
Fachbereich 3: Mathematik und Informatik

Diploma Thesis

A Time-Based Adaptive Hybrid Sorting Algorithm
on CPU and GPU with Application to Collision

Detection

Robin Tenhagen

Matriculation No.2288410

5 January 2015

Examiner: Prof. Dr. Gabriel Zachmann
Supervisor: Prof. Dr. Frieder Nake

Advisor: David Mainzer

Robin Tenhagen

A Time-Based Adaptive Hybrid Sorting Algorithm on CPU and GPU with Application to Collision
Detection

Diploma Thesis, Fachbereich 3: Mathematik und Informatik

Universität Bremen, January 2015

Diploma ThesisA Time-Based Adaptive Hybrid Sorting Algorithm on CPU and GPU with Application
to Collision Detection

Selbstständigkeitserklärung

Hiermit erkläre ich, dass ich die vorliegende Arbeit selbstständig angefertigt, nicht anderweitig zu
Prüfungszwecken vorgelegt und keine anderen als die angegebenen Hilfsmittel verwendet habe.
Sämtliche wissentlich verwendete Textausschnitte, Zitate oder Inhalte anderer Verfasser wurden
ausdrücklich als solche gekennzeichnet.

Bremen, den 5. Januar 2015

Robin Tenhagen

3

Diploma ThesisA Time-Based Adaptive Hybrid Sorting Algorithm on CPU and GPU with Application
to Collision Detection

Abstract

Real world data is often being sorted in a repetitive way. In many applications, only small
parts change within a small time frame. This thesis presents the novel approach of time-based
adaptive sorting. The proposed algorithm is hybrid; it uses advantages of existing adaptive
sorting algorithms. This means, that the algorithm cannot only be used on CPU, but, introducing
new fast adaptive GPU algorithms, it delivers a usable adaptive sorting algorithm for GPGPU. As
one of practical examples, for collision detection in well-known animation scenes with deformable
cloths, especially on CPU the presented algorithm turned out to be faster than the adaptive
hybrid algorithm Timsort. For a different cloth animation, the algorithm was faster than Thrust’s
Merge Sort on older graphics hardware.

The thesis investigates different measures of unsortedness, different adaptive CPU sorting algo-
rithms and GPU sorting algorithms in general. Furthermore, it delivers an outline on improve-
ments and the evolution of the new sorting algorithm.

4

Contents

Contents . i

1 Introduction 1

2 Related Work 3
2.1 Unsortedness . 3

2.1.1 Measures of Unsortedness . 3
2.1.1.1 Inv . 3
2.1.1.2 Runs . 4
2.1.1.3 Rem . 4
2.1.1.4 Other Measures . 5

2.1.2 Measure-Optimal Sorting Algorithms . 5
2.1.2.1 Inv-Optimal Sorting Algorithms 6
2.1.2.2 Optimal Sorting Algorithms for Multiple Measures 7

2.2 Lower Worst-Case Complexity Bound for Sorting 8
2.3 Adaptive Merging . 8
2.4 Adaptive CPU Sorting Algorithms . 9

2.4.1 Bubblesort and Cocktailsort . 9
2.4.2 Straight Insertion Sort . 10
2.4.3 Shell Sort . 11
2.4.4 Natural Merge Sort . 12
2.4.5 Adaptive Heap Sort . 12
2.4.6 Smoothsort . 13
2.4.7 Splaysort . 13
2.4.8 Timsort: An Example of Hybrid Algorithms 13

2.5 GPU Sorting Algorithms . 14
2.5.1 Bitonic Sort . 15
2.5.2 Merge Sort . 16
2.5.3 Odd-Even Merge Sort . 17
2.5.4 Radix Sort . 17

i

Diploma ThesisA Time-Based Adaptive Hybrid Sorting Algorithm on CPU and GPU with Application
to Collision Detection

2.5.5 Quicksort . 18
2.5.6 Hybrid: Bucket Sort + Merge Sort . 18
2.5.7 Others . 18

2.6 Adaptive GPU Sorting Algorithms . 19
2.6.1 Odd-Even Sort . 19

3 Methodology 20

4 Scenes 22
4.1 Selection of the Scenes . 22
4.2 Low Polygon Scenes . 22

4.2.1 Clothball . 22
4.2.2 Funnel . 23

4.3 High Polygon Scenes . 23
4.3.1 Clothcar . 23

5 Analysis 25
5.1 Scenes’ Analyses . 25
5.2 The Analysis Program . 27

6 Algorithm 30
6.1 A First Approach: Parameter Pair MaxDistanceThreshold and MinimumRange-

Length . 30
6.1.1 First Adaptive Success . 32
6.1.2 A Closer Parameter Analysis . 32
6.1.3 Improvement: Stable Sort . 33
6.1.4 Improvement: Local Merge Heuristic . 33
6.1.5 Improvement: Adaptive In-Place Merge Instead of a Global Bubblesort . 34

6.2 An Adaptive GPU Algorithm . 35
6.3 Improvement: Parameter Pair InvThreshold and MinimumRangeLength 36
6.4 Improvement: Individual MinimumRangeLength 37
6.5 Sub-Algorithms’ Analysis . 37

6.5.1 Improvement: Straight Insertion Sort Instead of Bubblesort on CPU . . . 37
6.5.2 Improvement: Cocktailsort Instead of OddEvenSort on GPU 38
6.5.3 The Final Sub-Algorithms . 40
6.5.4 In-Depth Algorithm Comparison on CPU 40
6.5.5 Improvement: Individual InvThresholds CPU 43
6.5.6 In-Depth Algorithm Comparison on GPU with CUDA Compute Compat-

ibility 1.3 . 45
6.5.7 Improvement: Individual InvThresholds GPU 47

ii

Diploma ThesisA Time-Based Adaptive Hybrid Sorting Algorithm on CPU and GPU with Application
to Collision Detection

6.5.8 In-Depth Algorithm Comparison on GPU with CUDA Compute Compat-
ibility 3.5 . 49

6.6 Improvement: Fast Sort Range Computation . 50
6.7 Improvement: Block Based Parallel N-Nsquare Sort 53
6.8 Improvement: Merging Consecutive nlogn Subsets After n-nsquare Fallbacks . . . 54
6.9 The Final Algorithm: AdaptiveFrameSort . 56

6.9.1 Functionality Explained by an Example 56
6.9.2 Pseudocode . 59

7 Detailed Results 63
7.1 Frame Based Timings for All Three Scenes . 63
7.2 Frame Based Timing Comparison with Reference to Data Complexity 68
7.3 The Scenes’ Effectiveness . 69
7.4 Conclusions Based on Measures of Unsortedness 71
7.5 Clothcar Details . 72

7.5.1 Average Timings For All Frames . 74
7.6 Funnel Details . 75

7.6.1 Average Timings For All Frames . 75
7.7 Clothball Details . 76

8 Conclusion 78
8.1 General Conclusion . 78
8.2 Future Work . 79

A Appendix 81
A.1 List of Figures . 81
A.2 List of Tables . 82
A.3 Bibliography . 84

iii

Chapter 1

Introduction

Sorting is one of the major problems in computer science. Many different algorithms have been
developed, including comparison-based, in-place and stable sorts, for example [PSL12]. One as-
pect is, that there is no generally valid algorithm. Different scenarios require different algorithms
for sorting. This thesis has the goal of writing a practical sorting algorithm. “Practical” means
“applicable for real world data”. In order to understand, what “real world” data means, it is
necessary to survey [SW11] the most common practical applications of sorting.

One field is Commercial Computing, where databases with address data, or — in general —
strings have to be sorted. Various String Processing applications, like finding patterns, require
sorting algorithms. In general, sorted data is easier to be searched through (for example by
humans or also the fast Binary Search). Another field is Operations Research, where scheduling
tasks need to order execution times of processes to organize load-balancing. In the scientific
world, Event-Driven Simulations require appropriate algorithms, just as in particle- or body-
collision simulations. In other applications, Priority Queues come into account; some Numerical
Algorithms require them in order to control accuracy in calculations, Combinatiorial Searches,
like the A* algorithm, use them in areas of artificial intelligence and Graph Searches like Prim’s
Algorithm and Dijkstra’s Algorithm utilize them as well. Also Huffman Compression uses Priority
Queues and in Kruskal’s Algorithm, sorting plays a vital role for ordering edge weights in graphs.
All these applications make efficient sorting algorithms indispensable. One objective for this
thesis is to analyze practical data and use this knowledge in order to create an adaptive, “more
realistic” sorting algorithm. An Adaptive Sorting Algorithm is a sorting algorithm that is more
efficient, faster, for pre-sorted data. This means, that based on the data analysis, an appropriate
algorithm needs to be designed. Since the previously mentioned list of sorting applications has
a wide range, this work will only focus on one application: Collision detection between rigid and
deformable models, specifically cloth simulations.

Collision detection methods need “to check if collisions occur between a pair of objects as well
as self-collisions among deformable objects. In many applications, an additional requirement is
that the collision detection has to be calculated within milliseconds.” [MZ14]. Often, physical

1

Diploma ThesisA Time-Based Adaptive Hybrid Sorting Algorithm on CPU and GPU with Application
to Collision Detection

CHAPTER 1. INTRODUCTION

simulations or video games have this requirement. To reduce computation time, improvements
such as Spatial Subdivision or Approximation of Surfaces have evolved. These algorithms employ
Axis-Aligned Bounding Boxes (AABB) [Ber97], Oriented Bounding Boxes (OBB) [GLM96] or
Inner Sphere Trees (IST) [WZ09]. In order to reduce pairs of primitives that need to be checked
for collision, Culling Methods such as Sort and Sweep [Bar92] were introduced. A common ap-
proach to speed up collision detection of rigid and deformable objects involves Bounding Volume
Hierarchies (BVH) [Eri05]. Other improvements employed Precomputed Chromatic Decompo-
sition of a Mesh [Gov+05b] or Stenciled Geometry Images [GGK06] to create GPU-optimized
BVHs. The Hybrid CPU-GPU Parallel Continuous Collision Detection (HPCCD) [Kim+09] was
also based on BVHs. Nevertheless, this hybrid solution involved a huge communication traffic
between GPU and CPU for reconstructing BVHs on the CPU [MZ14]. A pure GPU-based lin-
ear BVH approach can be found in [LMM10] and another GPU-based streaming algorithm for
collision detection between deformable objects can be found in [Tan+11].

This thesis focuses on a simple method of collision detection, it is based on Axis-Aligned Bounding
Boxes. This simple approach without the introduction of additional complex data structures has
the advantage, that it works on the whole scene and can be easily implemented. In fact, it is
possible to port it easily to GPU streaming processors without having to deal with complex
memory management. As a further simplification, the base collision detection will merely take
place in one dimension; bounding boxes will be projected on the X-axis only.

The structure of the thesis is as follows: First, previous work on sorting algorithms (chapter
2.4) will be presented and it will be explained, what pre-sortedness actually is (chapter 2.1).
Afterwards, commonly available cloth simulations will be chosen (chapter 4.1) and their pro-
jected bounding box array will be examined to identify pre-sorted data (chapter 5.1). Later, the
evolution of the consequently developed new algorithm will be presented in chapter 6. Detailed
performance results complete the analysis (chapter 7).

2

Chapter 2

Related Work

2.1 Unsortedness

2.1.1 Measures of Unsortedness

In order to understand what it means to take advantage of pre-sortedness, it has to be defined
more closely what unsortedness is. Ottmann and Widmayer give an outline to three measures of
describing unsortedness (see [OW12]). For better understanding, the following sequence of sort
keys shall be investigated:

Sa = 9 1 2 3 5 4 7 6

2.1.1.1 Inv

This measure is a way of describing unsorted pairs, the number of inversions. The second half
of Sa, for example, has intuitively the unsorted pairs of (5,4) and (7,5). Although as for the
example this measure seems to look at local positions, it is actually a way to express global
unsortedness, as for the 9 will have to be swapped all the way through the data: (9,1), (9,2),
(9,3), (9,5), (9,4), (9,7), (9,6) are the unsorted pairs here. This leads to an inv measure of 9
elements for Sa. A formal way to describe this measure is

inv(S) = |{(i, j)|1 ≤ i < j ≤ n and ki > kj}|

3

Diploma ThesisA Time-Based Adaptive Hybrid Sorting Algorithm on CPU and GPU with Application
to Collision Detection

CHAPTER 2. RELATED WORK

The minimum value of unsorted pairs for a sorted array is 0. The maximum value for an inversely
sorted array is

inv(Sinverse) = (n− 1) + (n− 2) + . . .+ 2 + 1 =
n(n− 1)

2

2.1.1.2 Runs

Looking at the left half of Sa, it should be easy to merge already sorted subsequences into one
globally sorted sequence. As a matter of fact, (9,1) and (2,3) are mergeable, for example by
a bitonic merge as the bitonic sequence (9,1,2,3) (for more information see section 2.5.1). The
Runs measure looks exactly at the length of unsorted sequences.

runs(S) = |{i|1 ≤ i ≤ n and ki+1 < ki}|+ 1

The sequence (9,1) is unsorted, (5,4) and (7,6) are also. This makes runs(Sa) = 3 + 1 = 4. In
case of a sorted array, the number of runs is 1. In an inversely sorted array the number of runs
is obviously as big as the number of elements in the array. In general, the Runs measure rather
refers to a local degree of unsortedness, seeing the right half of Sa yieldung most unsortedness
in this measure.

2.1.1.3 Rem

The position of key 9 produced most unsortedness for the inv measure, though. Intuitively, it
should not be too complex to move the 9 further, if the elements (1,2,3) are already sorted. The
longest ascending subsequence measure (las) considers exactly these sorted subsequences (which
do not have to be coherent):

las(S) = max{t|∃i(1), . . . , i(t) that 1 ≤ i(1) < . . . < i(t) ≤ n and ki(1) < . . . < ki(t)}

For a sorted sequence S, las(S) has the value n and for an inversely sorted sequence Si, las(Si)

has the value 1. Comparing this to the previous two measures, las grows inversely to how the
other measures grow. In order to make the measures more comparable, the measure rem will
be introduced, which considers the number of elements that need to be removed for producing a

4

Diploma ThesisA Time-Based Adaptive Hybrid Sorting Algorithm on CPU and GPU with Application
to Collision Detection

CHAPTER 2. RELATED WORK

sorted sequence. It is defined by

rem(S) = n− las(S)

For our example, rem(Sa) is 8 − 5 = 3, with the generated longest ascending subsequence of
(1,2,3,4,6). In contrast to the measures inv and las, rem is both, a local and a global way to
determine unsortedness. Since the sorted subsequences do not have to be coherent, the algorithm
for finding longest ascending subsequences (also called longest increasing subsequences) is less
intuitive and its algorithmic problem is not trivial (for more information see [Sch61] [Man85]).

2.1.1.4 Other Measures

A simpler type of measure is max [EW92]. It is defined by the maximum distance any of the
items has to overcome to be sorted. This measure has a purely global perspective and even one
unsorted item is enough to produce a high level of unsortedness in this measure. For its global
and simple perspective, this measure will be used as a first approach for determining sort ranges
in the algorithm presented in this thesis, which shall be called AdaptiveFrameSort.

Another measure is dis; this measure is “defined by the largest distance determined by an
inversion” [EW92]. In the example case, dis(Sa) = distance(9, 6) = 7. There are several other
measures, which often are variations of the previously named measures or they are rather based
on a theoretical point of view. Since the measure classes of local, global and mixed perspectives
are already covered by the previously named measures, for this work it is not important to outline
other measures in detail. According to [EW92] these are: exc (minimum number of exchanges
required to sort a sequence [Man85]), SUS (a natural version of the runs measure: Shuffled Up-
Sequences [CLP93]), SMS.SUS (a further generalization as Shuffled Monotone Subsequence),
enc (where enc(X) is “defined as the number of sorted lists constructed by Melsort when applied
to X” [EW92], a refined measure based on existing algorithms’ analysis, further reading: [Ski88]),
osc (which “evaluates [..] the ‘oscilation’ of large and small elements in a given sequence” [EW92]
based on Heapsort [CLP93]) and reg (comprising all other measures [PM92]).

2.1.2 Measure-Optimal Sorting Algorithms

Given the previously mentioned measures of unsortedness, it is time to think about optimal
sorting algorithms. The ultimate adaptive algorithm would obviously be reg optimal (though

5

Diploma ThesisA Time-Based Adaptive Hybrid Sorting Algorithm on CPU and GPU with Application
to Collision Detection

CHAPTER 2. RELATED WORK

there is no know algorithm like that [EW92]). A good tradeoff would be, to cover multiple
measures by one algorithm. But what does it mean, to “cover” a measure; which complexity
does an algorithm have, if it is optimal for a single given measure m?

Sorting algorithms have different partial problems: The problem of acquiring information and
the problem of transporting data [OW12]. Sort keys have to be identified among others; the
simplest way to this is to compare two keys. General sorting algorithms (so called “comparison-
based sorting algorithms”) are exactly based on this operation for acquiring information. Other
sorting algorithms depend on input key types (see next sections) and shall not be discussed at
this moment.

All sequences (all permutations) for an input length of n can be put into a binary decision tree
as n! leaves [OW12]. The path to a leaf of this given tree represents to path for identifying a
certain sequence with pairwise comparison based operations. Given that at least all elements
should be compared once for deciding about a given sequence, an algorithm needs at least n

comparisons. In addition, since the decision tree is a binary tree, there are at most 2i nodes on
each level. Hence, for identifying a certain sequence in an optimal way, a logarithmic number of
steps needs to be taken, which means, that a leaf should be found that is as close to the root
node as possible. This means for a given sequence F , that all sequences F ′ of equal length that
are sorted as good or better than F (according to the given measure m), will determine the
optimal way for identifying F . The definition for a m-optimal sorting algorithm is, for a given
constant c and a given sequence F with length n [OW12]:

TA(F,m) ≤ c · (n+ log(|{F ′ | m(F ′) ≤ m(F)}|))

Based on the definition of complexity classes, this formula includes a constant c that allows an
additional factor. This means, a sorting algorithm is optimal to a given measure m, if it uses
the least number of comparisons necessary for the given unsortedness. A small value for m(F)

should generate few comparisons (at least n), a high number will generate more.

2.1.2.1 Inv-Optimal Sorting Algorithms

In order to generate an inv-optimal algorithm, a strategy is to use sorting by iteratively inserting
elements. An array cannot be used as input [OW12] here. Potentially, it is possible to find the
insertion position for the next element relatively fast (for example by a Binary Search or an
Exponential Search, see [OW12]), but the insertion of an element requires moving many other
elements around. A theoretical suitable data structure is a “dynamic, sorted list” [OW12]. A
linear, sorted linked list with an index pointing to the list’s end, actually allows to insert elements

6

Diploma ThesisA Time-Based Adaptive Hybrid Sorting Algorithm on CPU and GPU with Application
to Collision Detection

CHAPTER 2. RELATED WORK

in a constant time, but it takes at maximum O(n) steps in order to find an element. A data
structure with inserting and finding elements in a short amount of time is an AVL tree. Here,
finding also only takes O(logn) time.

Sorting linked lists is one discipline in finding measure-optimal sorting algorithms. This thesis,
though, will deal with sorting data in an array structure as input. Nevertheless, it shall be given
a brief overview over “close to the lower bound optimal” algorithms:
AVL-Sort [OW12] [Meh88] [Elm04] can sort inv-optimally in the following time bound [OW12]:

T (F) = O

(
n+ n · log

(
1 +

inv(F)

n

))

This means, that an “adaptive algorithm is optimal with respect to the number of inversions when
it runs in O

(
n · log Inv(X)

n

)
” [Elm04] (see also [Gui+77]). The upper bound for the maximal

inv number of n(n− 1)/2 then has a complexity of O(n · logn).

This way, the theoretical way of achieving an optimal strategy for the inv measure has been
accomplished. Nevertheless, tree based solutions often lag links to practical implementations.
Large overhead can be a strong barrier:
One solution [EF03] uses near optimal trees [AL90], “which is a practically complicated structure
that involves a large maintenance overhead. [..] [S]plits, combines, coalescing and reducing
operations [..] [make] the algorithm not fully practical.” [Elm04]. “[M]ost promising from the
practical point of view” [Elm04] are the adaptive algorithms Splitsort [LP91], Adaptive Heapsort
[LP93] and Trinomialsort [Elm02]. In experiments, it was also shown that Splaysort is efficient
in practice [MEP96].

2.1.2.2 Optimal Sorting Algorithms for Multiple Measures

It can be shown [EW92], that a simple Merge Sort that divides input sequences first into two
halves and then into two subsequences that hold all even and all odd elements, is “adaptive
with respect to Inv, Exc and Rem and optimal with respect to Runs, Dis and Max” [EW92].
Nevertheless, this algorithm requires a lot of overhead, which makes it hard to take the adaptive
wins into account.

Listing 2.1 Pseudocode of Odd-Even Straight Merge Sort [EW92]

1 procedure OddEvenStraightMergeSort(X)
2 if not sorted(X) then
3 OddEvenStraightMergeSort(X_even_l)
4 OddEvenStraightMergeSort(X_odd_l)
5 OddEvenStraightMergeSort(X_even_r)

7

Diploma ThesisA Time-Based Adaptive Hybrid Sorting Algorithm on CPU and GPU with Application
to Collision Detection

CHAPTER 2. RELATED WORK

6 OddEvenStraightMergeSort(X_odd_r)
7 Merge(X_even_l, X_odd_l, X_even_r , X_odd_r)
8 end
9 end procedure

This algorithm is referred to as GenericSort for expected worst-case scenarios. There are other
classes of measure-optimal sorting algorithms in this scenario like Cook-Kim division, Partition
Sort and Exponential Search Sort [EW92]. For “expected-case” scenarios, ones that are less
pessimistic and more realistic for average input data, there are distributed and randomized
versions of the previously named algorithms [EW92]. This thesis, though, shall deal with existing
and highly optimized implementations of average-case scenarios with arrays as data structure
and specifically — in case of Straight Insertion Sort — for best-case scenarios.

2.2 Lower Worst-Case Complexity Bound for Sorting

It was introduced, what being optimal for a measure of unsortedness means, what adaptiveness
is. But what is a theoretical complexity bound for worst-case scenarios? For the length of n input
elements, there will be n! permutations. Talking about general, comparison-based algorithms,
every one of those has to distinguish between all these permutations. It is a question of yes and no.
Based on information theory, the number of yes/no decisions for distinguishing between n! many
cases is log2(n!) [Lan12]. Deducing an approximation, no comparison-based sorting algorithm
can be faster than O(n · logn)) in worst-case. It will be proportional to this complexity with an
additional constant factor. The deduction looks as follows [Lan12]:

n! ≥ (n/2)n/2

⇔ log(n!) ≥ log((n/2)n/2)

= n/2 · log(n/2)

∈ O(n · logn)

2.3 Adaptive Merging

A regular merge sort uses a straight division into subsequences of equal length. Imagining that
input data is almost sorted (for example to the inv measure, with short distances), a merge
of sorted divided subsequences should not have much overlap. Nevertheless, the reguar Merge

8

Diploma ThesisA Time-Based Adaptive Hybrid Sorting Algorithm on CPU and GPU with Application
to Collision Detection

CHAPTER 2. RELATED WORK

Sort algorithm does not consider this heuristic. Until 1993, two attempts were made taking
advantage of this little merge overlap [EW92]. A first attempt was AdaptMerge [CLP93]. Using
this algorithm, a Natural Merge Sort was obtained that was dis-, exc-, rem-, and runs-optimal.
“Unfortunately, AdaptMerge represented its output as a linked list of sorted segments” [EW92],
which lead to trouble in implementing it performant. As a result, a second attempt involved
the implementation of a Merge Sort algorithm that was based on straight division for the divide
phase and newly defined adaptive merge. This sorting algorithm finally had little overhead was
dis- and runs-optimal and adaptive for the measures rem and exc [EW92] [Van91]. The newly
introduced merge algorithm worked as follows: “Let X = ⟨x1, . . . , xn⟩ and Y = ⟨y1, . . . , yn⟩ be
sorted sequences stored in an array with X before Y . Assume n is known and the goal is to merge
X and Y . Their overlap (given by indexes l and r such that xl ≤ y1 < xl+1 and yr ≤ xn < yr+1)
is first found. Second, the smaller of xl, . . . , xn and yl, . . . , yn is copied to another array and then
merged with the larger sequence in the original array.” [EW92].

