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Abstract
This bachelor report discusses the implementation of a program [1] for sphere
packing rendering within specific and unspecific contexts. Most work was put
into developing the software that goes along with this report. As a conse-
quence, the implementation aspect of this specific piece of software will be at
the heart of this document. Additionally, the report will also provide insight
into other research on the topic, which can be considered the unspecific part
of this report and may be helpful for future work.

Regarding the developed software: Rendering is based on the ray-tracing ap-
proach and different methods inside this approach were implemented. These
methods range from simple ray-casting using only one ray per pixel to path-
tracing, using multiple rays and multiple samples. Performance-tests on
these methods are measured using a broad range of computer-systems to
gather meaningful data. Acceleration structures were implemented at vary-
ing degrees with optional visualizers to dynamically witness the integration
of these structures. Algorithms for Metaballs-rendering were implemented
and discussed. Generally, rendering is based on a tiled approach across all
algorithms to provide a stable and highly configurable experience.

Future work and improvements are discussed at the end of this report. In
conclusion, the software fulfills it’s purpose of visualizing sphere-packings.
Rendering is mostly interactive depending on the sphere count and hardware
in use. The software is a good base for any specialized directions that may
come in the future.
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1 Introduction
The introduction will give you some information 1.1 about the most impor-
tant concepts which are useful to know when reading this report. In addition,
the goal is explained 1.2 and an overview of this report is given 1.3

1.1 Background
1.1.1 Sphere Packings

The need to visualize (or render) sphere-packings arose from an application
called ProtoSphere which is in use at the Computer Graphics AG of Bremen
University. ProtoSphere fills 3D objects with spheres and the user can choose,
for example, how many spheres the software should use to fill the object. The
resulting aggregation of spheres is simply called sphere-packing. An example
for how this might look can be seen on the title-page of this bachelor report.
Important to mention is that the spheres inside these packings don’t intersect
each other or the object. Generally, the sphere packing algorithm tries to
fill as much space using spheres inside the object as possible. Because of
this, generated spheres have different sizes. The details of this filling process
depend on the specific algorithm. The original algorithm can be studied in
the corresponding paper [2]. ProtoSphere generates data in the form of files
which contain a numerical representation of the spheres that fill the object.
These files can be read by applications to visualize the generated spheres,
which is basically the job of the application presented in this report (please
see section 1.2 for more info). It’s also interesting to note that these files
contain the spheres in a ordered manner, which means that the first sphere
on line 1 is the biggest sphere of the entire package.

Real-life applications for sphere-packings could be for example the creation
of art (in the form of statues) or collision detection between objects. The
approach for sphere-packings by ProtoSphere is closely related to a paper
which introduced a new geometric data structure [3], called Inner Sphere
Tree. This data structure can be used to improve the speed and accuracy of
collision detection.

1.1.2 Rasterization and Ray-tracing

Previous approaches for visualizing sphere-packings at the Computer Graph-
ics AG of Bremen University were based on rasterization based pipelines,
which is a common method for rendering and enjoys prevalent hardware
support. Thus, this method is perfectly suitable for realtime rendering tasks
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and can be considered a cornerstone of software applications such as com-
puter games. Rasterization in it’s essence tries to solve the visibility problem
by projecting 3D geometry onto a 2D plane (for example the screen). Fig-
ure 1 visualizes the general approach. The projection is done by projecting
vertices of triangles onto the 2D plane and after that, filling the inner space
of the triangle. These two steps are computationally simple and that’s one
reason why the algorithm is fast [4] (even without hardware acceleration).

Figure 1: Rasterization of a triangle 1

While this method is ubiquitous, it is also said that it can only achieve a
limited visual fidelity when compared with other techniques, as an article on
the Nvidia news center points out [5]. One of those other techniques is ray-
tracing. Ray-tracing is fundamentally different in that it works by shooting
a ray from a starting point (for example a camera, a human eye, etc.) into
a scene. The ray then can be checked for intersections with geometry and
thus, a 2D image can be created. Figure 2 shows the concept of ray-tracing.
While the approach is fundamentally different it’s also closer to how vision
in the real world works. One conceptual difference is that rays aren’t shot
from light sources, which is called forward tracing. In contrast, ray-tracing
is a backward tracing method.

Figure 2: Concept of ray-tracing 2

Because ray-tracing is closer to how reality works, it’s possible to simulate
higher fidelity visuals with less work compared to a rasterization based ap-
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proach. Although ray-tracing was too computationally expensive for many
realtime applications in the past, recent hardware accelerated solutions made
partial ray-tracing feasible for a lot of applications.

1.2 Goal
So, what is the goal of this bachelor report? Basically, Dr. Rene Weller
suggested that I could write a ray-tracing based renderer to visualize sphere-
packings. One of the reasons for his suggestion was that ray-tracing lends
itself perfectly to sphere rendering. For example, using a rasterization ap-
proach inherently requires us to approximate the sphere surface using tri-
angulation while the ray-tracing approach is more straight forward. Thus,
ray-tracing in comparison to rasterization can be simpler in terms of coding.
For example, you can write a raytracer featuring global illumination using
less than 100 lines of code [6]. The downside is that this approach is usually
slower and acceleration structures are needed. But we will talk about that
later. In summary, the goal is split into two parts. The first part is devel-
oping the software and the second part is writing a document that explains,
measures and expands the software that was developed in terms of educa-
tional value. This document (the one your reading right now) is not meant
to be a comprehensive documentation of software functionality, it’s rather an
overview and and will go only into detail at critical code sections.

1.3 Report Overview
The report follows the regular pattern of its kind. Right now, you’re read-
ing the introduction, which is supposed to introduce you to the theme and
explain why this bachelor report came into existence. You should also gain
a good understanding of what the overall goal is. Next up, we have a sec-
tion about related work, which gives insight about interesting and relevant
research regarding this report 2. The section is divided into sub-sections
each talking about a specific paper. Then I talk about the approaches I
make for implementing the software in the follow up section 3. This is a
kind of high level talk about the most crucial algorithms and systems I use.
Closely related to this is the implementation section that immediately fol-
lows 4. Here I discuss important things regarding the actual implementation
of the previous mentioned approaches. I also talk about architecture details
and dependencies that are noteworthy. At the end of the document I present
measurements in the results-section 5 and comment on overall findings and
results in the conclusion-section 6. The last section discusses future direc-
tions and possibilities based on the results presented in this report 7.
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One word regarding image credits: Most images I used are either by me or
in the public domain. Those images that do not have a footnote in the cap-
tion are by me. The footnotes can be found at the end of the section where
the image belongs to. To be able to use images which are not in the public
domain, I asked permission of the respective owners. Images from scientific
papers reference the paper accordingly.

