized environment for
research to compare algorithms under the same conditions. Their
package offers environments and reward functions with engines such
as MuJoCo, Box2D, and more. However, what if one wants to use a
self-defined training environment with its own reward function? This
requires reward engineering to create the proper function, which helps
the agent learn the correct policy. Irpan [36] names a few examples of
how difficult it can be to write such a reward function and the agent
learns an entirely wrong behavior. This problem is where IL might
come in handy since it does not require the definition of a reward
function; more on that topic in section 2.3.

2.2.3 Local Optima and Generalization

Another problem arising from RL is the exploration-exploitation
dilemma. It is essential to balance these two phases, as taking too
little time in the exploration phase can lead to learning nothing, while
starting the exploitation phase too early can reinforce incorrect behav-
iors in the policy, thus leading to a local optimum [36].

Generalization is another problem that might come with agents
needing to interact with more situations. Those agents have not
learned enough to react to new situations from past learned scenarios
[34].

2.3 introduction to imitation learning

In RL, a significant challenge is the necessity of defining a reward func-
tion, where a user might have difficulties (as discussed in section 2.2.2).
IL offers a potential solution to this issue by concentrating on replicat-
ing an expert’s behavior. It does this through demonstrations instead
of a manually defined reward functions, allowing us to generate a
policy or derive the needed reward function. Multiple surveys [5, 69,
71] reflect the situation on IL or IRL specifically. The purpose of IL is to
extract knowledge from an expert (human or artificial agent) based on
demonstrations, allowing for the modeling of behavior in the same or
a similar environment to that of the demonstrations [71]. IL comprises
two categories, namely IRL and BC. Zheng et al. [71] and Zare et
al. [69] define both BC and IRL, but they also add a third category,
an adversarial approach. The next section will briefly overview each Notice: Even tho

Imitation from
Observation (IfO) is
another form of IL,
this thesis will
neglect IfO due to its
focus on learning
with raw video
material rather than
state-action
sequences as input
[69, 71].

category, highlighting their features and including relevant algorithms
used in this thesis.

12 background

2.3.1 Behavioral Cloning

Behavioral cloning (BC) (also just called Behavior Cloning) is the
simplest IL approach that maps a state s ∈ S to an action a ∈ A, thus
creating a function a = π(s) [67]. Wang et al. [67] further explain that
the creation of π solely takes (offline) expert’s trajectories instead of
interacting with an environment like AIL or IRL. Thus making this
approach a supervised learning algorithm. Conversely, this also means
the performance is significantly faster than the other IL approaches.
This mapping function, also known as policy, uses a negative log-
likelihood loss function to induce π [71].

However, there are two main problems with this approach. First,
the policy generated by BC is sensitive to changes; moreover, inducing
this function has a low success rate below 50% [74]. Of course, there
are solutions to some problems in the field of BC, like model-based
BC, to help with different environment dynamics, but these come at
the cost of greater time complexity [71].

An example of an algorithm that falls under the BC category is
known as "DAGGER" [56].

2.3.2 Inverse Reinforcement Learning

As discussed, BC is the simplest way to imitate the behavior by using
recorded data to induce the policy. IRL, on the other hand, tries to
solve IL by finding the reward function for RL iterativly instead of
learning a policy directly [71]. In classical RL, the reward function
is seen as given (see section 2.1.2), but what if there is no reward
function or it is too difficult to define? For example, defining the
reward for autonomous cars can be difficult due to rules, the behavior
of other cars, the weather, and more. This approach instead tries to
infer a reward function from the demonstrations by an expert. Which,
in hindsight, is the key for RL to imitate the behavior. The benefit
of IRL contrary to BC is that you can use the reward function under
different conditions (e.g., less or more available actions) and reproduce
a similar behavior, which is better than just copying the actions [5].
Zheng et al. [71] point out that BC can perform better and take less
time than IRL when there are abundant trajectories and an accurate
controller. However, depending on the state space, this might require
an unrealistic amount of demonstrations.

2.3.3 Definition

Aurora et al. [5] formally define IRL as the inverted RL problem.
Assume a MDP without a reward function RE dependent on an expert
E. D as defined in section 2.1.5 is the set of all recorded trajectories.

2.3 introduction to imitation learning 13

They then present that the reward function R̂E should be determined
based on either the expert policy or the collected demonstration set.

Listing 2.1: The IRL algorithm as a template modeled after Aora et al. [5].

1 input: D
2 ω = randomly initialized reward parameters

3 while learned and expert behavior differ significantly:

4 R̂E = initialize R̂E using ω

5 π = learn policy with current R̂E under ω
6 ω = update ω by reducing the difference between expert’s

behavior and learned policy

7 output: R̂E

The goal is to learn the reward parameters ω that define the reward
function. In typical algorithms, a weighted combination of features ap-
proximates the underlying reward function [69]. For example, features
could be the visitation count of states under the experts demonstra-
tions. A general IRL algorithm based on Arora et al. [5] follows four
steps until a stopping criterion is met (see listing 2.1). The previous
definitions provide a set of trajectories D as input and give a reward
function R̂E as output. The first step will initialize the reward function
with the initial values or, if already learned, the new features. Next,
the algorithm will do RL, also called solving the forward problem,
with the current reward function, then update the parameters ω to
minimize the difference between the expert’s and learned behavior.
Lastly, this process continues until the algorithms meet a stopping
criterion.

2.3.3.1 Problems

This section specifies only problems relevant to a virtual environment.
For example, the problem of security concerns with IRL, which control
agents in the real world (e.g., a car), is left out. While Aurora et al. [5]
pointed out a few more challenges to overcome, like the accuracy of
prior knowledge and missing states in observations. The focus will lie
on some of the mentioned problems by Aurora et al. [5] and Zare et
al. [69]. They define these as:

ambiguity : There are several possible reward functions for the
demonstrations generated by the expert. Since it is not feasible to
include all possible trajectories in the smaller, finite set the algorithm
uses as input, the algorithm must work within these constraints. This
results in multiple reward functions, each capable of creating policies
that can match the input demonstrations.

complexity : IRL needs to solve an MDP in multiple iterations to
gain the reward function. While this has polynomial complexity, one
key element, the state space, suffers from the curse of dimensionality.

14 background

With each new dimension, the state space grows exponentially. This
leads to poorer sample efficiency. Furthermore, with the increasing
state size, the number of demonstrations also needs to grow (also
called sample complexity). Otherwise, not enough coverage of space
might lead to sparse rewards.

generalizability : The problem of extrapolating unknown states
and actions from the observation. This means that the agent can
also cope with unknown environments. The challenge is inferring a
reward function and using as little data as possible without creating a
too-large approximation error.

2.3.3.2 Algorithms

While the classical approach involves linear reward functions, more
modern approaches utilize neural networks for non-linear reward
functions [5, 69]. However, the goal remains: to learn the underlying
experts reward function. And thus, the optimal policy. When helping
to counter the ambiguity problem, Aurora et al. [5] outlined four
categories of IRL. In contrast, Zare et al. [69] roughly divide them into
three:

maximum margin : A method that should help counter the ambi-
guity problem. Maximum margin aims to derive a reward function that
represents the optimal policy more accurately than other competing
policies, achieving this by a defined margin.

maximum entropy : Another approach to solving the ambiguity
problems, but without the bias introduced by the maximum margin
method in the reward function. As the name suggests, this method
maximizes the entropy, assuming that the reward function with the
highest entropy has the least commitments.

bayesian learning : The pairs of states and actions in a trajec-
tory are used as evidence to facilitate a Bayesian update of a prior
distribution over potential reward functions.

Various categories exist for solving IRL, and while those are impor-
tant, a more crucial question for this thesis is whether an algorithm
is compatible with continuous space. As an explanation for the need
for continuous space, think of robotics. In robotics, a robot arm is
controlled by continuously adjusting the joints. However, the envi-
ronment given by the algorithm in which the arm operates is often
discrete. If we try to convert the continuous arm movement into dis-
crete steps, we will introduce inaccuracies in the control. Therefore, we
need algorithms that can operate in continuous space, which is often
high-dimensional. Due to the goal to learn affordances accurately,

2.3 introduction to imitation learning 15

the need for these algorithms arises. Thus, the following paragraph
presents commonly used algorithms in continuous space and one in
discrete space.

Since many discrete algorithms exist, this thesis will only present the
one used in the implementation. When looking at maximum entropy
methods, maximum entropy IRL (MaxEntIRL) by Ziebart et al. [73] is
most commonly associated with that category. In itself, it is a convex
non-linear optimization. However, MaxEntIRL, like many algorithms
in IRL, only works in discrete state-action spaces, so it does not fit the
use case of affordances in a continuous space. Therefore, the following
paragraphs mention better-suited approaches, although most solutions
focused on solving IRL in discrete space [5]. These approaches mainly
expand the maximum entropy (deep) IRL algorithm:

continuous maximum entropy deep inverse reinforce-
ment learning : Chen et al. [13] developed a new algorithm for
continuous action and state space. They also included a "hot start"
mechanism to improve the algorithm’s convergence further.

guided cost learning : Finn et al. [23] introduced a sample-
based approximation of the MaxEntIRL algorithm to learn the reward
function for a continuous MDP.

maximum entropy inverse reinforcement learning with

path integrals : Another approach that lets an IRL algorithm
work in a continuous space proposed by Aghasadeghi et al. [2] uses
Path Integrals. To reduce the complexity of learning RL during IRL
training, such methods aim for local optimality of trajectories [5].

2.3.4 Adversarial Approach

AIL is another approach that addresses the problem of IL. While
both IRL and AIL are pretty similar in the way they work, AIL uses
generative adversarial networks (GANs). As Ho et al. [33] pointed
out in their implementation of an adversarial approach, normal IRL
is computationally complex due to the requirement of running RL in
the inner loop. With their implementation, they achieved an algorithm
that was pretty sample-efficient and related to the expert’s input.
Furthermore, later introduced in this chapter, common algorithms are
also continuous for states and actions, making them a perfect fit for
implementing this thesis [24, 33].

2.3.4.1 Definition of Generative Adversarial Networks (GANs)

Goodfellow et al. [29] introduced GANs as a framework of two ad-
versarial networks playing a min-max game with a value function
defined in equation (2.8):

min
G

max
D

V(D, G) = Ex∼pdata(x)[log D(x)]+Ez∼pz(z)[log(1−D(G(z)))]

16 background

(2.8)

A generative model, G, tries to generate an output that a discrimi-
native model D would see as actual data samples. Contrary to that is
D, which tries to discriminate between the fake output generated by
G and the actual input data samples. A trained model, D, would give
a value close to 1 to actual data and a value close to 0 to generated
data. So equation (2.8) uses the expected return based on the actual
data x of the discriminator and adds this with the expected return
of the evaluated output of the generator based on a random input
noise z. Notice that the discriminated value of G gets subtracted by
1 because otherwise, the discriminator would always output one to
maximize D. This kind of adversarial play improves both models until
the discriminator can not distinguish between both sample sets.

2.3.4.2 Algorithms

Two prominent algorithms stand out to mimic expert behavior through
structured adversarial interactions. Each algorithm differs in its ap-
proach to solving the IL problem, contributing to advancements in
this area of research:

gail : A well-known IL approach that utilizes GANs as their base to
imitate expert’s behavior is GAIL. Ho et al. [33] question the need for
an intermediate step to infer a reward function and thus introduced
this concept of a model-free algorithm that directly learns the policy.
They argue that calculating the reward function adds to unnecessary
computational complexity. Due to its structure, it can also run in large
continuous spaces. The algorithm uses the standard binary neural
net classifier as a discriminator and updates their policy with TRPO
(PPO is used instead of TRPO in the Imitation package). Like in the
standard GAN structure, the algorithm alternates between the training
of the binary classifier D and G.

airl : The adversarial inverse reinforcement learning (AIRL) ap-
proach introduced by Fu et al. [24] is the improvement of already
existing IRL algorithms based on the adversarial approach to infer
the reward function. Contrary to GAIL, the discriminator now gives
a probability instead of only binary values. Furthermore, it will be
optimized with the parameters of the reward function, thus giving a
reward function for generator training. Another advantage besides the
existing training in continuous space is that generated reward func-
tions are robust to changes in the environment dynamic. So instead
of classic IRL or GAIL, which fail with high variability environments,
AIRL proves to generalize well.

3
R E L AT E D W O R K

Chapter 2, presented a brief overview of the field of IL, along with
some standard algorithms. Since this thesis examines two categories
of IL, reviewing projects related to affordances, VR, and game engines
is essential. Doing so will help illustrate how these areas contribute
to the broader landscape of IL and provide context for the following
work.

In terms of classical IRL, Lindner et al. [43] developed an algorithm
that does not need the dynamics of the environment to be known
or access to a generative model. The algorithm actively explores the
environment and policy of the expert to gather the reward function.
However, their approach is, at the moment, only compatible with
discrete space.

Djeumou et al. [14] introduced an approach that questions the ob-
servation of many IRL algorithms in complete environments. To tackle
this, they utilized partially observable MDPs and improved sample ef-
ficiency by incorporating side information into the learning algorithm.
They achieved behavior similar to that of an expert. They even demon-
strated final results in a continuous Unity 3D environment. However,
a challenge with this approach is its reliance on an environmental
model.

Zhu et al. [72] introduced a combination of RL and IL to develop a
learning algorithm that performs better than both algorithms alone.
Their primary motivation is to help learning with multi-stage ma-
nipulation tasks and to reduce the number of samples needed while
learning. To combine individual algorithms, they introduced a task re-
ward. Combined with the normal reward function gained through an
IL algorithm, this leads to learning acceleration and increased stability.
Since their training phase was in a physics simulation, they could
also leverage form from the state information of the simulation to
improve learning further. An imitation approach using Path Integrals
introduced by Kalakrishnan et al. [40] also has an algorithm for feature
selection for the final IRL algorithm. It samples the right features from
a list typically for robot arms. They evaluated their approach with
inverse kinematics and optimal motion planning.

Since the global reward function learned by IL can produce sub-
optimal results due to noise and errors in the data collection, Liu et
al. [44] introduced an algorithm known as CSIRL. Their approach
divides a task dynamically into several local reward functions, leading
to improved outcomes compared to earlier methods.

17

18 related work

One concept explicitly using affordances in the implementation is
from Lopes et al. [45], which uses an affordance model. They relate
known high-level actions, such as grasping and tapping, to their effects
and present a dynamics model for learning. The agent then employs
these effects to allow a Bayesian IRL algorithm to learn by imitating
the behavior observed in a demonstration. This approach enables the
agent to learn complex tasks.

It is essential to highlight approaches incorporating VR in behavior
learning projects. Zhang et al. [70] identified issues with the tradi-
tional methods of generating demonstrations, often requiring costly
teleoperation or using external force on the robot. To address this, they
suggested using a straightforward VR setup with a controller to collect
data. They then used the collected data to evaluate the effectiveness of
IL through a basic BC algorithm.

Dyrstad et al. [18] introduced a different approach to transferring vir-
tually generated data into the real world. They aimed to use recordings
from VR, employing domain randomization, to create a synthetic train-
ing set for imitation learning in a 3D Convolutional Neural Network.
Their method enabled a robot to learn how to grasp fish, achieving
a success rate of 74%. Similarly, Hu et al. [35] developed a two-stage
IRL system to train a robot to grasp living objects with a success rate
of 90%.

