
1

*Note: Previously said ñSummerò. This was from an earlier set
of slides.

Hi, Iôm James McLaren, Director of Engine Technology at Q -
Games out in Kyoto, Japan.

So today Iôm going to talk a little bit about some of the
technology that weôve put in our upcoming PS4 game ñThe
Tomorrow Childrenò.

Iôm mostly going to be talking about the Lighting system, for
which we implemented a form of realtime global illumination.

But Iôll also give a few details about our landscape system,

And Iôll hopefully have time at the end to talk a little bit about
our use of Asyncronous Compute.

2

So Iôm just going to run a trailer for the game just in case any
of you havenôt seen the madness that weôve been making....

3

Attempting to implement Global Illumination seemed like a
lofty goal,

but it was necessary for us because of the unique look that we
were aiming for.

We certainly hoped the PS4 would have the power to let us
achieve it,

But it wasnôt entirely clear at the start what was the best path
to get there.

We looked into Light Propagation Volumes, and some Virtual
Point Light methods,

But after some research the route that seemed most
promising to us was

4

This very interesting talk that was given at Siggraph 2011 by Cyril Crassin.

His work was on a technique he called Voxel Cone Tracing, which was capable

of producing Global Illumination effects in real time on a high end GPU.

This worked by voxelizing the scene into what he called a Sparse Voxel

Octree, injecting lighting information into this structure,

 and then tracing cones through that from the location of a pixel in world space

in order to gather the indirect illumination affecting it.

As you can see from the image, this gives a very pleasing result, and it caused

quite a stir at Siggraph, as it felt like quite a big step forward for realtime GI.

5

So, what is Voxel Cone Tracing?

Well, itôs a technique that shares some similarities with ray
tracing

6

So, for both techniques weôre trying to obtain a number of
samples of the incident radiance at a point by shooting out
primitives, and intersecting them with the scene.

And if we take enough well distributed samples, then we can
combine them together to form an estimate for the incident
lighting at our point, which we could then feed through a
BRDF that represented the material properties at our point,
and calculate the exitant lighting.

7

So the key difference between the two approaches is what
happens when we evaluate the intersection of our primitives
with the scene.

With a ray the intersection is at a point,

8

where as with a Cone, it ends up being a an area or perhaps a
volume, depending on how you are thinking about it.

The important thing, is that because itôs no longer a point, the
properties of our estimate change.

9

Firstly, we arenôt necessarily looking in just one location in the
scene for our intersection anymore,

we can have multiple partial hits by our cone.

10

And secondly, because of the need to evaluate the scene over
an area, our scene has to be filterable.

Also, because we are filtering we are no longer getting an
exact value, we are getting an average, and so the accuracy
of our estimate goes down.

11

But on the upside, because we are evaluating an average, the
noise, that we would typically get from ray tracing, is largely
absent.

It was this property about cone tracing that really grabbed my
attention when I saw Cyril Crassinôs presentation.

Suddenly we had a technique where we could get a
reasonable estimate of the irradiance at point, with a small
number of samples, and because the scene geometry was
filtered, we wouldnôt have any noise, and it would be fast.

12

So obviously the challenge is, how do we sample from our
cone.

The purple surface area in the picture on the left defining
where we intersect is not a very easy thing to evaluate.

So instead, we take a number of volume samples along the
cone, with each sample returning an estimate of light reflected
towards to apex of the cone, as well as an estimate of the
occlusion in that direction.

It turns out that we can combine these samples with the same
basic rules we would use for ray marching through a volume.

13

One thing worth noting is that because we are using volume
samples, we are potentially going to get inaccurate results in
the case where we have a cone that is partially occluded, as
we donôt carry any information about the shape of the
occlusion onto the next sampling step.

So in this example, we have two partial occlusions of our
cone, both of them occlude 50% of the light from the sky.

But as you can see in reality, if we were combine these two,
we should get 100% occlusion of light.

Where as our cone trace will actually tell us that we can still
see 25% of the light, because all we do is just naïvely
combine their occlusion in the same way we would with alpha
blending.

This doesnôt tend to be such a big issue in practice, but it is
worth bearing in mind that cone tracing is only a very rough
estimate.

14

So now we know what we need to do, accumulate our
irradiance data as we march along our cone,

so the next big question is how do we store our scene to
accommodate that?

Well, Voxels are the obvious answer, but a naïve voxel
representation is likely to use a very large amount of memory.

15