1From scratchapixel.com/rasterization-stage with the owners consent
2From scratchapixel.com/ray-tracing-overview with the owners consent
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2 Related Work
This section collects and summarizes related work. Sphere-packing rendering
is not a big or even medium sized field in the area of computer graphics, but
there are a lot of papers that can be placed between volume rendering and
sphere-packing rendering which are relevant. The first section will provide a
overview of the most prominent and most cited relevant papers. The sections
afterwards will provide detailed insight of papers which I personally found
to be very interesting or promising in the context of this report.

2.1 Sphere rendering
Sphere rendering can be approached from many different directions. One
obvious direction is to render spheres using the rasterization pipeline, where
one has to approximate spheres using triangles. This is something I didn’t
explore further since other applications already use this approach.

Another direction is to render spheres using point primitives. Point prim-
itives are nowadays commonly used in the form of point clouds, which are
useful for recreating surfaces based on real world data. One important char-
acteristic of point clouds is, that there is no connectivity between primitives.
In 1985, Whitted et al. [7] were among the first to render using point clouds
rather than using modeling geometry. The problem was, that the proposed
algorithms didn’t quite capture the look of solid looking objects. This can
be achieved by using splatting, which was introduced by Lee Westover [8] in
1989. This technique projects the points into 2D space and uses a so called
footprint principle, where each point contributes it color to the neighboring
pixels. The evolution of that were the surfels, introduced by Pfister et al. [9]
in 2000, which hold attributes like depth, normal etc. for each point. Surfels
have the shapes of disks in 3D space and can be used to approximate 3D
surfaces. These approaches are not better suited for sphere rendering than
other methods, since they would need to approximate the sphere surfaces,
which creates overhead. It would be possible to render a sphere using just
a single point, but this would trait off a lot of render quality compared to
other methods.

A different take and maybe the most elegant way is to use ray-tracing. Ray-
tracing in computer graphics became relevant when in 1980, Turner Whit-
ted [10] expanded on previous ideas and introduced recursive ray casting.
Before this breakthrough, only simple ray-casting was known, which was in-
troduced by Arthur Appel [11] in 1968. Ray-tracing paved the way for the
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famous rendering equation from James T. Kajiya [12], which most realistic
rendering techniques attempt to solve. A lot of work was (and is) put into
accelerating these base concepts. For example Gunther et al. [13] developed a
parallel BVH traversal algorithm which makes use of modern graphics hard-
ware. The BVH implementation explained in this report is similar to the
approach that is explained in that particular paper.

As the goal already mentioned 1.2, the approach explained in this report will
be based on ray-tracing, mainly because its natural ability to render spheres
and to study the performance on recent hardware. Also an approach based
on ray-tracing can be easily extended to render other primitives such as cubes
or cones.

2.2 Metaballs
Metaballs as a implicit modeling technique was first introduced by Jim
Blinn [14] in 1982. Basically, the approach uses the summation of Gaussian
density distributions to model density maps of molecular structures and ren-
ders these, using the ray- tracing algorithm developed two years earlier [10].
My approach is based on this principle. Over the years, the metaballs tech-
nology has matured and achieved commercial success. In general, metaballs
are nothing more than iso-surfaces which are defined by so called scalar field
functions. Agata et al. [15] provide a good overview of iso-surfaces which is
still valid today.

2.3 Multi-Scale Modeling and Rendering of Granular
Materials

Meng et al. [16] present an interesting method for rendering large amounts
of granular materials. The paper is relevant for this report because the
presented approach uses sphere-packings in the process. For example, the
method they are using for filling a scene description with granular materials
as well as some rendering steps are based on sphere-packings. They call the
approach ’tiled sphere packings’ which are quite similiar to our packings. One
major difference is that spheres inside these packings all have the same ra-
dius. They also do not directly render spheres, they are only used as bounding
volumes. These bounding volumes contain randomly instanced grains which
they render with a technique called Explicit Path Tracing (EPT). For this
rendering method they first voxelize the mesh. The generated voxels are ba-
sically the same as the tiles from the sphere-packings. They then intersect a
ray with the voxel grid to get a voxel that is a valid candidate for rendering.
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Figure 3: Overview of the multi-scale approach [16]

They then intersect the bounding spheres that overlap this voxel. After find-
ing a valid intersection they test if the randomized grain inside the bounding
sphere is intersected. If yes, the color of the grain at the intersection will be
drawn.

The paper argues that this method is impractical for higher order scattering,
which is why they transition to a hybrid approach comprised of Volumetric
Path Tracing (VPT) and diffusion approximation. This decision is also made
because of the wide range of shots they needed to support (ranging from long
distance to close up shots). Efficient rendering based on camera distance is
out of scope for the application, but the proposed paper gives a very good
explanation on how to do it and it even involves sphere-packings. So further
work on efficiency could be inspired by this paper. It is also interesting that
in the paper they use tiled sphere-packings instead of just sphere-packings.
My understanding is that, according to the authors methodology, the im-
plementation presented in this report also uses tiled sphere-packing when
combining rendering with the grid acceleration structure 3.3.

2.4 GPU-Based Ray-Casting of Quadratic Surfaces
Sigg et al. [17] present an interesting hybrid method which combines raster-
ization and ray-casting to render large amounts of quadric surfaces. Spheres
are also quadric surfaces and thus it’s a interesting paper to consider in
this report. In summary, the authors use the vertex shader stage of the
gpu-rasterization pipeline to compute a screen-space bounding box for every
vertex. Important to note is that each vertex corresponds to a quadric primi-
tive. They then compute the ray-quadric intersection based on the rasterized
bounding boxes which in turn colors the fragment. This step is done in the
fragment shader. An image produced by the method can be seen in figure 4.