(a) Classical Control: Cart Pole [16] (b) Box2D: Lunar Lander [15]

(c) MuJoCo: Ant [17] (d) MuJoCo: Humanoid [17]

Figure 3.1: Standard Gymnasium environments used to compare various
learning algorithms [64].

related work 19

Regarding frameworks that provide standardized environments for
RL, they facilitate benchmarking and allow for more effective com-
parisons of improvements across various algorithms in this field. A
prominent example is OpenAI Gym [10] along with its successor,
Gymnasium [64]. These frameworks have become foundational tools
for comparison in numerous scientific papers [13, 28, 33, 58]. Both
platforms leverage various physics engines, enabling the testing of
diverse properties such as 2D and 3D simulations and creating custom
environments. As illustrated in figure 3.1, different standard environ-
ments are available within Gymnasium, like MuJoCo and Box2D [64].
Additionally, a variant of OpenAI Gym has been explicitly developed
for multi-agent RL [62]. Another framework, Orbit, is based on Isaac
Sim and offers a variety of features, including benchmark tasks [46].

Nevertheless, these are just tools for a standardized comparison
between algorithms, but software implementations also already of-
fer some UE and IRL elements. Namely, MindMaker and Learning
Agents plug-in. Learning Agents is a machine learning plug-in for
agents used in the Unreal Engine environment to train via RL or IL
algorithms [9]. However, this implementation only offers simple BC
capabilities. MindMaker on the other side is also a UE plug-in that
uses a UE environment as a Gymnasium environment and offers some
experimental implementation of Imitation [41].

Since development started with typical discrete IRL learning al-
gorithms, which both existing software extensions did not support,
they found no use in the initial plan. Therefore, this thesis planned
a new self-implemented plug-in. Nonetheless, at the time of writing
the thesis, Learning Agents only supported vanilla BC and PPO as
machine learning algorithms, which means that only the simplest IL
algorithm is supported. On the other hand, MindMaker has experi-
mental support for Imitation but is not in development anymore. This
means the already self-implemented plug-in would be extended to a
continuous space and used instead.

Part II

M E T H O D O L O G Y

The system architecture, algorithm development, software
implementation.

4
A P P R O A C H

This chapter lists the basic ideas for implementing the IL process and
the UE extension, as well as the techniques that should lead to an
improvement. Furthermore, it provides a list of package details and
explains the preference for specific communication methods. Initially,
the plan was to use discrete IRL algorithms, but the focus shifted due
to their limitations in continuous space. Although the intention was
for the software to run exclusively on Windows, software constraints
require execution of VR on Windows and conducting training on
Linux. More information on that is in the following chapter.

4.1 problem definition

Due to the difficulties with defining reward functions for RL, the goal
is to instead use IL algorithms in a virtual environment. Everything
from recording demonstrations to training should occur in this en-
vironment with the continuous algorithms GAIL and AIRL due to
their advantages over other algorithms. However, since IL algorithms
have problems generalizing well, this work also focuses on adding
auxiliary help functions to the standard algorithms to improve this.
Furthermore, choosing the correct hyperparameters is crucial for a
project’s success, which is why this approach includes an automated
method to determine the correct values.

4.2 affordances

The selection of affordances for testing the implementation should
align with everyday tasks found in a kitchen environment. In training,
each agent will execute an affordance task represented as an individual
environment, including a hand and a few objects in the UE with a 60
fps simulation speed. An agent has direct control over a 7-Dof hand.
Such a hand in a kitchen environment offers various tasks, such as
having an agent use a knife to cut an object or stir content in a pot.
However, the chosen task must be simple enough for implementation
to minimize glitches from the physics engine and keep the cost of
creating the environment manageable compared to the overall system.
To later test the capability of task rewards, the task needs easily
differentiable stages such as picking up, standing still, and more. These
requirements lead to objects offering affordances in the following three
environments:

23

24 approach

covering : A task where the agent uses an object to cover the con-
tainer. Image boiling water and wanting to cover the pot to accelerate
the procedure. In this case, an agent needs a lid to cover the pot.
Moreover, the hand will move towards the lid to pick it up and place
it on the pot.

insert : Packing objects into a container is also something that
often needs to be done in a kitchen. Such a scene would require two
objects, in this case, a pot and a spatula. The hand is then supposed to
put the spatula into the pot to finish this task. This task is similar to
covering but adds the object rotation requirement into the task.

stacking : An agent is supposed to stack objects. However, after
some trial and error with the physics engine, it was found that the
initially planned plates proved to be too unstable, which is why thicker
objects such as blocks had to be used in this task. In the final design, a
hand will stack three cubes to form a tower.

Other tasks in the initial planning phase included flipping an object
like an ingredient in a pan with a spatula. Again, this could have led to
physical instability due to these objects’ inherently flat collision boxes.
Another task that would have been interesting, for example, is pouring
liquid. Again, physics constraints could have been problematic, even
more so for recording the whole state space. In the end, to keep the
task reasonably realistic, quite a few balls would have been needed to
simulate a liquid adding more objects to the state space that behave
chaotically and would lead to the agent not learning the right reward
function or policy.

4.3 unreal engine and usemlog

The choice for a physics engine fell on UE due to existing knowledge
of UE in the CGVR research lab and other projects related to this
work, such as RobCoG [54], whose objects and scenes offer an entry
to the environment and USemLog [55] to capture the trajectories.
It logs the position and rotation of previously marked objects in a
selected database. External software can then write an entry for further
processing to a JSON file. Furthermore, several projects also utilize UE
for RL [9, 41], leading to the decision to favor this game engine as the
simulation and recording environment. However, a question remains:
What recording technique should be used? Two different systems were
available for use: first, OptiTrack [49] and second, VR. OptiTrack itself
is a solution that tracks objects in the real world. However, using
such a technique would require having objects used in the training
simulation to be available in the real world and setting up a second
utterly independent environment to resemble the virtual environment.

4.4 discrete idea 25

Hence, it would take time to use such a technique. Furthermore,
objects need to have some markers for the recording, which can lead
to only specific poses of the object being useful since a marker could
hinder other movement. So the decision fell quickly to ordinary VR
with a head-mounted display and a controller to simulate input from
the hand.

4.4 discrete idea

It is worth mentioning that implementing a discrete algorithm was
also considered for the entire project; however, this approach proved
too imprecise for a robotic environment that operates with continuous
values and is significantly affected by the curse of dimensionality.
A brief implementation using MaxEntIRL, featuring communication
between the learning algorithm and the training environment with
only some discrete actions, led to this conclusion. As a result, while the
next chapter also discusses the implementation in a discrete format, it
will not be adequately evaluated.

4.5 task reward

As mentioned in chapter 3, one idea, introduced by Zhu et al. [72], to
counter the effect of terrible convergence to multi-stage tasks and to
reduce the number of needed samples to generalize, is the usage of
task reward. Such a task reward is just a sparse reward defining critical
steps of the task. It aims to guide an imitation learning algorithm,
in this case GAIL, in the right direction to accelerate training and
to help overcome local maxima. The usage of both task reward and
reward function learned through IL is named hybrid reward defined
in equation (4.1) [72]:

R(St, At) = λRIL(St, At) + (1 − λ)RTASK(St, At), λ ∈ [0, 1] (4.1)

Equation (4.1) adds in addition to the two reward functions a vari-
able λ, which is a factor to balance the influence of both functions to
the final result. So if λ is 1, only the learned reward function influences
the final result, while a lower value also incorporates the task reward.

The pseudo-code in listing 4.1 below shows an example of a pro-
cedure of a task reward, which the implementation will, in contrast
to previous work, also use with AIRL. First of all, the input slightly
varies from the input in the equation (4.1). This means the algorithm
only needs the current and following states for calculation. Said states
enable the calculation of relevant information like movement toward
objects and distance between objects. That qualifies if-statements to
check if said values are within a specific range to set the reward func-
tion into returning a specific reward. There are four main stages: hand
movement towards the lid, holding the lid, moving it towards the pot,

26 approach

and finally, placing the object on top. This sparse reward should guide
the learning algorithm in the right direction.

Listing 4.1: The pseudo-code of the task reward for covering.

1 input: state, next_state # in other words, the initial state and

subsequent state

2 movement_hand_to_lid, movement_lid_to_pot, next_lid_to_pot,
next_lid_to_hand = initialize these values using state and

next_state. All these variables are scalar values according to

the length of the calculated vector.

3 # Zero reward as a baseline

4 reward = initialize reward with 0.0

5 # Stage 1: Movement of the hand towards the lid

6 if movement_hand_to_lid exceeds a certain value:

7 reward = 0.5

8 # Stage 2: Hand holds lid

9 if: next_lid_to_hand is small enough and hand grasps

10 reward = 1.0

11 # Stage 3: Movement towards pot while holding the lid

12 if movement_lid_to_pot exceeds a certain value while holding in

next_state:
13 reward = 1.5

14 # Stage 4: The object is on the pot and not grabbed

15 if next_lid_to_pot is small enough:

16 reward = 2.5

17 if next_state is still grabbing while next_lid_to_pot:
18 reward -= 0.5

19 output: reward

Since the learning algorithm requires separate task reward for each
affordance and listing these would go beyond the scope of this section,
appendix A.1 list all other task rewards for insert and stacking.

4.6 existing machine learning software

Since there is already some work done in the field of IL, there is
also some learning software available. Execution of these works in an
external process, which will need an independent way to communicate
to the learning environment implemented in UE:

• Imitation: A collection of different IL algorithms built on Stable
Baselines 3. Amongst GAIL, AIRL also contains BC as Pytorch
implementations [28].

• Gymnasium: A standard interface implementation for RL envi-
ronments [64].

• irl-maxent: An implementation for maximum entropy IRL [51].

• Stable-Baselines3: Package containing a multitude of RL algo-
rithms using PyTorch [52].

4.7 optuna 27

4.7 optuna

In their research, Eimer et al. [19] highlighted the importance of
hyperparameter selection. They concluded that the wrong selection
of hyperparameters can lead to the failure of the whole algorithm,
even when they initially seem insignificant. This problem is also why
this thesis uses a hyperparameter optimization tool called Optuna.
Optuna allows for easy tuning parameter selection and the definition
of a sampling set for the tuning parameter. This means a user can,
e.g., define lists with predefined values for a parameter and even
ranges from which to sample. Since this algorithm does not just use
sweeps or grid search but instead uses techniques like early pruning
or efficient search space exploration, it decreases the time needed.
While running, the framework tunes all specified hyperparameters
provided. However, things such as optimizing the network structure
of the PPO algorithm used to train GAIL and AIRL are left out, as this
would increase the dimensionality of the parameter size and further
worsen the training time. In the final implementation, to optimize the
set of hyperparameters, the output of task reward defines the metric
to optimize.

4.8 inter-process communication

Before writing about the intended way of implementing the extensions
for UE and Python, the following paragraphs discuss the pros and
cons of different kinds of communication between processes since
there are multiple ways to enable communication. In the literature are
four common concepts for communication [8]:

sockets : Sockets allow communication over the network with a
transport layer protocol independent of the operating system. This
approach includes two different protocols for usage, named user data-
gram protocol (UDP) or transmission control protocol (TCP). While
TCP is more reliable, sending messages in the correct order, UDP has
a more negligible overhead. This approach needs identification in the
form of an IP address and a port number.

pipes : Special one-directional communication channels allow one
process to write while another reads. These channels, known as anony-
mous pipes, require closely related processes to create. Once all related
processes terminate, this channel closes. Another type, named pipes,
facilitates communication between processes that are not closely re-
lated. Named pipes enable bidirectional communication and remain
active even when no processes use them.

28 approach

message queues : Communication uses linked lists, which can
exceed the process’s lifetime. An application can process the infor-
mation sent via the FIFO principle since the order of messages is
chronological. The system does access coordination, and messages get
a message type to help differentiate the messages.

shared memory : A memory-based communication. Multiple pro-
cesses can access a shared segment of memory, enabling communica-
tion between processes. While currently written data is not accessible,
there is still the need to coordinate access operations to counter race
conditions. Either a system call or a reboot can remove a shared
memory segment.

In the end, due to already existing software like TCP-Unreal and a
straightforward package available in Python, the primary focus for
the implementation lies on socket communication.

4.9 implementation design

The following subsections explain the basic idea of creating the soft-
ware. Some schematics further illustrate this approach.

4.9.1 Pseudo-Code

Listing 4.2: Pseudo-code that describes the procedure of the planned algo-
rithm. For clarity, only the relevant parameters are provided as
input.

1 input: hyperparameters, hyperparameter_optimization
2 def imitation_learning(hyperparameters):
3 while not stop_criterion:
4 π = update the policy with current

reward_ f unction
5 reward_ f unction = use samples from π to

update reward

6 reward_ f unction = modify learned

reward_ f unction by including

task_reward blend accoriding to

balancing_value in hyperparameters
7 return π
8

9 if hyperparameter_optimization is active:

10 optimizer = optuna

11 π = optimizer.optimize(imitation_learning)
12 optimizer.save_parameters()
13 else:

14 π = imitation_learning(hyperparameters)
15 output: π

4.9 implementation design 29

4.9.2 Processes

Two processes must work together to realize the procedure mentioned
in section 4.9.1. First of all, the Unreal Engine to simulate the environ-
ment and a Python instance to learn from the simulation:

unreal engine : The goal for UE is to provide a simulation en-
vironment that enables training of the IRL algorithms and facilitates
trajectory recording. During training, a predefined number of agents
operate in parallel, controlled by the forward part of the learning
procedure. Each agent Actor gets a specified client instance connected
to the Python server to manage this UE Actor for the Python server.
A manager class organizes the learning parameters influencing the
environment, allowing direct configuration within the UE editor. Data
exchange between the final learning algorithm and the training en-
vironment occurs over TCP-Unreal, chosen for simplicity. Recording
occurs in the same environment as training. However, instead of the
learning algorithm controlling the agent, a controller paired with a
head-mounted display (as shown in figure 4.1) serves as the input
method. To be more precise, the HP Reverb G2 serves as the input
device.

Figure 4.1: Picture showing the head-mounted display and controller (HP
Reverb G2).

python : Since most learning algorithms are already available out-
side of UE, an external process running in a Python instance will
train the algorithms. Using the Python instance as the server for TCP
communication makes the most sense because this way, UE can offer
all agents an independent client connection. The Imitation package
employs Gymnasium environments, providing a standardized inter-
face for interacting with various learning environments. Consequently,

30 approach

the IL programming requires a Gymnasium environment wrapper for
the UE environment to facilitate communication.

4.9.3 Interaction

In the following, figure 4.2 and figure 4.3 show the interaction of each
process to visualize better the association between UE and Python.

imitation learning : Figure 4.2 specifies the information ex-
change between both processes when using the implementation for IL.
Suppose the user wants to start the IL training process. In that case,
they should configure the environment with all necessary parameters
(like training steps, type of environment, number of parallel agents,
etc.) before finally starting the training process. After being executed
by the user, the program will independently start a sub-process in a
new terminal window, which will run the Python script. After the
script starts running, a new IRLServer will start. The server will then
create new IRLClientSockets, while UE instance will try to create its
own UEClients to connect to the client sockets. Before connecting to
the Python implementation, each UEClient will create its own UES-
imulationEnvironment, representing all the objects and a server-side
controlled hand. After all UEClients finally have a connection to the
Python instance, the IL process will start executing the IRLTraining.
This means a modified version of the ImitationScript by Imitation starts
with all necessary sacred experiment parameters. The scripts then will
start multiple UEGymnasiumWrapper so that the learning algorithms
in Imitation can interact with the environment in UE until reaching
a predefined number of maximum steps. This means the UEGymna-
siumWrapper sends a request to the IRLClientSocket implementation,
which then starts communicating with the UEClient. Each UEClient
instance gives the information to its assigned environment. After the
script succeeds, the learning algorithm will return a policy. The Python
script can also return a reward function depending on the algorithm.

hyperparameter tuning : The interaction is more or less the
same as described in section 4.9.3, with the difference being that IRL-
Training will start a modified OptunaScript. This will lead to multiple
imitation learning instances (ImitationScript) training on different sets
of hyperparameters in parallel. Optuna chooses the policy and, more
importantly, the set of hyperparameters according to the best mean
reward returned during the procedure. Everything else stays the same;
the system relies on one wrapped Unreal Engine environment for all
imitation instances to reduce hardware usage during training. The
slight change in the procedure visualizes the figure 4.3.