Nowadays, for example STL’s std::stable_sort makes use of an adaptive merge and this thesis
will make explicit use of the adaptive merge implementation std::inplace_merge. For further
details, see section 6.5.4.

2.4 Adaptive CPU Sorting Algorithms

2.4.1 Bubblesort and Cocktailsort

One of the most intuitive (and at the same time naïve) approaches is Bubblesort. In a very
basic idea, two loops go through the input data from left to right, swapping an unsorted element
right-ways to its sorted position. The complexities are [OW12]:

Cmax(n) = n(n− 1) = O(n2)

Mmax(n) =
n−1∑
i=1

3(n− i) = O(n2)

Cavg(n) = Mavg(n) = O(n2)

The high average complexity is Bubblesort’s downside. If elements have long distances from their
actual sort position (seen from the right side of the array), this algorithm is very slow. Each time
elements have to be swapped with a maximum distance of n, starting again at the start with the
next element. This means, that a few unsorted elements with a high sorted distance will lead

9

Diploma ThesisA Time-Based Adaptive Hybrid Sorting Algorithm on CPU and GPU with Application
to Collision Detection

CHAPTER 2. RELATED WORK

to a high time complexity (for more information, see chapter 6.5.1). An improved alternative is
Cocktailsort (which is also known as Shakersort [OW12] [Big+08]). In each iteration, it first loops
from left to right, then, from right to left. This way it becomes position-independent of unsorted
elements. Both algorithms have a best case complexity of O(n) and a worst case complexity of
O(n2).

2.4.2 Straight Insertion Sort

Straight Insertion Sort is an adaptive algorithm. It benefits from the knowledge about presorted
data ranges by insertion unsorted elements into previously sorted data. It iterates once from
left to right through the data and inserts elements at the correct position to its left by swapping
previous elements right. In general, in the theoretical best case the first element would have the
value ∞ (or at least bigger than all other elements), so that the swapping loop would not have
to check the index for the lower boundary in every iteration. In the general case, this cannot
be provided, though. Since Straight Insertion Sort will be used within AdaptiveFrameSort and
should provide a very good best-case behavior (it should be fast for almost pre-sorted data),
the algorithm was slightly modified in order to have very few minimum memory movements
(while maintaining the average case complexity). Through an analysis, the following runtime
complexity’s can be obtained:

Cmin(n) = n− 1

Cmax(n) = 2 ·
n∑

i=1

i = O(n2)

Mmin(n) = 0

Mmax(n) =

n∑
i=1

(i+ 1) = O(n2)

C refers to the number of comparisons and M to the number of data movements here. Note that
the unimproved version, as it can be found in [OW12], has a Mmin value of 2(n− 1) (for further
information, compare there). The algorithm is directly dependent on the number of inversions
residing in the data, which is expressed by the inv measure. An average case scenario means, to
expect an average — a middle — number of inversions. The runtime complexity is the following
[OW12]:

10

Diploma ThesisA Time-Based Adaptive Hybrid Sorting Algorithm on CPU and GPU with Application
to Collision Detection

CHAPTER 2. RELATED WORK

Mavg(n) =
n∑

i=1

i

2
= Θ(n2)

The previously mentioned AVL-Sort [OW12] is not only adaptive but optimal regarding the inv

measure. In the concrete example of Straight Insertion Sort it means, that finding the insertion
place for each element in the previously sorted range can be solved better, for example by a
Binary Search with complexity O(logn) [OW12] [Lan12]. Since the elements in an array have
to be swapped right anyway, the search cannot be done faster than linear. The following pseudo
code snippet demonstrates the algorithm as used within AdaptiveFrameSort.

Listing 2.2 Pseudocode of Straight Insertion Sort, slightly improved standard version for having
less write operations, used in AdaptiveFrameSort.

1 procedure Straight Insertion Sort(a : array, n : length)
2 for i=1 to length -1 inclusive do
3 j = i-1
4 if a[i] < a[j] then
5 temp = a[i]
6 do
7 a[j+1] = a[j]
8 j = j-1
9 while j >= 0 and temp < a[j]

10 end do
11 end if
12 end for
13 end procedure

2.4.3 Shell Sort

Based on the idea of Straight Insertion Sort, Shellsort sorts elements by insertion them at their
correct position. As improvement, it tries to decrease the disadvantage that elements often have
to be moved along long distances. The sequence is divided into several subsequences which will
be sorted separately. Subsequences are based on a gap distance that will determine the indices for
each element that is part of that subsequence. In every step, the gap distance will be decreased
until it is 1. A Shellsort with a gap distance of 1 is equal to a regular Straight Insertion Sort.
Concretely, for each iteration step hi with t ≥ i ≥ 1 (with a chosen upper gap distance t) there
are subsequences Sj with 1 ≤ j ≤ hj ; the elements for each subsequence occur at j, j+hj , j+2hj

11

Diploma ThesisA Time-Based Adaptive Hybrid Sorting Algorithm on CPU and GPU with Application
to Collision Detection

CHAPTER 2. RELATED WORK

and so on [OW12]. In a general case, for a gap distance of 4 in the sequence Sn = {0, . . . , n}
the elements for the first subsequence are 0,4,8 and so on. The second subsequence contains
the elements 1,5,9 and so on. Following this approach, each Insertion Sort step involves little
movement of unsorted elements. Nevertheless, finding an appropriate upper gap distance, while
keeping the overall element movement small, has become a discipline on its own. The AVERAGE
complexity for Shellsort strongly depends on the chosen increments. For example, it can be shown
that the algorithm has an average complexity of O(n · log2 n), if increments have a form of 2p3q,
being smaller than n [OW12] [Knu75]. Worst case complexity of this algorithm is O(n2).

2.4.4 Natural Merge Sort

As described earlier in section 2.1.2.2, Merge Sort works through the divide-and-conquer method.
It subdivides a left and right half recursively until the length of one. After dividing each step,
it merges both halves. This algorithm has a runtime complexity of O(n · logn), as well for
comparisons and movements in best and worst case [OW12]. Potential for becoming adaptive is
the fact that the standard algorithm thinks of run lengths of exactly one element. In real-world
data, run lengths are often longer, though. By searching for run lengths first, and then merging
these, the algorithm will become adaptive towards the runs measure as well. Obviously, if the
whole sequence is sorted already, the algorithm deals with one run and will not merge anything.
The following complexities apply [OW12]:

Cmin(n) = O(n)

Cavg(n) = Cmax(n) = O(n · logn)

Mmin(n) = 0

Mavg(n) = Mmax(n) = O(n · logn)

2.4.5 Adaptive Heap Sort

Adaptive Heap Sort is based on Heap Sort [SS93]. It takes advantage of the introduction of a
new measure of pre-sortedness, osc (which is mentioned earlier in section 2.1.1.4 already). The
authors describe this measure on a geometrical base [LP93]. They map “each element xi onto the
point (i, xi) in the plane and draw edges between points that correspond to consecutive elements
in [the sequal] X. This gives a polygon chain corresponding to X. Intuitively, the new measure,
Osc, tells how much the polygon chain oscillates.” [LP93]. Heap Sort builds a heap consisting

12

Diploma ThesisA Time-Based Adaptive Hybrid Sorting Algorithm on CPU and GPU with Application
to Collision Detection

CHAPTER 2. RELATED WORK

of n elements and extracts maximum elements n times. The number of elements in each of this
operation takes O(n) time at most and the extraction is logarithmic in the size of the heap.
Therefore, Heap Sort has a complexity of O(n · logn) [LP93]. Adaptive Heap Sort uses a heap,
too, but does not store all elements in the heap; instead, it only stores candidates that “can
possibly be the maximum of the remaining elements” based on a Cartesian Tree rather than a
simple Binary Heap [LP93]. As Heap Sort, Adaptive Heap Sort has a worst-case complexity of
O(n · logn) (which is complexity-optimal, see section 2.2). In a best-case scenario, though, it is
faster [LP93].

2.4.6 Smoothsort

Smoothsort is a Heap Sort variation using a custom heap based on Leonardo numbers rather
than the default Binary Heap [Dij82]. For initially nearly sorted input data, it comes close to a
complexity of O(n).

2.4.7 Splaysort

Splaysort is an adaptive algorithm that is based on Splay Trees. For sorting data, the algorithm
initializes and empty Splay Tree, inserts each item (in input order) into the tree and through
traversing the Splay Tree in inorder it receives the sorted data. As mentioned before in section
2.1.2.1, in experiments Splaysort was shown to be efficient in practice [MEP96]. For small,
randomly sorted input data (around 16,384 items), it proved to be to constant factors slower than
Quicksort and Merge Sort, but for larger input data (around 65,536 items), the constant factors
decreased, based on overhead for data movement, that does not occur in the tree/pointer based
Splaysort. For nearly sorted input data (based on the measures inv, runs and rem) Splaysort
was more efficient than the compared algorithms. In an analysis [MEP96] Quicksort takes up to
O(bn · logn) time complexity, whereas the pointer based Splaysort takes O(n · logn+ bn), which
is comparable to Natural Merge Sort with the same complexity.

2.4.8 Timsort: An Example of Hybrid Algorithms

Timsort is a hybrid sorting algorithm. It is based on Insertion Sort and Natural Merge Sort
[Pet02a] and has been Python’s standard sorting algorithm since version 2.3 [Fou14]. The author
complained that implementations of scientific algorithms often do not care about constant factors;
he wanted to implement an O-complexity adaptive algorithm that assumes real-world data rather
than random data [Pet02b]. A first step is to find subsequences according to the runs measure.

13

Diploma ThesisA Time-Based Adaptive Hybrid Sorting Algorithm on CPU and GPU with Application
to Collision Detection

CHAPTER 2. RELATED WORK

Descending sequences will be swapped in order to be ascending. For runs with a length below 64
elements, the algorithm will use Insertion Sort to sort these [Pet02a]. For runs bigger 64 elements,
the algorithm divides the length by a number between 32 and 64 (the minimal subsequence
length), so that the resulting length of subsequences is as close to a power of 2 as possible.
This way, merges are very well balanced [Pet02a]. Subsequences with a length smaller than
the minimal subsequence length will be “merged” by Insertion Sort in order to produce the
minimum subsequence length. As a follow-up, all subsequences will be merged. The merge is
adaptive and very fast in a best-case scenario, since, for instance, for finding merge positions, it
uses an Exponential Search [McI93]. The algorithm’s worst-case complexity is O(n · logn) and
the best-case complexity is O(n) [Pet02b].
Similar to Timsort, the algorithm presented in this thesis is a hybrid algorithm and makes
use of existing algorithms in order to use their combined strength. Through the algorithms’
similarities, a to C++ ported version of Timsort (refer to [Fuj12]) will be used for runtime
comparisons throughout this thesis.

2.5 GPU Sorting Algorithms

In the last decades, several techniques for parallel programming on a GPU (so called GPGPU,
General Purpose computing on GPUs) have arisen: OpenCL [Khr14] and NVIDIA CUDA
[NVI14a], for example, offer a C/C++ based programming interface to execute code on the
GPU rather than using the graphics API (such as OpenGL or DirectX API). This thesis will
focus on the use of NVIDIA CUDA. “Threads are organized in a hierarchy of grids, blocks and
threads, which are executed in a SIMT (single-instruction, multiple-thread) manner; threads are
virtually mapped to an arbitrary number of streaming multiprocessors (SMs) through warps.”
[Ye+11]

CUDA uses several types of memory, such as register, constant memory, shared memory, local
memory, and global memory. These memories have different characteristics and for achieving
reasonable parallel speed-ups, fast memory has to be exploited correctly. So, for example, the
previous list of memories is sorted according to speed, fastest first and slowest last. As is it
typical for memory hierarchies, the fastest memory is the smallest, and the slowest memory
provides most space.

Generally, parallel sorting algorithms can be divided into two categories [Gov+05a]:

Partition-based Sorting
“First, use partition keys to split the data into disjoint buckets. Second, sort each bucket
independently, then concatenate sorted buckets.” [Ye+11] A problem is to deal with load
balancing among all the processors.

14

Diploma ThesisA Time-Based Adaptive Hybrid Sorting Algorithm on CPU and GPU with Application
to Collision Detection

CHAPTER 2. RELATED WORK

Merge-based Sorting
“First, partition the input data chunks of approximately equal size and sort these data
chunks in different processors. Second, merge the data across all processors.” [Ye+11] A
problem is, that this type only performs well for a small number of processors.

In general, Quicksort usually is referred to as a fast sorting algorithm on CPU, but implementing
it efficiently on GPU turns out to be rather tricky (see also chapter 2.5.5). In fact, Mergesort is
the most widely used sorting algorithm on GPU (see also chapter 2.5.2) [Ye+10].
In the following course, the major general CUDA based algorithms will be described.

2.5.1 Bitonic Sort

Bitonic Merge Sort is a parallel sorting algorithm. Originally introduced by Batcher [Bat68],
it is based on the idea of Sorting Networks. As a main different to comparison-based sorting
algorithms, the sequence of comparisons for Sorting Networks is set in advance, independent on
outcomes of previous comparisons. This is useful for a parallel execution. Bitonic Sort has a
parallel complexity of O(log2 n) passes [Pur+03].

There are multiple approaches for implementing this algorithm. Straight-forward implementa-
tions were done in [Pur+03] and [Kap+00]. Usually, sorting rates for bitonic sorters decrease the
larger input arrays get (compare to [PSL10]). A good practical implementation [Ye+10], that is
competitive to Quicksort [CT08] for large arrays (although overhead still remains) can be found
in [Cap+09]. “Warpsort” [Ye+10] is another high performance implementation that profits from
CUDA characteristics. For array lengths roughly up to 217, an optimized Bitonic Sort [PSL10]
proved faster than a fast implementation of Radix Sort [SHG09] that can be found in the parallel
Thrust library. Based on Adaptive Bitonic Sort [BN89] and Bitonic Trees, GPU-ABiSort could
achieve a complexity of O(logn) [GZ06]. Bitonic Trees make Adaptive Bitonic Sorting inefficient
for the use in hybrid algorithms; trees have to be converted into arrays and vice-versa. [PSL12]
overcomes this barrier and presents a hybrid algorithm based on Bitonic Sort and an array-based
Adaptive Bitonic Sort.

The next paragraph will explain the functionality of a Bitonic Sorting Network.
Let X be a sequence with x0 ≤ . . . ≤ xk ≥ . . . ≥ xn−1 for some k, 0 ≤ k < n. Then X is
called a Bitonic Sequence. This means, that a Bitonic Sequence is a sequence where one part
is monotonically ascending and the following part is monotonically descending (or vise-versa)
(see also [Bat68]). Sequences also count as bitonic, if they can be ring-shifted into one of the
previous definitions (see [PSL12]). Sorting with Bitonic Sequences means, that once a Bitonic
Sequence was established, it has to be merged. This happens pair-wise for each element out
of the separate subsequences. A Bitonic Sorting Network consists of n wires, logn phases and

15

Diploma ThesisA Time-Based Adaptive Hybrid Sorting Algorithm on CPU and GPU with Application
to Collision Detection

CHAPTER 2. RELATED WORK

altogether log2 n− 1 passes, where each pass has a sorted ascending or descending subsequence
as output. Figure 2.1 clarifies such a network.

1 2 3

Figure 2.1 A Bitonic Sorting Network for eight elements with three phases

For a better understanding of parallel architectures, a few ideas and improvements that are
CUDA specific shall be presented in the following paragraph, based on [PSL10].

A Bitonic Sorting Network consists of logn phases. An array of length n = 2k can be sorted by
logn kernel launches with 2k−1 threads, each thread processing one compare/exchange operation.
This way, global memory has to be accessed too often, data has to be fetched in every kernel
launch. An improvement is to have threads do exchanges that exceed boundaries of their initial
phases, gathering independent data that does not need results of other phases. A thread that
processes these phases can keep elements in its registers and the total number of kernel launches
decreases.

Bitonic Sort introduced by Batcher can only sort sequences with the length being a power of
2. Introducing a padding with max-values is a straight-forward solution. An input sequence of
length 2k + 1 would result in sorting a sequence of length 2k+1, though. The algorithm can be
modified the way that the one existing subsequence with normal values and max-values will be
sorted in an ascending way. This way, max-values will never be moved and do not have to exist
physically.

2.5.2 Merge Sort

The method of splitting sequences into two halves in Merge Sort (see also section 2.1.2.2) offers
a great opportunity for parallel algorithms. Having implemented a Parallel Prefix Sum (“Scan”)
operation [HSO07], [SHG09] demonstrates a highly efficientMerge Sort. For single CUDA blocks,
it uses Bitonic Sort, for merging the algorithm splits blocks based on multiple input elements and
“finding final positions of elements in the merged sequence can be done efficiently using parallel
binary searches” [SHG09]. This algorithm turned out faster than the fast graphics API-based

16

Diploma ThesisA Time-Based Adaptive Hybrid Sorting Algorithm on CPU and GPU with Application
to Collision Detection

CHAPTER 2. RELATED WORK

implementation GPUTeraSort [Gov+05a]. Nevertheless, referring to [Ye+10], during compare-
and-swap operations half of the threads remain idle and splitting operations take about 1

5 of the
total execution time.

2.5.3 Odd-Even Merge Sort

The idea of Odd-Even Merge Sort (see also section 2.1.2.2) is to first “sort all odd and all even
indices separately and then merge them” [KW05] (see also [Bat68] [Sed98] [Knu75]). Overall,
a complexity of O(log2 n) holds [Bat68]. The algorithm is presented as a simple and straight-
forward implementation for graphics APIs on GPUs.

2.5.4 Radix Sort

Involving Parallel Prefix Sums [HSO07], it is possible to create a split-based Radix Sort algorithm
[Ye+10]. A histogram-based algorithm was created in [Le 07] and [He+07], though the algorithm
did not involve efficient use of memory bandwith and showed uncompetitive for large arrays, still
[Ye+10]. Segmented Scan Primitives [Sch80] are introduced in [Sen+07]; they generalize a parallel
scan (see [KW05]) by allowing arbitrary partitions (segments) [Sen+07]. Utilizing them, Radix
Sort became faster than the split-based version in [HSO07]. The fastest Radix Sort presented so
far can be found in the Thrust library in NVIDIA’s CUDA SDK [SHG09].

The following paragraph gives a short insight on how Radix Sort works.
Unlike the other presented algorithms, Radix Sort is a non-comparative integer sorting algorithm.
It sorts by consecutively comparing digits (or digit groups, the radix) and sorting them into
corresponding buckets. For each digit, the runlength has a complexity of O(n). The maximum
element determines how many iterations it will take to have a sorted list of elements, going
through each bucket from the beginning. The runtime complexity for Radix Sort therefore is
O(n · logw), where n is the number of elements and w is the number of digits [Lan12]. Note
that a digit is a bitsequence with a maximum value of the chosen base, the radix. The number
of digits, of course, depend on the data and the complexity’s logarithm part is actually logb w,
where b is the chosen base. This means, that depending on the data and the chosen base (which
is also the number of buckets), Radix Sort can have a runtime of O(n).

17

Diploma ThesisA Time-Based Adaptive Hybrid Sorting Algorithm on CPU and GPU with Application
to Collision Detection

CHAPTER 2. RELATED WORK

2.5.5 Quicksort

As in Radix Sort, Segmented Scan Primitives are introduced in a Quicksort algorithm by
[Sen+07]. Quicksort has a complexity expectancy of O(n · logn), but nonetheless the presented
algorithm has a poor performance: On an array of four million 32-bit integers, the algorithm
took 2,050.3 ms for sorting, whereas its CPU version took only 908.8 ms. The authors state that
this is based on a lengthy program for managing shared memory and orchestrating the segmented
scan, resulting in a large number of active registers.

[CT08] introduces a practical Quicksort implementation based on CUDA. It is “a practical al-
ternative for sorting large quantities of data” [CT08] and competitive to [SA08] (see [Ye+10]).
Subsequences smaller than 1,024 elements are sorted by Bitonic Sort.

2.5.6 Hybrid: Bucket Sort + Merge Sort

This hybrid CUDA algorithm [SA08] achieves fast sorting times through an initial parallel Bucket
Sort splitting the list into sublists followed by a Merge Sort. It turned out to be more than twice
as fast as Bitonic Sort utilizing a complexity of only O(n · logn). For analysis, resulting lists of
numbers of elements in each buckets are copied back to CPU memory, which leads to a small
overhead in memory copying. Although the algorithm showed overall faster than Radix Sort
in [Sen+07], it is worth to mention that it was tested on graphics cards with CUDA compute
compatibility 1.1; later, this thesis will show that newer CUDA compute compatibilities (and
their corresponding hardware) are much faster and, for example, memory copying times between
global memories represent a real bottleneck. In addition, the algorithm uses Bucket Sort and
therefore is only capable of sorting float data.

2.5.7 Others

There are different other implementations available on GPU, like the Randomized Sample Sort in
[LOS10] that (on the the Tesla architecture) showed faster than Thrust’s Merge Sort in [SHG09].
Nevertheless, through the random selection it had bad load balancing [Ye+11]. Other parallel
algorithms involve External Sorting, database sorting and parallel architectures other than GPUs,
which shall be not part of this work.

18

Diploma ThesisA Time-Based Adaptive Hybrid Sorting Algorithm on CPU and GPU with Application
to Collision Detection

CHAPTER 2. RELATED WORK

2.6 Adaptive GPU Sorting Algorithms

2.6.1 Odd-Even Sort

Based on Bubblesort and Cocktailsort (see section 2.4.1), Odd-Even Sort [Dom11] [KW05] is a
simple implementation for Sorting Networks. It works by first sorting all odd indices, then all
even indices. This will iterate at maximum n

2 times until the full array is sorted. The advantage
is, that it can be very easily parallelized: All odd indices can be sorted by a single CUDA kernel
launch, as well as all even indices. Figure 2.2 presents the algorithm as a Sorting Network:

Figure 2.2 An Odd-Even Sorting Network for eight elements with eight phases

A downside of this algorithm is the huge overhead for at maximum n kernel launches and the
worst-case complexity of O(n2). A positive side is the adaptiveness and best-case complexity
of O(n). Later in this thesis, all three GPU algorithms will be very closely analyzed for the
best-case scenario in paragraph 6.5.2.

19

Chapter 3

Methodology

In animations with a rigid and a deformable object, it seems likely that sometimes parts of the
scene do not move, if you look at them from one side. For example, objects might be moving only
away from your perspective, which means, they do not appear to be moving, rather changing
their size. As a thought, this occurrence should be visible in Axis-Aligned Bounding Boxes.
Keeping this practical example in mind, the overall task for the thesis was to create a sorting
algorithm, that takes advantage of pre-sorted data and is capable of running on GPU. As a follow-
up, taking an existing implementation of ABiSort [GZ06] raised the question of which kind of
measures of unsortedness the algorithm could take advantage of (the theoretical background was
described in chapter 2.1 already). The idea was to analyze real world data according to the
levels of unsortedness that they provide and analyze the algorithm to find matching values. As
simplification, in the previously mentioned collision detection, the AABBs were reduced to one
axis only, specifically, triangles’ bounding boxes were projected onto the X-axis. A good analysis
of unsortedness in this manner will be presented in chapter 5.1.