10
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Figure 4: Molecular structure consisting of 52k atoms [17]

In detail, the authors use a bilinear form for the implicit definition of quadrics
which can be projected into screen space by a linear transformation. This
also makes it easy to compute bounding box and ray intersection later on.
For each quadric the authors use one distinct basis. The specific basis is
determined by the normalized diagonal form of the quadric surface which is
obtained from a basis transformation. The basis is used to simplify other
computations such as intersections. The basis transformation is based on a
transformation matrix the authors call variance matrix. This matrix is used
additionally to determine the shape of the quadric in object space. The
authors use point sprite primitives because they can be computed with a
single vertex call. The parameters of these point sprites are obtained in
the vertex shader. The first step is to compute a bounding box. Next,
the authors compute the center position and the radius of the point sprite
using the bounding box and from there, perform post processing tasks in the
fragment shader.

The approach is very fast but also complex and riddled with details that
make it not fitted for sphere-packing rendering, such as the general quadric
approach.

11
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3 Approach
The approach defines how I went about the goal that was set out for this
bachelor report 1.2. Because the main goal was to develop an application,
this section talks a lot about algorithms but also about other considerations
such as usability. The general approach 3.1 overshadows every other aspect
of this discussion because it defines the fundamentals that should be honored
by each approach. Next, I discuss the rendering approach 3.2 which explains
the different algorithms that are used for rendering. After that, you can read
about some considerations and algorithms regarding acceleration 3.3. In the
end, I give a brief discussion about the approach for memory management
3.4 and the GUI 3.5

3.1 General
Because I didn’t have a specific use-case other than sphere visualization in
mind when development started, I tried to keep the general approach as
extensible as possible. This comes with a few up and down sides. The
biggest upside is that future work on the implementation can literally be in
any direction without the need to rework specific parts. It also enabled me
to try out different approaches (for example regarding acceleration) because
some might be more appropriate than others in certain scenarios. Because I
didn’t have a specific scenario in mind I was able to use a broad spectrum of
approaches for different kinds of problems.

While this is great for future extensions, it also limited how deep I could
implement specific systems. This is because for every approach there exists
usually a lot of improvements that build up on the original idea. These take
time to implement and only make sense (from an economical perspective)
when the approach you are using is something you are going to stick with for a
appropriate amount of time, which means that I refrained from implementing
optimizations when there just wasn’t enough reason to justify it.

Another thing I wanted to focus on in this approach is usability. Because
of the aforementioned broad spectrum approach, the software needs to be
intuitive to use for the user to leverage all possibilities. This meant for
me that I had to pay attention to the user interface in order to make it as
accessible as possible. It also meant that changing the underlying system (for
example changing render techniques, acceleration structures, etc.) should be
very easy to do from a user perspective.

To sum it up, the implementation is based on a general approach that tries
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to deliver a broad variety of solutions to different kind of problems that come
up when rendering sphere-packings while keeping in mind usability.

3.2 Rendering
The approach I took for rendering is rooted in the general approach. Which
means that I made the decision to support different kinds of rendering tech-
niques as opposed to only implementing one type of rendering technique.
These techniques are all based on ray-tracing or ray-marching. Because the
algorithms all have a common base it was possible to share specific sections
of these implementations between different techniques. For example the rou-
tine for generating a ray for a specific pixel based on the camera location is
the same across all techniques.

3.2.1 Ray-tracing based Techniques

Ray-tracing based techniques for rendering can be divided into 3 different
approaches.

1st approach:
First of I implemented a naive ray-tracing approach which basically shoots
one ray per pixel into the scene and tests if a intersection occurs. If so, the
pixel will be colored using some randomizing function. If not, the pixel will
occur white. This is the simplest technique for rendering when using the ray-
tracing approach and can also be expected to be the fastest when combined
with acceleration structures. The technique is sometimes called ray casting
because it doesn’t involve tracing secondary/tertiary/... rays.

2nd approach:
Based on the first approach I implemented another technique that produces
images which appear smoother. This technique doesn’t really change much
of the behavior of the first technique, except that it applies Anti-Aliasing.
This was needed because straight up ray-tracing produces very sharp but also
jagged looking images. An example of what I mean can be seen in section
5.1.1. The approach basically scales the image by 2 (4xAA) or by 3 (9xAA)
and averages the corresponding pixel colors. The pseudo code shows the
general approach in the context of 4xAA 1.

Listing 1: Determining pixel-color using AA in combination with tiled ren-
dering

1 if (pixel inside tile)
2 {
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3 pixel coordinates *= 2;
4
5 uv[4]; // these texture coordinates of the scaled image

correspond to the original pixel coordinates
6 uv[0] = pixel coordinates upper left / (viewport

resolution * 2);
7 uv[1] = pixel coordinates upper right / (viewport

resolution * 2);
8 uv[2] = pixel coordinates lower left / (viewport

resolution * 2);
9 uv[3] = pixel coordinates lower right / (viewport

resolution * 2);
10
11 for each uv {
12 pixel color += calculate pixel color at uv;
13 }
14
15 averaged pixel color = pixel color / 4;
16
17 set pixel color of last sample to averaged pixel color;
18 set pixel color of this sample to averaged pixel color;
19 }
20 else {
21 set pixel color of this sample to pixel color of last

sample;
22 }

3rd approach:
The 3rd approach is based on a path-tracing technique which shoots multiple
rays per pixel and produces a believable image but comes at a greater perfor-
mance cost than previous techniques. The algorithm has to average samples
in order to converge to a less noisy image. The noise that can be seen in
figure 32 is actually the variance caused by the pseudo-random nature of the
ray generation. The pseudo code 2 illustrates the concept of determining
pixel color via path-tracing in combination with tiled rendering 3.2.3.

Listing 2: Determining pixel-color using path-tracing in combination with
tiled rendering

1 if (pixel inside tile)
2 {
3 get random seed;
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4 get texture coordinates;
5 get ray based on camera settings;
6 get pixel color of this sample by tracing the ray;
7
8 averaged pixel color = ((last pixel color * frame count) +

pixel color) / (frame count + 1);
9

10 set pixel color of last sample to averaged pixel color;
11 set pixel color of this sample to averaged pixel color;
12 }
13 else {
14 set pixel color of this sample to pixel color of last

sample;
15 }

In summary, these ray-tracing based rendering techniques cover up a lot of
use-cases that might come up in the future and should prove to be a good
starting-point for further optimization and visual tweaking. Because of the
interchangeable nature of these techniques, it made sense to allow the user
to switch between them as dynamically as possible. This can be achieved
by either preparing everything render related for each rendering technique
upfront or by only preparing the necessary amount based on which rendering
technique is in active use. I decided to use the first approach because it leads
to simpler and less code while not causing significant decrease of performance.