4.9 implementation design 31

Fi
gu

re
4
.2

:C
om

m
un

ic
at

io
n

be
tw

ee
n

Py
th

on
an

d
U

nr
ea

lE
ng

in
e

fo
r

IL
.

32 approach

Figure
4.

3:C
om

m
unication

betw
een

Python
and

U
nrealEngine

for
hyperparam

eter
tuning.

5
I M P L E M E N TAT I O N

This chapter explains the implementation of the fully working environ-
ment to evaluate the performance of different IL algorithms, including
the auxiliary components for learning affordances. UE 5.3.2 forms
the base for the simulation environment, and the available Python
packages offer AIL implementations. Communication between both
processes realizes the training process.

5.1 unreal engine

UE offers the capability of using VR for trajectory recording and the
opportunity to upgrade to OptiTrack. The project mainly utilizes C++
code, but some elements also use blueprints. Implementation-wise, UE
works as the main instance to control all parameters for training and
launches the Python training process. Though communication-wise,
UE will act as the client.

5.1.1 Client Implementation

As explained in section 4.8, Python and UE communicate over TCP/IP
sockets to configure the setup quickly. UE contains client instances to
whom the server can communicate. Available as UClientComponent,
the client component for UE uses the TCP-Unreal package to han-
dle the communication. It also contains all necessary methods, from
connection status to sending messages and callbacks, to get the re-
ceived information from the server and notify other registered objects
within UE if a message occurs. A client has precisely one communica-
tion stream to the Python server, meaning for each learning instance
running, UE will create a new UClientComponent.

In early programming, responses to actions could become very
large; hence, the implementation also partitions messages into smaller
packages and merges them again. Also, messages have a specific end
marker that signals the end of a message since there is no option
to control low-level protocol information. The system encodes and
decodes every message as a JSON object because UE, among other
things, offers conversion techniques to structs for more uncomplicated
handling. Disconnecting is done with a simple "c" as a signal.

33

34 implementation

5.1.2 Executing Python

The system should automatically start the Python script to enable the
learning process whenever the user presses the play button within UE.
To make this possible, a collection of functions checking for system-
wide installation of Python, a virtual environment containing all pack-
ages, and executing the main Python script are available. UE calls
all functions at every start. If, for example, the virtual environment
containing all packages for Python is missing, it will get automatically
generated due to these functions. If the virtual environment exists, a
new window with the learning process running appears.

5.1.3 Action and State Space

Internally, the action space (TActionSpace) is a template class of numer-
ous helpful methods linked to the usage of action spaces. However,
more importantly, since it is a template, it is available for both discrete
and continuous implementation. The bounds of the action space are
statically defined to match the natural movement of an expert, which
means the system uses the upper-value bounds captured from the
expert trajectories. This hinders a learning algorithm from taking unre-
alistic steps, which also improves learning by narrowing the possible
actions. Another remake is that grasping with a hand is a discrete
action. Moreover, since the used algorithms cannot handle discrete and
continuous actions simultaneously, this value appears as a continuous
action within the action space—a certain threshold within UE then
maps it into a binary value.

(a) Without visualization (Continuous). (b) With visualization (Discrete).

Figure 5.1: Discrete visualization of the state space using the AGridActorVisu-
alizer in Unreal Engine.

Contrary to the statically defined action space within UE is the
state space. Here, the user defines the values of the state space and
can visualize it as seen in figure 5.1. It is possible to choose between
either discrete or continuous state space. Moreover, defining the state
space involves placing and scaling a particular Actor called AStateS-
paceBounds. Choosing discrete space requires changing the number of
states at each dimension. The continuous state space, however, is only

5.1 unreal engine 35

defined by AStateSpaceBounds (Actor seen in figure 5.1a). Being the
state space, it also offers some functionality for internal checking of
correct object placement within the state space, besides pure visualiza-
tion. However, the definition of the state space bounds is independent
of discrete or continuous properties. This is where UE internally will
use the abstract class AStateSpaceBase to offer functions that fit these
properties. To be more precise, the two inheriting classes are for con-
tinuous and discrete space. These classes execute resets and steps on a
specified set of objects within the space. The UE physics engine bound
the simulation speed within the state space to its tick rate. Which in
this case is 60 fps. This means UE will execute all actions of the Python
script within UE’s Tick() method to modify physics.

Since it is for standard training not necessary to have a good visual-
ization, all clients learning a policy share the same position. However,
this setup confuses and is not visually pleasing for the visual evalua-
tion of the results. Therefore, the UE project offers better visualization
of the learning agents running in parallel through an Actor called
AGridActorVisualizer. This Actor helps to visualize and differentiate
multiple learning agents by representing them in a grid, as seen in
figure 5.2.

(a) Without visualization.

(b) With visualization.

Figure 5.2: The impact of AGridActorVisualizer in Unreal Engine.

36 implementation

To the environment closely linked belongs an AActionController
executing all actions from the learning algorithm of the Python script
within the UE environment. Of course, this is available in both discrete
and continuous forms to enable the usage of both action types. An
action controller is visualized as a hand mesh within UE and uses an
UAnimInstance to help visualize the grabbing animation (see figure 5.3)
of the hand while training/testing within the C++ code.

(a) Grasp value is set to 0. (b) Grasp value is set to 1.

Figure 5.3: Images showing the effect of using the grasp value in
ABP_MannequinsIRL from the C++ implementation.

To influence the hand’s starting position within the state space,
another Actor named AHandStartPosition places the hand at the desired
starting location in the scene. Furthermore, this class randomizes the
starting pose of the hand using a specified seed.

5.1.4 Available Functions for Python

A dedicated AMessageHandler interprets data received through UClient-
Components within its implementation to pre-process and categorize
the messages sent by the server. Therefore, the implementation of-
fers two delegate types with one or two parameters. This construct
allows registered functions within UE to receive information based on
whether the message contains extra information or if the call alone is
sufficient. The implementation created six class members from these
delegates, each representing a callable function by the server. These
functions are:

• TransitionProbability: Generates the dynamics of a discrete envi-
ronment. This function is only needed for algorithms depending
on a model of the environment to operate. However, neither
GAIL nor AIRL needs this function.

• VisualizeReward: Another function for the discrete setting. This
will visualize the expected return of the reward function at

5.1 unreal engine 37

each state with the colors red as a low reward and green as a
high reward. Of course, if the expected return is between the
minimum and maximum value, the color between both gets
interpolated.

• MetaInformation: The function that shares all hyperparameters
configurable within UE for the learning algorithm, as well as the
size of action and state space. Usually, it only gets called on the
first client instance, since the server only needs this information
once at the startup.

• ExecuteStep: Executes a step within the UE environment, result-
ing in a hand Actor representing the expert moving within the
defined state space. A vector containing float values represents
an action. Those values encode a movement vector, the rotation,
and how the grasp value changed.

• ExecuteReset: Resets the environment according to values speci-
fied in the Python script and additionally randomizes the hand
if specified with a user-defined seed. Usually, training the learn-
ing algorithm does not require randomization, which is why it
should stay deactivated.

• ExecuteChangeSeed: Changes the seed generating the initial
poses of all objects in the scene. It allows the Python script to
change the seed within UE. Useful when trying to generate mul-
tiple trajectories starting with the same seed without restarting
UE all the time.

As mentioned in section 5.1.1, messages for communication between
both processes are JSON objects. These offered a simple transformation
of structs defining the action and state space to JSON objects. Thus,
reading and writing information within the UE project was easy. After
UE finishes a requested action from the Python script, it converts the
data back into a JSON object to return it to the server.

5.1.5 User Interface and Scenes

The UE project offers many settings, including modifying some hy-
perparameters of the learning algorithms. Figure 5.4 shows the UE
editor open with the implementation. Selected within this window
is an Actor responsible for further configuration of this project. The
Actor’s name is AEnvManager, and it controls the currently used game
mode, which can either be IRL or VR. The naming IRL is a remnant
of the discrete project phase. At the moment, it means IL in general.
Thus, it also has to offer all the necessary parameters to set either of
them correctly. Within a scene are different environments containing
different objects for a task. The system will use either of these envi-
ronments for the different modes. Which of these modes is another

38 implementation

option available in the Environment manager (see appendix A.2.3.1
for a detailed explanation of configuring this manager).

Figure 5.4: Unreal Engine Editor with EnvManager.

Internally, the project uses some Enums like EGameModes to create
entries for the drop-down menus inside the AEnvManager. Further-
more, two scenes are available for the user to choose as training scenery.
Firstly, a standard kitchen environment, but also an environment with
no other elements besides a plane and the training objects to reduce
hardware demand in case of overloading the graphics card. Figure 5.5
also shows this difference in these scenes.

(a) Kitchen: The standard environment
used for the project presentation.

(b) Plane: Without additional objects to
reduce stress on hardware.

Figure 5.5: Images showing the different scenes that are available for user
selection.

5.1.6 Training Environments

Implementing the environments followed the description of section 4.2.
Alongside the three primary environments seen in figure 5.6, there
is also a dummy environment seen in figure 5.6d. This plain setup
includes only the hand as the agent, with no other objects present.

5.1 unreal engine 39

(a) Covering: Place a lid on top of the pot.

(b) Insert: Spatula needs to be placed inside a pot with rotation.

(c) Stacking: Three cubes for the task.

(d) Dummy: Toy problem for testing the whole setup.

Figure 5.6: All environments implemented in Unreal Engine with the initial
pose of all objects. One common element is the hand, which
represents the learning agent.

40 implementation

This dummy environment tests whether the algorithm can learn
basic policies without additional items in the room and without relying
on perfectly tuned hyperparameters. The training set of the dummy
environment consists of simple forward movements, so the agent
could at least learn this essential capacity.

5.1.7 Virtual Reality

For VR, the standard VRPawn provided by UE was sufficient. How-
ever, since USemLog only provides the capability of recording object
positions and not the capability to record all actions taken by an VR
controller without crashing, the implementation adds another small
component to the VRPawn. This extension, named UActionMonitor-
Component, aims only to record the right hand since this is the only
input needed for the later learning phase. UActionMonitorComponent
gets called by the motion controller blueprint, which transmits the
currently used action name and the type of action. A log file gets
automatically extended by appending actions from the action monitor.
Another problem is that USemLog does not track the skeletal mesh
component of the hand used by the VRPawn. Hence, in the imple-
mentation, another Actor named AVRPawnHandTrackball reflects all
hand movements. Tracking of this Actor works because it uses an
AStaticMeshActor, which the software can track.

5.1.8 Reading and Writing Data

Of course, the system also needs to write critical information for
later data handling outside UE. A prominent example is the record-
ing of trajectories. The system will automatically create a structure
containing all the files generated during the recording to mitigate
user error. This user error could otherwise happen since USemLog
initially stores all information inside a database. Implementing this
feature requires special tools to handle the database information and
also tweaking of USemLog’s default values. By default, the Actor
SLWorldStateLogger of USemLog uses randomly generated names for
collections and databases, which cannot be changed in code when
added and configured in the Editor. This creates a problem because
a script gathering the information does not know which collection it
belongs to. The solution for creating easily distinguishable trajectories
within a database is to create the SLWorldStateLogger in C++ and to
set the correct information at creation. Another solution would be to
override the same database every time, though this is inconvenient
when directly interacting with the database. The final implementation
can then call the external application mongoexport with all required
parameters specifying the database and more to save the trajectories
in the folder structure.

5.2 python 41

5.2 python

Due to many already existing packages like Imitation, Stable-Baselines3,
and other IL algorithms implemented in Python, the project uses
Python to implement the learning part. This section will explain some
bits of the implementation.

5.2.1 Server Implementation

Python serves as the server; therefore, it must also implement all
necessary functions to manage and create independent client socket
communications to UE. The Python implementation is the server be-
cause UE offers the capability to train multiple learning instances in
parallel, where each instance gets independent instructions from the
learning algorithm within Python. Creating an individual channel
for each instance makes the most sense from a design point of view.
Using the Python package socket enables the TCP/IP communication
for the script. However, two classes divide the actual implementation
of communication. First, the server class IRLServer searches for a spec-
ified number of clients and thus constantly listens for communication
requests from clients created by the UE process. Each new connection
between the Python process and the UE process gets represented as a
unique socket object. The second class IRLClientInstance requires the
socket created by the IRLServer for its creation. When created, IRLCli-
entInstance listens for incoming messages from an UE client. This only
happens when UE gets a request beforehand. A client method gets
called by using a name represented as a string and some additional
parameters if needed. The server manages and calls individual client
methods to perform actions within the UE environment using their
respective client numbers.

5.2.2 Task Reward

Task reward, introduced in section 4.5, addresses the problem that the
number of recorded trajectories might not be enough to generate a
policy that generalizes to the expert’s intent. Since Python controls the
complete learning process for all IL algorithms, this is also the process
to apply the concept of task rewards. Implementing this concept
requires switching to a custom discriminator. The default for training
is the BasicShapedRewardNet, which also serves as the base for the
implementation. It extends the reward network to a user-specified task
reward fitting to the current learning environment and a balancing
value to weight the output of both trained reward and task reward.

A specific Python file then defines three different task reward func-
tions according to section 4.5 and appendix A.1—one for each UE
environment. A task reward evaluates a tuple consisting of the current

42 implementation

state, an action, the next state, and whether the agent reached the
final stage. The last entry is entirely irrelevant, though the implemen-
tation of the reward function should match the implementation of
the reward network. Depending on these values, the function gener-
ates a reward. A hyperparameter configuration file (the file looks like
this: ./Hyperparameters/UEGymEnv-*.json) then contains the correct task
reward to a training environment.

5.2.3 Reading Trajectories

Since trajectories recorded in UE are saved in an external database and
then exported as a JSON file, some pre-processing is required to trans-
form this information to an internally usable object for learning. This
introduces the TrajectoryReader, which is a class whose only purpose is
to create usable trajectories from a JSON file created by USemLog. It
works for both continuous and discrete cases. Also, since a trajectory
file does not include the action taken during a state transition, the
TrajectoryReader has to add these recorded actions from another file in
order to turn the incomplete trajectory into a fully-fledged one. The
end product is an object containing numpy arrays of vectors represent-
ing the states (also called observation) and actions. Additionally, the
reader applies smoothing to the final grab values in both the actions
and states to reduce the abrupt transition between grabbing and not
grabbing, making it easier for the algorithm to train.

5.2.4 Environments, Action and State Space

Two implementations, offering various functions for processing re-
quested or sent data by the learning algorithms, serve as an interface
for simplified communication with UE. The reason behind multiple
interfaces is that the needed functionality differs depending on the
learning algorithm. Initially, due to the discrete approach, the plan
was to implement only an algorithm that operates in discrete space.
This algorithm required functionality for processing the dynamics of
an UE environment and more, leading to the design of an explicit
implementation named UEMaxEntEnv for this algorithm.