As it turned out, in a Bitonic Sorter, pure values of unsortedness do not allow to conclude
any possibility for adaptiveness. Specifically, runs have to be identified at their corresponding
position, in order to cut off whole merge branches or to take advantage of pre-sortedness in
already existing bitonic sequences (in case one node of a merge branch is sorted in a descending
way already, its other node only has to be sorted in an ascending way). This leads to the idea
of implementing an interface that can visualize the examined scenes according to their levels of
pre-sortedness. This will be explained in section 5.2. There, bounding boxes are put into relation
to their corresponding global position within the scene.

The preceding methods of analysis lead to two different methodologies for creating an adaptive
algorithm: Visual analysis of pre-sortedness involves Trial and Error methods to find ways how
to exploit them. In a very early state, this method made clear that rather than adjusting a
time-local algorithm, it would be easier to implement a new algorithm that could make use of
bounding boxes that would change only slightly from frame to frame; in fact, this seemed to be
the case in many of the analyzed scenes. This idea became the main objective for this work ever

20

Diploma ThesisA Time-Based Adaptive Hybrid Sorting Algorithm on CPU and GPU with Application
to Collision Detection

CHAPTER 3. METHODOLOGY

since. Pre-sorted data ranges were selected based on different parameters which were adjusted
based on repeating Trial and Error, sometimes visually and sometimes via Brute Force, sorting
scenes with a variety of possible parameter combinations and analyzing the adaptiveness (for
example, based on speed analysis in ratio to the corresponding measures of unsortedness).

Later, these parameters were selected in a more generalizing way, scene-independent: Measures
of unsortedness turned into the main driving forces for setting parameters. The in this thesis
presented novel algorithm’s overall evolution can be found in chapter 6.

21

Chapter 4

Scenes

4.1 Selection of the Scenes

Selecting the test scenarios, it was important to bear in mind that scenes should be selected that
are also used in other papers, in order to have uninfluenced scenarios, ones that are not set up
to fit for the algorithm. The UNC Dynamic Scene Benchmarks collection [UNC14] is a source
that offers multiple pre-animated frame sequences that are used in [MZ14], for example.

A general prerequisite for sorting bounding boxes adaptively is that the data contains some areas
with little or no changes. Practically this means, that an animation scene should have either a
high time resolution (meaning a big frame rate, which is incorporated in the funnel scene and
can be found in section 4.2.2) and/or a high amount of triangles (where chances might be bigger
that there are some areas with little scene changes). In general, a combination of deformable
objects and rigid objects can lead to adaptive collision detection based on bounding boxes. Based
on these assumptions, a counter example from the UNC collection is the “dragon and bunny”
model; despite its high amount of triangles (~252,000) it is hard to use it in the boundaries of
this thesis, since it only has 16 frames and changes are to quick to imply pre-sorted data.

4.2 Low Polygon Scenes

The following two scenes can be obtained from [UNC14].

4.2.1 Clothball

The clothball scene has 46,598 vertices and 92,230 triangles (which results in 184,460 bounding
box elements to be sorted). Altogether there are 94 Frames in which a deformable cloth falls

22

Diploma ThesisA Time-Based Adaptive Hybrid Sorting Algorithm on CPU and GPU with Application
to Collision Detection

CHAPTER 4. SCENES

down onto a rigid ball. Afterwards, it turns an wraps itself around the ball.

Figure 4.1 Clothball scene

4.2.2 Funnel

The funnel scene has 9,450 vertices and only 18,484 triangles, which yields a list of 36,968
bounding box elements. The low amount of triangles is opposed to a high number of frames:
501. This high time resolution offers a chance for adaptive sorting, especially noting that the
scene contains two rigid objects (a funnel and a plane) and two moving and deforming objects
(a ball that drags a deformable cloth down through the funnel).

Figure 4.2 Funnel scene

4.3 High Polygon Scenes

4.3.1 Clothcar

As high polygon scene the clothcar has 365,362 vertices and 692,156 triangles. Altogether there
will be 1,384,312 bounding box elements. Influenced by gravity and a strong wind, in 151 frames
a deformable cloth with 172,992 triangles falls onto a car with 519,164 triangles. The car model
can be obtained from [Ble14], the cloth and its animation were added afterwards by me.

23

Diploma ThesisA Time-Based Adaptive Hybrid Sorting Algorithm on CPU and GPU with Application
to Collision Detection

CHAPTER 4. SCENES

Figure 4.3 Clothcar scene

24

Chapter 5

Analysis

5.1 Scenes’ Analyses

In the following course all three scenes will be analyzed using the three measures of pre-sortedness
according to [OW12]: inv, runs and rem.
It is notable that for the two fully analyzed scenes the inv measure will never grow much on a
scale expressed as percentage (in this case, not beyond 2.14%). As for the other two measures,
the visual blend of triangles (in X-direction) can roughly be deduced as well. As long as the
cloth does not touch the ball in the clothball scene (which are the first four frames), all of the
three measures of unsortedness are relatively low (below 3%), including the measures runs and
rem. Towards the end, the more the cloth wraps itself around the ball, the shorter non-coherent
ascending subsequences get, the rem measure increases.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50 60 70 80 90 100

U
n
so

rt
e
d
 P

e
rc

e
n
ta

g
e

Frame Number

Inv
Runs
Rem

Figure 5.1 Clothball unsortedness

For the funnel scene, both measures clearly imply the frames where the cloth and the ball are
located inside the funnel tube (frames 134-403).

25

Diploma ThesisA Time-Based Adaptive Hybrid Sorting Algorithm on CPU and GPU with Application
to Collision Detection

CHAPTER 5. ANALYSIS

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 50 100 150 200 250 300 350 400 450 500

U
n
so

rt
e
d
 P

e
rc

e
n
ta

g
e

Frame Number

Inv
Runs
Rem

Figure 5.2 Funnel unsortedness

Based on its definition, the inv measure has a maximum value of n(n−1)
2 (see chapter 2.1.1.1),

which results in a run complexity of O(n2) for determining this measure for a dataset. For this
reason, only the first 6 frames were considered exemplary for this measure in the clothcar scene.
Starting from frame 29, a moment where half of the cloth has dropped onto the car’s surface, the
rem measure stays stable at around 25%. At the same time, the runs measure does not exceed
5% of unsortedness. These values can imply a good possibility (compared to the clothball scene
with a maximum rem value of 92.5% and a maximum runs value of 17.5% and the funnel scene
with 76.3% for rem and 16.8% for runs) to sort pre-sorted subsequences adaptively.

 0

 5

 10

 15

 20

 25

 30

 0 20 40 60 80 100 120 140 160

U
n
so

rt
e
d
 P

e
rc

e
n
ta

g
e

Frame Number

Inv
Runs
Rem

Figure 5.3 Clothcar unsortedness

26

Diploma ThesisA Time-Based Adaptive Hybrid Sorting Algorithm on CPU and GPU with Application
to Collision Detection

CHAPTER 5. ANALYSIS

5.2 The Analysis Program

For a better understanding of unsortedness levels, a program with visual output was written
based on OpenGL techniques.
The scenes are being read frame by frame as “.obj” files. Later, the arrow keys help navigate
through the rendered scenes.
The insertion of each frame works the following way:

• Take frame 0
• Generate bounding boxes around its triangles in X-direction
• Insert bounding boxes into the bounding box array with indices for the

– Left side: 2 · triangleIndex
– Right side: 2 · triangleIndex+ 1

• Take frame n | n > 0
• For each bounding box entry select the corresponding triangle within the frame
• Generate bounding boxes around the triangle in X-direction
• Update bounding boxes in the bounding box array

The colors used for displaying objects are false colors: A dark blue color means no unsortedness;
after being sorted in the previous frame these bounding boxes did not move; a red color means full
unsortedness; after being sorted in the previous frame these bounding boxes had the maximum
distance frame wide. In technical terms, the color space is HSV where saturation and value are
set to 1 and the hue value will be between 240° (blue) and 0° (red):

saturation = 1.0

value = 1.0

hue = 240− distance

maxDistance
· 240

For the use in OpenGL the resulting HSV value will be converted into the RGB color space.
The distance is a value computed after the following scheme:

• Mark the extra distance value in each bounding box entry with its current position in the
bounding box array

• Sort the bounding boxes according to their sides’ positions
• The sorted distance is the sorted position minus the old distance value

The final bounding box data structure looks like the following:

int triangleIdx
The triangle index that this bounding box item is referring to. A negative index implies a

27

Diploma ThesisA Time-Based Adaptive Hybrid Sorting Algorithm on CPU and GPU with Application
to Collision Detection

CHAPTER 5. ANALYSIS

left edge, a positive index a right edge.
float bdPos

Position of this bounding box item on the X-axis
int sortPositionAndAfterSortDistance

AdaptiveFrameSort-specific item. Used during sorting to calculate items’ sort distances.

Figure 5.4 shows an early state of the clothball scene. The colors chosen are false colors referring
to the bounding boxes’ sort distances, and in pink, triangles of the previous frame are visualized,
that have a distance of at least 80% of the maximum distance in this frame.

Figure 5.4 Early state of the clothball scene. False colors represent frame-wide unsortedness of
bounding boxes in the model (compared to the previous frame); red triangles represent
high unsortedness, blue triangles low unsortedness. The bar undearneath the model
visualizes calculated sort ranges: blue ranges represent n-nsquare algorithm parts and
red ranges represent nlogn algorithm parts.

Underneath the object, the figure shows hypothetical sort ranges. The cloth itself appears to have
higher sort distances in the center of the frame, around the ball that it wraps itself around. The
outer edges of the cloth seem to have less movement. According to this idea, the newly developing
algorithm will try to sort ranges with a relatively small maximum sort distance with an already
existing algorithm that will take advantage of the pre-sortedness, in this case Bubblesort (the
blue ranges). Bubblesort has a best case complexity of O(n) and a worst case complexity of O(n2)
(see also chapter 2.4.1). Since there are many algorithm variations, the class of these adaptive
sorting algorithms shall be referred to as n-nsquare algorithms from now on. The other ranges
will be sorted by an algorithm with a smaller complexity for the worst case, STL’s std::sort
(the red range). std::sort has an average and best case complexity of O(n · logn) [SGI14b]. This
class of non-adaptive sorting algorithms shall be referred to as nlogn algorithms from now on.
For a frame-based analysis of sort distances refer to figure 5.5, which shows very low maximum
sort distances for frame 4 (181 / 184,459 elements).

28

Diploma ThesisA Time-Based Adaptive Hybrid Sorting Algorithm on CPU and GPU with Application
to Collision Detection

CHAPTER 5. ANALYSIS

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 0 10 20 30 40 50 60 70 80 90 100

M
a
x
 D

is
ta

n
ce

 (
/1

8
4

4
5

9
)

Frame Number

Figure 5.5 Clothball’s maximum sort distances. At this algorithm state, small sort ranges might
imply little unsortedness and a good speed-up chance for an adaptive algorithm.

29

Chapter 6

Algorithm

In this chapter, the algorithm AdaptiveFrameSort will be explained in detail. It is an outline to
the entire evolution of the algorithm. Paragraphs contain analyses or improvements: Sections
that are tagged with the name “Improvement” present final results that are incorporated into
the algorithm based on previous analyses.

Chapter 6.1 presents an early state and shallow analyses, it can be referred to as a brainstorming
introduction for getting grip onto the problem of adaptiveness.
In the further progress, a first adaptive GPU algorithm will be presented (chapter 6.2).
AdaptiveFrameSort utilizes existing sorting algorithms on an abstract level in order to sort data.
Path-breaking improvements could be established once these underlying algorithms were an-
alyzed thoroughly and algorithm-selection parameters were based on scene-independent, sub-
algorithm specific measures. These analyses can be found in chapter 6.5.
Additional improvements of vital importance can be found in the chapters 6.6, 6.7 and 6.8.
A pseudocode will be presented (chapter 6.9.2) and the algorithm’s functionality will be explained
by an example (chapter 6.9.1).

6.1 A First Approach: Parameter Pair MaxDistanceThreshold
and MinimumRangeLength

The in chapter 5.2 described approach of using sort ranges based on the max measure (see also
chapter 2.1.1.4), yields two different parameters:

maxDistanceThreshold
Maximum sort distance within a range. No data element in this range will have a bigger
sort distance than this value.

30

Diploma ThesisA Time-Based Adaptive Hybrid Sorting Algorithm on CPU and GPU with Application
to Collision Detection

CHAPTER 6. ALGORITHM

miminumRangeLength
A minimum length of each sort range; otherwise ranges might be too short and the overhead
for merging so many fragments is too big.

In case of the clothball scene a good distribution would be to have adaptively sortable ranges at
the edges and a non-adaptive range in the middle. Based on this idea, the following parameters
proved themselves as visually appropriate:

maxDistanceThreshold = 1, 845

mimimumRangeLength = 6, 400

A problem at this state is that these parameters are customized for the clothball scene. In fact,
for the funnel scene a maxDistanceThreshold of 93 turned out to be a better value. As reaction,
universal parameters have to be found.

The approach so far looks as the following:

1. For frame 0, generate bounding boxes on the X-axis.
2. Set the distance attribute for each array item to its current position.
3. Sort the whole frame by std::sort.
4. Now, the sort distance is the sorted item index minus its unsorted item index (the distance

attribute’s value).
5. Determine the “Sort Ranges” according to the parameters maxDistanceThreshold

and mimimumRangeLength.
6. These sort ranges are a suggestion for the next frame: Sort the “relatively pre-sorted” ranges

by Bubblesort.
• As “safety net” include a fallback that stops the execution for Bubblesort in case too

long distances will be sorted in this new frame.
• In case of a fallback, use std::sort for the current sort range.

7. Sort all other sort ranges by std::sort.
8. Cross-range items need to be sorted. These are items that are sorted within their range

but their global position resides within a different range. In order to sort them, that means
to merge them into their corresponding sort ranges, execute a global Bubblesort across all
sort ranges. This will be relatively effective, since each range is sorted already and in case
of little movement there should not be too many cross-range items.

If only one sort range exists, the merge step can obviously be omitted. At this point, a per-
formance improvement might be to introduce a keyframe based analysis of sort distances (for
example every 15 frames). As it turned out, the bounding boxes in the investigated scenes move
too much for this kind of idea; the algorithm would not be exact enough anymore.

31

Diploma ThesisA Time-Based Adaptive Hybrid Sorting Algorithm on CPU and GPU with Application
to Collision Detection

CHAPTER 6. ALGORITHM

6.1.1 First Adaptive Success

In a first implementation of this algorithm some functionality was implemented differently: In-
stead of std::sort, a simple implementation of Merge Sort was used.
In this configuration already, the adaptive algorithm was faster than Merge Sort for frame 4 of
the cloth scene; Merge Sort had 27 ms of computation time, the adaptive algorithm had 25 ms
of computation time (in a single run). The overall sort time for three found sort ranges took 21
ms, the global sort of the sorted ranges took 3 ms and the computation of the next frame’s sort
ranges took only 1 ms. This confirmed the basic concept of the algorithm.
In case of a fallback, as it happens in frame 2, the adaptive algorithm had a computation time
of 48 ms.

6.1.2 A Closer Parameter Analysis

A quantitative analysis of different values for the maxDistanceThreshold in frame 3 of the clothball
scene with a mimimumRangeLength of 10,000 leads to the following top times (note that a single
run of Merge Sort takes 27 ms):

maxDistanceThreshold Frame Sort Time (ms)

9 28

14 17

15 15

Table 6.1 maxDistanceThreshold analysis for frame 3 of the clothball scene. Too big thresholds
might result in unrealistic forecasts of n-nsquare sort ranges and in high execution
times; too small thresholds might not fully deploy the advantage of n-nsquare algo-
rithms.

Taking up value 15 as best choice for the maxDistanceThreshold, another analysis involving dif-
ferent values for mimimumRangeLength results in the following top timings:

32

Diploma ThesisA Time-Based Adaptive Hybrid Sorting Algorithm on CPU and GPU with Application
to Collision Detection

CHAPTER 6. ALGORITHM

minimumRangeLength Frame Sort Time (ms)

3,000 16

6,000 18

7,000 16

8,000 16

9,000 18

10,000 18

11,000 19

12,000 21

Table 6.2 minimumRangeLength analysis for frame 3 of the clothball scene. Too small range
length values may lead to more n-nsquare sort ranges and overall higher execution
times; too long range lengths might result in too few n-nsquare sort ranges and finally
in no adaptive gain.

In order to have least merge overhead in the worst case of arrayLength
minimumRangeLength sort ranges, the

biggest of the fastest ranges will be chosen as new value for mimimumRangeLength: 8,000.
In summary, the closer analysis lead to a faster algorithm that improved its sort time from 25
ms (in section 6.1.1) to 15 ms.

6.1.3 Improvement: Stable Sort

One thought on how to improve the above algorithm is how to decrease the sort distances
maintaining the same results. The response is simple: The usage of stable sorting algorithms
will still result in a sorted array but with possibly less distances for each item. Bubblesort is
already stable. The instable std::sort will be replaced by STL’s stable sorting version, std::
stable_sort [SGI14c]. This improvement will be used in the algorithm henceforth.

6.1.4 Improvement: Local Merge Heuristic

A general problem of Bubblesort is that it sorts more slowly the further at the array’s end an
item is. This was the main motivation for changing the size of the merge ranges. An additional
thought though, and this is even more important for later versions of this algorithm, is that

33

Diploma ThesisA Time-Based Adaptive Hybrid Sorting Algorithm on CPU and GPU with Application
to Collision Detection

CHAPTER 6. ALGORITHM

the less movement from frame to frame happens, the fewer cross-range items will exist. This
means, that the merge of all sort ranges should be adaptive itself. On CPU, this can be actually
achieved (as mentioned in next paragraph). On GPU, though, the Thrust library does not offer
an adaptive merge algorithm. In order to keep merge times low then also, the following approach
can help:

After the sort of each frame, the maximum sort distance will be determined. Exactly this value
can be used for making assumptions about the merge ranges. Taking the clothcar scenario as
example, the following might be the case: Assuming there was no gravity and the wind had a
constant strength, the cloth would float from the middle of the car towards the left side (on the
X-axis, which is actually the front of the car model) in a constant pace. Therefore, the change
from frame to frame is constant.

In case we sort random subsets of data within the frame and afterwards want to merge them
into one single data set, the case is that if we put an interval around the borders of the subsets,
this interval does not have to be longer than the maximum sort distance of each frame (which
in this scenario will be constant).

Now in the clothcar scenario there is the influence of gravity and the cloth does not float in a
constant pace. Nevertheless, we might assume that the change in its speed in x-direction will not
change more than to maximal twice its speed of the previous frame. In more general animations
of course the sort distances is not equal to objects’ speeds. But, nevertheless, it is worth a try
to introduce this assumption as heuristic into the algorithm.

So, after sorting all sort ranges, intervals will be constructed around the sort range borders with
a length of 2 ·maxDistance of the previous frame into each direction (since we do not know in
which direction elements might be sorted). After merging the data within these intervals, the
intervals will be turned into new sort ranges. Then, a global check will be performed to tell
whether the merge heuristic was successful and merged all unsorted cross-range items or not. If
this is not the case, all sort ranges (including the new interval-ranges) will be merged by their
full length subsequently into one. Figure 6.3 in the next paragraph demonstrates the saved times
based on this heuristic. It is important to note that in case the heuristic does not succeed, the
approach created an overhead for the algorithm. This is why in the current implementation, the
heuristic will only apply if there are two or three sort ranges.

6.1.5 Improvement: Adaptive In-Place Merge Instead of a Global Bubble-
sort

In fast moving scenes, the global array sort by Bubblesort for “merging” cross-range items can
be very ineffective, as can be seen in table 6.3. The STL library offers a fast alternative: std::
inplace_merge. It is an adaptive merge algorithm and grows linearly to the number of elements

34

Diploma ThesisA Time-Based Adaptive Hybrid Sorting Algorithm on CPU and GPU with Application
to Collision Detection

CHAPTER 6. ALGORITHM

that need to be merged (in case there is enough auxiliary memory available) [SGI14a]. This
algorithm will be used henceforth (by the CPU version) for merging all sort ranges subsequently
into one.
Keeping the GPU version in mind, the Thrust library only offers a merge with an auxiliary array.
For this case a special merge function was set up to merge the first and second sort range into
an auxiliary array that is a copy of the current data array. The third sort range will be merged
with this result into the original data array then and so forth. This swap of auxliary array and
original data array leads to least additional memory use. Table 6.3 will show that including
std::merge in this algorithm will lead to a faster merge compared to using Bubblesort as merging
algorithm. It will also show the final state with the use of std::inplace_merge. Note that the
values represent timings without decimal places; therefore, “zero” values imply timings between
0 ms and 1 ms.

Algorithm Merge Time (ms)

Bubblesort 25

Bubblesort (Local Merge Heuristic) 0

std::merge 4

std::merge (Local Merge Heuristic) 0

std::inplace_merge 0

std::inplace_merge (Local Merge Heuristic) 0

Table 6.3 Merge algorithm analysis for frame 6 of the clothball scene. Number of sort ranges: 3

6.2 An Adaptive GPU Algorithm

Considering that AdaptiveFrameSort makes use of existing algorithms, it is directly possible now
to exchange the CPU sub-algorithms by GPU versions.
In a first setup, Bubblesort was exchanged by the GPU implementation of Odd-Even Sort, std::
stable_sort by Thrust’s thrust::stable_sort and std::inplace_merge by thrust::merge.

These replacements do not make AdaptiveFrameSort fully GPU based. The part of computing
the new sort ranges for the next frame still happens on CPU. This leaves the problem that input
data, that resides in the VRAM, first has to be copied to the RAM in order to execute the sort
range computation. For example, to copy the clothcar scene’s bounding boxes with 1,384,312

35

Diploma ThesisA Time-Based Adaptive Hybrid Sorting Algorithm on CPU and GPU with Application
to Collision Detection

CHAPTER 6. ALGORITHM

elements from VRAM to RAM on the test system with CUDA compute compatibility 1.3, it
takes around 6 ms. Later in this work the fully GPU based algorithm description can be found.

6.3 Improvement: Parameter Pair InvThreshold and Minimum-
RangeLength

Finding sort ranges according to maximum sort distances is a fast way of determining possible
ranges that can be sorted by an n-nsquare algorithm. The downside though, is that the measure
of maximum sort distances is no effective measure for the deployed sub-algorithms. The selected
algorithm Straight Insertion Sort is directly dependant on the number of swaps that need to be
done for sorting the input data. This is the inv measure. For Cocktailsort, this measure also
applies, although it has also a certain dependency on the location of unsorted items within the
input data. This extra measure is hard to calculate though and not of use for over the time
changing data. So, as heuristic, it is okay for this algorithm to neglect the determination of the
location of unsorted items. In addition, the use of the max measure can result in “false positives”
for detecting n-nsquare sort ranges. In case a range consists of small sort distances but many
of them, sorting it can result in many swaps (and therefore high execution times) although the
maximum sort distance is low.

Therefore, a new way and — at least for Straight Insertion Sort to 100% according to its actual
runtime and sort efficiency — a realistic evaluation of sort ranges is to determine them based on
the SUM of sort distances. This sum is equivalent to the number of necessary swaps.