3.2.2 Metaballs

I implemented a technique which tries to render implicit surfaces (or iso-
surfaces) by using the metaballs approach. This technique is vastly different
from the previous ones because it not only renders spheres, but also the
empty space between those spheres. This gives the impression of a continuous
surface even though it’s technically not.

The approach is based on the function for the strength of a electric field at a
certain point. The point can be called a point-charge and defines where the
electric field is the strongest. For a point-charge at the origin, the function
looks like this: f(x, y, z) = r/(x2 + y2 + z2) where r is the radius of the point
charge. Which makes this interesting is that the function returns a value of
1.0 at a distance of r from the point-charge. At a distance greater than r the
function will return values lesser than 1.0 in a continuous manner based on
its distance to r. The function will generally return values greater than r if
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the point lies within the point-charge radius. For a great explanation of the
principle visit Ryan Geiss’s website [18].

The characteristics of the function can be used for rendering. To render
metaballs we need to shoot rays into the scene, much like the aforementioned
ray-tracing techniques. But instead of checking for intersections, we compute
the value of the electric field function along the ray in incremental steps. We
do this for each sphere and add up the values in each step. If the sum is bigger
than a certain threshold at a step along the ray, we color the pixel. There are
a lot of variables in this approach (step size, step count, threshold, method
of coloring the pixel) which hugely impact the outcome. The approach I
implemented allows the user to change the threshold and contribution weight,
but the possibility to change the other variables at runtime may be useful
too. The pseudo code 3 shows the general execution of the approach. Please
note, that the pseudo code abstracts from a lot of details (e.g. keeping track
of charge contributions) in order to focus on the skeleton algorithm. As you
might have observed, I do not compute the electric field function directly.
This is because I think splitting the function across two computations makes
it easier to understand.

Listing 3: Determining pixel-color in the first Metaballs shader
1 ray position = ray origin;
2 for each step {
3 for each sphere {
4 distance = distance between ray position and sphere

position;
5 charge = sphere radius / distance; // will compute a

value similar to the electric field function;
6 if (charge GREATER OR EQUAL internal Threshold)
7 {
8 if (charge GREATER OR EQUAL 1.0) { // if true, the

ray position must be inside the sphere according
to the electric field function

9 inside sphere = true;
10 }
11 charge sum += charge;
12 }
13 }
14 if (charge sum GREATER OR EQUAL user defined threshold OR

inside sphere) {
15 determine pixel color;
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16 return pixel color;
17 }
18 }
19 return default pixel color;

3.2.3 Tiled Rendering

All these rendering techniques operate with different execution speeds de-
pending on the hardware. This is a challenge because while one technique
may be unproblematic, some other may lead to a phenomenon what I call
pseudo-freeze. A pseudo-freeze may happen when the operating system uses
the same hardware for rendering tasks as the software, which may render
other more complex things than a GUI. A pseudo-freeze more specifically
happens when a rendering task takes so long to complete, that rendering
the GUI from the operating system is blocked. In this case the operating
system still responds to input but there is no visual feedback, giving of the
impression that the system is on halt. Some drivers react in those situations
by interrupting the execution of the workload. To tackle this I decided to
use a approach which is called tiled rendering. This approach basically di-
vides the rendering task into manageable chunks that can be computed in a
timely manner. The user can identify tiled rendering when the image is not
rendered at once but only sections of it, as can be seen in figure 5.

Figure 5: Tiled rendering in action (Blender Cycles)

However, this approach comes with a downside because it introduces over-
head. This overhead is caused by the software having to, figuratively speak-
ing, send a lot of packages to the computing unit as opposed to only having
to send one package. As a consequence the computing unit needs to unwrap
these packages and the sending software needs to prepare them, which costs
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time on both sides. This means that more chunks also means more overhead
and this essentially makes the process of choosing the tile size a balancing act
between overhead and performance. This is also the one of the reasons why
I decided to let the user interactively change the tile size. It’s also coherent
with the general approach of high usability.

Determining the tile position/size is easy and very portable 4. The one thing
that is not portable is the method of sending the position and size data to
the GPU. This can be done using an UBO or (in the case of Vulkan) us-
ing PushConstants. I chose the latter approach because of some performance
benefits.

Listing 4: Tile position and size generation
1 multiplicator = divide user defined tile size by 100; //

should give us something between 0% and 100%
2 tile width = viewport width * multiplicator;
3 tile height = viewport height * multiplicator;
4
5 if (tile reached maximum viewport-width)
6 {
7 tile x coordinate = 0;
8 } else {
9 tile x coordinate += tile width:

10 }
11 if (tile reached maximum viewport-width AND maximum

viewport-height)
12 {
13 tile y coordinate = 0;
14 } else {
15 tile y coordinate += tile height;
16 }

3.3 Acceleration
While we talk about the rendering approach, we also need to consider the
acceleration approach. These 2 topics come usually hand in hand because
acceleration is a crucial factor for achieving interactive frame rates. I ap-
proached acceleration the same as I approached rendering in that it is based
on the general approach that I wanted to cover a broad spectrum of tech-
niques. For that I decided to implement 2 fundamental acceleration tech-
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niques that are common for ray-tracing based rendering.

Considering the overarching approach, I also wanted to support the ability
to dynamically change the underlying acceleration structures without losing
usability (similarly to the rendering approach). By ’dynamically changing’ I
mean the ability to interactively change, for example, the amount of bounding
volumes of the BVH. This enables the user to develop a good understand-
ing of said techniques while it also makes it easier to measure performance
for specific configurations, which is helpful for deciding which acceleration
technique using which configuration gives the best performance.