However, using the AIL algorithms made this unnecessary. Also,
Gymnasium’s Env is the interface, which the continuous learning
algorithm already uses. Hence, the project integrated a new implemen-
tation using Gymnasium’s Env class called UEGymEnv into the project.
It offers either discrete or continuous training. Moreover, since not nor-
malizing observations and actions could cause potential performance
loss with the learning algorithm, an extra class named UESpaces keeps
track of the normalized and denormalized action and state space
boundaries [7]. The class normalizes the actions symmetrically be-
tween −1 and 1 and the states between 0 and 1.

5.2 python 43

However, there is another problem, where the internally used
method of Imitation to create parallel running environments, which
uses fork_server from the package multiprocessing, causes initializing
parameters to vanish. This means the project’s implementation relies
on a file created to give each instance the needed hyperparameters.
The file contains information about the state and action space of the
environment.

5.2.5 Learning Algorithms

To start the learning process, a server thread initializes the communica-
tion between Python and UE. Once this is successful, the abstract class
AlgoBase gathers all necessary information by calling MetaInformation
in UE to set up the right learning environment. The information gath-
ered from UE decides the next step. If the parameters specify only
to show the expert’s trajectories, an option not meant for training,
then the normal learning process will not start. A user could verify
that all recordings are flawless with this option. If UE did not send
this parameter, then this abstract class calls a method to start learning
implemented by one of the inheriting classes:

• AlgoMaxEnt: A simple extension of the base class that imple-
ments the training method using UE’s dynamics to calculate the
rewards with the MaxEntIRL algorithm. After finishing the cal-
culations, the method returns those values and visualizes them
in the UE environment.

• AlgoGym: Another abstract class for learning algorithms that
use the Gymnasium’s Env interface. It offers threads that handle
the communication between individual Gymnasium environ-
ment instances and their UE client counterparts. Furthermore,
this class also creates the external file needed for the parallel run-
ning Gymnasium environments. Since the format of a trajectory
differs when using the continuous learning algorithm, the imple-
mentation also offers recreation of this trajectory representation
for the Imitation script.

• AlgoAIRL: This class manages all hyperparameters for AIRL
and uses the usual components of Imitation, instead of relying
on sacred and the Imitation script. It was created before AlgoIm-
itationAdversarial but had some problems, hence the switch to
Imitation’s script.

• AlgoImitationAdversarial: To reduce the source of errors, this
implementation uses Imitation’s learning script. This change
also means that sacred, which conveniently manages all runs
and hyperparameters, is now included for each execution of
an experiment. If required, the user can view logs containing

44 implementation

metrics logged from sacred during training with an external
software called Omniboard. Also, this class offers the option to
display a trained policy and automatically optimizes a set of
hyperparameters using Optuna.

During development, some experimental implementations occurred.
For example, the PPOContinuousIRL served as an experimental mod-
ification of Stable-Baselines3’s PPO implementation, adjusting the
outputted grab value within an action to either 0.0 or 1.0. This change
aimed to test whether discretizing the values could lead to better
performance, though it introduced too much discretizing error.

5.2.6 Hyperparameter Tuning

Hyperparameter tuning utilizes a modified version of Imitation’s hy-
perparameter tuning script. At its core, it uses a version of Optuna.
For optimization, Optuna requires the user to specify a search space
for the exact hyperparameters during training and the sample area
of those parameters. For instance, the parameter batch_size gets a list
of possible options to choose from while optimizing. These settings
can also include the number of runs and their duration. The setup
of Optuna in this project ensures that only one run gets executed at
a time, guaranteeing that the learned hyperparameters remain valid
for training the final runs with more time steps. Otherwise, the num-
ber of parallel clients will decrease if the implementation allows the
optimization of multiple parallel runs. The reason is that some hyper-
parameters depend on a specific number of parallel-running clients.
Since the script is an additional intermediate step executed on exter-
nal processes, implementing hyperparameter optimization introduces
more inter-process communication. To create such inter-process com-
munication between Optuna’s optimization processes and the process
containing the interface to communicate with UE, the implementation
again uses the Python package multiprocessing. This way, another pro-
cess holds all the queues that manage requests and responses, making
them accessible via an interface in each other process. Ultimately, the
Optuna script automatically samples the hyperparameters and tests
them individually in runs in UE, outputting the hyperparameter set
with the best values alongside the final policy in the results.

5.3 testing

Testing the communication between the Python script and UE worked
flawlessly and was straightforward. First, testing reused the recordings
already done by the expert. The implementation read these trajectories,
transforming them into actions, which then got sent to the UE. During
execution, all objects within the simulation of UE moved precisely

5.4 usage 45

like when the expert had moved them; thus, the communication
worked. Also, this was a method to test whether the recordings worked
flawlessly besides viewing the files directly.

Another manual verification ensured that the task rewards functions
as intended, providing a higher reward upon reaching the next stage.
In this case, testing required turning off some components of the whole
algorithm. One component is generating action by the learning script
to prevent interference while moving the hand. The corresponding
environment for a task reward had to run in UE, with the player
controller detached, which allows manual movement of Actors using
UE’s scene manipulation tools. Adding a print statement within the
Python script outputs the current return from the task reward during
this process. Testing with the standard debugger was no option due to
how often the debugger would stop at a breakpoint. The verification
process involved executing each state manually within the UE Editor.
This approach enabled the tuning of the task reward to correct values,
and also facilitated improvements to specific parameters that could
have resulted in a faulty implementation.

To ensure the entire program effectively learns a policy with UE,
the previously described toy problem in section 5.1.6 served as the
Dummy environment. This setup allowed learning basic movement,
demonstrating that the implementation could also work with other
environments, although it necessitated identifying the appropriate set
of hyperparameters.

5.4 usage

This section briefly explains how to use the software project. Look for
a more in-depth explanation in appendix A.2. Also, read the README
file of the project for installation.

5.4.1 Unreal Engine

The user can apply most configurations within the UE. Specifically, an
actor in the standard scene called EnvManager enables configuration
options. It allows switching the game mode from recording to IRL, al-
lowing you to choose a specific IL algorithm. Among the game modes,
IRL is essential because it allows for communication with Python
and, thus, training. The user can customize various training settings,
such as using discrete state and action space, visualizing the state
space, adjusting time steps, determining the client count, optimizing
hyperparameters, and more. The system saves recordings generated
from VR in the directory ./IRL_Trajectories and learned policies in
the directory ./learning/output. To better view the recordings, access
Omniboard at http://localhost:9000 while the docker container is
running.

http://localhost:9000

46 implementation

Figure 5.7: Complete view of EnvManager in Unreal Engine.

5.4.2 Configuration Files

Since UE only has a few hyperparameters, such as time steps, external
files are necessary to configure the hyperparameters of the learning
algorithm further. To be more precise, the ./Hyperparameters/*.json files
for ordinary IL and for Optuna hyperparameter optimization, some
configurations in the ./learning/irl/algo_imitation_adversarial.py have to
change.

5.5 unsolved problems

There are still a few minor issues in the programming. For example,
the UE hangs if you stop executing UE before the Python server
establishes a connection. Furthermore, the server sometimes fails to
start if the user tries to relaunch it too quickly after terminating a
previous instance. Moreover, probably the biggest issue is a problem
directly linked to the UE implementation, which increases the memory
usage of the application slowly in the span of a couple of days. This
memory leak causes the hyperparameter optimization procedure to
use more RAM than required since optimizing parameters requires a
few days.

Part III

E VA L UAT I O N A N D C O N C L U S I O N

The analysis and discussion of results, a summary of
findings, and recommendations for future work.

6
E VA L UAT I O N

This chapter covers the evaluation of the system from recording of
trajectories to using it in various learning algorithm configurations
to see which performs the best. A test set consisting of 12 trajectories
independent of the training set of 100 trajectories serves as a baseline
for comparison.

6.1 data collection

Gathering the data for evaluation required two systems for record-
ing and training. Table 6.1 shows the hardware specification and the
applications of these systems. As an explanation, the data collection
required two systems since training took longer than initially expected.
Two systems ensured parallel tuning of hyperparameters with Optuna
and starting with IL on manually tuned hyperparameters. Further-
more, due to the intensive workload of simulating multiple virtual
environments and calculating policy improvements, further load on
a system would have increased training times, making comparisons
between configurations less fair. One last remark is the higher require-
ment of system memory for Optuna due to the problem stated in
section 5.5, which system System 2 offers. The following sections gloss
over the procedure and settings to acquire the data.

Hardware

System 1: VR + IL System 2: Optuna

CPU Ryzen 7 3700X Xeon Gold 6128

GPU Radeon RX 5700 XT Tesla V100

RAM 32 GB 48 GB

Table 6.1: System specification for both trajectory recording and imitation
learning as well as the system specification for the hyperparameter
tuning.

6.1.1 Recording

An expert performed the motion needed to record the trajectories
using a head-mounted display and a motion controller to create a
training and test dataset. The training dataset consists of 100 record-
ings with different initial objects and hand placement to ensure better
generalization of the expert’s intent from the learning algorithms.
Though the virtual environment places the object, the expert must

49

50 evaluation

manually ensure different starting poses for the motion controller.
This approach is necessary because automatically varying the rota-
tion poses might be irritating and fail to represent how the expert
holds the controller accurately in the real world. Consequently, the
recording will start after a brief delay rather than immediately. The
expert needed to do the same procedure for the test set consisting of
12 trajectories used for later evaluation. Contrary to other approaches
common in RL, where only a predefined reward function linked to
an environment serves as the metric to evaluate the performance of a
learning algorithm, this thesis additionally uses the mean return of
the expert according to the corresponding task reward as a baseline
for comparison—more on that topic in section 6.2.

Gathering the demonstrations for the algorithms took around two
and a half hours per affordance, including the time to review and
retake some of the trajectories. This review was a pre-processing step
to ensure the collected data had no errors. Sometimes UE did not stop
the recording, which generated too long trajectories, and sometimes
USemLog induced faulty trajectories by starting the recording too
early. This behavior induced readjustment of the controller’s position
to appear in the final results, which caused jumps in the trajectory.

6.1.2 Training and Runtime

The experiment compares the performance of the implemented AIL
algorithms with different configurations using UE. Both algorithms
utilize the same set of manually tuned hyperparameters across all
environments, with varying balancing values λ that affect the blending
of the task reward. Furthermore, to evaluate whether automatically
tuned hyperparameters enhance performance, the hyperparameters
optimized by Optuna undergo the same procedure. However, instead
of one set of hyperparameters for all configurations, the automatically
optimized algorithms get their own set depending on the environment
and learning algorithm. Appendix A.3 lists all hyperparameters used
for training.

The final evaluation relies on the environment, as shown in sec-
tion 5.1.6. During training, the system randomly samples each object’s
initial pose within the environment according to the initial pose within
the training set. Each environment uses a maximum of 5, 000, 000 train-
ing steps to learn a policy with four agents running in parallel. System
2 could not handle more agents, which reflects the reason for choosing
these values among time constraints. The evaluation uses three balanc-
ing values, 0.7, 0.5, and 0.3, to gain a broad insight into their effect. For
each fifth checkpoint, the system saves a policy reflecting the current
learning progress of the learning procedure for later evaluation.

Due to differing hyperparameters, the number of rounds that equals
the number of checkpoints varies. The number of rounds relies on
how many steps the generative network takes before it switches to the

6.2 result 51

discriminator. Hyperparameters also influence the number of discrim-
inator updates each round. All these factors of the hyperparameters
also cause algorithms to take more or less time despite having a similar
number of training steps. Final results showed training time between
six and eight hours per environment on System 1, leading to around
ten training days across all settings, taking breaks for the system into
account.

As mentioned, Optuna optimizes each environment and AIL combi-
nation. However, since AIL training alone takes more than six hours
and System 2 has slower hardware, the training parameters are sig-
nificantly lower for hyperparameter optimization. Instead of using
300 runs with different configurations for evaluation, the system only
relies on 60 runs. The same is true for the steps used in each run. The
number is 1, 300, 000 instead of five million training steps in AIL train-
ing. With these Optuna parameters, optimizing the hyperparameters
for each environment and learning algorithm combination took 5 − 6
days each. Requiring around a month for the final results of hyperpa-
rameter optimization. Another remark that influenced training and
setting up an optimization run in System 2 was the connection through
remote desktop software. This connection caused the system to slow
down when the UE window appeared with a large rendering surface
on the screen. Reducing the window, which simultaneously reduces
the number of pixels needed for rendering, significantly decreased the
training by a few days.

6.2 result

Gathering the evaluation trajectories required additional scripts to
independently evaluate each trajectories’s returns and record the tra-
jectories generated from a policy. As previously mentioned, the evalua-
tion uses a test set to evaluate whether the different configurations had
any effect. The results of the IL training consist of multiple checkpoints
representing the training process at a particular stage. To evaluate the
improvement at each stage, all policies get the initial pose according
to the test set, from which they can generate trajectories—using the
mean return over all trajectories according to the corresponding task
reward function results in the mean return for a checkpoint. The mean
return of the expert shown in table 6.2 then serves as a baseline to
evaluate how well the algorithm performed at each stage.

Configuration Covering Insert Stacking

Expert 522.66 410.25 578.54

Table 6.2: Mean return of each environment when taking the expert’s trajec-
tories.

However, the small test set introduces noise to the outputted val-
ues, which requires some post-processing. Therefore, the evaluation

52 evaluation

uses moving averages to reduce short-term changes within the policy
training and emphasize global progress. Configured is a window size
of five, and of course, the length of the actual dataset shrinks by two
checkpoints at the beginning and ending to eliminate the boundary
effect due to the convolution. Also, for evaluation, plots do not contain
outliers to increase readability further. Furthermore, some plots in the
later section seem to perform worse over time. This is not the case,
since a random policy sometimes archives a close-end position of the
objects at the beginning, which results in a high reward. The following
section will go into more detail.

Before listing all results, figure 6.1 visualizes the best policies for
each environment in four stages for a better understanding. The fol-
lowing pages introduce plots containing mean returns for all config-
urations and the corresponding minimum and maximum values for
each checkpoint in transparent form.

(a) 1/4 Covering (b) 1/4 Inser (c) 1/4 Stacking

(d) 2/4 Covering (e) 2/4 Insert (f) 2/4 Stacking

(g) 3/4 Covering (h) 3/4 Insert (i) 3/4 Stacking

(j) 4/4 Covering (k) 4/4 Insert (l) 4/4 Stacking

Figure 6.1: Each column represents the best trajectory gathered from the
environment’s final best performing policies. Four stages visual-
ize the progress and show success in some cases. The following
configurations produced these results: covering manually GAIL
λ = 0.7, insert automatically GAIL λ = 0.5, stacking automati-
cally GAIL λ = 0.5.