At the same time, a fallback implementation is similarly simple, since instead of comparing
each item’s sort distance with a maximum, the algorithm simply has to add the sort distances
of each item. An initial threshold of 60,375 for Straight Insertion Sort on CPU and 250 for
Cocktailsort on GPU is being implemented. At least for the CPU version, sort ranges from now
on will most probably have a wider range as compared to the maxDistanceThreshold. This in turn
leads to smaller nlogn ranges and therefore overall smaller sorting times. In the clothball scene,
overall lower adaptive execution times could be witnessed, since sort ranges were forecasted more
realistically (with less “false positives”). This is a major improvement and will be used in the
final version of AdaptiveFrameSort.

36

Diploma ThesisA Time-Based Adaptive Hybrid Sorting Algorithm on CPU and GPU with Application
to Collision Detection

CHAPTER 6. ALGORITHM

6.4 Improvement: Individual MinimumRangeLength

So far, the minimum sort range length was restricted to 8,000 elements. Obviously enough, this
length should vary for different scene lengths. Especially for bigger scenes, this value might be
too small and would generate too much overhead for merging all sort ranges. At this point, a
dynamic determination of minimum range lengths will be implemented. The idea is to divide
each scene into a constant amount of ranges, even before the determination of sort ranges (for
more understanding refer to figure 6.8). As for the final implementation, this constant number
of ranges will be 20. Before this improvement, the input data was scanned through item by item,
until the minimum sort range length was reached. A previous determination of ranges did not
happen. In the new way of thinking, a subdivision into ranges with a fixed length beforehand,
is very easy and fast to deal with also by parallel GPU algorithms. So far, the algorithm could
not be ported fully to the GPU, since sort ranges were calculated item-by-item (see chapter 6.2).
The Thrust library, for example, offers the thrust::inclusive_scan as prefix-sum function. The
usage will be discussed thoroughly later in chapter 6.6. A major outcome of the introduction of
individual minimum range lengths therefore is not directly a speed-up of individual scenes, but
a generalization for all scenes and an algorithm that can be scaled up for the usage in parallel
GPU architectures.

6.5 Sub-Algorithms’ Analysis

AdaptiveFrameSort utilizes different existing sorting algorithms in order to sort data. In the
following sections, these underlying algorithms shall be examined thoroughly in order to under-
stand, how to use them optimally according to their strengths.

6.5.1 Improvement: Straight Insertion Sort Instead of Bubblesort on CPU

As table 6.3 showed, a global sort based on Bubblesort takes a lot of more time than its local
merge heuristic version, which means the sort of a shorter array. Figure 6.1 clarifies why higher
sort distances can result in higher execution times for Bubblesort.

37

Diploma ThesisA Time-Based Adaptive Hybrid Sorting Algorithm on CPU and GPU with Application
to Collision Detection

CHAPTER 6. ALGORITHM

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

E
x
e
cu

ti
o
n
 T

im
e
 (

m
s)

Max Distance

BubbleSortCPU
CocktailSortCPU

InsertionSortCPU
StraightInsertionSortCPU

OddEvenSortCPU

Figure 6.1 CPU in-depth analysis on an array with 18,446 elements. A pollution (an unsorted
item) is inserted with an increasing sort distance towards the end of the array

As stated before in chapter 2.4.1, a downside of Bubblesort is sorting elements that are located
at the right side of the input data, but have their sorted location at the left side of the data.
As soon as the algorithm does not swap any element in one pass, it halts. This explains why its
runtime is not linear: Each pass swaps the “pollution element” (which first is located at the right
end of the input data) one step more to the left, reading the input data from left to right in each
pass. After that pass, the algorithm halts. The closer the element gets to the left side (the start
of the scan), the sooner the element will be sorted and the sooner the algorithm halts. One idea
of avoiding this downside of Bubblesort, is to scan the input data once from left to right, and in
the next step from right to left. This “bi-directional” version is called Cocktailsort. A yet faster
implementation on CPU though is Straight Insertion Sort, which scans for any unsorted item
and directly inserts it at its correct position. Apart from naïvely searching the array, additional
overhead for scanning does not appear.
Odd-Even Sort in turn is not affected by the sort direction of elements, but has to undergo more
passes the higher sort distances are. This algorithm is not relevant for the CPU, but is mentioned
in this paragraph for comparison with the GPU version.

This means, that Straight Insertion Sort will be used as adaptive algorithm on CPU from now
on. For a pollution distance of 18,445 (which in this example means an unsorted item that
has its sorted position 18,445 elements leftward), its timing result is 0.06 ms, while Insertion
Sort takes 0.2 ms and Cocktailsort takes 0.15 ms. Bubblesort takes 324.05 ms.

6.5.2 Improvement: Cocktailsort Instead of OddEvenSort on GPU

Similar to the CPU version, also on GPU Bubblesort takes more time for unsortedness at the
input array’s end. Figure 6.2 clarifies this behavior. Both Bubblesort and Cocktailsort were

38

Diploma ThesisA Time-Based Adaptive Hybrid Sorting Algorithm on CPU and GPU with Application
to Collision Detection

CHAPTER 6. ALGORITHM

executed with 512 threads and one block, whereas Odd-Even Sort ran with 512 threads and
n

numThreads + 1 = 37 blocks. Only 512 threads instead of 1,024 (as typical for the Kepler
architecture) were used for direct comparisons to the Tesla architecture in other tests (where the
maximum of threads was 512). Not using the maximum configuration though does not affect the
outcome of this test, since tendencies remain the same.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

E
x
e
cu

ti
o
n
 T

im
e
 (

m
s)

Max Distance

BubbleSortGPU
CocktailSortGPU

OddEvenSortGPU

Figure 6.2 GPU in-depth analysis with CUDA compute compatibility 3.5 on an array with 18,446
elements. A pollution (an unsorted item) is inserted with an increasing sort distance
towards the end of the array

This means, that Cocktailsort will be used as adaptive algorithm on GPU from now on. For
a pollution distance of 18,445, its timing result is 54 ms, while Bubblesort takes 1,510 ms and
Odd-Even Sort takes 1,179 ms.

Cocktailsort is a self-written CUDA implementation that uses one CUDA block with a maximum
number of threads on it (512 on Tesla architectures, 1,024 since Fermi architectures [NVI14b]).
In order to overcome overhead, it starts performing for input sizes bigger than the number of
threads that it runs with. Each thread will prefetch one item from global memory into shared
memory. Afterwards, each thread will compare and swap items first from left to right, and in the
next step, from right to left. In case a certain number of swaps is reached (InvThreshold), the
execution will stop. Whereas the execution in only one block is a general downside, it comes in
handy for the use in AdaptiveFrameSort. Each n-nsquare sort range can be sorted fully parallel,
each range belonging to one block in one kernel launch in total. This way, overhead for separate
kernel launches can be neglected. In general, it is to mention that a performant implementation
of this inv-adaptive O(n) best-case algorithm is highly crucial to the overall performance of
AdaptiveFrameSort. Since only a small number of elements is loaded into the fast shared memory
(only one thread block is available), the global memory bandwidth is a devastating bottleneck
for the used implementation of Cocktailsort. The realization of a multi-block version of this
algorithm remains difficult and unsolved within the boundaries of this thesis.

39

Diploma ThesisA Time-Based Adaptive Hybrid Sorting Algorithm on CPU and GPU with Application
to Collision Detection

CHAPTER 6. ALGORITHM

6.5.3 The Final Sub-Algorithms

Based on the previous findings, the eventually chosen sub-algorithms can be found in table 6.4.

Algorithm type CPU GPU

n-nsquare sort1 Straight Insertion Sort Cocktailsort

nlogn sort2 std::stable_sort thrust::stable_sort

Merge std::inplace_merge thrust::merge

Table 6.4 Final sub-algorithms. As used in this work, 1n-nsquare refers to the class of O(n2)
average case algorithms with a best case complexity of O(n), 2nlogn refers to the class
of O(n · logn) average case algorithms.

6.5.4 In-Depth Algorithm Comparison on CPU

The main idea behind this algorithm is to take advantage of fast sorting algorithms for pre-
sorted data. In theory, the complexity for the used Straight Insertion Sort is O(1) (movements)
and O(n) (comparisons) in best case and O(n2) in worst case (see “Einfügesort”[OW12]). std
::stable_sort uses the Merge Sort algorithm [Knu75] and its complexity is O(n · logn) in case
of sufficient memory and O(n · log2 n) in case of insufficient [SGI14c]. So, w.l.o.g., a general
AVERAGE complexity is O(n · logn). Note that STL’s algorithm is “an adaptive algorithm”
[SGI14c]. In addition, it is a hybrid algorithm (see also section 2.4.8). As of version 3.3 [SGI14d],
in case of insufficient memory, std::stable_sort will use a regular implementation of Merge Sort
with the use of Insertion Sort for subsequences smaller than 14 items (which is slightly adaptive
for different input data, applying different memory copy strategies) in combination with a merge
without buffer. In this work field’s more common case of a sufficient amount of memory, the
algorithm will use Insertion Sort in combination with a merge with buffer memory for smaller
sequences (based on the algorithm’s complexity, “small” will not be defined further here) and
an adaptive merge for at least two halves inside the input array. Note that the implementation
is quite complex and optimized and the overall adaptiveness depends on data conditions and
memory situations. Still, the algorithm’s best case complexity is slower than Straight Insertion
Sort’s O(n) complexity. In order to investigate real world conditions, a speed comparison for
different scenarios with each 1,000 iterations can be found in table 6.5.

40

Diploma ThesisA Time-Based Adaptive Hybrid Sorting Algorithm on CPU and GPU with Application
to Collision Detection

CHAPTER 6. ALGORITHM

Algorithm Sortedness Time (ms)

std::stable_sort Unsorted (inversely sorted) 12.0

std::stable_sort Unsorted (random) 18.0

std::stable_sort Sorted 8.9

Straight Insertion Sort Sorted 0.3

Table 6.5 Speed comparison for adaptive data. Input array: 300,000 elements of type int

For that reason, the nlogn algorithm times in figure 6.3 refer to tests with sorted data which
represents the worst case scenario for speed comparisons.

The respective complexity scenario for Straight Insertion Sort depends on the input data’s level
of pre-sortedness. In fact, the runtime is linearly equivalent to the number of pairwise swaps that
have to be done in order to sort the input data (which can be expressed by the inv measurement).
The runtime for std::stable_sort has a (in average) logarithmic dependency on the input data’s
length. The different dependencies unveil a vital functionality for AdaptiveFrameSort. In fact,
Straight Insertion Sort will have a similar runtime for any input data’s length, as long as the
number of necessary swaps stays constant; merely a comparably small summand will be added
to the execution time for reading the data in a linear complexity. So, w.l.o.g., let us assume that
Straight Insertion Sort does not change its runtime for different sizes of input data’s length but
only according to the level of its unsortedness. In order to gain advantage from using an n-nsquare
algorithm like Straight Insertion Sort for fairly pre-sorted data, it is important to understand
where timings are faster there in comparison to an nlogn algorithm like std::stable_sort. For
comparing real world data timings for both algorithms were collected.

Figure 6.3 shows timings for both Straight Insertion Sort and std::stable_sort, sorting data that
was modified in a way so that sorting it would take the stated number of swaps. The timings
for std::stable_sort are average values calculated from 20 iterations. The timings for Straight
Insertion Sort refer to different number of swaps in an array of fixed length, with one iteration
each (n=18,446. In order to have a rather representative array size, close to real world data, the
length of two ranges in the clothball scene was chosen, assuming 20 is the number of ranges).
This length is fixed in order to compare different number of swaps (for Straight Insertion Sort)
and different input lengths (for std::stable_sort) in one graph.

41

Diploma ThesisA Time-Based Adaptive Hybrid Sorting Algorithm on CPU and GPU with Application
to Collision Detection

CHAPTER 6. ALGORITHM

*std::stable_sort, **Straight Insertion Sort CPU

 0

 0.1

 0.2

 0.3

 0.4

 0.5

0 50 100 150 200 250 300

E
x
e
cu

ti
o
n
 T

im
e
 (

m
s)

Number of Swaps / 1000

n=200*
n=1200*
n=2200*
n=3200*
n=4200*
n=5200*
n=6200*
n=7200*
n=8200*
n=9200*

n=10200*
n=11200*
n=12200*
n=13200*
n=14200*
n=15200*
n=16200*
n=17200*
n=18200*
n=19200*
n=20200*

StraightIns**

 0

 2

 4

 6

 8

 10

0 1 2 3 4 5 6

E
x
e
cu

ti
o
n
 T

im
e
 (

m
s)

Number of Swaps / 1 Mio

n=70200*
n=120200*
n=170200*
n=220200*
n=270200*

StraightIns**

Figure 6.3 CPU in-depth analysis. Tested with OS: Ubuntu 12.04 i386, CPU: Intel(R) Core(TM)
i7 CPU 860 @ 2.80GHz, Memory: 4 GB.

The figure’s left side shows input lengths up to 20,200 elements, which should refer to most “small
size” 3D computer graphic scenarios. The figure’s right side shows input lengths up to 270,200
elements, which should refer to bigger scenarios or other applications than collision detection.
As a result, the occuring intersections between timings of Straight Insertion Sort and std::
stable_sort can be found in table 6.6.

42

Diploma ThesisA Time-Based Adaptive Hybrid Sorting Algorithm on CPU and GPU with Application
to Collision Detection

CHAPTER 6. ALGORITHM

Input Length # Swaps Time (ms) Input Length # Swaps Time (ms)

200 0 0.01 13,200 145,000 0.25

1,200 25,000 0.06 14,200 150,000 0.29

2,200 47,000 0.09 15,200 200,000 0.35

3,200 90,000 0.15 16,200 210,000 0.36

4,200 100,000 0.2 17,200 225,000 0.38

5,200 50,000 0.1 18,200 250,000 0.41

6,200 60,000 0.12 19,200 260,000 0.43

7,200 90,000 0.15 20,200 270,000 0.45

8,200 95,000 0.17 70,200 1,000,000 1.9

9,200 97,000 0.19 120,200 1,900,000 3.2

10,200 100,000 0.21 170,200 2,800,000 4.5

11,200 140,000 0.23 220,200 3,800,000 6.0

12,200 140,000 0.23 270,200 5,000,000 8.2

Table 6.6 CPU in-depth analysis: Execution Time Intersections between Straight Insertion Sort
and std::stable_sort. Notice: The number of swaps are rough values.

6.5.5 Improvement: Individual InvThresholds CPU

Analyzing the data, it is possible to determine good parameter values for making Adaptive-
FrameSort adaptive for different input lengths. Consider table 6.8 for closer understanding of its
working principle. These values were successively gained by decreasing the number of swaps per
interval and measuring the resulting timings for the clothball scenario, as can be seen in table
6.7. The chosen parameter for input lenghts below 4,000 is 10,000 number of swaps. Regarding
the table it has the highest number of winning frames. At the same time it is not wise to take
smaller thresholds as the size of resulting sort ranges might decrease rapidly (especially in ran-
dom other scenarios). For the chosen parameters’ efficiency relate to table 6.8.

43

Diploma ThesisA Time-Based Adaptive Hybrid Sorting Algorithm on CPU and GPU with Application
to Collision Detection

CHAPTER 6. ALGORITHM

NoS for
n<4,0001

No. of relevant
frames

No. of winning
frames

nlogn time
(ms)2

Adaptive Time
(ms)3

static 60,375* 5 / 94 3 825 821

40,000 86 / 94 7 769 815

20,000 66 / 94 7 782 796

10,000 34 / 94 9 818 796

Table 6.7 Individual number of swaps thresholds for CPU: Analysis based on the clothball sce-
nario. *Static number of swaps threshold for all input lengths (old algorithm), 1NoS
threshold for input length of <4,000, 2Total nlogn algorithm time (ms), 3Total Adap-
tiveFrameSort time

Inp. Length (up to)1 NoS (up to)2 Part of int. val.3 BC-Time (ms)4 WC-Time (ms)5

4,000 10,000 10% 0.04 0.24

13,000 20,000 13.8% 0.05 0.3

20,000 37,500 13.8% 0.08 0.53

120,000 75,000 3.9% 0.14 3.34

170,000 350,000 12.5% 0.56 5.06

220,000 550,000 14.5% 0.91 6.91

∞ 750,000 <19.7% 1.21 >7.21

Table 6.8 Individual number of swaps thresholds for CPU. 1Input Length, 2Number of Swaps,
3Number of swaps chosen as parameter compared to the intersecting value from table
6.6, 4Time in Best Case: n-nsquare algorithm succeeds, 5Time in Worst Case: Number
of swaps exceeds efficient time for n-nsquare algorithm; fallback to nlogn algorithm.
This time is the sum of “Time in Best Case” plus the time that the nlogn algorithm
takes for sorting

You can see that efficient number of swaps thresholds of around 13% of their intersecting values
from table 6.6 are chosen. Note that the exception of around 4% for an input length of 120,000
is used to compensate the gap to the previous step of an input length of only 20,000. The gap
is that huge because most scenarios would refer to input lengths below 20,000 or starting from
120,000 in the presented 3D scenarios. Gradual settings for input lengths will be more valid for
general scenarios.
At this point, a good approach for improving the algorithm might be to include a method

44

Diploma ThesisA Time-Based Adaptive Hybrid Sorting Algorithm on CPU and GPU with Application
to Collision Detection

CHAPTER 6. ALGORITHM

that calibrates the system that the code is running on. Having around 1,000 iterations for
each algorithm and taking around 13% of their intersecting number of swaps as the algorithm’s
parameters, the codes yield should be optimal.

6.5.6 In-Depth Algorithm Comparison on GPU with CUDA Compute Com-
patibility 1.3

The GPU version of AdaptiveFrameSort uses a self-written implementation of Cocktailsort as
n-nsquare algorithm. Cocktailsort in general has a best case complexity of O(1) (movements)
and O(n) (comparisons) and a worst case complexity of O(n2) (see “Bubblesort”[OW12]). The
algorithm is an improved version of Bubblesort; the advantage is that in an ascending list small
elements from the end of the list move as fast to the beginning as big elements from the beginning
to the end [Big+08]. For a general tendency comparison between Bubblesort and Cocktailsort
refer to figure 6.1.
For non-atomic data types, thrust::stable_sort makes use of merge sort with a complexity of
O(n · logn)[SHG09].
Equivalent to section 6.5.4, also the GPU algorithms have been measured for different input
lengths for thrust::stable_sort and different number of swaps for Cocktailsort, as can be seen
in figure 6.4.

45

Diploma ThesisA Time-Based Adaptive Hybrid Sorting Algorithm on CPU and GPU with Application
to Collision Detection

CHAPTER 6. ALGORITHM

*thrust::stable_sort

 0

 1

 2

 3

 4

 5

 0 50 100 150 200 250 300

E
x
e
cu

ti
o
n
 T

im
e
 (

m
s)

Number of Swaps

n=200*
n=1200*
n=2200*
n=3200*
n=4200*
n=5200*
n=6200*
n=7200*
n=8200*
n=9200*

n=10200*
n=11200*
n=12200*
n=13200*
n=14200*
n=15200*
n=16200*
n=17200*
n=18200*
n=19200*
n=20200*

CocktailSortGPU

 0

 5

 10

 15

 20

 0 1000 2000 3000 4000 5000 6000

E
x
e
cu

ti
o
n
 T

im
e
 (

m
s)

Number of Swaps

n=70200*
n=120200*
n=170200*
n=220200*
n=270200*
n=320200*
n=370200*
n=420200*
n=470200*
n=520200*
n=570200*

CocktailSortGPU

Figure 6.4 GPU in-depth analysis with CUDA Compute Compatibility 1.3. Tested with OS:
Ubuntu 12.04 i386, CPU: Intel(R) Core(TM) i7 CPU 860 @ 2.80GHz, Memory: 4
GB, Graphics card: NVIDIA GeForce GTX 260, NVIDIA Driver: 331.62.

Again, on the left side can be seen input lengths from 200 to 20,200, whereas on the right side
input lengths from 70,200 to 570,200 are prevailing.
Comparing figure 6.3 and 6.4, two measurements are directly eye-catching. Straight Insertion
Sort’s execution time is directly linear to the number of swaps needed. Cocktailsort’s execution
time is rather super linearly dependent on the number of swaps, with a logarithmic-like start.
This indicates that the implemented algorithm should be still improved.

As second impression we can see that the number of swaps that result in a faster adaptive sort
than with the respective O(n · logn) algorithm is very low on GPU compared to the CPU ver-
sion. For an input length of 20,200 elements, Straight Insertion Sort could have up to 270,000
necessary swaps to compete with std::stable_sort. On GPU, for the same input length already
200 (!) number of swaps will exceed the execution time of thrust::stable_sort. Hence, the GPU
version of AdaptiveFrameSort will be decisively less efficient compared to the CPU version.

46

Diploma ThesisA Time-Based Adaptive Hybrid Sorting Algorithm on CPU and GPU with Application
to Collision Detection

CHAPTER 6. ALGORITHM

Input Length # Swaps Time (ms) Input Length # Swaps Time (ms)

200 -* 0.3 170,200 512 5.92

1,200 8 0.69 220,200 800 6.96

2,200 18 0.91 270,200 1,152 8.57

3,200 32 1.13 320,200 1,458 9.99

8,200 50 1.21 420,200 2,178 11.44

20,200 72 1.55 470,200 2,592 12.85

70,200 128 3.5 570,200 4,050 16.43

120,200 200 4.78

Table 6.9 GPU in-depth analysis with CUDA Compute Compatibility 1.3: Execution Time In-
tersections between Cocktailsort and thrust::stable_sort. Notice: The number of
swaps are rough values. This table was reduced to pairs that make use of a different
number of swaps. *For input lengths around 200 elements the overhead for Cocktailsort
is higher than for thrust::stable_sort.

6.5.7 Improvement: Individual InvThresholds GPU

Taking the data from table 6.9, it is obvious that a clothball-animation based parameter ad-
justment will not be profitable. Hence I decided to set the parameters manually the following
generous way, as can be found in table 6.10. Generous in this context means that the bigger the
number of swaps per input length is, the bigger the resulting size of the corresponding sort range
will be. Bigger n-nsquare sort ranges can result in much faster adaptive sorts for the whole input
data. At the same time though, the saved time per sort range will become smaller. It is to find
a best general value in this balance.
As a GPU specific feature, note the following: The adaptive times do not reflect the real com-
putation time for each sort range but the complete computation time for ALL n-nsquare sort
ranges, since their execution will be in parallel. That means: The more n-nsquare sort ranges
exist, the faster is the adaptive sorting there, but also the longer the range merge will take
afterwards.