3.3.1 BVH

The first technique is called Bounding Volume Hierarchy (BVH) and works
roughly by generating bounding volumes that together enclose the object
and minimize useless intersections while rendering. Figure 6 visualizes how
the ray is sent through those bounding volumes. While the image does
not visualize a specific hierarchy, it is still clearly visible that most of the
bounding volumes are not hit by the ray and thus discarded, which is exactly
what’s causing the speed up when rendering using a BVH.

Figure 6: Bounding Box - Ray Intersection 3

The volume type I use for the bounding volumes is called Axis Aligned
Bounding Boxes (AABB). The reason I chose AABB’s is, that it’s consider-
ably easy to test for a ray-AABB intersection, which also makes it relatively
fast. The generation of the hierarchy is done in iterated steps where you
begin to first define the root of the hierarchy. The root is nothing else than a
AABB that completely encapsulates the object for which you want to speed
up rendering. Next you partition the space inside the parent (in case of
the 2nd iteration this would be the root AABB) and create a new AABB
child that completely encapsulates this new space inside the parent AABB.
This goes on and on until the desired BVH depth is achieved. However,
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the current approach is limited to space partition along the x-axis. This is
a conscious decision because space partition along all dimensions is some-
thing that the second acceleration technique does natively. It also improves
the code-maintainability for future work. Ultimately, rendering speed up is
achieved by intersecting the hierarchy instead of the actual geometry. Only if
the ray intersects a leaf inside this hierarchy will the geometry encapsulated
by the leaf be tested for intersection. For a visualization of the bounding
boxes see figure 34.

The basic idea of rendering using a BVH can be seen in the corresponding
pseudo-code 5. A lot of optimization comes solely from the discarded inter-
sections caused by not fulfilling the first if-clause. After that, only a part
of the spheres will be intersected depending on the AABB distribution and
size.

Listing 5: Determining pixel-color using a BVH in combination with tiled
rendering

1 if (pixel inside tile)
2 {
3 // abstracted from ray generation etc.
4
5 if (bounding box count GREATER 0 AND ray intersects BVH

root)
6 {
7 for each bounding box
8 {
9 if (ray intersects bounding box)

10 {
11 get pixel color;
12 if (hit AND ray intersection distance smaller

than previous) {
13 set pixel color;
14 }
15 }
16 }
17 }
18
19 set pixel color of last sample to pixel color;
20 set pixel color of this sample to pixel color;
21 }
22 else {
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23 set pixel color of this sample to pixel color of last
sample;

24 }

3.3.2 Grid

The second acceleration technique is simply called a Grid and partitions space
evenly across all 3 dimensions. The resulting structure can be considered a 3
dimensional grid where each cell has the same size. The visualizer in figure
36 shows how this looks when coloring the cells. The cells are of course noth-
ing more than AABB’s, which means that intersecting these cells is quite
fast. One major difference to the BVH technique is that objects which are
intersected by cells need to be inserted into each of the cells that intersect the
object for correct rendering. This makes it a little bit harder to implement
compared to the first technique. When rendering, the current approach is
quite similar to the pseudo code in listing 5. However, because of the well de-
fined nature of the grid there is another possible optimization which is called
Digital Differential Analyser (DDA). This optimizes the way we traverse the
grid by preventing unnecessary AABB intersections. I consider this a minor
improvement so I did not implement it in the current approach, though it is
a possibility for future optimization.

The pseudo-code below 6 shows the general idea for the grid generation.
It starts by defining the initial outer boundaries of the grid. This is hard-
coded in the implementation but doesn’t really affect anything, since sphere-
packings do not even come close to reaching these values. Next, the algorithm
computes the number of bounding boxes depending on the grid divisions.
Last but not least, the grid frame is computed, which allows us to calculate
the bounding box positions in the last step.

Listing 6: Calculating the grid
1 // set the initial boundaries
2 root minimum = {1000, 1000, 1000};
3 root maximum = {-1000, -1000, -1000};
4
5 if (number of grid divisions is 0) {
6 bounding box count = 0;
7 } else {
8 bounding box count = (number of grid divisions + 1)^3 + 1;
9 }
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10
11 // calculate grid frame
12 for each sphere
13 {
14 if ((x position of sphere) MINUS (sphere radius) SMALLER

THAN (x position of root minimum)) {
15 x position of root minimum = (x position of sphere

number j) MINUS (sphere radius);
16 } else if ((x position of sphere) PLUS (sphere radius)

GREATER THAN (x position of root maximum)) {
17 x position of root maximum = (x position of sphere

number j) PLUS (sphere radius);
18 }
19 // repeat for height and depth values
20 }
21
22 // calculate grid
23 for each bounding box
24 {
25 x position of bounding box minimum = x position of root

minimum PLUS (((i - 1) % (number of grid divisions +
1)) * (width of root) / (number of grid divisions +
1)));

26 x position of bounding box maximum = x position of
bounding box minimum PLUS ((width of root) / (number of
grid divisions + 1));

27 }
28
29 // repeat in a slightly more complex form for height and depth

values

3.4 Memory Management
The approach for memory management is, of course, also based on the gen-
eral approach. First of all, it is necessary to mention that multi-threading
is an important concept in rendering applications. Just consider using only
one thread for both input handling and rendering. That would not be fun
since input handling would be totally dependent on how long rendering takes,
or vice versa. Multi-threading helps with that, but it also introduces new
problems, namely race conditions. Race conditions are events where multiple
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threads compete for something in such a way, that the final outcome becomes
non-deterministic. This is obviously undesired since it can lead to undefined
behavior. In order to minimize race conditions regarding memory, I use a
approach which completely avoids sharing memory between threads where
it isn’t necessary. In this approach, each thread manages its own memory
which it can expand in unlimited manner (theoretically speaking). While
sharing memory between threads is possible, the approach does not involve
synchronisation (for example via semaphores, mutexes, fences, ...) because
currently shared memory is read only. This would probably have to be ex-
panded on in future work. The memory is divided in chunks and the size
of these chunks can be adjusted. Chunk based memory management can
increase performance because it avoids memory allocation calls, depending
on the size of the chunks.