6.2 result 53

0
1

2
3

4
5

6
Ti

m
e

(h
ou

rs
)

0

10
0

20
0

30
0

40
0

50
0

Mean Checkpoint Return

Au
to

m
at

ica
lly

 C
ov

er
in

g
wi

th
 G

AI
L

=0
.3

=0
.5

=0
.7

No
 Ta

sk
 R

ew
ar

d
Ex

pe
rt

Re
tu

rn

(a
)

0
1

2
3

4
5

6
Ti

m
e

(h
ou

rs
)

0

10
0

20
0

30
0

40
0

50
0

Mean Checkpoint Return

M
an

ua
lly

 C
ov

er
in

g
wi

th
 G

AI
L

=0
.3

=0
.5

=0
.7

No
 Ta

sk
 R

ew
ar

d
Ex

pe
rt

Re
tu

rn

(b
)

0
1

2
3

4
5

6
Ti

m
e

(h
ou

rs
)

0

10
0

20
0

30
0

40
0

50
0

Mean Checkpoint Return

Au
to

m
at

ica
lly

 C
ov

er
in

g
wi

th
 A

IR
L

=0
.3

=0
.5

=0
.7

No
 Ta

sk
 R

ew
ar

d
Ex

pe
rt

Re
tu

rn

(c
)

0
1

2
3

4
5

6
Ti

m
e

(h
ou

rs
)

0

10
0

20
0

30
0

40
0

50
0

Mean Checkpoint Return

M
an

ua
lly

 C
ov

er
in

g
wi

th
 A

IR
L

=0
.3

=0
.5

=0
.7

No
 Ta

sk
 R

ew
ar

d
Ex

pe
rt

Re
tu

rn

(d
)

Fi
gu

re
6

.2
: R

es
u

lt
s

of
co

ve
ri

n
g:

B
ot

h
co

nfi
gu

ra
ti

on
s

w
it

h
A

IR
L

se
em

in
gl

y
re

ac
h

a
lo

ca
l

op
ti

m
u

m
ea

rl
y

d
u

ri
ng

tr
ai

ni
ng

,
w

hi
le

G
A

IL
sh

ow
m

or
e

pr
om

is
in

g
re

su
lt

s.
Th

e
m

an
ua

lly
tu

ne
d

re
su

lt
s

le
ar

n
fa

st
er

an
d

ge
t

hi
gh

er
re

su
lt

s
at

th
is

ta
sk

.N
on

e
of

th
es

e
re

su
lt

s
re

ac
h

th
e

ex
pe

rt
’s

m
ea

n
re

tu
rn

.

54 evaluation

0
1

2
3

4
5

6
7

8
Tim

e (hours)
0 50

100

150

200

250

300

350

400

Mean Checkpoint Return

Autom
atically Insert with GAIL

=0.3
=0.5
=0.7

No Task Reward
Expert Return

(a)

0
1

2
3

4
5

6
Tim

e (hours)
0 50

100

150

200

250

300

350

400

Mean Checkpoint Return

M
anually Insert with GAIL

=0.3
=0.5
=0.7

No Task Reward
Expert Return

(b)

0
1

2
3

4
5

6
7

Tim
e (hours)

0 50

100

150

200

250

300

350

400

Mean Checkpoint Return

Autom
atically Insert with AIRL

=0.3
=0.5
=0.7

No Task Reward
Expert Return

(c)

0
1

2
3

4
5

6
Tim

e (hours)
0 50

100

150

200

250

300

350

400

Mean Checkpoint Return

M
anually Insert with AIRL

=0.3
=0.5
=0.7

No Task Reward
Expert Return

(d)

Figure
6.

3:R
esults

of
insert:O

nly
the

autom
atically

induced
hyperparam

eter
setseem

s
to

struggle
using

A
IR

L.A
llother

configurations
startto

learn
the

behavior
of

the
expert.W

hile
not

by
a

considerable
m

argin,the
autom

atically
induced

hyperparam
eter

set
for

G
A

IL
is

the
best-perform

ing
configuration.H

ow
ever,none

of
these

results
reach

the
expert’s

m
ean

return.

6.2 result 55

0
1

2
3

4
5

6
Ti

m
e

(h
ou

rs
)

0

10
0

20
0

30
0

40
0

50
0

Mean Checkpoint Return

Au
to

m
at

ica
lly

 S
ta

ck
in

g
wi

th
 G

AI
L

=0
.3

=0
.5

=0
.7

No
 Ta

sk
 R

ew
ar

d
Ex

pe
rt

Re
tu

rn

(a
)

0
1

2
3

4
5

6
Ti

m
e

(h
ou

rs
)

0

10
0

20
0

30
0

40
0

50
0

Mean Checkpoint Return

M
an

ua
lly

 S
ta

ck
in

g
wi

th
 G

AI
L

=0
.3

=0
.5

=0
.7

No
 Ta

sk
 R

ew
ar

d
Ex

pe
rt

Re
tu

rn

(b
)

0
1

2
3

4
5

6
Ti

m
e

(h
ou

rs
)

0

10
0

20
0

30
0

40
0

50
0

Mean Checkpoint Return

Au
to

m
at

ica
lly

 S
ta

ck
in

g
wi

th
 A

IR
L

=0
.3

=0
.5

=0
.7

No
 Ta

sk
 R

ew
ar

d
Ex

pe
rt

Re
tu

rn

(c
)

0
1

2
3

4
5

6
Ti

m
e

(h
ou

rs
)

0

10
0

20
0

30
0

40
0

50
0

Mean Checkpoint Return

M
an

ua
lly

 S
ta

ck
in

g
wi

th
 A

IR
L

=0
.3

=0
.5

=0
.7

No
 Ta

sk
 R

ew
ar

d
Ex

pe
rt

Re
tu

rn

(d
)

Fi
gu

re
6

.4
:R

es
ul

ts
of

st
ac

ki
ng

:W
hi

le
tr

ai
ni

ng
st

ab
ili

ze
s

th
e

ag
en

t’s
m

ov
em

en
tw

ith
in

th
e

si
m

ul
at

io
n,

al
lc

on
fig

ur
at

io
ns

st
ru

gg
le

to
im

ita
te

th
e

be
ha

vi
or

ju
st

on
ce

.T
he

pl
ot

s
al

so
re

fle
ct

th
is

si
tu

at
io

n,
w

he
re

no
ne

of
th

e
co

nfi
gu

ra
ti

on
s

in
cr

ea
se

th
e

m
ea

n
re

tu
rn

ov
er

ti
m

e.

56 evaluation

6.2.1 Covering

Figure 6.2 shows all important plots. The environment covering with
AIRL achieved similar results regardless of the configuration (see
figure 6.2c and figure 6.2d). Interestingly, the results stay the same
or worsen over time. However, it only seems like that because of the
definition of task reward. In its first stage, it rewards the movement
towards the lid. Since this behavior gets reinforced in the underlying
PPO algorithm early on without further exploration to other stages,
there is no rise in the reward over time. However, the runs using
manually tuned hyperparameters still have more variance within each
checkpoint, making the mean value over time less consistent than
with the automatically tuned hyperparameters. This is caused by a, in
comparison to the automatically tuned set, more chaotic agent move-
ment of the policy in the simulation. The other parameters achieve
a uniform movement towards the lid without further movement, so
no further reward is issued. While hand movement stabilized in both
cases, none of the AIRL consistently tried to pick up the lid.

However, the results of GAIL are more interesting. Where both AIRL
algorithms never achieved to pick up the lid, GAIL is consistent in
doing so. Even placing the lid close to the top of the pot is possible, but
it is an exception rather than the rule. To be more precise, often, only
the manually tuned achieves this. Figure 6.2b reflects this observation
with a higher mean reward, showing the manually tuned hyperpa-
rameter set as the best performing policy in covering. Compared to
the other GAIL configuration, this is likely due to the higher learning
rate and entropy coefficient impacting the exploration.

Overall, the usage of task reward impacted the performance and
learning speed of the policy learning process only by a small margin.
Moreover, none of the policies learned by all the different configu-
rations succeeded or had a big lead in performance, making a final
statement about the effectiveness difficult.

6.2.2 Insert

Even though both covering and insert share a similar setup, figure 6.3
shows more deviating results for insert than expected. However, the
configuration using automatically tuned hyperparameters with the
learning algorithm AIRL stays mostly the same (see figure 6.3c). It
achieves constant movement towards the spatula but never picks it up.
One deterioration to covering, however, is that the movements induced
by the policy are no longer as smooth, and training took seven instead
of six hours. The more interesting observation with AIRL is that the
manually tuned hyperparameter reached the next phase of picking the
spatula up despite having the same hyperparameter set as covering
and the same number of objects within the environment. A plausible
explanation could be that the way the expert picks up the object in the

6.2 result 57

trajectory recording with a slight rotation gives the AIRL approach a
better hint to differentiate between learned and real trajectory, leading
PPO to reach the next stage. Still, the expert only picks up the object
but never moves towards the pot.

Again, both GAIL algorithms accomplish the first stage of picking
the object up. However, when visually evaluating the output of the
automatically tuned hyperparameter policy, this policy seems to reach
a state close to the end state of the expert more often. Regardless,
figure 6.3a and figure 6.3b do not reflect that observation. Here, both
hyperparameter configurations perform similarly, except that the au-
tomatically tuned set needed around eight hours instead of six, and
learning how to pick up the object was slower than the manually
tuned hyperparameter set. A lower learning rate is probably responsi-
ble for the slower learning speed, and a smaller batch size and more
discriminator updates lead to more extended training.

Overall, using task reward did not significantly affect learning.
However, the automatically trained hyperparameter set for GAIL,
including the task reward with λ = 0.3, seemed to accelerate the
learning but did not improve the final result. Furthermore, none of
the configurations lead to a policy, which could consistently solve the
task.

6.2.3 Stacking

As shown in figure 6.4, stacking results deliver no real success. When
looking into more detail, AIRL with automatically induced hyperpa-
rameters generate trajectories, where the agent spins into one of the
state spaces corners while constantly trying to grab something. This
behavior also leads to overall low rewards with occasionally higher
rewards due to objects that get grabbed and thrown away, which
increases the accumulated reward for a trajectory (see figure 6.4c).
The manually tuned hyperparameter set for AIRL at least stabilizes
the movement and also sometimes leads to the direction of one cube,
which adds the noise in figure 6.4d.

In this case, GAIL acts no different. Although, the automatically
tuned results stabilize way better than the manually tuned results
(see figure 6.4a and figure 6.4b). More interesting, though, is that the
overall mean return of the manually tuned results looks way higher;
however, its policy spins the agent around. This observation means
that even though the hand grabs objects within the environment
and throws them near other objects, which generates higher rewards,
the seemingly lower rewarded automatically tuned hyperparameter
set generalizes better to the expert’s intent due to hand movement
resembling the expert.

However, none of the algorithms presented with the configuration
solved the task in the end. In this case, the problem is probably the

58 evaluation

design of this environment, which makes it harder for the algorithms
to learn since objects can be picked up in an arbitrary order.

6.3 discussion

The findings indicate that GAIL has demonstrated consistently more
pleasing performance. However, the overall results of all IL configu-
rations did not meet the mean return of the expert or the final stage
for successful task execution. One reason for stacking, in particular,
might be the overall design of the task, where the expert had no
differentiation between objects, which enabled arbitrary object place-
ment—making the whole process harder than the other tasks.

While including the task reward can sometimes accelerate the train-
ing in the initial stages, it did not have a meaningful impact on the
final goal of having a stable policy that generalizes well. Furthermore,
the introduction of hyperparameter optimization, while not helping
with a policies always fulfilling the task, still got hyperparameters
that enabled a policy to learn the task or at least parts of the task
similar to the manually defined hyperparameters. In the case of the
GAIL algorithm in stacking, it even surpasses the manually tuned
parameters. Still, this is an impressive result, considering that man-
ually finding usable hyperparameters required several runs during
the implementation phase and more to achieve adequate results. In
contrast, some of the manually defined hyperparameters in the initial
phase of this project only got slightly beyond a policy similar to that of
a random one. Visually speaking, these hyperparameters only caused
movement to another point in space but did not enable proper agent
rotation from the expert.

One drawback of hyperparameter optimization is that producing a
non-optimal hyperparameter set takes several days. Considering that,
with a more significant run number, e.g., 300, and a higher step num-
ber close to the one used in actual IL training, it can be hypothesized
that this could result in a set of hyperparameters that outperforms
the manual whenever the manually tuned hyperparameter set is not
the optimal set. However, with the current implementation, getting
just one set of hyperparameters would take weeks, which is not fea-
sible. Future efforts should focus on reducing the complexity of the
simulation environment to facilitate parallel training, which would
enhance the efficiency of the optimization process. Additionally, it is
crucial to consider the variability in hyperparameters based on distinct
environments to achieve more robust performance.

Another limitation is probably the lack of a larger number of training
samples, which likely led to the early termination of configurations
that hindered the reinforcement of the desired behaviors. Overall,
greater sample sizes and more extensive testing could lead to the dis-
covery of superior hyperparameters that outperform manual tuning.

7
C O N C L U S I O N

In conclusion, this section summarizes the work completed, outlines
the key results obtained, and suggests areas for further improvement.

7.1 summary

This thesis presented a fully functional system to capture expert
demonstrations for behavior imitation in Unreal Engine 5.3.2. To col-
lect the necessary trajectories for the learning algorithms, a VR setup,
including a head-mounted display and controller, was utilized. The
expert had three distinct environments tailored to the affordances
typically in a kitchen environment: one for stacking items, another for
covering items, and a final one for placing items inside a container.
Two established algorithms from the AIL category (a sub-group of IL)
served as the foundation for learning evaluation. The first being AIRL
and the second GAIL. Given the challenges related to the generaliza-
tion of IL methods, the implementation also relied on the concept of
task reward as an auxiliary function. Furthermore, the significance of
hyperparameter optimization was emphasized, both during the imple-
mentation of this project and in existing research [19]. Consequently,
the system used an automatic hyperparameter optimization technique
known as Optuna to achieve enhanced results.

The final evaluation shows that while GAIL performs better, none
of the IL configurations reliably solved these tasks. For the stacking
environment, this is probably due to the unknown object order for the
final construct. Ultimately, for all environments, the lack of sufficient
training samples likely constrained the effectiveness of configurations,
emphasizing the importance of future work. Although incorporating
task reward can accelerate initial training, it did not contribute to devel-
oping a stable and generalizable policy. Hyperparameter optimization
sometimes yielded marginal improvements but was limited by time
constraints, again indicating the need for a more efficient approach,
such as simplifying the simulation environment for parallel training.
This implies that Unreal Engine might not be the best choice for IL.
Even though it works, the training is, at least for this implementation,
time-consuming. However, in the end, despite the time limit and the
optimized hyperparameters not being optimal, the results were still
slightly better in some cases compared to the baseline algorithms with
manually tuned hyperparameters.

59

60 conclusion

7.2 future work

Using 100 trajectories is undoubtedly a lot and also takes much time
to record; future work should focus on using a reduced set for training.
The lifting order of the cubes in the stacking environment was initially
not considered. Even though this would not be given in a realistic
environment, it also hinders the learning algorithm’s ability to learn
this task effectively, so future research should color these cubes to
make them distinguishable and the position when finally stacked
together consistent.

However, the biggest problem was the speed in the final training
process, so changing the engine might be a good idea, whether for
training or recording the trajectories. For example, MuJoCo could work
as a recording and training engine, as it provides at least essential
support for VR [42]. Other projects even extend VR support of the
MuJoCo engine [60].

Also, a system that utilizes explicit knowledge about action can
help, like Lopes et al. [45], who use demonstration interpretation to
map expert information to affordances, thereby creating an affordance
network. This approach could be modified to create automatic task
rewards. Doing so aligns the usage of task reward more closely with
classical IL approaches, which rely solely on demonstrations and
not an additional user-specified function. Additionally, this method
allows for using a static metric for hyperparameter optimization with
Optuna.

Part IV

A P P E N D I X

A
A P P E N D I X

a.1 task rewards

This section contains the remainder task rewards and a few brief
additional explanations.

a.1.1 Insert

The task reward for the insert environment shares similarities with
the previously defined task reward for covering in listing 4.1. This is
because both functions have similar stages and a comparable number
of objects in each environment. The primary difference lies in the
requirement for distance, which needs to be much closer in this context.
Look at listing A.1 below to understand this task reward.

Listing A.1: The pseudo-code of the task reward for insert.

1 input: state, next_state # in other words, the initial state and

subsequent state

2 movement_hand_to_spatula, movement_spatula_to_pot,
next_spatula_to_pot, next_spatula_to_hand = initialize these

values using state and next_state. All these variables are

scalar values according to the length of the calculated

vector.