47

Diploma ThesisA Time-Based Adaptive Hybrid Sorting Algorithm on CPU and GPU with Application
to Collision Detection

CHAPTER 6. ALGORITHM

Inp. Length (up to)1 NoS (up to)2 Part of int. val.3 BC-Time (ms)4 WC-Time (ms)5

1,200 0 0% - 0.69

2,200 8 44.4% 0.6 1.51

11,200 18 36.0% 0.8 2.07

20,200 26 36.1% 0.9 2.45

220,200 240 30.0% 2.53 9.49

520,200 1,000 38.5% 7.75 20.77

∞ 1,500 <37.0% 10.24 >23.26

Table 6.10 Individual number of swaps thresholds for GPU with CUDA Compute Compatibility
1.3. 1Input Length, 2Number of Swaps, 3Number of swaps chosen as parameter
compared to the intersecting value from table 6.6, 4Time in Best Case: n-nsquare
algorithm succeeds, 5Time in Worst Case: Number of swaps exceeds efficient time for
n-nsquare algorithm; fallback to nlogn algorithm. This time is the sum of “Time in
Best Case” plus the time that the nlogn algorithm takes for sorting

48

Diploma ThesisA Time-Based Adaptive Hybrid Sorting Algorithm on CPU and GPU with Application
to Collision Detection

CHAPTER 6. ALGORITHM

6.5.8 In-Depth Algorithm Comparison on GPU with CUDA Compute Com-
patibility 3.5

*thrust::stable_sort

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 50 100 150 200 250 300

E
x
e
cu

ti
o
n
 T

im
e
 (

m
s)

Number of Swaps

n=200*
n=1200*
n=2200*
n=3200*
n=4200*
n=5200*
n=6200*
n=7200*
n=8200*
n=9200*

n=10200*
n=11200*
n=12200*
n=13200*
n=14200*
n=15200*
n=16200*
n=17200*
n=18200*
n=19200*
n=20200*

CocktailSortGPU

 0

 2

 4

 6

 8

 10

 12

 0 1000 2000 3000 4000 5000 6000

E
x
e
cu

ti
o
n
 T

im
e
 (

m
s)

Number of Swaps

n=70200*
n=120200*
n=170200*
n=220200*
n=270200*
n=320200*
n=370200*
n=420200*
n=470200*
n=520200*
n=570200*

CocktailSortGPU

Figure 6.5 GPU in-depth analysis with CUDA Compute Compatibility 3.5. Tested with
OS: Windows 7 Enterprise 64bit SP1, CPU: Intel(R) Core(TM) i7-4770K CPU @
3.50GHz, Memory: 16.0 GB Ram, Graphics card: NVIDIA GeForce GTX 780,
NVIDIA Driver: 340.52.

For Kepler architecture based graphics cards it turns out that the Thrust library is already very
highly optimized. Compared to the Tesla architecture based results found in figure 6.4, it seems
very hard to compete with the non-adaptive algorithm. Based on the same approach from last
chapter, the resulting individual thresholds hold for Kepler architecture graphics cards can be
found in table 6.11.

49

Diploma ThesisA Time-Based Adaptive Hybrid Sorting Algorithm on CPU and GPU with Application
to Collision Detection

CHAPTER 6. ALGORITHM

Inp. Length (up to)1 NoS (up to)2 Part of int. val.3 BC-Time (ms)4 WC-Time (ms)5

20,200 0 0% - 0.81

70,200 8 11.1% 0.68 2.25

270,200 50 11.1% 1.32 4.72

∞ 98 <11.1% 1.68 >6.58

Table 6.11 Individual number of swaps thresholds for GPU with CUDA Compute Compatibility
3.5. 1Input Length, 2Number of Swaps, 3Number of swaps chosen as parameter
compared to the intersecting value from table 6.6, 4Time in Best Case: n-nsquare
algorithm succeeds, 5Time in Worst Case: Number of swaps exceeds efficient time for
n-nsquare algorithm; fallback to nlogn algorithm. This time is the sum of “Time in
Best Case” plus the time that the nlogn algorithm takes for sorting

6.6 Improvement: Fast Sort Range Computation

The last improvements in the field of sort ranges in this work were to have a fixed number of
ranges set up for any kind of scene (see chapter 6.4). This means, that only the resulting length
for ranges in different scenes vary. The task for AdaptiveFrameSort is to determine the sum of
all the items’ sort distances within each range.

There are different ways to solve this problem. In general, you can refer it as “Prefix-Sum”
problem. The Thrust library, for example, offers thrust::inclusive_scan as option for building
prefix-sums. Alternatively, you might also use thrust::reduce to get a sum over the items as
reduction. All possible algorithms were implemented and timings for different numbers of ranges
compared in table 6.12.

Ranges CPU thrust::inclusive_scan* thrust::reduce* Own Implementation*

20 5 ms 4 ms 2 ms 1 ms

40 5 ms 4 ms 3 ms 1 ms

80 5 ms 4 ms 5 ms 1 ms

Table 6.12 Time comparison of different algorithms for calculating the range sums within the
clothcar scene for frame 0. *Tested with CUDA compute compatibility 1.3

There are different results to read out of this table. First of all, the CPU version, thrust::
inclusive_scan and the own implementation are stable, which means, they are (practically)

50

Diploma ThesisA Time-Based Adaptive Hybrid Sorting Algorithm on CPU and GPU with Application
to Collision Detection

CHAPTER 6. ALGORITHM

independent on the the number of ranges.
As for thrust::reduce, this algorithm is called for each range to determine its sort distance sum.
This, of course, generates an overhead for calling the function kernels each time.
Overall, for the CPU it takes around 5 ms to sum up all distances in the array of length 1,384,312.
The next comparison is decisive and explains why there is a need for a self-written implementation
of calculating the range sums. One would assume that thrust::inclusive_scan behaves fastest
in this context. Although after execution another kernel has to be run in order to compute each
range’s individual sum (which computes roughly by

rangeSumi =sortDistance(inputElement(i+1)∗minimumRangeLength−1)−

sortDistance(inputElementi∗minimumRangeLength−1)

and in tests this kernel’s execution time was around 0 ms, so not much worth to mention), the
use of thrust::inclusive_scan will be the fastest in comparison; for summing up all item’s sorts
distances, it will be hard to compete with the optimized Thrust algorithm. Nevertheless, two
reasons speak against using this version: AdaptiveFrameSort takes the range sums to compute
sort ranges. A sort range can have the maximum size of the whole input array’s length. A sort
range will be of extraordinary use, if its distance sum does not exceed the individual InvThreshold
for its length (because then the n-nsquare algorithm can be used). Looking into tables 6.8 and
6.10 for a length of the clothcar’s bounding boxes, we receive maximum thresholds of 750,000 for
CPU and 1,500 for GPU (CUDA compute compatibility 1.3). While calculating the range sums,
these thresholds can be used already. If the sum for a single range exceeds the overall threshold,
it can stop any further calculation and simply return a value that is bigger than this threshold.
Table 6.13 clarifies what happens.

51

Diploma ThesisA Time-Based Adaptive Hybrid Sorting Algorithm on CPU and GPU with Application
to Collision Detection

CHAPTER 6. ALGORITHM

Range Distance Sum (actual) Distance Sum (CPU) Distance Sum (CUDA 1.3)

0-6 0 0 0

7 96,320,655 754,526 1,501

8 245,959,607 751,045 1,501

9 514,295,667 750,078 1,501

10 623,794,983 761,010 1,501

11 397,933,947 757,251 1,501

12 163,537,241 752,391 1,501

13 66,531,532 751,366 1,501

14-19 0 0 0

Table 6.13 Range sums calculated by the own sum implementation for clothball frame 40

The table reveals a huge difference in actual sums and sums after a fallback. Whereas the sum for
range 9 is actually over 514 million big, the actual usable value is already 750,078 for CPU and
1,501 for GPU. This means that the sum algorithm can stop already very early while computing
the sums. Thrust’s implementation cannot be told such kind of fallback.

Another and even more severe reason for using a self-written implementation for calculating the
range sums instead of Thrust’s algorithms is that of a data type issue. Although the used Thrust
algorithms are fully template based and theoretically a long long int data type could probably
hold any realistic data ranges, performance-wise it is inefficient to introduce additional payload
for each sorting element, in case it can be avoided. Section 7.2 will demonstrate differences
between using more memory space for each element in an array and using less memory, where,
as can be assumed, bigger data structures for each element result in longer sorting times. So,
in order to save space, the variable holding each item’s distance sum is of type int. The maxi-
mum positive number that the int type can hold is (in a 4-byte implementation, may vary on
different systems) 231 − 1 = 2, 147, 483, 647. The clothcar scene does not exceed this limit with
any range sum, though there might be scenes whose range sums exceed this value easily. The
for AdaptiveFrameSort usable data range however only needs to cover values up to the individ-
ual InvThreshold; any range sum calculation beyond this value does not represent any useful
information to the algorithm. Practically though, there is no way of limiting sum computations
with Thrust’s algorithms. Concluding, the use of a self-written implementation is welcome and
also necessary; and its timings beat all other implementations (a constant 1 ms, range number
independent). Note, that in case of the GPU version of AdaptiveFrameSort, the computation of

52

Diploma ThesisA Time-Based Adaptive Hybrid Sorting Algorithm on CPU and GPU with Application
to Collision Detection

CHAPTER 6. ALGORITHM

range sums happens fully on GPU, but the length calculation for each sort range still happens on
CPU (also in the final version). The computation is trivial, but a small but negligible overhead
appears by copying the range sum values (which in the current configuration is an array with 20
integer values) from VRAM to RAM. Since the computation is not parallelizable efficiently and
it only involves small adjustments of boundaries, it represents a justifiably small overhead. It
is important to note that in any case the computed sort ranges would have to be copied to the
CPU RAM in order to manage the algorithm’s general proceedings. In case of the clothcar scene,
instead of 20 values of type int, three sort ranges would have to be copied, where a SortRange
is a data structure consisting of two int values and one bool value. In the specific example run
on the used architecture, instead of 27 bytes for the sort ranges, 80 bytes for the range sums
are copied from VRAM to RAM. Therefore, in terms of memory copying times, no important
overhead is introduced here.

6.7 Improvement: Block Based Parallel N-Nsquare Sort

The implemented Cocktailsort algorithm only uses one CUDA block for sorting. Since often there
will be more than one n-nsquare sort range, it will be a good idea to sort these ranges each in a
separate CUDA block, launching them in the same kernel call. The sorting of the two n-nsquare
sort ranges in the clothcar secene (frame 9) takes 2 ms for the first range and 1.3 ms for the
second range. Sequentially, the total execution time for these two ranges then is around 3.3 ms.
If they are run together, the total execution time will be around 2 ms only. Figure 6.6 clarifies
the outcome. Overall, for the clothcar scene this improvement means less “jumpy” execution
times for several frames.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 20 40 60 80 100 120 140 160

E
x
e
cu

ti
o
n
 T

im
e
 (

m
s)

Frame Number

thrust::stable_sort
adaptiveFrameSort (sequential)

adaptiveFrameSort (blocks)

Figure 6.6 Comparison of sequential n-nsquare range sort and block based parallel n-nsquare
range execution for the clothcar scene (CUDA compute compatibility 1.3)

53

Diploma ThesisA Time-Based Adaptive Hybrid Sorting Algorithm on CPU and GPU with Application
to Collision Detection

CHAPTER 6. ALGORITHM

On the other hand, it would also not make sense to sort more than one sort range in one block,
since n-nsquare ranges often are separated by nlogn ranges (as, for example, in the clothcar
scene) and do not represent one coherent sorting array, which would complicate data structures
in the sorting kernel unnecessarily and the amount of available shared memory even on Kepler
architecture based graphics cards is not sufficient to hold the data already for a single bigger
n-nsquare range.

6.8 Improvement: Merging Consecutive nlogn Subsets After
n-nsquare Fallbacks

This improvement is not as straight forward as the previous one. Sorting subsets of data and
afterwards merging them is an approach for a diverse number of sorting methods. In the case of
nlogn sorting algorithms, the following table can clarify the ideas behind it. Assuming we have a
data array with 100 elements and want to subdivide it equally sized subsets that will get merged
afterwards, we might have a scenario as in table 6.14.

Subsets Size of Each Subset Formula Theoretical Runtime

1 100 1 · 100 · log 100 200

2 50 2 · 50 · log 50 169

4 25 4 · 25 · log 25 139

50 2 50 · 2 · log 2 30

Table 6.14 n · logn subdivision example for n=100

The original runtime complexity for sorting an array with a length of 100 in one pass is

Runtime = 100 · log 100 = 200

For the best case of subdivision (50 separately sorted subsets of length 2) let us assume two
different data related scenarios. One is where after sorting all subsets the whole array with
length 100 is already sorted. This happens, if the original data was relatively pre-sorted. In this
case let us assume an adaptive in-place merge algorithm has the complexity O(1) (through only
comparing the rightmost element of the left set and the leftmost element of the right set). Then

54

Diploma ThesisA Time-Based Adaptive Hybrid Sorting Algorithm on CPU and GPU with Application
to Collision Detection

CHAPTER 6. ALGORITHM

the runtime for sorting all subsets and merging them afterwards will be:

Runtime = mergeT ime+ 50 · 2 · log 2 = 79

mergeT ime = 49 · 1

Now the worst case for the merge might be that all the data from the first subset has to be
actually put into the range of the last subset and so on. It is sorted inversely (based on the first
element of each subset). In this case, a merge would cost O(n-1) many steps:

Runtime = mergeT ime+ 50 · 2 · log 2 = 2, 529

mergeT ime = 3 + 5 + . . .+ 99

mergeT ime =
n2

4
− 1 =

1002

4
− 1 = 2, 499

In this sense, it can be worth dividing a sort into several subsets and merge them afterwards (79
steps compared to 200 original steps) but it can also cost a lot of additional time (2,529 steps).
In the case of frame based collision detection this case would probably rather not happen (in a
way that one object moves from the right side of the scene to the left side from one frame to the
next), but suddenly fast movement cannot be excluded. In addition, the calculation example is
only on a theoretical base; in reality algorithms also have some initial overhead, for example.

In case of the GPU version, merging consecutive nlogn sort ranges at any time into one (when
finding the range and after the fallback of an n-nsquare sort range) is the right way to go. In a
comparison run with 100 iterations for frame 2 of the clothball scene, AdaptiveFrameSort had an
average time of 5.3 ms with merging the fallback sort ranges and 11.7 ms without merging them.
CUDA kernel calls simply have too much overhead and also the implemented non-adaptive merge
of the sort ranges consumes to much time for a higher amount of sort ranges.

In case of the CPU version, no merge of nlogn sort ranges is actually faster for two of the three
researched scenes. Figure 6.7 shows a direct comparison.

55

Diploma ThesisA Time-Based Adaptive Hybrid Sorting Algorithm on CPU and GPU with Application
to Collision Detection

CHAPTER 6. ALGORITHM

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 10 20 30 40 50 60 70 80 90 100

E
x
e
cu

ti
o
n
 T

im
e
 (

m
s)

Frame Number

std::stable_sort
adaptiveFrameSort

adaptiveFrameSort (without merges)

Figure 6.7 Time comparison for the clothball scene, with and without merging any nlogn sort
ranges

The algorithm without merges is around 33 ms faster for sorting all frames than the algorithm
with merges. In the funnel scene, it is around 16 ms faster. The timing curve also seems to be
visually closer to the original std::stable_sort algorithm.

Nevertheless, in the clothcar scene for example, the algorithm is around 272 ms slower (time win
after all frames in comparison with std::stable_sort, without merging: 9,822 ms, with merging:
10,094 ms). On CPU, this means, that no merge can be faster (with up to 20 sort ranges in
the current configuration, which is the amount of “ranges”) but also slower through too difficult
merges. On GPU the merges are faster in any case. The final implementation of the algorithm
will merge the nlogn sort ranges both for searching and after n-nsquare fallbacks for the GPU
version and the CPU version alike. This way, the algorithm is valid for more general applications
and scenes could also contain faster moving segments.

6.9 The Final Algorithm: AdaptiveFrameSort

This paragraph will show the approach of the final version of AdaptiveFrameSort, as it is referred
to throughout this work. Taking a practical example of one dimensional collision detection with
AABBs, it will explain in detail which steps the algorithms takes. In section 6.9.2, the pseudocode
will reveal closer functionality.

6.9.1 Functionality Explained by an Example

In order to clarify the functionality of AdaptiveFrameSort, consider figure 6.8.

56

Diploma ThesisA Time-Based Adaptive Hybrid Sorting Algorithm on CPU and GPU with Application
to Collision Detection

CHAPTER 6. ALGORITHM

Figure 6.8 Detailed InvThreshold results for the clothball scene. Number of “Range Sum” ranges:
20. Width of one “Range Sum” range: 9,223. The “Range Sum” threshold is set to a
constant value of 60,375 (CPU) and 250 (GPU) (beyond this, the “Range Sums” are
marked red instead of blue)

The clothball scene features a representative example for the algorithm’s approach. You can
see two screenshots for frames 4 and 5 and respectively 4 bars for both the CPU and GPU
algorithm. The respectively lowest bar visualizes the frame’s bounding boxes. The colors used
in this bar and in the objects’ screenshots are false colors as explained in section 5.2. The “Top
Max Distances” bar shows all the bounding boxes in pink that moved along a maximum distance
after being sorted in the last frame. All triangles that have this max distance (or at least 80%
of the max distance) are marked the same way in the object’s screenshot (in thise case the
cloth’s edges move at fastest speed compared other parts of the cloth and result in most X-axis
movement). The length of each “Top Max Distance” bounding box implies a good estimation
about the length of its sorted distance compared to the overall frame. Technically, its extent
is its distance plus and minus around its position. That means, it actually shows double of its
distance. This way though, it is easier to figure out where it “came from”.

Before explaining the “Sort Ranges”, it is easier to clarify the function of the “Range Sums”.
Relative to the respective InvThreshold (which is 60,375 for CPU and 250 for GPU) the height
of each range sum (there are 20 altogether) indicates the number of unsorted pairs in this region.
From the range sums it is easy to see the section where the cloth hits the ball: first in the middle
(frame 4) and then with the parts next to the middle (frame 5). Remember that the range sums
indicate movement. Once the cloth has hit the top of the ball, it will not move there anymore,
it has collided. The cloth’s corners result in blue range sums. This means that their number of
unsorted pairs has not exceeded the respective threshold and this range might possibly be sorted
by the fast n-nsquare algorithm. The parts around the middle in frame 5 exceed the threshold
and the bars continue in a red color beyond the threshold. These ranges could most likely not
be sorted by the fast n-nsquare algorithm, since the nlogn algorithm would be faster there. Note
that since the threshold for the GPU version is very low, relative heights will result in very high

57

Diploma ThesisA Time-Based Adaptive Hybrid Sorting Algorithm on CPU and GPU with Application
to Collision Detection

CHAPTER 6. ALGORITHM

bars in most cases, so there are only blue bars visible (which means nevertheless that the range
sums are exceeding the corresponding thresholds in frames 4 and 5).

At first glance, the sort ranges do not evolve as obviously as the other datasets. Talking about
the CPU version, the actual number of sort ranges is not six as can be seen in the figure but eight.
This is based on the fact that consecutive nlogn ranges get merged to one range but consecutive
n-nsquare ranges do not. An explanation for that will follow up later in this chapter.
The first range sum is marked blue for frame 5, nevertheless the corresponding sort range beneath
is marked red. At this point, note that the final implementation has a dynamic distance sum
threshold value; the visualized range sums use a constant threshold value, though (which is
based on the old algorithm’s approach, but fits for visualization). The calculation of range sums
has become input-length depend since the introduction of individual InvThresholds. One range
sum has the length of 9,223 elements in case of the cloth scene (for 20 range sums altogether).
Regarding table 6.7, the individual InvThreshold for an input length of 9,223 is 20,000. The first
range’s sum of unsorted pairs is 20,738, though. Hence, the algorithm chooses this range to be
sorted by an nlogn sorting algorithm. The next four ranges have the sums 8,982; 18,158; 34,976;
54,712. Their sum is 116,828. Four ranges together make an input length of 4 · 9, 223 = 36, 892.
This input length has a respective individual InvThreshold of 75,000. This means, that ranges’
unsorted pair sums exceed the threshold (116,828 > 75,000). At this point, the algorithm jumps
one range back. The length for three ranges is 27,669 and the corresponding InvThreshold still
is 75,000. The three ranges’ unsorted pair sum 62,116, which is smaller than 75,000. Hence,
the next n-nsquare sort range will consist of the ranges 2-4. With the same kind of fallback and
— dependant on the current input length — individual InvThresholds, all other sort ranges are
computed. For example, the next range, range 5, will be also counted as n-nsquare sort range.
Ranges 6-9 will be one a nlogn algorithm sort range.

It is important to note that consecutive nlogn sort ranges are being merged to one sort range,
whereas consecutive n-nsquare sort ranges (those who separately do not exceed the corresponding
InvThreshold) will NOT be merged to one sort range. The reason is simple and useful at the same
time: The separete n-nsquare sort ranges will be definitely sorted faster than a nlogn algorithm
would take for doing that. After sorting they will be actually merged by a merge algorithm.
This is faster, than sorting the ranges together by one n-nsquare algorithm without having to
merge them afterwards, as for the obvious reason that an n-nsquare algorithm grows linearly to
the number of swaps, whereas std::inplace_merge grows linearly to the number of elements that
need to be merged [SGI14a] (which is faster in most cases).

58

Diploma ThesisA Time-Based Adaptive Hybrid Sorting Algorithm on CPU and GPU with Application
to Collision Detection

CHAPTER 6. ALGORITHM

6.9.2 Pseudocode

This section contains the pseudocode of AdaptiveFrameSort. Note that the pseudocode is highly
simplified and only referring to the CPU version of the algorithm; inside the working and opti-
mized C++ implementation, it contains additional code in order check boundaries and to provide
GPU support as well. In addition, the code of the underlying n-nsquare and nlogn algorithms is
missing. Refer to chapter 6.5.3, in order to see which algorithms are used for which sort range
type.
As the method adaptiveFrameSort shows, the algorithm’s major steps are: Sort sort ranges based
on the last frame, merge them, compute distances and range sums and build new sort ranges
for the next frame. The function getIndividualInvThresholdByLength refers to individual In-
vThresholds as described in the respective first two columns of the tables 6.8, 6.10 and 6.11. For
example, in case a sort range has a length of 11,942 on CPU, the function returns an individual
InvThreshold of 20,000 (refer to table 6.8). This means, that in case the number of swaps neces-
sary to sort the sort range in the last frame was less than 20,000, in the current frame this sort
range will be sorted by the n-nsquare algorithm corresponding to table 6.4. Otherwise, it will be
sorted by the corresponding nlogn algorithm.