3.5 Graphical User Interface
I already talked a little bit about the usability and accessibility approach in
section 3.1. The GUI follows this approach. Early into development I used
separate windows inside the main window for different parts of the GUI.
These windows could be toggled and moved. Only the toolbar at the top of
the main window was always visible. The reason for this approach was that
I wanted the user to be able to customize the arrangement of GUI elements.
In the end it proved to complicate the matter because it was not as useful
as I had thought and the user ended up having unnecessary options for a
very simple matter. Having realised this I reworked the GUI approach by
using a static window arrangement. The final arrangement can be seen in
the corresponding figure 21. The approach still allows the user to toggle the
visibility of everything but the windows are locked in place.

Something that goes hand in hand with the GUI are the input methods. I
decided to use a common approach which is heavely based on the mouse.
Most GUI elements can only be interacted with via mouse while a few also
support keyboard input. I also integrated key-bindings which, for example,
allow for faster scene navigation.

3From scratchapixel.com/bounding-volume with the owners consent
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4 Implementation
The implementation is made up of different components in the sense of divide
and conquer. These components will be individually explained, beginning at
section 4.2.1 with a general overview. Before that, dependencies and other
relevant technologies are introduced to get a picture of the backdrop of the
application.

4.1 Dependencies
As a rule of thumb I tried to keep the dependencies as minimal as possi-
ble, because it makes building the application easier and avoids including
unnecessary functionality.

4.1.1 Vulkan

Figure 7: Vulkan Logo 4

Vulkan is a cross-platform graphics and compute API. It enables develop-
ers to use hardware (mostly GPU) accelerated routines. The Vulkan 1.1
specification launched on March 7th, 2018. The API is supported by AMD,
NVIDIA, Intel etc. on a lot of devices. More info can be found on the official
website [19].

Common graphics hardware API’s nowadays can be divided into 2 groups
(not counting pure compute API’s). On the one hand we have API’s like
OpenGL or Microsoft DirectX11 which generate a lot of overhead and do
not allow multi-threaded graphics submission. On the other hand there are
newer API’s like Vulkan or Microsoft DirectX12 which have low overhead and
support application side multi-threading. Using these low-overhead API’s is
generally considered to be more difficult than other comparable API’s, be-
cause additional work must be dealt with. But it’s also more future proof
because of multi-threading capabilities, which was the reason I chose a low
overhead API. I chose Vulkan over Microsoft DirectX12 or Metal (from Ap-
ple Inc.) because it’s cross-platform.

The application mostly uses Vulkan in a computing context, because ray-
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tracing by itself is a computing task. This is evident by the well known fact
that a lot of production rendering systems use software solutions, for exam-
ple render farms. An interesting side note is that in 2018, Nadjib Mammeri
et al. [20] actually published a paper that compares the compute capability
of Vulkan drivers to other compute API’s like CUDA or OpenCL. While
they only measured performance on GPGPU and embedded hardware the
results still give a indication as to how Vulkan generally compares to these
compute API’s. What they found was that Vulkan drivers in comparison
have the ability to perform about 1.5 times faster than comparable CUDA
and OpenCL implementations. They attribute this mostly to Vulkan’s low
level synchronisation mechanisms. On the other hand, they mention that
performance portability is not guaranteed because of issues like driver imple-
mentation quality.

I use the meta-loader volk [21] which enables the application to look for a
Vulkan driver at run-time. This made it unnecessary to have a Vulkan depen-
dency at build-time, thus simplifying the building process. The application
also supplies necessary vulkan headers to the linker. All in all, this means
that the application can be build without an installed vulkan driver, though
a vulkan driver is required to use the application.

4.1.2 GLSL and SPIR-V

Figure 8: SPIR-V Logo 5

Shaders used by the application are written in the OpenGL Shading Lan-
guage (GLSL). The programming language has a C/C++ style syntax and
new versions are rolled out simultaneously with OpenGL updates [22]. Some
semantics are Vulkan specific but most of the language can be used as with
a OpenGL backend. However, to use these GLSL shaders with Vulkan they
need to be converted to SPIR-V binaries. SPIR-V is a intermediate language
for parallel computing and graphics and also usable in OpenCL. The current
version of SPIR-V is 1.3 and was released on March 7th, 2018 to accompany
the launch of Vulkan 1.1 [23]. SPIR-V binaries can be directly loaded by a
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vulkan driver for execution.

To create SPIR-V binaries I used a program called glslangValidator, which
is hosted on a github repository called glslang [24]. I included the reposi-
tory as a sub-module in the application repository. It will be downloaded at
build time and can be installed by passing a option to CMake. The main
CMakeLists.txt contains several examples on how to automatically convert
GLSL shaders to SPIR-V binaries using glslangValidator. Note that this is
purely optional and only meant to aid the shader compilation process while
developing. The README.md contains further information on this topic.

4.1.3 ImGui

For the GUI I wanted to use a library which is both lightweight and sophis-
ticated. It also needed to integrate well with Vulkan. In the end I chose
ImGui, which is a proven library used by many applications [25]. I use a C
port of this implementation because of 4.1.4. ImGui is an immediate mode
GUI implementation, which means that event processing is not based on call-
backs but is directly controlled by the user. This makes handling the GUI
very simple. The integration of this library is spread out in 4 source files,
which contain everything GUI related. ImGui does not directly render the
GUI, rather it outputs buffers which the application can choose to render on
it’s own accord.

4.1.4 Platforms, Programming Language, etc.

It was decided early on that the application should be as portable as possible.
For this and other reasons, such as personal preference or compatibility with
other programming languages, I used the C programming language to write
the application. Mainly because of some necessary alignment specifications,
I used the C standard revision ISO/IEC 9899:2011 (better known as C11)
which superseded ISO/IEC 9899:1999 or C99. For building the application
in a cross-platform capable way I decided to use the meta-builder CMake.
At this time of writing building on Linux and Microsoft Windows platforms
is possible. Building with Makefile(s) on Linux and VC++ project files
(.vcxproj) on Windows was tested but other forms may be possible as well.
Because on Windows it’s common to use Visual Studio for programming, I
want to note that the VC++ project files (or better: .sln solution files) can
be loaded into Visual Studio. There are other things to be aware of but for
those I want to recommend the README.md in the gitlab repository [1]. It
provides further inside regarding dependencies, development, etc..
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4.2 Outline
The outline of the implementation is just a high level sketch of the various
components that make up the application. This is useful for learning the
overarching logic behind the construction of the application. In addition, it
provides understanding of how the components connect to each other. More
specifically, we will begin with a top-level view of all the components that
make up the implementation in section 4.2.1. Then we will take a closer look
at the individual components by focusing on explaining some conventions
regarding their source structure in section 4.2.2.