3 # Zero reward as a baseline

4 reward = initialize reward with 0.0

5 # Stage 1: Movement of the hand towards the spatula

6 if movement_hand_to_spatula exceeds a certain value:

7 reward = 0.5

8 # Stage 2: Hand holds spatula

9 if: next_spatula_to_hand is small enough and hand grasps

10 reward = 1.0

11 # Stage 3: Movement towards pot while holding a spatula

12 if movement_spatulato_pot exceeds a certain value while holding in

next_state:
13 reward = 1.5

14 # Stage 4: The object is in a pot and not grabbed

15 if next_spatula_to_pot is small enough:

16 reward = 2.5

17 if next_state is still grabbing while next_spatula_to_pot:
18 reward -= 0.5

19 output: reward

63

64 appendix

a.1.2 Stacking

As a side note, the following task reward uses more objects; hence,
stages are quite different from the already existing task reward. Look
at listing A.2 below to see how the stacking gets supported.

Listing A.2: The pseudo-code of the task reward for stacking.

1 input: state, next_state # in other words, the initial state and

subsequent state

2 movement_hand_to_blocks_vector, movement_blocks_to_blocks_vector,
next_distance_blocks_to_blocks_vector = initialize these values

using state and next_state. All these variables are scalar

values according to the length of the calculated vector.

3 # Zero reward as a baseline

4 reward = initialize reward with 0.0

5 # Stage 1: When the hand movement to one box is registered

6 if one value in movement_hand_to_blocks_vector exceeds a certain

value:

7 reward += 0.25

8 # Stage 2: If blocks get closer while holding

9 if movement_blocks_to_blocks_vector exceeds a certain value while

holding in next_state:
10 reward += 0.125

11 # Stage 3: If two blocks are close together

12 if the value between two blocks in

next_distance_blocks_to_blocks_vector is small enough:

13 reward += 0.5

14 # Stage 4: If three blocks are close together

15 if the value between three blocks in

next_distance_blocks_to_blocks_vector is small enough:

16 reward += 0.5

17 # Stage 5: If blocks get stacked and are close together

18 if next_state one block is two times the normal z position:

19 reward += 1.0

20 if next_state one block is three times the normal z position:

21 reward += 1.0

22 output: reward

a.2 implementation usage

This section explains the usage of the featured software. Keep in mind
that ./README.md in the root directory of the project contains the in-
stallation instructions and all the additional software required. Topics
are both the recording of trajectories and training the IL algorithms
on said trajectories. However, a section will first explain some general
options affecting both topics.

A.2 implementation usage 65

a.2.1 General

This section outlines configuration options that apply to all modes
available in the software within the EnvManager Actor. So, these set-
tings affect the usage no matter the selected project mode. Furthermore,
the implementation refers to IRL for all IL learning algorithms.

a.2.1.1 State Space Parameters

While the system applies most of the options in this category only to
IRL mode, it also offers some helpful options while doing VR record-
ings. Implementation-wise, the system visually guides the user to
move only their hand and objects within the borders of the state space.
Of course, objects are also physically held within the state space, but
colliding with the borders leads to unnatural movement trajectories.
This is avoidable when using this option as visual guidance. In this
case, it is Visualize Space, which, as the name suggests, visualizes the
state space as a translucent white box and is the option to activate
such visual guidance. The option appears in figure A.1.

Figure A.1: Shows how to visualize the state space in State Space/State Space
Parameters.

a.2.1.2 Modes

Another option for independent use is the menu entry to change
the project mode. The user can switch between IRL or VR to use
the desired mode through this setting. As a side note, this option
only takes effect when set before running UE. It has no effect when
switching while running UE. See figure A.2 to see which drop-down
menu to use.

Figure A.2: Shows how to switch the current project mode in Modes.

a.2.1.3 Environment

The section Environment offers the ability to set the objects for all
available environments. But more importantly for the user of this Note: All

environments are
available in discrete
or continuous space.

project, this section also gives the user the ability to select the current
environment used for the next run. Figure A.3 shows the option, which

66 appendix

is marked as the only option that should be used by the user in red,
except if object modification of the environments is wanted.

Figure A.3: Shows the options for the environment section within EnvMan-
ager.

The following list shows the difference of all available environment
options within the drop-down menu seen in figure A.3 except for None
since it is the default empty environment.

• Covering Env: A pot and a lid are available for interaction in this
environment. Ultimately, the lid should cover the pot’s upper
part, representing the task.

• Insert Env: A pot and a spatula are given to place the spatula
inside the pot.

• Stacking Env: Here, the environment has three cubes, which
should be stacked, forming a little tower.

• Dummy: This environment is just a toy problem to test the
functionality of the algorithms. A simple grid world includes
a single agent in a discrete space. The agent has to reach a
specific state to finish. In continuous space, the goal is to learn a
movement in one direction.

a.2.2 VR recording

The VR mode only generates trajectories and offers a few configuration
options. This section will explain how to properly use the VR mode.
Keep in mind that this will work best on Windows.

a.2.2.1 Configuration
Important: Make

sure you started
MongoDB Compass

and connect to a
MongoDB

deployment with the
host

"localhost:27017" to
ensure USemLog to

write into the
database!

When using VR to generate new trajectories, you have to start all
additional software not directly started by UE like your VR setup and
database. Like switching to IRL, VR is another option available in the
Modes section within the EnvManager. Nevertheless, as opposed to IRL,
VR only offers two additional configuration options. figure A.4 shows
the configuration of the VR mode. The following paragraphs explain
the configuration for the VR mode:

vrrecording : Enables recording trajectories within the VR mode.
Interacting with objects in the environment is possible without en-
abling this option. However, the system will not record or write any
information to the hard drive.

A.2 implementation usage 67

randomize position vr : Enables randomizing the start position
of all objects within a selected environment.

(a) VR mode not selected.

(b) VR mode selected.

Figure A.4: Showing VR mode options when selected and when not.

a.2.2.2 Recording

When the user sets the mode to VR, activates VRRecording, and con-
figures everything else to the set requirements, recording will start
by hitting UE’s Play button. Recommended is to use a keyboard near
the VR setup to start and stop runs with their respective shortcuts. Note: Shortcut for

starting is Alt + P
and stopping the run
is Escape.

You should only start moving when a green text with Start: n, where
n is the number of runs, appears in the upper left corner (see also
figure A.5). Otherwise, the recording of the demonstration might miss
some parts. The system assigns the run number based on the count
of trajectory directories within the respective environment directory.
Also, remember that the system only records the right VR controller.
Thus, interacting with the left one will result in an incorrect trajectory.
A run only stops when the simulation stops.

Figure A.5: Message on screen outlined in red appears when recording in VR
is ready. The number represents the ID of the current trajectory.

a.2.2.3 Result

Figure A.6 shows the directory structure of the recorded trajectories.
Intuitively, each parent directory ending with _ENV contains runs

68 appendix

linked to this environment. Each recorded trajectory is within a direc-
tory named after the ID number of the recording. You might as wellImportant: If you

delete a recorded run,
you have to rename

all files to
accommodate the

number of directories
for the recording!

Also, delete the
database, since

entries are only
needed after a

recording ends for
copying. Otherwise,

it can cause problems
for data creation!

see those parent directories with .srl added. These directories contain
three files holding processed trajectories from the normal directory,
building a dataset for later usage while IL training.

./IRL_Trajectories

COVERING_ENV

1

2

...

INSERT_ENV

1

2

...

STACKING_ENV

1

2

...

Figure A.6: Structure of the directories generated by the VR recording.

a.2.3 IRL training

This section focuses on configuring and running of the IL training.
Using Linux as the operating system is important because the software
packages required for this training only achieve optimal performance
under that system. Otherwise, expect performance impacts, as it is not
possible to use parallelization.

a.2.3.1 Configuration

Refer to appendix A.2.1.2 for switching to IRL mode and running the
docker container. The user can make additional adjustments withinImportant: When

running the IL
training process, you

have to run the
docker container

within the ./docker
directory to start a

MongoDB instance
to record training

information.
Otherwise, training

might crash at the
beginning.

UE for IL training. The category State Spaces offers many of the settings
that influence the training process (see figure A.7).

A.2 implementation usage 69

Figure A.7: Shows the configuration menu for IRL mode.

The list below explains some of the configuration opportunities for
the user:

• Optimize Hyperparameters: Uses a modified version of Imita-
tion’s tuning.py script, which uses Optuna to find the best set
of hyperparameters for the specified learning algorithm and
environment. The system saves all results within the user’s
home directory under ∼/ray_results. Training defaults to 60 runs
with a total of 1, 300, 000 steps. If the user requires other values,
they have to change some values in the configurations within
"mairl_gail" and "mairl_airl" in the Python script ./learning/ir-
l/algo_imitation_adversarial.py. This option can require a lot of
RAM (at least 64 GB); otherwise, the application might crash
and lose all progress. If attempting this option with less mem-
ory, adjusting the number of runs, as previously explained, is
necessary.

• Refresh Trajectories: The Python implementation requires some
pre-processing for the trajectories. This also means that if some
changes to the recordings in ./IRL_Trajectories happen, the system
only applies them for training when this setting is activated.
However, this option should always be selected to prevent user
errors since pre-processing only takes a few seconds.

• Show Expert Trajectories: This shows the recorded trajectories
recorded in VR for the currently selected environment. This
can help identify errors within a recording. The parallel running
Python script window will also show the number of the currently
running trajectory.

• Hand Start Position: You can set a HandStartPosition Actor with
this setting. As the name suggests, this Actor allows to specify
the default starting position of the hand object while training.

• Use Hand Start Position: To activate the previously mentioned
default starting position for the training hand, set this setting.

70 appendix

• Seed: The Seed option randomizes the starting rotation and
position of the Hand at each reset if Use Hand Start Position is not
selected. Selecting 0 as the seed means the algorithm will not
randomize the initial pose. Of course, all other options will lead
to consistently randomized poses at each run. This option is for
IRL mode use.

• User Pre Trained Model: If you want to use a model from a
previous training session, you have to activate this setting. The
user must specify Pre Trained Model Path before activating this
option.

• Pre Trained Model Path: Defines the path to the pre-trained
model directory. Please ensure to select only the directory, not
the model file.

• Only Show Pre-Trained Model Policy: If you wish to review
your results with an already trained model, you must activate
this setting. UE will not train during the next run and only show
actions taken according to the trained policy of the selected
model.

• Client Number: Defines the number of training instances created
in UE. Test different values to determine the optimal settings forImportant: If you

notice that UE
freezes during

training, you have to
decrease this number.

the system. It could be that training ends up being slower with
a higher value.

• Parallel: If you have not activated this setting, the system will
sequentially execute all instances created within UE. Otherwise,
the system executes these actions in parallel, drastically increas-
ing the speed if the processor is powerful enough. Deactivate
this only if you run on a Windows computer since the Python
implementation only supports Parallel on Linux.

• Total Timesteps: Defines the amount of steps taken for a run in
UE.

• Visualize Space: This setting activates the visualization of the
state space where the environment objects can operate. The
system visualizes the space in a transparent white box.

• Visualize Space as Grid: This setting is only necessary if you
want to view the results of the learning algorithm since this will
create a grid representation of all agents to help differentiate
between all learning spaces. Figure 5.2 shows the effect of this
setting.

• Discrete: Activates the discrete training mode. This will also
switch the available learning algorithm within the category IRL
Settings (see figure A.8).

A.2 implementation usage 71

• Depth: Defines the depth of the discrete space.

• Length: Defines the length of the discrete space.

• Height: Defines the height of the discrete space.

As previously explained, there are two different state spaces within
which a learning algorithm can operate. To choose the right one, the
category IRL Settings offers a choice between two options. Depending
on whether the user selected Discrete in State Space, the system greys
one option out. Figure A.8 shows the option.

Figure A.8: Shows the configuration menu for IRL training.

Since each IRL training run uses sacred to log and use externally
defined hyperparameters in a run, you could even do more fine-tuning
outside UE by changing some parameters in one of the hyperparame-
ter files corresponding to the available learning environments (e.g., in
the project directory ./Hyperparameters/UEGymEnv-COVERING.json to
modify hyperparameters for the environment Covering). Remember
that the system will override the total_timesteps parameter due to the
settings in UE. In general, the user can see the files within the Hyper-
parameter directory as a template used in the implementation to create
and add more parameters for the final training script. The default set
of hyperparameters, either automatically or manually tuned, are listed
in appendix A.3. If desired, the user can review the last used hyper-
parameters by checking ./learning/mairl.json. Documentation for each Important: Look for

the PPO algorithm
and their
corresponding
parameters within
the Stable-Baselines3
documentation.

parameter is available in the Imitation documentation or the Stable-
Baselines3 documentation for the RL algorithms whose parameters
are in the rl category of each hyperparameter file.

a.2.3.2 Training

Refer to appendix A.2.3.1 to configure the IRL mode in UE. Also,
please follow the side notes with critical remarks to achieve a smooth
experience without errors. When the user sets all settings correctly,
such as training hyperparameters and displaying trajectories, they
can click on the UE’s Play button. Depending on the system and the
training settings, training might last a few hours up to several weeks.

After hitting play, a second window will appear showing the current
training status. UE’s sole purpose from now on is to do and show the
physics simulation. Figure A.9 shows both windows. While training,
figure A.9b estimates the remaining training time. When performing
hyperparameter tuning, estimate the total time by multiplying the
expected time for an individual run by the number of runs.

72 appendix

(a) UE’s environment window for
physics calculation.

(b) Python’s output window to report
the current training status.

Figure A.9: After hitting UE’s Play button, the training will start with two
windows, as seen above.

a.2.3.3 Result

The results and representation vary depending on the previous con-
figuration, namely regular training and hyperparameter tuning.

irl : The system loggs training results under their respective run
ID directory in the cout.txt file. Find these directories in the project’s
directory ./learning/output/sacred/tune_adversarial. Additionally, Omni-
board allows analyzing all runs and creating plots for selected metrics.
Access Omniboard in your web browser by clicking or copying the
following link: http://localhost:9000. Also, see figure A.10 to view
the interface and how to plot the metrics.

(a) Omniboard’s experiment list. (b) Viewing individual metric plots
from experiment runs.

Figure A.10: Viewing sacred experiments is done with Omniboard and indi-
cates how the run went.

hyperparameter tuning : Other than IL training, the system
will not create a log file of the algorithm’s output because of long
sessions and coincidentally large output files. Furthermore, using
Omniboard as an analysis tool to review all runs is also impossible. As
per the explanation of Optimize Hyperparameters in appendix A.2.3.1,
the system will save all optimization results in ∼/ray_results. If the
Optuna optimization succeeded, you find the best set of parameters
in this directory.

http://localhost:9000

A.3 hyperparameters 73

a.3 hyperparameters

Read the columns of all tables from left to right and correspond to the
hierarchy in the JSON file. For example, the first entry in table A.1
means that the parameter demo batch size in the category algorithm
kwargs has a value of 7680. If an entry divides the values with a
comma, training uses different values for this attribute in different
runs. A dash is a placeholder for the default value.

a.3.1 Manually Tuned

The tuned parameters were collected by testing various combinations
of hyperparameters and referencing suitable parameters from the
Imitation project for MuJoCo environments.