Listing 6.1 AdaptiveFrameSort pseudocode for the CPU version

1 // Entry point for each frame sort in an animation
2 // data : array of struct that contains integer
3 // sortPositionAndAfterSortDistance and is to be sorted
4 // previousFrame : previous frame 's adaptiveFrameSort return value
5 // containing calculated sort ranges and the
6 // max sort distance
7 // numberOfRanges : desired number of ranges to compute sort
8 // distance sums of; the resulting number may
9 // be smaller based on a minimum range length

10 // returns frame information for use in next frame 's sort
11 // after execution , data contains sorted elements
12 procedure adaptiveFrameSort(data, previousFrame , numberOfRanges)
13 // Prepare sort positions
14 prepareSortPositions(data)
15 // 1. Sort subsets based on sort ranges from previous frame
16 sortSubsets(previousFrame.sortRanges)
17 // 2. Merge
18 mergeAll(data, previousFrame.sortRanges , previousFrame.maxDistance)
19 // 3. Compute distances
20 frame.maxDistance = computeDistancesAndGetMaxDistance(data)
21 // 4. Compute range sums
22 rangeSums = computeRangeSums(data, numberOfRanges)
23 // 5. Compute sort ranges for next frame based on range sums

59

Diploma ThesisA Time-Based Adaptive Hybrid Sorting Algorithm on CPU and GPU with Application
to Collision Detection

CHAPTER 6. ALGORITHM

24 frame.sortRanges = computeSortRanges(rangeSums)
25
26 return frame
27 end procedure
28
29 // Set sort positions to their current position ,
30 // meaning a distance of zero, so that
31 // abs(i - data[i].sortPositionAndAfterSortDistance) == 0
32 procedure prepareSortPositions(data)
33 for i = 0 to data.length -1 inclusive do
34 data[i].sortPositionAndAfterSortDistance = i
35 end for
36 end procedure
37
38 // Sort n-nsquare sort ranges , merge fallback ranges with nlogn ranges
39 // and sort all nlogn ranges
40 // nnsqSortAllRangesIn returns true, if any n-nsquare sort had
41 // a fallback
42 // nnsqType returns all sort ranges of type n-nsquare
43 // nlognType returns all sort ranges of type nlogn
44 procedure sortSubsets(sortRanges)
45 nnsqFallback = nnsqSortAllRangesIn(nnsqType(sortRanges))
46 if nnsqFallback then
47 mergeConsecutiveNlognRanges(sortRanges)
48 end if
49 nlognSortAllRangesIn(nlognType(sortRanges))
50 end procedure
51
52 // For three or less sort ranges , try to merge only borders (heuristic)
53 // Otherwise or if the array is still unsorted , merge all sort ranges
54 // consecutively
55 procedure mergeAll(data, sortRanges , maxDistance)
56 needsGlobalMerge = sortRanges.length > 3
57 if sortRanges.length > 1 then
58 if not needsGlobalMerge then
59 mergeLocalHeuristic(data, sortRanges , maxDistance)
60 needsGlobalMerge = not isSorted(data)
61 end if
62 if needsGlobalMerge then
63 mergeGlobally(data, sortRanges)
64 end if
65 end if
66 end procedure

60

Diploma ThesisA Time-Based Adaptive Hybrid Sorting Algorithm on CPU and GPU with Application
to Collision Detection

CHAPTER 6. ALGORITHM

67
68 // Try to merge small ranges around the borders of existing sort ranges
69 // with a size of two times the last maximum global sort distance
70 // for an element
71 procedure mergeLocalHeuristic(data, sortRanges , maxDistance)
72 i = 1
73 while i < sortRanges.length do
74 borderMergeRange.start = sortRanges[i].start -
75 2*maxDistance
76 borderMergeRange.end = sortRanges[i].start +
77 2*maxDistance
78 merge(data, borderMergeRange.start,
79 sortRanges[i].start,
80 borderMergeRange.end+1
81)
82 insertRangeInto(borderMergeRange , sortRanges)
83 end while
84 end procedure
85
86 // Merge all sort ranges consecutively; in case of a CPU merge ,
87 // this happens adaptively
88 procedure mergeGlobally(data, sortRanges)
89 for i=1 to sortRanges.length -1 inclusive do
90 merge(data, 0, sortRanges[i].start,
91 sortRanges[i].end+1)
92 end for
93 end procedure
94
95 // Compute the sort distance by substracting each item's sorted position
96 // from its original position
97 // returns the global max sort distance
98 procedure computeDistancesAndGetMaxDistance(data)
99 maxDistance = 0

100 for i = 0 to data.length -1 inclusive do
101 data[i].sortPositionAndAfterSortDistance =
102 abs(i - data[i].sortPositionAndAfterSortDistance)
103
104 if data[i].sortPositionAndAfterSortDistance > maxDistance then
105 maxDistance = data[i].sortPositionAndAfterSortDistance
106 end if
107 end for
108 return maxDistance
109 end procedure

61

Diploma ThesisA Time-Based Adaptive Hybrid Sorting Algorithm on CPU and GPU with Application
to Collision Detection

CHAPTER 6. ALGORITHM

110
111 // Compute sort ranges for the next frame based on range sums,
112 // configured by an individual invThreshold depending on the length of
113 // each potential sort range
114 // returns sort ranges resulting from this frame
115 procedure computeSortRanges(rangeSums)
116 sortRanges = []
117 rangeNumber = 0
118 sortRange.end = -1
119 while rangeNumber < rangeSums.length do
120 sortRange.start = sortRange.end+1
121
122 distanceSum = 0
123 do
124 distanceSum = distanceSum + rangeSums[rangeNumber]
125 rangeNumber = rangeNumber + 1
126 individualInvThreshold = getIndividualInvThresholdByLength(

rangeNumber*minimumRangeLength)
127 while distanceSum < individualInvThreshold
128 and rangeNumber < numberOfRanges
129 end do
130
131 sortRange.isNnsqRange = distanceSum < individualInvThreshold
132 sortRange.end = rangeNumber*minimumRangeLength -1
133
134 sortRanges.add(sortRange)
135 end while
136
137 return sortRanges
138 end procedure

62

Chapter 7

Detailed Results

This chapter will outline detailed results based on the final version of AdaptiveFrameSort. It will
present thorough performance results for all three animation scenes (chapters 7.1 and 7.2), as
well as concluding analyses of the scenes themselves (chapter 7.3). In addition, the performance
results will be examined in relation to measures of unsortedness in chapter 7.4. A detailed
analysis of the clothcar scene in chapter 7.5 will eventually show up differences between recent
technology improvements regarding CUDA.

7.1 Frame Based Timings for All Three Scenes

In terms of collision detection data, AdaptiveFrameSort has become an adaptive sorting algo-
rithm. It is an all-rounder — it allows existing CPU algorithms to react adaptively to continu-
ously (slightly) changing data. It also works with existing GPU algorithms which constitutes a
central motivation of this work. Nevertheless, this algorithm competes gracefully with the exist-
ing adaptive (non-time based) CPU algorithms. Comparing its times to Timsort, for example,
you find it a bit less fast for the clothball scene in case of rather pre-sorted frames (frames 3-7
in figure 7.1) but also distinctively less slow for rather unsorted frames (after frame 10). The
difference sum of execution times (the small graph displayed at the bottom left of the figure)
confirms: After 93 frames AdaptiveFrameSort is overall 581 ms faster compared to the usage of
Timsort in every frame.

63

Diploma ThesisA Time-Based Adaptive Hybrid Sorting Algorithm on CPU and GPU with Application
to Collision Detection

CHAPTER 7. DETAILED RESULTS

 0

 5

 10

 15

 20

 25

 30

 0 10 20 30 40 50 60 70 80 90 100

CPU

std::stable_sort
adaptiveFrameSort

Timsort

 0

 5

 10

 15

 20

 25

 30

 0 10 20 30 40 50 60 70 80 90 100

E
x
e
cu

ti
o
n
 T

im
e
 (

m
s)

CUDA Compute Compatibility 1.3

thrust::stable_sort
adaptiveFrameSort

 0

 5

 10

 15

 20

 25

 30

 0 10 20 30 40 50 60 70 80 90 100

Frame Number

CUDA Compute Compatibility 3.5

thrust::stable_sort
adaptiveFrameSort

-700
-600
-500
-400
-300
-200
-100

 0
 100

 0 10 20 30 40 50 60 70 80 90 100

W
in

 S
u
m

 (
m

s)

Frame Number

CPU

-700
-600
-500
-400
-300
-200
-100

 0
 100

 0 10 20 30 40 50 60 70 80 90 100

Frame Number

CUDA Compute Compatibility 1.3

-700
-600
-500
-400
-300
-200
-100

 0
 100

 0 10 20 30 40 50 60 70 80 90 100

Frame Number

CUDA Compute Compatibility 3.5

Figure 7.1 Clothball final timing results

The funnel scene in figure 7.2 shows a bit slower code in the rather pre-sorted frames (frames
30-130) but also a distinctively faster code for rather unsorted frames (frames 130-450). The

64

Diploma ThesisA Time-Based Adaptive Hybrid Sorting Algorithm on CPU and GPU with Application
to Collision Detection

CHAPTER 7. DETAILED RESULTS

difference sum, again, reveals that after 500 frames AdaptiveFrameSort is overall 452 ms faster
than Timsort.

 0

 1

 2

 3

 4

 5

 6

 0 100 200 300 400 500

CPU

std::stable_sort
adaptiveFrameSort

Timsort

 0

 1

 2

 3

 4

 5

 6

 0 100 200 300 400 500

E
x
e
cu

ti
o
n
 T

im
e
 (

m
s)

CUDA Compute Compatibility 1.3

thrust::stable_sort
adaptiveFrameSort

 0

 1

 2

 3

 4

 5

 6

 0 100 200 300 400 500

Frame Number

CUDA Compute Compatibility 3.5

thrust::stable_sort
adaptiveFrameSort

-250

-200

-150

-100

-50

 0

 50

 100

 0 100 200 300 400 500

W
in

 S
u
m

 (
m

s)

Frame Number

CPU

-250

-200

-150

-100

-50

 0

 50

 100

 0 100 200 300 400 500

Frame Number

CUDA Compute Compatibility 1.3

-250

-200

-150

-100

-50

 0

 50

 100

 0 100 200 300 400 500

Frame Number

CUDA Compute Compatibility 3.5

Figure 7.2 Funnel final timing results

65

Diploma ThesisA Time-Based Adaptive Hybrid Sorting Algorithm on CPU and GPU with Application
to Collision Detection

CHAPTER 7. DETAILED RESULTS

In case of adaptive GPU sorting, AdaptiveFrameSort can contribute to a novel kind of hybrid
GPU algorithms. In general, though, for small input data (<100,000 elements) it is hard to
create an efficient adaptive sorting algorithm. The scenes clothball and funnel yield little use
for overall adaptive algorithms. After 93 frames of the clothball scene, AdaptiveFrameSort is 17
ms slower (CUDA compute compatibility 1.3) than the usage of Thrust’s thrust::stable_sort
in every frame. After 500 frames of the funnel scene, AdaptiveFrameSort is 86 ms faster (CUDA
compute compatibility 1.3) than the usage of STL’s std::stable_sort in every frame, though the
timing course is similar in both cases which probably leads to a measuring mistake; more cycles
than one run should be performed here in order to get more accurate results. CUDA compute
compatibility 3.5’s results even reveal the downside of AdaptiveFrameSort: The overhead is too
high compared to Thrust’s sorting algorithm. In times of around 1 ms it is impossible to get
faster; the overhead will result in bigger execution times in every frame.

The bigger scene, clothcar, though, represents an excellent scenario for adaptive sorting algo-
rithms (see figure 7.3). Also here, AdaptiveFrameSort wins overall against Timsort as CPU
version (after 150 frames 452 ms faster) and also wins against the Thrust’s non-adaptive thrust
::stable_sort as GPU version. As can be seen in the middle figure, the difference sum of
execution times after 150 frames yields 1,227 ms gained in comparison to Thrust’s algorithm.
This is a lot of time for time critical animations. Unfortunately, this only holds for CUDA
compute compatibility 1.3, which stands for Tesla architecture based graphics cards. For CUDA
compute compatibility 3.5 (Kepler architecture, right figure) the result is rather dissatisfying. A
LOSS of 61 ms compared to Thrust’s algorithm is the consequence.

66

Diploma ThesisA Time-Based Adaptive Hybrid Sorting Algorithm on CPU and GPU with Application
to Collision Detection

CHAPTER 7. DETAILED RESULTS

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0 20 40 60 80 100 120 140 160

CPU

std::stable_sort
adaptiveFrameSort

Timsort

 0

 50

 100

 150

 200

 0 20 40 60 80 100 120 140 160

E
x
e
cu

ti
o
n
 T

im
e
 (

m
s)

CUDA Compute Compatibility 1.3

thrust::stable_sort
adaptiveFrameSort

 0

 50

 100

 150

 200

 0 20 40 60 80 100 120 140 160

Frame Number

CUDA Compute Compatibility 3.5

thrust::stable_sort
adaptiveFrameSort

-2000

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0 20 40 60 80 100 120 140 160

W
in

 S
u
m

 (
m

s)

Frame Number

CPU

-2000

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0 20 40 60 80 100 120 140 160

Frame Number

CUDA Compute Compatibility 1.3

-2000

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0 20 40 60 80 100 120 140 160

Frame Number

CUDA Compute Compatibility 3.5

Figure 7.3 Clothcar final timing results

67

Diploma ThesisA Time-Based Adaptive Hybrid Sorting Algorithm on CPU and GPU with Application
to Collision Detection

CHAPTER 7. DETAILED RESULTS

7.2 Frame Based Timing Comparison with Reference to Data
Complexity

AdaptiveFrameSort’s run complexity is O(n · logn) in worst case and O(n) in best case, both on
CPU and GPU (constant summands were neglected here). The algorithm’s memory complexity
is the following: On the CPU, a constant amount of memory will be allocated for the ranges and
sort ranges; this number depends on the settings of number of ranges, which is 20 by default. If
the chosen architecture is GPU, the constant memory for a copy of the ranges will be allocated.
The chosen architecture’s memory (either CPU or GPU) will also hold an additional integer
attribute for every element that is supposed to be sorted. In terms of memory complexity, this
means that AdaptiveFrameSort is in the class of O(n), both for CPU and GPU. An interesting
question that arises now, is to compare the previous timing results of AdaptiveFrameSort to
timing results for the regular algorithms without the data overhead of an extra attribute for
holding each item’s sort distance. This overhead was also measured for these algorithms in
the previous analysis, since it was part of the bounding box structure (the attribute is called
“sortPositionAndAfterSortDistance”, see its definition in section 5.2). Figure 7.4 will give an
overview about the differences.

-600

-500

-400

-300

-200

-100

 0

 100

 0 10 20 30 40 50 60 70 80 90 100

W
in

 S
u
m

 (
m

s)

Frame Number

CPU

-600

-500

-400

-300

-200

-100

 0

 100

 0 10 20 30 40 50 60 70 80 90 100

Frame Number

CUDA Compute Compatibility 1.3

-600

-500

-400

-300

-200

-100

 0

 100

 0 10 20 30 40 50 60 70 80 90 100

Frame Number

CUDA Compute Compatibility 3.5

-200

-150

-100

-50

 0

 50

 100

 0 100 200 300 400 500

W
in

 S
u
m

 (
m

s)

Frame Number

CPU

-200

-150

-100

-50

 0

 50

 100

 0 100 200 300 400 500

Frame Number

CUDA Compute Compatibility 1.3

-200

-150

-100

-50

 0

 50

 100

 0 100 200 300 400 500

Frame Number

CUDA Compute Compatibility 3.5

-500
 0

 500
 1000
 1500
 2000
 2500
 3000
 3500
 4000
 4500
 5000

 0 20 40 60 80 100 120 140 160

W
in

 S
u
m

 (
m

s)

Frame Number

CPU

 0

 1000

 2000

 3000

 4000

 5000

 0 20 40 60 80 100 120 140 160

Frame Number

CUDA Compute Compatibility 1.3

 0

 1000

 2000

 3000

 4000

 5000

 0 20 40 60 80 100 120 140 160

Frame Number

CUDA Compute Compatibility 3.5

Figure 7.4 Final timing results without AFS data overhead for the algorithms std::stable_sort
, timsort and thrust::stable_sort. From top to bottom: Clothball, funnel and
clothcar

Comparing these results to the time wins in figures 7.1, 7.2 and 7.3, it is visible that the overall
adaptive result for AdaptiveFrameSort stays similar. After 500 frames, the sum for the funnel
scene times reaches -12.6 ms, which is a loss, instead of winning 72 ms with the use of data

68

Diploma ThesisA Time-Based Adaptive Hybrid Sorting Algorithm on CPU and GPU with Application
to Collision Detection

CHAPTER 7. DETAILED RESULTS

overhead for the regular sorting algorithms. The win curves remain similar, though; the CPU
version still beats Timsort in the clothball and the funnel scene. Even the clothcar scene for
CUDA compute compatibility 1.3 can record a win of 600.2 ms. It is notable that the bigger
data structures get, that are supposed to be sorted adaptively, the less the algorithm’s overhead
for the additional field of sort distance (of type integer) counts. This is why this additional
overhead does not have to be taken into account in general. CUDA compute compatibility 3.5
results stay critical still, though. With a loss of 297 ms after all frames, the win sum especially
in the funnel scene is almost 15 times slower compared to CUDA compute compatibility 1.3. In
the clothcar scene, the algorithm has an overall loss of around 397 ms. It is to mention, that
this loss can be turned into a win, if the cloth had fewer polygons, and especially, if the used
Cocktailsort implementation was faster with less overhead. In fact, already about half of the
computation time is still used for the high fluctuation in the scene’s cloth area. For more details
refer to chapter 7.5.

7.3 The Scenes’ Effectiveness

Analyzing the results, a good question that comes to mind is how effective AdaptiveFrameSort
actually is. At which frames does a scene animation allow the algorithm to be effective at all?
One way of finding out is to have a look at the number of effective Straight Insertion Sort sort
ranges in the (compared to the GPU version in general more effective) CPU version. An effective
sort range is a range that was actually fully sorted by its promoted algorithm. This means that
technically the number of effective sort ranges will be determined after the sort ranges were
sorted but before they are merged (because this will decrease the number of sort ranges again
up to one). Figure 7.5 clarifies this number for each frame of every investigated scene.

69

Diploma ThesisA Time-Based Adaptive Hybrid Sorting Algorithm on CPU and GPU with Application
to Collision Detection

CHAPTER 7. DETAILED RESULTS

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 10 20 30 40 50 60 70 80 90 100

Clothball

 0

 0.5

 1

 1.5

 2

 2.5

 0 20 40 60 80 100 120 140 160

N
u
m

b
e
r

o
f

E
ff

e
ct

iv
e
 S

tr
a
ig

h
tI

n
se

rt
io

n
S

o
rt

 S
o
rt

 R
a
n
g

e
s

Clothcar

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 100 200 300 400 500

Frame number

Funnel

Figure 7.5 Straight Insertion Sort effectiveness for the CPU version

Reading these results is more complicated than saying “A higher number of effective Straight
Insertion Sort sort ranges” results in a faster algorithm. The only measurement that is for
sure, is to say that “Zero effective Straight Insertion Sort sort ranges do not result in a faster
algorithm”. This applies very well to the clothball scene: Frame two, three and four are the only
frames that allow a partly sort by Straight Insertion Sort. In addition, frames three and four are
sorted entirely by Straight Insertion Sort (this is not visible in the graph here). So these three
frames will be sorted faster by AdaptiveFrameSort than by std::stable_sort. The proof can be

70

Diploma ThesisA Time-Based Adaptive Hybrid Sorting Algorithm on CPU and GPU with Application
to Collision Detection

CHAPTER 7. DETAILED RESULTS

found in figure 7.1.

The clothcar scene is quite stable in terms of pre-sorted data ranges. Starting with frame three,
all subsequent frames will be sorted by two Straight Insertion Sort sort ranges and one std::
stable_sort range. This is also fast, though as soon as there is a n · logn algorithm sort range
envolved, it is no guarantee for being faster as a complete sort by the n · logn algorithm. The
GPU version shows that for CUDA compute compatibility 3.5 in figure 7.3.

In the funnel scene there are even up to three Straight Insertion Sort sort ranges, while there
is no std::stable_sort sort range. In this case the algorithm is also fast (see figure 7.2) but a
real advantage at this point is parallelism: The GPU version will execute those three sort ranges
in parallel at the same time, so the whole execution time will be as long as its longest subset
execution time.

Overall, a higher number of effective Straight Insertion Sort sort ranges though also means that
the algorithm has to perform a higher number of merges. In the case of two or three sort ranges
AdaptiveFrameSort will perform a heuristical merge only around the sort range borders, but if
there are more than three sort ranges, this heuristical will not be performed and execution times
get abruptly higher. At the same time, only one effective Straight Insertion Sort sort range can
also mean that the entire frame is sorted by Straight Insertion Sort, which is very fast.

7.4 Conclusions Based on Measures of Unsortedness

Comparing the CPU results from figures 7.1, 7.2 and 7.3 with the scenes’ analyses based on
measures of unsortedness mentioned at the beginning of this work, it becomes very clear how
the used algorithms work.

For the clothball Timsort’s timing curve looks very similar to the rem measure belonging to
the scene (see figure 5.1). In fact, Timsort makes use of a Natural Merge Sort (see also section
2.4.8); Comparing this alone, a Straight Merge Sort is already optimal to the runs measure
and adaptive to inv and rem (see also section 2.1.2.2). Timsort’s additional methods, like an
Exponential Search, seem to make it mostly affected by the rem measure. std::stable_sort’s
timing curve looks very similar to the scene’s runs measure. Therefore the two algorithms make
use of different measures of unsortedness. Looking at AdaptiveFrameSort, this newly introduced
algorithm takes the advantage of both measures, whereas it does NOT take their disadvantages.
This is very clearly visible for the funnel scene: Between frames 30 and 130, AdaptiveFrameSort
has a similarly low runtime as Timsort, after frame 130 the rem unsortedness gets higher a lot
(up to 76.3%) while the runs measure will not exceed 15.8% of unsortedness (see figure 5.2). In
the same manner AdaptiveFrameSort does not follow Timsort’s runtime but — since it actually
uses std::stable_sort as fallback — changes its measure of unsortedness to the less exhausting

71

Diploma ThesisA Time-Based Adaptive Hybrid Sorting Algorithm on CPU and GPU with Application
to Collision Detection

CHAPTER 7. DETAILED RESULTS

runs measure. In case it uses Straight Insertion Sort (in addition to std::stable_sort), the
measure is exactly that of inv (as noted before already). This measure does not get affected as
vastly as any of the other measures. This means, it takes the advantage of both measures, rem
and runs, but not their disadvantages.

7.5 Clothcar Details

The bigger scenes get, the more time a non-adaptive sorting algorithm will spend to sort their
bounding boxes. In case of the clothcar scene with its 1,384,312 bounding boxes, Thrust’s
thrust::stable_sort takes around 9.5 ms with a Kepler graphics card to sort these. 9.5 ms
do not leave much time for an algorithms overhead. Table 7.1 shows how AdaptiveFrameSort’s
algorithm parts are distributed among the runtime. Note that the total times are sums of the
part times. Furthermore, the part times are calculated from ONE run (based on the time-based
adaptiveness of the algorithm it is hard to measure multiple runs, since the whole animation has
to be restarted for that). If you want to have the exact execution times of AdaptiveFrameSort,
rather refer to figure 7.1.

CPU CUDA CC 1.3 CUDA CC 3.5

Time (ms) AFS* STL Timsort AFS* Thrust AFS* Thrust

Memory Preparing 3.5 0.3 0.1

Subset Sort (n-nsquare) 1.0 1.9 2.6

Subset Sort (n · logn) 24.5 13.0 5.7

Subset Merge 0.8 1.1 0.2

Compute Sort Ranges 5.5 1.0 0.0

Total 35.3 128.3 48.2 17.3 28.2 8.6 10.5

Table 7.1 Detailed AdaptiveFrameSort timings for the clothcar scene, frame 40. Num-
ber of bounding boxes: 1,384,312. Length of CPU/GPU subsets: n-nsquare:
{484,505;415,302}, n · logn: 484,505. *AdaptiveFrameSort

72

Diploma ThesisA Time-Based Adaptive Hybrid Sorting Algorithm on CPU and GPU with Application
to Collision Detection

CHAPTER 7. DETAILED RESULTS

Figure 7.6 Clothcar scene, frame 40

It is clearly visible that the mere sort of the n-nsquare subsets takes very little time compared
to the n · logn subset sort. This is based on the fact that the with the car colliding cloth is very
complex (345,984 bounding boxes). This is why the n · logn subset consists of around 35% of all
bounding boxes (the cloth’s bounding boxes plus on the X-axis projected colliding car bounding
boxes). It is nice to see that the GPU version of AdaptiveFrameSort uses parallelization very
well in moments it can be used. The memory preparation takes only 0.3 ms, whereas the CPU
version has to consecutively go through every element once, which results in 3.5 ms of time. In
addition, the computation of the next frame’s sort ranges takes 5.5 ms on CPU, while the CUDA
version only takes 1 ms, which is very little compared to the 28.2 ms thrust::stable_sort takes
to sort all bounding boxes (CUDA compute compatibility 1.3).