4.2.1 Overall Source Structure

The implementation is divided into 7 components which connect to each other
in various degrees. This sort of compartimentation provides a good overview
at a high level and makes finding specific components easy. It also makes
extending the application with new functionality straight forward because
you either extend a component or add one. Figure 9 shows these components
and their relations in a UML style diagram. The components correspond to
the directories found in the source/ folder at the root of the project folder.

Core

GUI

Renderer

Utils

WSI

Vulkan

ProtoRender

Main

Figure 9: Implementation source structure.

Clearly observable is the central role of the Main component. It connects
to 5 out of 7 components and can be considered as the controller of the
application. This is also where the execution entry point is. The Main
component thus contains the start-up procedure as well as both rendering
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and input loops. The Renderer component contains procedures for the main
viewport, which means it mostly fulfills rendering related requests. Similar to
the Renderer, the GUI component contains procedures for the GUI including
rendering. The remaining 4 parts do not interact between each other in
terms of function calls. They are used by Main, Renderer and GUI and can
be considered the base of the implementation.

4.2.2 Component Source Structure

The components that make up the application can be seen in figure 9. These
components all share a common principle regarding their structural architec-
ture. This principle is based on the C programming language, more specifi-
cally on it’s key components and 2 design decision follow it.

Design decision 1:

The first design decision is that functions, structs, enums, etc.
of the components are to be contained in different directories. I
found after a lot of try and error that this structure works well
for C based applications. This is partly because C conceptually is
rather simple and it is easy to divide a C program into it’s logical
units because there are not many to begin with. Combined with
the second design decision it makes for a very clean structure.

Design decision 2:

The second design decision is that all source files are named after
what they contain and each file can only contain one elementary
component. For example a file named SomeFunction.c contains
only a implementation of SomeFunction(...) and nothing else ex-
cept locally used helper. This one to one mapping of source file
names and it’s content makes it easy to find and extent compo-
nents. On the down side it means that a lot of individual source
files are needed, but I think it’s worth it because compiling indi-
vidual files in C is generally very fast.

The application of the first design decision can be seen for instance in figure
14 which shows the Renderer component of the application and is put in a
high level context in figure 9. The Renderer directory contains directories
which are named and contain source files based on design decision 1, such as
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Structs and Functions. A special case is the Resources directory because it
contains binaries instead of source files and can be regarded as an exception
of design decision 1. An application of design decision 2 may be seen in figure
11 where source files are named based on the name of the function imple-
mentation they contain. It’s important to mention that, for a function called
PR_someFunction(...), the prefix will be neglected so that the corresponding
files are named SomeFunction.h and SomeFunction.c.

4.3 Main
As mentioned in section 4.2.1, the Main component is a important part of
the application. It contents can be seen in figure 10.

Main

Main.c

Functions

Callbacks General Vulkan

Figure 10: Main source structure.

Main.c holds the execution entry point. For this reason I decided to give it
special meaning by placing it outside the Functions directory. The functions
directory of Main is divided into 3 logical units. The first unit is comprised
of callback functions which are executed by the Window System Integration
(WSI), for more info on this see section 4.3.1. The second unit consists of
general functions which are really the heart of the implementation. Those
can be further studied in section 4.3.2. Last but not least, the Vulkan related
functions of the Main component are explained in section 4.3.3.

4.3.1 Callbacks

The callbacks in figure 11 handle events which are triggered by the WSI. Some
of those functions are dummies, which means that currently there will be no
effect when they are called. Apart from that, callbacks like MouseCb(...)
or KeyboardCb(...) are essential because they handle the respective input
devices. They mostly interact with the GUI implementation by changing
variables of the GUI structure. The GUI structure is briefly mentioned in
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Callbacks

DropCb.c DropEnter
Cb.c

DropLeave
Cb.c

ExitCb.c FocusCb.c

Keyboard
Cb.c

Mouse
Cb.c

Resize
Cb.c

Figure 11: Main callback functions.

section 4.5. The DropCb(...) function is also quite important because it initi-
ates the procedure for loading .spheres files. Other than those, the ExitCb(...)
function is worthy of note since it triggers when a user presses the ’x’ button
of the window to close the application.

4.3.2 General

The general functions of the Main component of the implementation are per-
haps the most important to consider. As figure 12 shows, there is a total of 9
functions. If there is a function called outside this directory, the stack trace
will probably show that somewhere before there was one of these 9 functions
called.

The first function to point out is StartUp(...), which orchestrates the start-up
procedure of the application. In the process it first looks for a valid Vulkan
driver and initializes Vulkan accordingly. Then it creates representations of
the devices for which there are Vulkan drivers. Next, it creates the window
and related window resources by calling CreateWindow(...) and CreateWin-
dowResources(...). In the end it starts both the render loop and the input
loop.
The RunInputLoop(...) function asks the WSI in constant intervals if there is
new input from the user. If so, it will call the appropriate callback function
from section 4.3.1. Because the application is multi-threaded, this loop is
handled by a single thread which terminates when the user closes the appli-
cation.

The RunRenderLoop(...) is called by the StartUp(...) function and handles
all rendering. Similar to RunInputLoop(...) it is run by a single thread that
terminates on application exit. It calls functions from both GUI and Ren-
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General

Create
Devices.c

Create
Instance.c

Create
Window.c

Create
Window

Resources.c
Resize
Window.c

RunInput
Loop.c

Run
Render
Loop.c

StartUp.c Terminate
.c

Figure 12: Main general functions.

derer components and sends compute tasks to the Vulkan device in order to
present them afterwards. It also handles window resizing and updating the
GUI. The statistics that are shown by the application are gathered at various
places inside the loop.

The ResizeWindow(...) function is actually not as simple as it sounds. It
recreates both GUI resources and the VkWindowLink in order to sustain a
valid window for the RunRenderLoop(...) function to render into. Other than
perhaps OpenGL, Vulkan does not offer help in this regard because of its
low-level nature.