Hyperparameters for all environments

algorithm
kwargs

demo batch size 7680

gen replay buffer capacity 7680

n disc updates per round 8

reward
net kwargs balancing

value
1.0, 0.7, 0.5, 0.3

rl

batch size 7680

rl kwargs

batch size 192

clip range 0.08

ent coef 0.022

gamma 0.97

learning rate 0.0003

n epochs 14

vf coef 0.1

Table A.1: A table showing all relevant hyperparameters used in the hyper-
parameter config file, manually tuned for IL training. These values
are used in all environments.

a.3.2 Automatically Tuned

The manually tuned hyperparameters apply universally to all environ-
ments and learning algorithms. In contrast, the automatically tuned
hyperparameters undergo individual training for each environment
and learning algorithm combination. This approach should ensure the
best hyperparameter set without manual interference. The following
tables show the Optuna results. The results have been rounded to the
sixth decimal place (if needed) to make them easier to read.

74 appendix

a.3.2.1 GAIL

Hyperparameters for Covering (GAIL)

algorithm
kwargs

demo batch size 32

gen replay buffer capacity -

n disc updates per round 4

reward
net kwargs balancing

value
1.0, 0.7, 0.5, 0.3

rl

batch size 4096

rl kwargs

batch size 128

clip range 0.08

ent coef 9.158107e-07

gamma 0.996499

learning rate 0.000429

n epochs 5

vf coef 0.00882

Table A.2: Automatically tuned hyperparameters for the GAIL covering en-
vironment.

Hyperparameters for Insert (GAIL)

algorithm
kwargs

demo batch size 512

gen replay buffer capacity -

n disc updates per round 8

reward
net kwargs balancing

value
1.0, 0.7, 0.5, 0.3

rl

batch size 4096

rl kwargs

batch size 16

clip range 0.02

ent coef 7.330827e-07

gamma 0.989083

learning rate 7.644344-05

n epochs 12

vf coef 0.137331

Table A.3: Automatically tuned hyperparameters for the GAIL insert envi-
ronment.

A.3 hyperparameters 75

Hyperparameters for Stacking (GAIL)

algorithm
kwargs

demo batch size 128

gen replay buffer capacity -

n disc updates per round 8

reward
net kwargs balancing

value
1.0, 0.7, 0.5, 0.3

rl

batch size 8192

rl kwargs

batch size 64

clip range 0.2

ent coef 1.137963e-06

gamma 0.962156

learning rate 5.346024e-05

n epochs 7

vf coef 0.171239

Table A.4: Automatically tuned hyperparameters for the GAIL stacking envi-
ronment.

a.3.2.2 AIRL

Hyperparameters for Covering (AIRL)

algorithm
kwargs

demo batch size 128

gen replay buffer capacity -

n disc updates per round 16

reward
net kwargs balancing

value
1.0, 0.7, 0.5, 0.3

rl

batch size 8192

rl kwargs

batch size 512

clip range 0.08

ent coef 2.321705e-05

gamma 0.976245

learning rate 9.434924e-05

n epochs 9

vf coef 0.142388

Table A.5: Automatically tuned hyperparameters for the AIRL covering envi-
ronment.

76 appendix

Hyperparameters for Insert (AIRL)

algorithm
kwargs

demo batch size 512

gen replay buffer capacity -

n disc updates per round 4

reward
net kwargs balancing

value
1.0, 0.7, 0.5, 0.3

rl

batch size 8192

rl kwargs

batch size 32

clip range 0.04

ent coef 9.415599e-05

gamma 0.999833

learning rate 4.664156e-05

n epochs 15

vf coef 0.197963

Table A.6: Automatically tuned hyperparameters for the AIRL insert envi-
ronment.

Hyperparameters for Stacking (AIRL)

algorithm
kwargs

demo batch size 32

gen replay buffer capacity -

n disc updates per round 4

reward
net kwargs balancing

value
1.0, 0.7, 0.5, 0.3

rl

batch size 8192

rl kwargs

batch size 512

clip range 0.2

ent coef 1.996332e-05

gamma 0.964847

learning rate 0.008879

n epochs 15

vf coef 0.055766

Table A.7: Automatically tuned hyperparameters for the AIRL stacking envi-
ronment.

a.4 nutzung ki basierte anwendungen

Diese Abschlussarbeit hat sowohl Grammarly [30] zur Korrektur
des geschriebenen Textes verwendet als auch für das Schreiben der
Evaluations-Skripte zum Teil auf JetBrains AI Assistant [37] zurückge-
griffen.

B I B L I O G R A P H Y

[1] Pieter Abbeel and Andrew Y. Ng. “Apprenticeship learning via
inverse reinforcement learning.” In: Proceedings of the Twenty-
First International Conference on Machine Learning. ICML ’04. Banff,
Alberta, Canada: Association for Computing Machinery, 2004,
p. 1. isbn: 1581138385. doi: 10.1145/1015330.1015430.

[2] Navid Aghasadeghi and Timothy Bretl. “Maximum entropy
inverse reinforcement learning in continuous state spaces with
path integrals.” In: 2011 IEEE/RSJ International Conference on
Intelligent Robots and Systems. San Francisco, CA, USA: IEEE,
Sept. 2011, pp. 1561–1566. doi: 10.1109/IROS.2011.6094679.

[3] Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta,
and Masanori Koyama. Optuna: A Next-generation Hyperparameter
Optimization Framework. 2019. arXiv: 1907.10902 [cs.LG].

[4] Paola Ardón, Èric Pairet, Katrin S. Lohan, Subramanian Ra-
mamoorthy, and Ronald P. A. Petrick. Affordances in Robotic Tasks
– A Survey. 2020. arXiv: 2004.07400 [cs.RO].

[5] Saurabh Arora and Prashant Doshi. “A survey of inverse re-
inforcement learning: Challenges, methods and progress.” In:
Artificial Intelligence 297 (2021), p. 103500. issn: 0004-3702. doi:
10.1016/j.artint.2021.103500.

[6] Kai Arulkumaran, Marc Peter Deisenroth, Miles Brundage, and
Anil Anthony Bharath. “Deep Reinforcement Learning: A Brief
Survey.” In: IEEE Signal Processing Magazine 34.6 (2017), pp. 26–
38. doi: 10.1109/MSP.2017.2743240.

[7] Stable Baselines3. Reinforcement Learning Tips and Tricks. Stable
Baselines3. url: https://stable- baselines3.readthedocs.
io/en/master/guide/rl_tips.html#tips-and-tricks-when-

creating-a-custom-environment (visited on 12/11/2024).

[8] Christian Baun. “Interprocess Communication / Interprozesskom-
munikation.” In: Operating Systems / Betriebssysteme : Bilingual
Edition: English – German / Zweisprachige Ausgabe: Englisch –
Deutsch. Wiesbaden: Springer Fachmedien Wiesbaden, 2023,
pp. 195–274. isbn: 978-3-658-42230-1. doi: 10 . 1007 / 978 - 3 -

658-42230-1_9.

[9] Mulcahy Brendan. Learning Agents Introduction. Unreal Engine.
Mar. 31, 2023. url: https://dev.epicgames.com/community/
learning/tutorials/8OWY/unreal-engine-learning-agents-

introduction (visited on 08/19/2024).

77

https://doi.org/10.1145/1015330.1015430
https://doi.org/10.1109/IROS.2011.6094679
https://arxiv.org/abs/1907.10902
https://arxiv.org/abs/2004.07400
https://doi.org/10.1016/j.artint.2021.103500
https://doi.org/10.1109/MSP.2017.2743240
https://stable-baselines3.readthedocs.io/en/master/guide/rl_tips.html#tips-and-tricks-when-creating-a-custom-environment
https://stable-baselines3.readthedocs.io/en/master/guide/rl_tips.html#tips-and-tricks-when-creating-a-custom-environment
https://stable-baselines3.readthedocs.io/en/master/guide/rl_tips.html#tips-and-tricks-when-creating-a-custom-environment
https://doi.org/10.1007/978-3-658-42230-1_9
https://doi.org/10.1007/978-3-658-42230-1_9
https://dev.epicgames.com/community/learning/tutorials/8OWY/unreal-engine-learning-agents-introduction
https://dev.epicgames.com/community/learning/tutorials/8OWY/unreal-engine-learning-agents-introduction
https://dev.epicgames.com/community/learning/tutorials/8OWY/unreal-engine-learning-agents-introduction

78 bibliography

[10] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schnei-
der, John Schulman, Jie Tang, and Wojciech Zaremba. OpenAI
Gym. 2016. arXiv: 1606.01540 [cs.LG].

[11] Antonia L. Busse et al. Approach. CreaBots. url: https://cgvr.
cs.uni- bremen.de/teaching/studentprojects/creabots/

approach.html (visited on 12/03/2024).

[12] Antonia L. Busse et al. Home. CreaBots. url: https://cgvr.
cs . uni - bremen . de / teaching / studentprojects / creabots/

(visited on 10/17/2024).

[13] Xiliang Chen, Lei Cao, Zongben Xu, Jun Lai, and Chenxi Li. “A
study of Continuous maximum entropy Deep inverse Reinforce-
ment learning.” In: Mathematical Problems in Engineering 2019

(Apr. 2019), pp. 1–8. doi: 10.1155/2019/4834516.

[14] Franck Djeumou, Christian Ellis, Murat Cubuktepe, Craig Lennon,
and Ufuk Topcu. Task-Guided IRL in POMDPs that Scales. 2022.
arXiv: 2301.01219 [cs.LG].

[15] Gymnasium Documentation. Box2D. Farama Foundation. url:
https://gymnasium.farama.org/environments/box2d/ (vis-
ited on 11/19/2024).

[16] Gymnasium Documentation. Classic Control. Farama Foundation.
url: https://gymnasium.farama.org/environments/classic_
control/ (visited on 11/19/2024).

[17] Gymnasium Documentation. MuJoCo. Farama Foundation. url:
https://gymnasium.farama.org/environments/mujoco/ (vis-
ited on 11/19/2024).

[18] Jonatan S. Dyrstad, Elling Ruud Øye, Annette Stahl, and John
Reidar Mathiassen. “Teaching a Robot to Grasp Real Fish by Im-
itation Learning from a Human Supervisor in Virtual Reality.”
In: 2018 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS). Madrid, Spain: IEEE Press, 2018, 7185–7192. doi:
10.1109/IROS.2018.8593954.

[19] Theresa Eimer, Marius Lindauer, and Roberta Raileanu. Hyper-
parameters in Reinforcement Learning and How To Tune Them. 2023.
arXiv: 2306.01324 [cs.LG].

[20] Inc. Epic Games. The most powerful real-time 3D creation tool.
Unreal Engine. url: https://www.unrealengine.com/en-US
(visited on 10/17/2024).

[21] Inc. Epic Games. Unreal Engine Terminology. Unreal Engine. url:
https://dev.epicgames.com/documentation/en-us/unreal-

engine/unreal-engine-terminology?application_version=5.

3 (visited on 10/17/2024).

https://arxiv.org/abs/1606.01540
https://cgvr.cs.uni-bremen.de/teaching/studentprojects/creabots/approach.html
https://cgvr.cs.uni-bremen.de/teaching/studentprojects/creabots/approach.html
https://cgvr.cs.uni-bremen.de/teaching/studentprojects/creabots/approach.html
https://cgvr.cs.uni-bremen.de/teaching/studentprojects/creabots/
https://cgvr.cs.uni-bremen.de/teaching/studentprojects/creabots/
https://doi.org/10.1155/2019/4834516
https://arxiv.org/abs/2301.01219
https://gymnasium.farama.org/environments/box2d/
https://gymnasium.farama.org/environments/classic_control/
https://gymnasium.farama.org/environments/classic_control/
https://gymnasium.farama.org/environments/mujoco/
https://doi.org/10.1109/IROS.2018.8593954
https://arxiv.org/abs/2306.01324
https://www.unrealengine.com/en-US
https://dev.epicgames.com/documentation/en-us/unreal-engine/unreal-engine-terminology?application_version=5.3
https://dev.epicgames.com/documentation/en-us/unreal-engine/unreal-engine-terminology?application_version=5.3
https://dev.epicgames.com/documentation/en-us/unreal-engine/unreal-engine-terminology?application_version=5.3

bibliography 79

[22] Jonas Eschmann. “Reward function design in reinforcement
learning.” In: Reinforcement Learning Algorithms: Analysis and
Applications. Ed. by Boris Belousov, Hany Abdulsamad, Pascal
Klink, Simone Parisi, and Jan Peters. Cham: Springer Interna-
tional Publishing, Jan. 1, 2021, pp. 25–33. isbn: 978-3-030-41188-6.
doi: 10.1007/978-3-030-41188-6_3.

[23] Chelsea Finn, Sergey Levine, and Pieter Abbeel. Guided Cost
Learning: Deep Inverse Optimal Control via Policy Optimization.
2016. arXiv: 1603.00448 [cs.LG].

[24] Justin Fu, Katie Luo, and Sergey Levine. Learning Robust Rewards
with Adversarial Inverse Reinforcement Learning. 2018. arXiv: 1710.
11248 [cs.LG].

[25] Getnamo. TCP-Unreal: Convenience TCP wrapper for Unreal En-
gine. GitHub. url: https://github.com/getnamo/TCP-Unreal
(visited on 10/16/2024).

[26] James J. Gibson. The Senses Considered as Perceptual Systems.
Houghton Mifflin, 1966.

[27] James J. Gibson. The ecological approach to visual Perception. New
York: Psychology Press, Nov. 2014. isbn: 9781315740218. doi:
10.4324/9781315740218.

[28] Adam Gleave, Mohammad Taufeeque, Juan Rocamonde, Erik
Jenner, Steven H. Wang, Sam Toyer, Maximilian Ernestus, Nora
Belrose, Scott Emmons, and Stuart Russell. imitation: Clean Imita-
tion Learning Implementations. arXiv:2211.11972v1 [cs.LG]. 2022.
arXiv: 2211.11972 [cs.LG].

[29] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu,
David Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua
Bengio. Generative Adversarial Networks. 2014. arXiv: 1406.2661
[stat.ML].

[30] Grammarly. Grammarly: Free AI Writing Assistance. Grammarly
Inc. url: https://www.grammarly.com/ (visited on 12/15/2024).

[31] Klaus Greff, Aaron Klein, Martin Chovanec, Frank Hutter, and
Jürgen Schmidhuber. “The Sacred Infrastructure for Compu-
tational Research.” In: Proceedings of the 16th Python in Science
Conference. Ed. by Katy Huff, David Lippa, Dillon Niederhut, and
M Pacer. 2017, pp. 49 –56. doi: 10.25080/shinma-7f4c6e7-008.

[32] Matteo Hessel, Joseph Modayil, Hado van Hasselt, Tom Schaul,
Georg Ostrovski, Will Dabney, Dan Horgan, Bilal Piot, Moham-
mad Azar, and David Silver. Rainbow: Combining Improvements
in Deep Reinforcement Learning. 2017. arXiv: 1710.02298 [cs.AI].

[33] Jonathan Ho and Stefano Ermon. Generative Adversarial Imitation
Learning. 2016. arXiv: 1606.03476 [cs.LG].

https://doi.org/10.1007/978-3-030-41188-6_3
https://arxiv.org/abs/1603.00448
https://arxiv.org/abs/1710.11248
https://arxiv.org/abs/1710.11248
https://github.com/getnamo/TCP-Unreal
https://doi.org/10.4324/9781315740218
https://arxiv.org/abs/2211.11972
https://arxiv.org/abs/1406.2661
https://arxiv.org/abs/1406.2661
https://www.grammarly.com/
https://doi.org/10.25080/shinma-7f4c6e7-008
https://arxiv.org/abs/1710.02298
https://arxiv.org/abs/1606.03476

80 bibliography

[34] Michael Hu. The art of reinforcement learning. Berkeley, CA: Apress,
Jan. 1, 2023. isbn: 978-1-4842-9606-6. doi: 10.1007/978-1-4842-
9606-6.