For CUDA compute compatiblity 3.5 we can measure a speed-up in many of the algorithm’s
parts. Memory preparing takes only 0.1 ms instead of 0.3 ms in compute compatibility 1.3. A
real win can be found in the subset merge: 0.2 ms instead of 1.1 ms. The n-nsquare sort time
remained roughly the same (2.6 ms instead of 1.9 ms). In fact, Thrust’s sorting algorithm also
gained a vast speed-up, which makes it harder to compete with it. While AdaptiveFrameSort had
28.2 ms - 13.0 ms = 15.2 ms of time for using its fast sides, now it only has 10.5 ms - 5.7 ms =
4.8 ms of time. Taking that the current Cocktailsort algorithm takes 2.6 ms for its subsets, there
are only 2.2 ms left for the overall algorithm’s overheard plus some extra time that we would
like to become faster than the original Thrust algorithm. This can only mean one thing: The
clothcar scene is still not big enough to have a real gain from AdaptiveFrameSort, respectively,
the cloth covers too much space on the X-axis, which results in relatively too much time used
for sorting the n · logn subset.

Overall, for less cloth polygons or smaller cloth sizes (relatively to the car), AdaptiveFrameSort
could be still faster. In summary, it is very helpful for AdaptiveFrameSort if it can sort edges
very fast and the input data’s middle range slowly with a non-adaptive algorithm. In this case
(either 2 or 3 sort ranges exist) the merge heuristic will be effective and can merge the sorted
subsets very quickly.

73

Diploma ThesisA Time-Based Adaptive Hybrid Sorting Algorithm on CPU and GPU with Application
to Collision Detection

CHAPTER 7. DETAILED RESULTS

7.5.1 Average Timings For All Frames

The previous section investigated single steps of the algorithm. This section is interested in
overall timings for the whole animation sequence. Figure 7.7 shows results for all examined
algorithms, based on average execution times over all 150 frames after 100 runs. Each animation
run (which consists of 150 frames for the clothcar scene) delivers a total execution time and the
animation will be run 100 times in order to create an average execution time over all runs.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

st
d

::
st

a
b

le
_s

o
rt

st
d

::
st

a
b

le
_s

o
rt

 w
/o

 A
FS

T
im

so
rt

A
d

a
p

ti
v
e
Fr

a
m

e
S

o
rt

 C
P
U

T
im

so
rt

 w
/o

 A
FS

th
ru

st
::

st
a
b

le
_s

o
rt

 (
C

C
 1

.3
)

th
ru

st
::

st
a
b

le
_s

o
rt

 w
/o

 A
FS

 (
C

C
 1

.3
)

A
d

a
p

ti
v
e
Fr

a
m

e
S

o
rt

 G
P
U

 (
C

C
 1

.3
)

A
d

a
p

ti
v
e
Fr

a
m

e
S

o
rt

 G
P
U

 (
C

C
 3

.5
)

th
ru

st
::

st
a
b

le
_s

o
rt

 (
C

C
 3

.5
)

th
ru

st
::

st
a
b

le
_s

o
rt

 w
/o

 A
FS

 (
C

C
 3

.5
)A

v
e
ra

g
e
 E

x
e
cu

ti
o
n
 T

im
e
 A

ft
e
r

1
0

0
 R

u
n
s

Fo
r

A
ll

Fr
a
m

e
s

(m
s)

Figure 7.7 Average timings for the clothcar scene and any examined algorithm. The displayed
timings are an average over all 150 frames being run 100 times. Sorted from slowest
to fastest algorithm on the X-axis

On CPU, AdaptiveFrameSort is around 1.6 times faster than std::stable_sort sorting input data
without additional overhead (marked as “w/o AFS”, meaning without AdaptiveFrameSort data,
which is an extra integer variable that resides in the data structure, see also section 7.2) and it is
competitive to Timsort, although Timsort is slighly faster for sorting without overhead. Being
552 ms faster, AdaptiveFrameSort beats thrust::stable_sort (without additional overhead) on
GPU with CUDA compute compatibility 1.3, making it an actual adaptive sorting algorithm on

74

Diploma ThesisA Time-Based Adaptive Hybrid Sorting Algorithm on CPU and GPU with Application
to Collision Detection

CHAPTER 7. DETAILED RESULTS

GPU. Using CUDA compute compatibility 3.5 though, AdaptiveFrameSort cannot sort as fast as
thrust::stable_sort; altogether, it is around 408 ms slower but still faster than all other tested
sorting algorithms.

7.6 Funnel Details

7.6.1 Average Timings For All Frames

Just as shown in section 7.5.1, this section will investigate overall timings for the funnel scene,
as well. Figure 7.8 shows the results.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

A
d

a
p

ti
v
e
Fr

a
m

e
S

o
rt

 G
P
U

 (
C

C
 1

.3
)

th
ru

st
::

st
a
b

le
_s

o
rt

 (
C

C
 1

.3
)

A
d

a
p

ti
v
e
Fr

a
m

e
S

o
rt

 G
P
U

 (
C

C
 3

.5
)

T
im

so
rt

T
im

so
rt

 w
/o

 A
FS

th
ru

st
::

st
a
b

le
_s

o
rt

 w
/o

 A
FS

 (
C

C
 1

.3
)

th
ru

st
::

st
a
b

le
_s

o
rt

 (
C

C
 3

.5
)

st
d

::
st

a
b

le
_s

o
rt

th
ru

st
::

st
a
b

le
_s

o
rt

 w
/o

 A
FS

 (
C

C
 3

.5
)

A
d

a
p

ti
v
e
Fr

a
m

e
S

o
rt

 C
P
U

st
d

::
st

a
b

le
_s

o
rt

 w
/o

 A
FS

A
v
e
ra

g
e
 E

x
e
cu

ti
o
n
 T

im
e
 A

ft
e
r

1
0

0
 R

u
n
s

Fo
r

A
ll

Fr
a
m

e
s

(m
s)

Figure 7.8 Average timings for the funnel scene and any examined algorithm. The displayed
timings are an average over all 500 frames being run 100 times. Sorted from slowest
to fastest algorithm on the X-axis

Whereas for the clothcar scene the slowest algorithm was std::stable_sort (see figure 7.7), it is

75

Diploma ThesisA Time-Based Adaptive Hybrid Sorting Algorithm on CPU and GPU with Application
to Collision Detection

CHAPTER 7. DETAILED RESULTS

interesting to mention that in the funnel scene the same algorithm turns out to be the fastest
sorter (sorting only the bounding boxes, without having additional AdaptiveFrameSort payload
in the data structure). Compared to the winning overall time of 505 ms, AdaptiveFrameSort is
around 8.5 ms slower but 66.4 ms faster than in the case that std::stable_sort sorts the same
input data as AdaptiveFrameSort, which makes it competitive. Both, GPU algorithms (Thrust’s
as well as especially AdaptiveFrameSort) and the Timsort implementation lack of sorting speed
in the funnel scene.

7.7 Clothball Details

Among other details, the previous sections investigated overall timing results for the scenes
clothcar and funnel. As stated before in section 7.3 already, the clothball scene is not very
handy for a faster sorting using an adaptive algorithm, though. For this reason, the section will
only examine two representative frames closely in order to demonstrate AdaptiveFrameSort’s
strengths and weaknesses rather than showing overall timing results.

Tables 7.2 and 7.3 refer to figure 6.8. Just according to the sort ranges displayed in the figure, the
sorting of frame 4 (see table 7.2) is very fast for AdaptiveFrameSort (0.6 ms compared to STL’s
5.1 ms). The adaptive Timsort is a comparably fast (also 0.6 ms). With 0.5 ms the computation
of the next sort ranges is quite fast, though compared to the 0.6 ms overall sorting time it is too
high.

Time (ms) AFS CPU STL Timsort

Memory Preparing 0.1

Subset Sort (n-nsquare) 0.0

Subset Sort (n · logn) 0.0

Subset Merge 0.0

Compute Sort Ranges 0.5

Total 0.6 5.1 0.6

Table 7.2 Detailed AdaptiveFrameSort timings for the clothball scene, frame 4. Number of
bounding boxes: 184,460. Length of CPU subsets: n-nsquare: {92,230;92,230}

Frame 5 (see table 7.3) reveals the full functionality of AdaptiveFrameSort. Frame 4 suggested to
use two equally sized n-nsquare sort ranges for frame 5. In frame 5 though, these were surprised

76

Diploma ThesisA Time-Based Adaptive Hybrid Sorting Algorithm on CPU and GPU with Application
to Collision Detection

CHAPTER 7. DETAILED RESULTS

by two much movement at their edges (at the end of range 1 and at the beginning of range 2).
This leads to an exceeding of the InvThreshold and a fallback to n·logn sort. Since the algorithm
merges both fallen back ranges, only one n · logn sort remains. The execution now takes the same
time as a regular n · logn sort plus AdaptiveFrameSort’s overhead for the memory preparation,
the initially launched n-nsquare algorithms and the computation of new sort ranges. Here, this
overhead is 0.6 ms high and the algorithm’s time will be slightly higher than the original STL
algorithm.

Time (ms) AFS CPU STL Timsort

Memory Preparing 0.1

Subset Sort (n-nsquare) 0.0*

Subset Sort (n · logn) 5.4

Subset Merge 0.0

Compute Sort Ranges 0.5

Total 6.0 5.7 3.5

Table 7.3 Detailed AdaptiveFrameSort timings for the clothball scene, frame 5. Number of
bounding boxes: 184,460. Length of CPU subsets: n-nsquare: {27,669;9,223;9,223;
9,223;64,561}, n · logn: {9,223;36,892;18,446}. *after fallback / exceeding the In-
vThreshold

77

Chapter 8

Conclusion

8.1 General Conclusion

A goal of this thesis was, to implement a novel time-based adaptive sorting algorithm. This goal
succeeded.
In order to represent “real world data”, two also in other papers used cloth animations were
chosen, analyzed for pre-sorted data and their into 1D projected AABBs were consecutively
sorted by different algorithms.

On CPU, the presented algorithm turned out to be faster than the adaptive hybrid algorithm
Timsort, measured as a sum of sorting times over all frames in the representative animations. In
a third animation type, a high-polygon cloth falls down on a high-polygon rigid and not moving
car body. In this scene, Timsort was slightly faster. Both algorithms are hybrid and work in a
similar way, which makes the comparison valid in a detailed level. Timsort uses a combination of
InsertionSort and Natural Merge Sort, whereas AdaptiveFrameSort uses a combination of Straight
Insertion Sort, STL’s std::stable_sort (which uses a combination of InsertionSort, Merge With
Buffer and Adaptive In-Place Merge) and STL’s Adaptive In-Place Merge. AdaptiveFrameSort’s
approach is rather a more generalizing; it utilizes existing algorithms “out-of-the-box”, having
its core features by exploiting fast algorithms and developing efficient strategies for using them.

AdaptiveFrameSort not only represents a hybrid algorithm, through its general approach it is
easy to port to GPU streaming architectures. For the representative cloth animations, for older
CUDA compute compatibilities (1.3, Tesla architecture), it shows similar results as the CPU
version. For the additional clothcar scene, again, it shows similar results and after 150 frames
already it gains a distinct win compared to Thrust’s Merge Sort. For the more recent CUDA
compute compatibility 3.5 (Kepler architecture), the algorithm offers rather poor results. In one
of the representative scenes with a high rate of sub-algorithm switches, it results in a distinct
loss compared to Thrust’s non-adaptive algorithm. Also in the clothcar scene, it cannot achieve
a win. Altogether, it means that the algorithm — as it is — succeeds in being adaptive on

78

Diploma ThesisA Time-Based Adaptive Hybrid Sorting Algorithm on CPU and GPU with Application
to Collision Detection

CHAPTER 8. CONCLUSION

GPU, which already puts a value to GPU sorting algorithms. Most established algorithms
focus on highly optimized parallelism, rather than on adaptiveness. In terms of speed on GPU,
AdaptiveFrameSort has to develop still for being competitive with recent architectures (which
will be explained more closely in the next chapter).

At this point, though, it is important to mention that many algorithms presented in previous
works were developed in an early state of CUDA: The hybrid GPU sort presented in [SA08] was
published in the year 2008, using an NVIDIA GeForce 8600GTS graphics card, which deploys
CUDA compute compatibility 1.1. In the paper, Radix Sort [SHG09] took about 600 ms for
sorting 8 · 106 elements, whereas in a test run on hardware with CUDA compute compatibility
3.5 (an NVIDIA GeForce GTX 780) sorting the same amount of elements, Thrust’s Radix Sort
only takes 9 ms. The hybrid algorithm itself copied data from GPU to CPU memory (which
also happens in a small extend for AdaptiveFrameSort); in the paper, it represented a small
fraction of execution time. Nowadays, these memory copying times would account for a bigger
part in execution times (for example, 9 ms do not leave a big gap for overhead). This means,
that in more recent versions, CUDA offers a higher variety of instructions, as well as better
caching techniques and overall faster underlying hardware. AdaptiveFrameSort and its utilized
Cocktailsort produce too much overhead compared to Thrust’s highly optimized Merge Sort.

Concluding, in its already optimized implementation, AdaptiveFrameSort paves the way for the
introduction of time-based adaptive algorithms and adaptive GPU algorithms at the same time.

8.2 Future Work

The in this paper presented algorithm proved itself to be practically usable in many situations.
Nevertheless, it offers much possibility for improvements. In the following course, some aspects
will be listed.

Through the forecast of timings, AdaptiveFrameSort profits from hardware-specific parameters.
In the course of the thesis, these parameters were established for a CPU system, a graphics card
with CUDA compute compatibility 1.3 and a graphics card with CUDA compute compatibility
3.5. An idea for imrovement is, to introduce a method for setting these parameters based on an
analysis of the underlying hardware in each concrete sorting case. This analysis only has to be
run once on each new hardware component and should improve boundaries for the algorithm.

On CPU, the algorithm is implemented only in a serial way. First of all, this makes it more
comparable to other serial sorting algorithms. In fact, just as for the GPU version, many parts
of the algorithm could be parallelized on CPU as well: Range sums could be calculated in parallel,
n-nsquare and nlogn sort ranges could be sorted fully in parallel, each sort range separately in
one CPU thread. Although merging the sort ranges is already adaptive (especially with the local

79

Diploma ThesisA Time-Based Adaptive Hybrid Sorting Algorithm on CPU and GPU with Application
to Collision Detection

CHAPTER 8. CONCLUSION

merge heuristic) and STL’s In-Place Merge is already in-place and adaptive, a global merge of
all sort ranges could be run concurrently, maybe in a manner similar to Parallel Prefix Sums in
[HSO07].

The same argument in a wider scale counts for the GPU version: Merging the sort ranges is
currently even non-adaptive (from sides of Thrust’s Merge); some preceding scans might generate
a speed-up, considering that most sort ranges would not have much overlap to each other.

One of the most necessary improvements for this algorithm is the following: Straight Insertion
Sort for the CPU already has a linear runtime compared to the inv measure. The GPU’s
Cocktailsort though, offers only super-linear time in this case. Its implementation only utilizes
one CUDA block at a time and compared to Thrust’s Merge Sort, for small input data, it has
to much overhead. Whereas for realistic 270,000 elements on CPU Straight Insertion Sort only
meets STL Stable Sort’s execution time for around five million inversions, for the same amount
of elements on GPU, Cocktailsort meets Thrust Merge Sort’s execution time for already 500 (!)
inversions. This implies, that in the representative animations, which involve a lot of relative
movement, AdaptiveFrameSort cannot even be effective on GPU. In the past, major research
did not focus on implementing efficient n-nsquare algorithms on GPU. In this thesis, a first
step towards doing that has been done. As future work, a multi-block version with less overhead
while utilizing more state-of-the-art CUDA instructions, would help improve the presented hybrid
algorithm decisively on GPU.

80

Appendix A

Appendix

A.1 List of Figures

2.1 A Bitonic Sorting Network for eight elements with three phases 16
2.2 An Odd-Even Sorting Network for eight elements with eight phases 19

4.1 Clothball scene . 23
4.2 Funnel scene . 23
4.3 Clothcar scene . 24

5.1 Clothball unsortedness . 25
5.2 Funnel unsortedness . 26
5.3 Clothcar unsortedness . 26
5.4 Early state of the clothball scene. False colors represent frame-wide unsortedness

of bounding boxes in the model (compared to the previous frame); red triangles
represent high unsortedness, blue triangles low unsortedness. The bar undearneath
the model visualizes calculated sort ranges: blue ranges represent n-nsquare algo-
rithm parts and red ranges represent nlogn algorithm parts. 28

5.5 Clothball’s maximum sort distances. At this algorithm state, small sort ranges
might imply little unsortedness and a good speed-up chance for an adaptive algo-
rithm. 29

6.1 CPU in-depth analysis on an array with 18,446 elements. A pollution (an unsorted
item) is inserted with an increasing sort distance towards the end of the array . . 38

6.2 GPU in-depth analysis with CUDA compute compatibility 3.5 on an array with
18,446 elements. A pollution (an unsorted item) is inserted with an increasing
sort distance towards the end of the array . 39

6.3 CPU in-depth analysis. Tested with OS: Ubuntu 12.04 i386, CPU: Intel(R)
Core(TM) i7 CPU 860 @ 2.80GHz, Memory: 4 GB. 42

81

Diploma ThesisA Time-Based Adaptive Hybrid Sorting Algorithm on CPU and GPU with Application
to Collision Detection

APPENDIX A. APPENDIX

6.4 GPU in-depth analysis with CUDA Compute Compatibility 1.3. Tested with OS:
Ubuntu 12.04 i386, CPU: Intel(R) Core(TM) i7 CPU 860 @ 2.80GHz, Memory: 4
GB, Graphics card: NVIDIA GeForce GTX 260, NVIDIA Driver: 331.62. 46

6.5 GPU in-depth analysis with CUDA Compute Compatibility 3.5. Tested with
OS: Windows 7 Enterprise 64bit SP1, CPU: Intel(R) Core(TM) i7-4770K CPU @
3.50GHz, Memory: 16.0 GB Ram, Graphics card: NVIDIA GeForce GTX 780,
NVIDIA Driver: 340.52. 49

6.6 Comparison of sequential n-nsquare range sort and block based parallel n-nsquare
range execution for the clothcar scene (CUDA compute compatibility 1.3) 53

6.7 Time comparison for the clothball scene, with and without merging any nlogn sort
ranges . 56

6.8 Detailed InvThreshold results for the clothball scene. Number of “Range Sum”
ranges: 20. Width of one “Range Sum” range: 9,223. The “Range Sum” threshold
is set to a constant value of 60,375 (CPU) and 250 (GPU) (beyond this, the “Range
Sums” are marked red instead of blue) . 57

7.1 Clothball final timing results . 64
7.2 Funnel final timing results . 65
7.3 Clothcar final timing results . 67
7.4 Final timing results without AFS data overhead for the algorithms std::stable_sort

, timsort and thrust::stable_sort. From top to bottom: Clothball, funnel and
clothcar . 68

7.5 Straight Insertion Sort effectiveness for the CPU version 70
7.6 Clothcar scene, frame 40 . 73
7.7 Average timings for the clothcar scene and any examined algorithm. The displayed

timings are an average over all 150 frames being run 100 times. Sorted from slowest
to fastest algorithm on the X-axis . 74

7.8 Average timings for the funnel scene and any examined algorithm. The displayed
timings are an average over all 500 frames being run 100 times. Sorted from
slowest to fastest algorithm on the X-axis . 75

A.2 List of Tables

6.1 maxDistanceThreshold analysis for frame 3 of the clothball scene. Too big thresh-
olds might result in unrealistic forecasts of n-nsquare sort ranges and in high
execution times; too small thresholds might not fully deploy the advantage of
n-nsquare algorithms. 32

82

Diploma ThesisA Time-Based Adaptive Hybrid Sorting Algorithm on CPU and GPU with Application
to Collision Detection

APPENDIX A. APPENDIX

6.2 minimumRangeLength analysis for frame 3 of the clothball scene. Too small range
length values may lead to more n-nsquare sort ranges and overall higher execution
times; too long range lengths might result in too few n-nsquare sort ranges and
finally in no adaptive gain. 33

6.3 Merge algorithm analysis for frame 6 of the clothball scene. Number of sort ranges:
3 . 35

6.4 Final sub-algorithms. As used in this work, 1n-nsquare refers to the class of O(n2)
average case algorithms with a best case complexity of O(n), 2nlogn refers to the
class of O(n · logn) average case algorithms. 40

6.5 Speed comparison for adaptive data. Input array: 300,000 elements of type int . 41
6.6 CPU in-depth analysis: Execution Time Intersections between Straight Insertion

Sort and std::stable_sort. Notice: The number of swaps are rough values. . . . 43
6.7 Individual number of swaps thresholds for CPU: Analysis based on the clothball

scenario. *Static number of swaps threshold for all input lengths (old algorithm),
1NoS threshold for input length of <4,000, 2Total nlogn algorithm time (ms),
3Total AdaptiveFrameSort time . 44

6.8 Individual number of swaps thresholds for CPU. 1Input Length, 2Number of
Swaps, 3Number of swaps chosen as parameter compared to the intersecting value
from table 6.6, 4Time in Best Case: n-nsquare algorithm succeeds, 5Time in Worst
Case: Number of swaps exceeds efficient time for n-nsquare algorithm; fallback to
nlogn algorithm. This time is the sum of “Time in Best Case” plus the time that
the nlogn algorithm takes for sorting . 44

6.9 GPU in-depth analysis with CUDA Compute Compatibility 1.3: Execution Time
Intersections between Cocktailsort and thrust::stable_sort. Notice: The number
of swaps are rough values. This table was reduced to pairs that make use of a
different number of swaps. *For input lengths around 200 elements the overhead
for Cocktailsort is higher than for thrust::stable_sort. 47

6.10 Individual number of swaps thresholds for GPU with CUDA Compute Compatibil-
ity 1.3. 1Input Length, 2Number of Swaps, 3Number of swaps chosen as parameter
compared to the intersecting value from table 6.6, 4Time in Best Case: n-nsquare
algorithm succeeds, 5Time in Worst Case: Number of swaps exceeds efficient time
for n-nsquare algorithm; fallback to nlogn algorithm. This time is the sum of
“Time in Best Case” plus the time that the nlogn algorithm takes for sorting . . 48

6.11 Individual number of swaps thresholds for GPU with CUDA Compute Compatibil-
ity 3.5. 1Input Length, 2Number of Swaps, 3Number of swaps chosen as parameter
compared to the intersecting value from table 6.6, 4Time in Best Case: n-nsquare
algorithm succeeds, 5Time in Worst Case: Number of swaps exceeds efficient time
for n-nsquare algorithm; fallback to nlogn algorithm. This time is the sum of
“Time in Best Case” plus the time that the nlogn algorithm takes for sorting . . 50

83

Diploma ThesisA Time-Based Adaptive Hybrid Sorting Algorithm on CPU and GPU with Application
to Collision Detection

APPENDIX A. APPENDIX

6.12 Time comparison of different algorithms for calculating the range sums within the
clothcar scene for frame 0. *Tested with CUDA compute compatibility 1.3 50

6.13 Range sums calculated by the own sum implementation for clothball frame 40 . . 52
6.14 n · logn subdivision example for n=100 . 54

7.1 Detailed AdaptiveFrameSort timings for the clothcar scene, frame 40. Num-
ber of bounding boxes: 1,384,312. Length of CPU/GPU subsets: n-nsquare:
{484,505;415,302}, n · logn: 484,505. *AdaptiveFrameSort 72

7.2 Detailed AdaptiveFrameSort timings for the clothball scene, frame 4. Number of
bounding boxes: 184,460. Length of CPU subsets: n-nsquare: {92,230;92,230} . . 76

7.3 Detailed AdaptiveFrameSort timings for the clothball scene, frame 5. Number of
bounding boxes: 184,460. Length of CPU subsets: n-nsquare: {27,669;9,223;9,223;
9,223;64,561}, n · logn: {9,223;36,892;18,446}. *after fallback / exceeding the
InvThreshold . 77

A.3 Bibliography

[AL90] Arne Andersson and Tony W Lai. “Fast updating of well-balanced trees”. In: SWAT
90. Springer, 1990, pp. 111–121.

[Bar92] David Baraff. “Dynamic Simulation of Non-Penetrating Rigid Bodies”. PhD thesis.
Cornell University, 1992.

[Bat68] Kenneth E Batcher. “Sorting networks and their applications”. In: Proceedings of
the April 30–May 2, 1968, spring joint computer conference. ACM. 1968, pp. 307–
314.

[Ber97] Gino van den Bergen. “Efficient collision detection of complex deformable models
using AABB trees”. In: Journal of Graphics Tools 2.4 (1997), pp. 1–13.

[Big+08] Paul Biggar, Nicholas Nash, Kevin Williams, and David Gregg. “An Experimental
Study of Sorting and Branch Prediction”. In: J. Exp. Algorithmics 12 (June 2008),
1.8:1–1.8:39. issn: 1084-6654. doi: 10.1145/1227161.1370599. url: http://doi.acm.
org/10.1145/1227161.1370599.

[Ble14] Blendswap. Aston Martin Rapide cycles. 2014. url: http://www.blendswap.com/
blends/view/26712.

[BN89] G. Bilardi and A. Nicolau. “Adaptive Bitonic Sorting: An Optimal Parallel Algo-
rithm for Shared-Memory Machines”. In: SIAM Journal on Computing 18.2 (1989),
pp. 216–228. doi: 10.1137/0218014.

[Cap+09] Gabriele Capannini, Fabrizio Silvestri, Ranieri Baraglia, and Franco Maria Nardini.
“Sorting using bitonic network with CUDA”. In: Proc. LSDS-IR (2009), pp. 33–40.

84

http://dx.doi.org/10.1145/1227161.1370599
http://doi.acm.org/10.1145/1227161.1370599
http://doi.acm.org/10.1145/1227161.1370599
http://www.blendswap.com/blends/view/26712
http://www.blendswap.com/blends/view/26712
http://dx.doi.org/10.1137/0218014

Diploma ThesisA Time-Based Adaptive Hybrid Sorting Algorithm on CPU and GPU with Application
to Collision Detection

APPENDIX A. APPENDIX

[CLP93] Svante Carlsson, Christos Levcopoulos, and Ola Petersson. “Sublinear merging and
natural mergesort”. English. In: Algorithmica 9.6 (1993), pp. 629–648. issn: 0178-
4617. doi: 10.1007/BF01190160. url: http://dx.doi.org/10.1007/BF01190160.

[CT08] Daniel Cederman and Philippas Tsigas. “A practical quicksort algorithm for graph-
ics processors”. In: Algorithms-ESA 2008. Springer, 2008, pp. 246–258.

[Dij82] Edsger W. Dijkstra. “Smoothsort, an alternative for sorting in situ”. In: Science
of Computer Programming 1.3 (1982), pp. 223–233. issn: 0167-6423. doi: http :
//dx.doi.org/10.1016/0167-6423(82)90016-8.

[Dom11] Ken Domino. Lecture 4: Introduction to Parallel Computing Using CUDA. IEEE
Boston Continuing Education Program, 2011. url: http://domemtech.com/ieee_
pp/Lecture4.pdf.

[EF03] Amr Elmasry and Michael L Fredman. “Adaptive sorting and the information the-
oretic lower bound”. In: STACS 2003. Springer, 2003, pp. 654–662.

[Elm02] Amr Elmasry. “Priority queues, pairing, and adaptive sorting”. In: Automata, Lan-
guages and Programming. Springer, 2002, pp. 183–194.

[Elm04] Amr Elmasry. “Adaptive sorting with AVL trees”. In: Exploring New Frontiers of
Theoretical Informatics. Springer, 2004, pp. 307–316.

[Eri05] Christer Ericson. Real-time collision detection. Vol. 14. Elsevier Amsterdam/Boston,
2005.

[EW92] Vladmir Estivill-Castro and Derick Wood. “A Survey of Adaptive Sorting Algo-
rithms”. In: ACM Comput. Surv. 24.4 (Dec. 1992), pp. 441–476. doi: 10 .1145/
146370.146381. url: http://doi.acm.org/10.1145/146370.146381.

[Fou14] Python Software Foundation. Python Sorting. 2014. url: https://docs.python.org/
2/howto/sorting.html.

[Fuj12] Goro Fuji. cpp-TimSort. 2012. url: https://github.com/gfx/cpp-TimSort/blob/
master/timsort.hpp.

[GGK06] Alexander Greß, Michael Guthe, and Reinhard Klein. “GPU-based Collision De-
tection for Deformable Parameterized Surfaces”. In: Computer Graphics Forum.
Vol. 25. 3. Wiley Online Library. 2006, pp. 497–506.

[GLM96] Stefan Gottschalk, Ming C Lin, and Dinesh Manocha. “OBBTree: A hierarchical
structure for rapid interference detection”. In: Proceedings of the 23rd annual con-
ference on Computer graphics and interactive techniques. ACM. 1996, pp. 171–180.

[Gov+05a] Naga K. Govindaraju, Jim Gray, Ritesh Kumar, and Dinesh Manocha. GPUTera-
Sort: High Performance Graphics Coprocessor Sorting for Large Database Manage-
ment. Tech. rep. MSR-TR-2005-183. Original November 2005, Revised March 2006.
Microsoft Research, Dec. 2005, p. 14. url: http://research.microsoft.com/apps/
pubs/default.aspx?id=64572.

[Gov+05b] Naga K Govindaraju, David Knott, Nitin Jain, Ilknur Kabul, Rasmus Tamstorf,
Russell Gayle, Ming C Lin, and Dinesh Manocha. “Interactive collision detection

85

http://dx.doi.org/10.1007/BF01190160
http://dx.doi.org/10.1007/BF01190160
http://dx.doi.org/http://dx.doi.org/10.1016/0167-6423(82)90016-8
http://dx.doi.org/http://dx.doi.org/10.1016/0167-6423(82)90016-8
http://domemtech.com/ieee_pp/Lecture4.pdf
http://domemtech.com/ieee_pp/Lecture4.pdf
http://dx.doi.org/10.1145/146370.146381
http://dx.doi.org/10.1145/146370.146381
http://doi.acm.org/10.1145/146370.146381
https://docs.python.org/2/howto/sorting.html
https://docs.python.org/2/howto/sorting.html
https://github.com/gfx/cpp-TimSort/blob/master/timsort.hpp
https://github.com/gfx/cpp-TimSort/blob/master/timsort.hpp
http://research.microsoft.com/apps/pubs/default.aspx?id=64572
http://research.microsoft.com/apps/pubs/default.aspx?id=64572

Diploma ThesisA Time-Based Adaptive Hybrid Sorting Algorithm on CPU and GPU with Application
to Collision Detection

APPENDIX A. APPENDIX

between deformable models using chromatic decomposition”. In: ACM Transactions
on Graphics (TOG). Vol. 24. 3. ACM. 2005, pp. 991–999.

[Gui+77] Leo J. Guibas, Edward M. McCreight, Michael F. Plass, and Janet R. Roberts. “A
New Representation for Linear Lists”. In: Proceedings of the Ninth Annual ACM
Symposium on Theory of Computing. STOC ’77. ACM, 1977, pp. 49–60. doi: 10.
1145/800105.803395. url: http://doi.acm.org/10.1145/800105.803395.

[GZ06] A. Greß and G. Zachmann. “GPU-ABiSort: optimal parallel sorting on stream ar-
chitectures”. In: Parallel and Distributed Processing Symposium, 2006. IPDPS 2006.
20th International. Apr. 2006, 10 pp. doi: 10.1109/IPDPS.2006.1639284.

[He+07] Bingsheng He, Naga K Govindaraju, Qiong Luo, and Burton Smith. “Efficient
gather and scatter operations on graphics processors”. In: Proceedings of the 2007
ACM/IEEE conference on Supercomputing. ACM. 2007, p. 46.

[HSO07] Mark Harris, Shubhabrata Sengupta, and John D Owens. “Parallel prefix sum (scan)
with CUDA”. In: GPU gems 3.39 (2007), pp. 851–876.

[Kap+00] Ujval J Kapasi, William J Dally, Scott Rixner, Peter R Mattson, John D Owens,
and Brucek Khailany. “Efficient conditional operations for data-parallel architec-
tures”. In: Proceedings of the 33rd annual ACM/IEEE international symposium on
Microarchitecture. ACM. 2000, pp. 159–170.

[Khr14] Khronos. OpenCL. 2014. url: https://www.khronos.org/opencl/.
[Kim+09] Duksu Kim, Jae-Pil Heo, Jaehyuk Huh, John Kim, and Sung-eui Yoon. “HPCCD:

Hybrid parallel continuous collision detection using CPUs and GPUs”. In: Computer
Graphics Forum. Vol. 28. 7. Wiley Online Library. 2009, pp. 1791–1800.

[Knu75] D.E. Knuth. The Art of Computer Programming. Volume 3: Sorting and Searching.
Addison-Wesley, 1975.

[KW05] Peter Kipfer and Rüdiger Westermann. “Improved GPU sorting”. In: GPU gems 2
(2005), pp. 733–746.

[Lan12] Hans Werner Lang. Algorithmen in Java: Sortieren, Textsuche, Codierung, Kryp-
tografie. 3. Aufl. Informatik 10-2012. Online-Ressource (XV, 393 S.) München:
Oldenbourg, 2012. isbn: 9783486718973. url: http : / / dx . doi . org / 10 . 1524 /
9783486718973.

[Le 07] S. Le Grand. “Broad-phase collision detection with CUDA”. In: GPU Gems 3. Ed.
by H. Nguyen. Addison-Wesley Professional, 2007.

[LMM10] Christian Lauterbach, Qi Mo, and Dinesh Manocha. “gProximity: Hierarchical
GPU-based Operations for Collision and Distance Queries”. In: Computer Graphics
Forum. Vol. 29. 2. Wiley Online Library. 2010, pp. 419–428.

[LOS10] Nikolaj Leischner, Vitaly Osipov, and Peter Sanders. “GPU sample sort”. In: Par-
allel & Distributed Processing (IPDPS), 2010 IEEE International Symposium on.
IEEE. 2010, pp. 1–10.

86

http://dx.doi.org/10.1145/800105.803395
http://dx.doi.org/10.1145/800105.803395
http://doi.acm.org/10.1145/800105.803395
http://dx.doi.org/10.1109/IPDPS.2006.1639284
https://www.khronos.org/opencl/
http://dx.doi.org/10.1524/9783486718973
http://dx.doi.org/10.1524/9783486718973

Diploma ThesisA Time-Based Adaptive Hybrid Sorting Algorithm on CPU and GPU with Application
to Collision Detection

APPENDIX A. APPENDIX

[LP91] Christos Levcopoulos and Ola Petersson. “Splitsort—an adaptive sorting algo-
rithm”. In: Information Processing Letters 39.4 (1991), pp. 205–211.

[LP93] Christos Levcopoulos and Ola Petersson. “Adaptive heapsort”. In: Journal of Algo-
rithms 14.3 (1993), pp. 395–413.

[Man85] H. Mannila. “Measures of Presortedness and Optimal Sorting Algorithms”. In: Com-
puters, IEEE Transactions on C-34.4 (Apr. 1985), pp. 318–325. issn: 0018-9340.
doi: 10.1109/TC.1985.5009382.

[McI93] Peter McIlroy. “Optimistic Sorting and Information Theoretic Complexity”. In: Pro-
ceedings of the Fourth Annual ACM-SIAM Symposium on Discrete Algorithms.
SODA ’93. Society for Industrial and Applied Mathematics, 1993, pp. 467–474.
isbn: 0-89871-313-7. url: http://dl.acm.org/citation.cfm?id=313559.313859.

[Meh88] K Mehlhorn. Sortieren und Suchen, Band 1 von Datenstrukturen und effiziente
Algorithmen. 1988.

[MEP96] Alistair Moffat, Gary Eddy, and Ola Petersson. “Splaysort: Fast, versatile, practi-
cal”. In: Software: Practice and Experience 26.7 (1996), pp. 781–797.

[MZ14] David Mainzer and Gabriel Zachmann. Collision Detection Based on Fuzzy Scene
Subdivision. GPU Computing and Applications. Springer, 2014.

[NVI14a] NVIDIA. CUDA. 2014. url: https://developer.nvidia.com/cuda-zone.
[NVI14b] NVIDIA. CUDA Features and Technical Specifications. 2014. url: http ://docs .

nvidia.com/cuda/cuda-c-programming-guide/index.html#features-and-technical-
specifications.

[OW12] Thomas Ottmann and Peter Widmayer. Algorithmen und Datenstrukturen, 5. Au-
flage. Spektrum Akademischer Verlag, 2012. isbn: 978-3-8274-2803-5. doi: 10.1007/
978-3-8274-2804-2. url: http://dx.doi.org/10.1007/978-3-8274-2804-2.

[Pet02a] Tim Peters. Timsort. 2002. url: http://bugs.python.org/file4451/timsort.txt.
[Pet02b] Tim Peters. Timsort. 2002. url: https : / /mail . python . org / pipermail / python -

dev/2002-July/026837.html.
[PM92] Ola Petersson and Alistair Moffat. “A framework for adaptive sorting”. English. In:

Algorithm Theory — SWAT ’92. Ed. by Otto Nurmi and Esko Ukkonen. Vol. 621.
Lecture Notes in Computer Science. Springer Berlin Heidelberg, 1992, pp. 422–433.
isbn: 978-3-540-55706-7. doi: 10.1007/3-540-55706-7_38. url: http://dx.doi.org/
10.1007/3-540-55706-7_38.

[PSL10] Hagen Peters, Ole Schulz-Hildebrandt, and Norbert Luttenberger. “Fast in-place
sorting with cuda based on bitonic sort”. In: Parallel Processing and Applied Math-
ematics. Springer, 2010, pp. 403–410.

[PSL12] Hagen Peters, Ole Schulz-Hildebrandt, and Norbert Luttenberger. “A novel sorting
algorithm for many-core architectures based on adaptive bitonic sort”. In: Parallel &
Distributed Processing Symposium (IPDPS), 2012 IEEE 26th International. IEEE.
2012, pp. 227–237.

87

http://dx.doi.org/10.1109/TC.1985.5009382
http://dl.acm.org/citation.cfm?id=313559.313859
https://developer.nvidia.com/cuda-zone
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#features-and-technical-specifications
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#features-and-technical-specifications
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#features-and-technical-specifications
http://dx.doi.org/10.1007/978-3-8274-2804-2
http://dx.doi.org/10.1007/978-3-8274-2804-2
http://dx.doi.org/10.1007/978-3-8274-2804-2
http://bugs.python.org/file4451/timsort.txt
https://mail.python.org/pipermail/python-dev/2002-July/026837.html
https://mail.python.org/pipermail/python-dev/2002-July/026837.html
http://dx.doi.org/10.1007/3-540-55706-7_38
http://dx.doi.org/10.1007/3-540-55706-7_38
http://dx.doi.org/10.1007/3-540-55706-7_38

Diploma ThesisA Time-Based Adaptive Hybrid Sorting Algorithm on CPU and GPU with Application
to Collision Detection

APPENDIX A. APPENDIX

[Pur+03] Timothy J Purcell, Craig Donner, Mike Cammarano, Henrik Wann Jensen, and Pat
Hanrahan. “Photon mapping on programmable graphics hardware”. In: Proceedings
of the ACM SIGGRAPH/EUROGRAPHICS conference on Graphics hardware. Eu-
rographics Association. 2003, pp. 41–50.

[SA08] Erik Sintorn and Ulf Assarsson. “Fast parallel GPU-sorting using a hybrid algo-
rithm”. In: Journal of Parallel and Distributed Computing 68.10 (2008), pp. 1381–
1388.

[Sch61] C. Schensted. “Longest increasing and decreasing subsequence”. In: Canadian Jour-
nal of Mathematics 13 (1961), pp. 179–191. doi: 10.4153/CJM-1961-015-3.

[Sch80] Jacob T Schwartz. “Ultracomputers”. In: ACM Transactions on Programming Lan-
guages and Systems (TOPLAS) 2.4 (1980), pp. 484–521.

[Sed98] Robert Sedgewick. Algorithms in c++, parts 1-4 (fundamental algorithms, data
structures, sorting, searching). Addison-Wesley, 1998.

[Sen+07] Shubhabrata Sengupta, Mark Harris, Yao Zhang, and John D Owens. “Scan prim-
itives for GPU computing”. In: Graphics Hardware. Vol. 2007. 2007, pp. 97–106.

[SGI14a] SGI. inplace_merge. 2014. url: https://www.sgi.com/tech/stl/inplace_merge.html.
[SGI14b] SGI. sort. 2014. url: https://www.sgi.com/tech/stl/sort.html.
[SGI14c] SGI. stable_sort. 2014. url: https://www.sgi.com/tech/stl/stable_sort.html.
[SGI14d] SGI. STL. 2014. url: https://www.sgi.com/tech/stl/download.html.
[SHG09] N. Satish, M. Harris, and M. Garland. “Designing efficient sorting algorithms for

manycore GPUs”. In: Parallel Distributed Processing, 2009. IPDPS 2009. IEEE
International Symposium on. May 2009, pp. 1–10. doi: 10 . 1109/ IPDPS .2009 .
5161005.

[Ski88] StevenS. Skiena. “Encroaching lists as a measure of presortedness”. English. In: BIT
Numerical Mathematics 28.4 (1988), pp. 775–784. issn: 0006-3835. doi: 10.1007/
BF01954897. url: http://dx.doi.org/10.1007/BF01954897.

[SS93] R. Schaffer and R. Sedgewick. “The Analysis of Heapsort”. In: Journal of Algorithms
15.1 (1993), pp. 76–100. issn: 0196-6774. doi: http://dx.doi.org/10.1006/jagm.
1993.1031.

[SW11] Robert Sedgewick and Kevin Wayne. Algorithms, 4th Edition. Addison-Wesley,
2011.

[Tan+11] Min Tang, Dinesh Manocha, Jiang Lin, and Ruofeng Tong. “Collision-streams: fast
gpu-based collision detection for deformable models”. In: Symposium on interactive
3D graphics and games. ACM. 2011, pp. 63–70.

[UNC14] UNC. UNC Dynamic Scene Benchmarks. 2014. url: http://gamma.cs.unc.edu/
DYNAMICB/.

[Van91] Allen Van Gelder. Simple adaptive merge sort. 1991.
[WZ09] Rene Weller and Gabriel Zachmann. “Inner sphere trees for proximity and penetra-

tion queries.” In: Robotics: Science and Systems. Vol. 2. 2009.

88

http://dx.doi.org/10.4153/CJM-1961-015-3
https://www.sgi.com/tech/stl/inplace_merge.html
https://www.sgi.com/tech/stl/sort.html
https://www.sgi.com/tech/stl/stable_sort.html
https://www.sgi.com/tech/stl/download.html
http://dx.doi.org/10.1109/IPDPS.2009.5161005
http://dx.doi.org/10.1109/IPDPS.2009.5161005
http://dx.doi.org/10.1007/BF01954897
http://dx.doi.org/10.1007/BF01954897
http://dx.doi.org/10.1007/BF01954897
http://dx.doi.org/http://dx.doi.org/10.1006/jagm.1993.1031
http://dx.doi.org/http://dx.doi.org/10.1006/jagm.1993.1031
http://gamma.cs.unc.edu/DYNAMICB/
http://gamma.cs.unc.edu/DYNAMICB/

Diploma ThesisA Time-Based Adaptive Hybrid Sorting Algorithm on CPU and GPU with Application
to Collision Detection

APPENDIX A. APPENDIX

[Ye+10] Xiaochun Ye, Dongrui Fan, Wei Lin, Nan Yuan, and Paolo Ienne. “High performance
comparison-based sorting algorithm on many-core GPUs”. In: Parallel & Distributed
Processing (IPDPS), 2010 IEEE International Symposium on. IEEE. 2010, pp. 1–
10.

[Ye+11] Yin Ye, Zhihui Du, David A Bader, Quan Yang, and Weiwei Huo. “GPUMemSort:
A High Performance Graphic Co-processors Sorting Algorithm for Large Scale In-
Memory Data”. In: GSTF International Journal on Computing 1.2 (2011), pp. 23–
28.

89

	Contents
	Introduction
	Related Work
	Unsortedness
	Measures of Unsortedness
	Inv
	Runs
	Rem
	Other Measures

	Measure-Optimal Sorting Algorithms
	Inv-Optimal Sorting Algorithms
	Optimal Sorting Algorithms for Multiple Measures

	Lower Worst-Case Complexity Bound for Sorting
	Adaptive Merging
	Adaptive CPU Sorting Algorithms
	Bubblesort and Cocktailsort
	Straight Insertion Sort
	Shell Sort
	Natural Merge Sort
	Adaptive Heap Sort
	Smoothsort
	Splaysort
	Timsort: An Example of Hybrid Algorithms

	GPU Sorting Algorithms
	Bitonic Sort
	Merge Sort
	Odd-Even Merge Sort
	Radix Sort
	Quicksort
	Hybrid: Bucket Sort + Merge Sort
	Others

	Adaptive GPU Sorting Algorithms
	Odd-Even Sort

	Methodology
	Scenes
	Selection of the Scenes
	Low Polygon Scenes
	Clothball
	Funnel

	High Polygon Scenes
	Clothcar

	Analysis
	Scenes' Analyses
	The Analysis Program

	Algorithm
	A First Approach: Parameter Pair MaxDistanceThreshold and MinimumRangeLength
	First Adaptive Success
	A Closer Parameter Analysis
	Improvement: Stable Sort
	Improvement: Local Merge Heuristic
	Improvement: Adaptive In-Place Merge Instead of a Global Bubblesort

	An Adaptive GPU Algorithm
	Improvement: Parameter Pair InvThreshold and MinimumRangeLength
	Improvement: Individual MinimumRangeLength
	Sub-Algorithms' Analysis
	Improvement: Straight Insertion Sort Instead of Bubblesort on CPU
	Improvement: Cocktailsort Instead of OddEvenSort on GPU
	The Final Sub-Algorithms
	In-Depth Algorithm Comparison on CPU
	Improvement: Individual InvThresholds CPU
	In-Depth Algorithm Comparison on GPU with CUDA Compute Compatibility 1.3
	Improvement: Individual InvThresholds GPU
	In-Depth Algorithm Comparison on GPU with CUDA Compute Compatibility 3.5

	Improvement: Fast Sort Range Computation
	Improvement: Block Based Parallel N-Nsquare Sort
	Improvement: Merging Consecutive nlogn Subsets After n-nsquare Fallbacks
	The Final Algorithm: AdaptiveFrameSort
	Functionality Explained by an Example
	Pseudocode

	Detailed Results
	Frame Based Timings for All Three Scenes
	Frame Based Timing Comparison with Reference to Data Complexity
	The Scenes' Effectiveness
	Conclusions Based on Measures of Unsortedness
	Clothcar Details
	Average Timings For All Frames

	Funnel Details
	Average Timings For All Frames

	Clothball Details

	Conclusion
	General Conclusion
	Future Work

	Appendix
	List of Figures
	List of Tables
	Bibliography