[35] Zhe Hu, Yu Zheng, and Jia Pan. “Grasping Living Objects With
Adversarial Behaviors Using Inverse Reinforcement Learning.”
In: Trans. Rob. 39.2 (Apr. 2023), 1151–1163. issn: 1552-3098. doi:
10.1109/TRO.2022.3226108.

[36] Alex Irpan. Deep Reinforcement Learning Doesn’t Work Yet. https:
//www.alexirpan.com/2018/02/14/rl-hard.html. 2018.

[37] JETBRAINS. JetBrains AI. JetBrains s.r.o. url: https://www.
jetbrains.com/ai/ (visited on 12/15/2024).

[38] Lorenzo Jamone, Emre Ugur, Angelo Cangelosi, Luciano Fadiga,
Alexandre Bernardino, Justus Piater, and José Santos-Victor. “Af-
fordances in Psychology, Neuroscience, and Robotics: A Survey.”
In: IEEE Transactions on Cognitive and Developmental Systems 10.1
(2018), pp. 4–25. doi: 10.1109/TCDS.2016.2594134.

[39] Matthew Johnson, Jeffrey Bradshaw, Paul J. Feltovich, Renia
Jeffers, Hyuckchul Jung, and Andrzej Uszok. “A semantically
rich policy based approach to robot control.” In: ICINCO-RA.
INSTICC Press, Jan. 2006, pp. 318–325.

[40] Mrinal Kalakrishnan, Peter Pastor, Ludovic Righetti, and Ste-
fan Schaal. “Learning objective functions for manipulation.” In:
2013 IEEE International Conference on Robotics and Automation.
Karlsruhe, Germany: IEEE, 2013, pp. 1331–1336. doi: 10.1109/
ICRA.2013.6630743.

[41] Krumiaa. MindMaker: MindMaker UE4 Machine Learning Toolkit.
GitHub. url: https://github.com/krumiaa/MindMaker (visited
on 08/19/2024).

[42] DeepMind Technologies Limited. Visualization - MUJOCO Doc-
umentation. MuJoCo. url: https://mujoco.readthedocs.io/en/
stable/programming/visualization.html (visited on 11/29/2024).

[43] David Lindner, Andreas Krause, and Giorgia Ramponi. Active
Exploration for Inverse Reinforcement Learning. 2023. arXiv: 2207.
08645 [cs.LG].

[44] Shunyu Liu, Yunpeng Qing, Shuqi Xu, Hongyan Wu, Jiangtao
Zhang, Jingyuan Cong, Tianhao Chen, Yunfu Liu, and Mingli
Song. Curricular Subgoals for Inverse Reinforcement Learning. 2023.
arXiv: 2306.08232 [cs.LG].

[45] Manuel Lopes, Francisco S. Melo, and Luis Montesano. “Affordance-
based imitation learning in robots.” In: 2007 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems. San Diego,
CA, USA: IEEE, 2007, pp. 1015–1021. doi: 10.1109/IROS.2007.
4399517.

https://doi.org/10.1007/978-1-4842-9606-6
https://doi.org/10.1007/978-1-4842-9606-6
https://doi.org/10.1109/TRO.2022.3226108
https://www.alexirpan.com/2018/02/14/rl-hard.html
https://www.alexirpan.com/2018/02/14/rl-hard.html
https://www.jetbrains.com/ai/
https://www.jetbrains.com/ai/
https://doi.org/10.1109/TCDS.2016.2594134
https://doi.org/10.1109/ICRA.2013.6630743
https://doi.org/10.1109/ICRA.2013.6630743
https://github.com/krumiaa/MindMaker
https://mujoco.readthedocs.io/en/stable/programming/visualization.html
https://mujoco.readthedocs.io/en/stable/programming/visualization.html
https://arxiv.org/abs/2207.08645
https://arxiv.org/abs/2207.08645
https://arxiv.org/abs/2306.08232
https://doi.org/10.1109/IROS.2007.4399517
https://doi.org/10.1109/IROS.2007.4399517

bibliography 81

[46] Mayank Mittal et al. “Orbit: A Unified Simulation Framework
for Interactive Robot Learning Environments.” In: IEEE Robotics
and Automation Letters 8.6 (June 2023), 3740–3747. issn: 2377-3774.
doi: 10.1109/lra.2023.3270034.

[47] Mongodb. mongo: The MongoDB Database. GitHub. url: https:
//github.com/mongodb/mongo (visited on 10/16/2024).

[48] Luis Montesano, Manuel Lopes, Alexandre Bernardino, and
Jose Santos-Victor. “Affordances, development and imitation.”
In: 2007 IEEE 6th International Conference on Development and
Learning. London, UK: IEEE, 2007, pp. 270–275. doi: 10.1109/
DEVLRN.2007.4354054.

[49] NaturalPoint. Motion capture systems. OptiTrack. url: https:
//www.optitrack.com/ (visited on 11/27/2024).

[50] Martin L. Puterman. Markov Decision processes. Hoboken, New
Jersey: John Wiley & Sons, Apr. 15, 1994. doi: 10.1002/9780470316887.

[51] Qzed. irl-maxent: Maximum Entropy and Maximum Causal En-
tropy Inverse Reinforcement Learning Implementation in Python.
GitHub. url: https://github.com/qzed/irl-maxent (visited
on 11/27/2024).

[52] Antonin Raffin, Ashley Hill, Adam Gleave, Anssi Kanervisto,
Maximilian Ernestus, and Noah Dormann. “Stable-Baselines3:
Reliable Reinforcement Learning Implementations.” In: Journal
of Machine Learning Research 22.268 (2021), pp. 1–8. url: http:
//jmlr.org/papers/v22/20-1364.html.

[53] Rafael Ris-Ala. Fundamentals of Reinforcement Learning. Cham:
Springer Nature Switzerland, 2023. isbn: 978-3-031-37345-9. doi:
10.1007/978-3-031-37345-9.

[54] Robcog-Iai. RobCoG: Robot Commonsense Games. GitHub. url:
https://github.com/robcog-iai/RobCoG (visited on 11/27/2024).

[55] Robcog-Iai. USemLog: Semantic logger plugin for Unreal Engine.
GitHub. url: https://github.com/robcog-iai/USemLog (vis-
ited on 10/16/2024).

[56] Stephane Ross, Geoffrey J. Gordon, and J. Andrew Bagnell. A
Reduction of Imitation Learning and Structured Prediction to No-
Regret Online Learning. 2011. arXiv: 1011.0686 [cs.LG].

[57] Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern
Approach, Global Edition. Pearson Deutschland, 2021, p. 1168.
isbn: 9781292401133.

[58] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford,
and Oleg Klimov. Proximal Policy Optimization Algorithms. 2017.
arXiv: 1707.06347 [cs.LG].

https://doi.org/10.1109/lra.2023.3270034
https://github.com/mongodb/mongo
https://github.com/mongodb/mongo
https://doi.org/10.1109/DEVLRN.2007.4354054
https://doi.org/10.1109/DEVLRN.2007.4354054
https://www.optitrack.com/
https://www.optitrack.com/
https://doi.org/10.1002/9780470316887
https://github.com/qzed/irl-maxent
http://jmlr.org/papers/v22/20-1364.html
http://jmlr.org/papers/v22/20-1364.html
https://doi.org/10.1007/978-3-031-37345-9
https://github.com/robcog-iai/RobCoG
https://github.com/robcog-iai/USemLog
https://arxiv.org/abs/1011.0686
https://arxiv.org/abs/1707.06347

82 bibliography

[59] David Silver, Satinder Singh, Doina Precup, and Richard S. Sut-
ton. “Reward is enough.” In: Artificial Intelligence 299 (2021),
p. 103535. issn: 0004-3702. doi: 10 . 1016 / j . artint . 2021 .

103535.

[60] SkytAsul. DeformableSimulation: A research project on linking a
haptic device, a VR headset and a physics simulation to simulate real-
time touch of a deformable object. GitHub. url: https://github.
com/SkytAsul/DeformableSimulation (visited on 11/29/2024).

[61] Christopher Stanton and Jeff Clune. Deep Curiosity Search: Intra-
Life Exploration Can Improve Performance on Challenging Deep Rein-
forcement Learning Problems. 2018. arXiv: 1806.00553 [cs.AI].

[62] J. K. Terry et al. PettingZoo: Gym for Multi-Agent Reinforcement
Learning. 2021. arXiv: 2009.14471 [cs.LG].

[63] Emanuel Todorov, Tom Erez, and Yuval Tassa. “MuJoCo: A
physics engine for model-based control.” In: 2012 IEEE/RSJ
International Conference on Intelligent Robots and Systems. IEEE.
2012, pp. 5026–5033. doi: 10.1109/IROS.2012.6386109.

[64] Mark Towers et al. Gymnasium: A Standard Interface for Reinforce-
ment Learning Environments. 2024. arXiv: 2407.17032 [cs.LG].

[65] Alan Turing. “Intelligent Machinery (1948).” In: The Essential
Turing. Oxford University Press, Sept. 2004. isbn: 9780198250791.
doi: 10.1093/oso/9780198250791.003.0016.

[66] Vivekratnavel. omniboard: Web-based dashboard for Sacred. GitHub.
url: https://github.com/vivekratnavel/omniboard (visited
on 10/16/2024).

[67] Han Wang, Youfang Lin, Sheng Han, and Kai Lv. “Offline Re-
inforcement Learning with Diffusion-Based Behavior Cloning
Term.” In: Knowledge Science, Engineering and Management: 16th
International Conference, KSEM 2023, Guangzhou, China, August
16–18, 2023, Proceedings, Part IV. Guangzhou, China: Springer
Nature Switzerland, 2023, 267–278. isbn: 978-3-031-40291-3. doi:
10.1007/978-3-031-40292-0_22.

[68] Phil Winder. Reinforcement learning. O’Reilly. Nov. 2020. url:
https://learning.oreilly.com/library/view/reinforcement-

learning/9781492072386/ (visited on 10/27/2024).

[69] Maryam Zare, Parham M. Kebria, Abbas Khosravi, and Saeid
Nahavandi. A Survey of Imitation Learning: Algorithms, Recent
Developments, and Challenges. 2023. arXiv: 2309.02473 [cs.LG].

[70] Tianhao Zhang, Zoe McCarthy, Owen Jow, Dennis Lee, Xi Chen,
Ken Goldberg, and Pieter Abbeel. “Deep Imitation Learning
for Complex Manipulation Tasks from Virtual Reality Teleop-
eration.” In: 2018 IEEE International Conference on Robotics and
Automation (ICRA). Brisbane, Australia: IEEE Press, 2018, 1–8.
doi: 10.1109/ICRA.2018.8461249.

https://doi.org/10.1016/j.artint.2021.103535
https://doi.org/10.1016/j.artint.2021.103535
https://github.com/SkytAsul/DeformableSimulation
https://github.com/SkytAsul/DeformableSimulation
https://arxiv.org/abs/1806.00553
https://arxiv.org/abs/2009.14471
https://doi.org/10.1109/IROS.2012.6386109
https://arxiv.org/abs/2407.17032
https://doi.org/10.1093/oso/9780198250791.003.0016
https://github.com/vivekratnavel/omniboard
https://doi.org/10.1007/978-3-031-40292-0_22
https://learning.oreilly.com/library/view/reinforcement-learning/9781492072386/
https://learning.oreilly.com/library/view/reinforcement-learning/9781492072386/
https://arxiv.org/abs/2309.02473
https://doi.org/10.1109/ICRA.2018.8461249

bibliography 83

[71] Boyuan Zheng, Sunny Verma, Jianlong Zhou, Ivor Tsang, and
Fang Chen. Imitation Learning: Progress, Taxonomies and Challenges.
2022. arXiv: 2106.12177 [cs.LG].

[72] Yuke Zhu et al. Reinforcement and Imitation Learning for Diverse
Visuomotor Skills. 2018. arXiv: 1802.09564 [cs.RO].

[73] Brian D. Ziebart, Andrew L. Maas, J. Andrew Bagnell, and
Anind K. Dey. “Maximum entropy inverse reinforcement learn-
ing.” In: Proceedings of the 23rd National Conference on Artificial
Intelligence - Volume 3. AAAI’08. Chicago, Illinois: AAAI Press,
2008, 1433–1438. isbn: 9781577353683.

[74] Dorian Šuc and Ivan Bratko. “Problem Decomposition for Be-
havioural Cloning.” In: Machine Learning: ECML 2000. Ed. by
Ramon López de Mántarasand and Enric Plaza. Berlin, Heidel-
berg: Springer Berlin Heidelberg, Jan. 1, 2000, pp. 382–391. isbn:
978-3-540-45164-8. doi: 10.1007/3-540-45164-1_39.

https://arxiv.org/abs/2106.12177
https://arxiv.org/abs/1802.09564
https://doi.org/10.1007/3-540-45164-1_39

	Declaration
	Abstract
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	List of Listings
	Acronyms
	Glossary

	 Context and Foundations
	1 Introduction
	2 Background
	2.1 Definitions
	2.1.1 Affordances
	2.1.2 Markov Decision Process
	2.1.3 Reward Function
	2.1.4 Reinforcement Learning
	2.1.5 Trajectory

	2.2 Limitations in Reinforcement Learning
	2.2.1 Time Complexity
	2.2.2 Reward Function
	2.2.3 Local Optima and Generalization

	2.3 Introduction to imitation learning
	2.3.1 Behavioral Cloning
	2.3.2 Inverse Reinforcement Learning
	2.3.3 Definition
	2.3.4 Adversarial Approach

	3 Related work

	 Methodology
	4 Approach
	4.1 Problem Definition
	4.2 Affordances
	4.3 Unreal Engine and USemLog
	4.4 Discrete Idea
	4.5 Task Reward
	4.6 Existing Machine Learning software
	4.7 Optuna
	4.8 Inter-process Communication
	4.9 Implementation Design
	4.9.1 Pseudo-Code
	4.9.2 Processes
	4.9.3 Interaction

	5 Implementation
	5.1 Unreal Engine
	5.1.1 Client Implementation
	5.1.2 Executing Python
	5.1.3 Action and State Space
	5.1.4 Available Functions for Python
	5.1.5 User Interface and Scenes
	5.1.6 Training Environments
	5.1.7 Virtual Reality
	5.1.8 Reading and Writing Data

	5.2 Python
	5.2.1 Server Implementation
	5.2.2 Task Reward
	5.2.3 Reading Trajectories
	5.2.4 Environments, Action and State Space
	5.2.5 Learning Algorithms
	5.2.6 Hyperparameter Tuning

	5.3 Testing
	5.4 Usage
	5.4.1 Unreal Engine
	5.4.2 Configuration Files

	5.5 Unsolved Problems

	 Evaluation and Conclusion
	6 Evaluation
	6.1 Data Collection
	6.1.1 Recording
	6.1.2 Training and Runtime

	6.2 Result
	6.2.1 Covering
	6.2.2 Insert
	6.2.3 Stacking

	6.3 Discussion

	7 Conclusion
	7.1 Summary
	7.2 Future Work

	 Appendix
	A Appendix
	A.1 Task Rewards
	A.1.1 Insert
	A.1.2 Stacking

	A.2 Implementation Usage
	A.2.1 General
	A.2.2 VR recording
	A.2.3 IRL training

	A.3 Hyperparameters
	A.3.1 Manually Tuned
	A.3.2 Automatically Tuned

	A.4 Nutzung KI basierte Anwendungen

	 Bibliography