The Terminate(...) function is called by the ExitCb(...) function from section
4.3.1. Currently it only sets a variable which causes both RunRenderLoop(..)
and RunInputLoop(...) to stop, thus terminating the application. It could be
further extended to initiate procedures to for example save progress before
termination.

4.3.3 Vulkan

Vulkan

Create
VkDevice
Link.c

Create
VkLink.c

Create
VkWindow

Link.c

Figure 13: Main Vulkan functions

The Vulkan related functions in Main seen in figure 13 do not produce render
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resources. They mostly prepare for the actual rendering by setting up Vulkan
in various ways.

The CreateVkDeviceLink(...) function creates everything that is necessary to
use a Vulkan capable device. For this, it sets up things like VkPhysicalDe-
vice, VkDevice, etc. handles. It tells the Vulkan driver of the device which
features should be enabled and if validation layers should be activated.

The CreateVkLink(...) function creates the VkInstance handle, which is a
link to Vulkan on the host machine. This function also insures that a Vulkan
loader is present.

The CreateVkWindowLink(...) function is primarily called by the CreateWin-
dowResources(...) function mentioned in section 4.3.2. It creates everything
that is necessary to use a window that was provided by the WSI in combi-
nation with Vulkan. For this it creates the VkSwapchainKHR handle etc..
Every window has its own VkWindowLink and the link needs to be reestab-
lished when a window resize event occured.

4.4 Renderer

Renderer

Functions

Acceleration General Vulkan Resources Structs

Figure 14: Renderer source structure.

The Renderer component is probably the most interesting bit of the imple-
mentation (apart from the shaders) in terms of the goal of this bachelor report
and can be seen in figure 14. As always, the context of this implementation
component can be seen in section 4.2.1. Let me first mention the least inter-
esting thing, which is the Resources folder. Here reside the shader binaries
that were generated as described in section 4.1.2. The Renderer component
actually declares some structs of its own and I will briefly explain them in
section 4.4.1. The Acceleration part contains functions which implement ac-
celeration structures used by the shaders and can be further understood in
section 4.4.2. The General part contains some helper-functions etc. which

32

Bachelor Informatik



Faculty 3 | Computer Graphics AG

are explained in section 4.4.3 and the Vulkan part implements most of the
Vulkan procedures that are needed to render the sphere packings.

4.4.1 Structs

Structs

Bounding
Box.h

Bounding
Box

Helper.h

Push
Con

stants.h
Render
Task.h

Sphere.h UBO1.h UBO2.h

Figure 15: Renderer Structs.

Most of the structures that can be seen in figure 15 are used locally but some
are used throughout the implementation. The bounding-box structures are
mostly helper which are used for the creation of acceleration structures. For
more information on this, see section 4.4.2. The Uniform Buffer Object
(UBO) structures are used whenever a shader is created or updated. Almost
all shaders rely heavily on UBO’s for data which changes between frames.
An alternative to UBO’s are PushConstants and the corresponding structure
is used whenever a shader uses PushConstants. PushConstants are rather
limited on how much data they can hold, which is around 100 byte depend-
ing on the driver implementation. On the flip side, the Vulkan specification
mentions that they might perform better, which is why I wanted to try them.
I would avoid PushConstants in retrospect because its more work to set them
up compared to UBO’s and the performance increase is probably marginal.

The Sphere structure holds the definition of a sphere. Currently it only con-
tains the position and the radius. The structure should be extended if there
needs to be other attributes which might be unique to a single sphere, such
as color or weight.

There is also the RenderTask structure which is very important and has many
use-cases across the implementation. Basically a RenderTask structure con-
tains the state of a single sphere packing while it’s being rendered by the
application. It also holds most of the Vulkan resources needed to render the
sphere-packing.
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4.4.2 Acceleration

Acceleration

Create
BVH.c

Create
Grid.c

Figure 16: Renderer acceleration functions.

The approach for acceleration can be read in section 3.3. The 2 functions in
figure 16 implement the creation of the acceleration structures and some other
render resources which are needed in combination with these acceleration
structures.

4.4.3 General

General

Create
Render
Task.c

Handle
FileDrop.c

InitPush
Constants.c InitUBO2.c

Load
Spheres.c

Pick
Sphere.c

Resize
Rendering.c

Update
Rendering.c

InitUBO1.c

Figure 17: Renderer general functions.

Some functions in figure 17 are just for initialisation and not really worthy
of note, for example InitUBO1(...). However, there are other functions which
control the creation of render resources and do some software rendering.

The LoadSpheres(...) function parses the file path that was transmitted by
the DropCb(...) from section 4.3.1. It does so in 2 phases, first seeking the
number of spheres in the sphere packing. The second phase will actually
create the spheres in the form of Sphere structures. It does so by iterating
over each line and allocating the spheres as it goes. This is not optimal
since it may lead to slow load times on certain systems. Pre-allocation of
the necessary resources would be a better solution, but for now the current
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implementation suffices. For more info on the Sphere structure see section
4.4.1.

The PickSphere(...) function casts a ray through the scene to determine which
sphere was selected. This function is executed by the MouseCb(...) function
from 4.3.1. It does so purely in software, not touching the GPU. I consider
this function experimental because there is no use-case for it yet.

4.4.4 Vulkan

Vulkan

CreateVk
Buffers.c

CreateVk
Command
Buffers.c

CreateVk
Descriptor
Sets.c

CreateVk
Images.c

CreateVk
Pipelines.c

CreateVk
Task.c

Figure 18: Renderer vulkan functions.

The execution of most functions from 18 is rooted in the function Creat-
eVkTask(...). This function provides a good overview of all resources that
need to be created on the vulkan side, to finally create a VkTask handle
which is needed by the RenderTask structure. Vulkan resources are heavily
dependent on each other, which means that there is a set sequence in how
these resources need to be created: First the function creates VkBuffer han-
dles, then VkImage handles and after that VkDescriptorSet handles. Next the
function will createVkPipeline handles and based on that VkCommandBuffer
handles, which is the final step.

The CreateVkBuffers(...) function creates VkBuffer handles for sphere pack-
ing rendering. A VkBuffer handle is used to represent general data which is
needed by shader programs. For example vertices or UBO’s. Similarly the
CreateVkImages(...) functions creates VkImage handles for texture data.

Descriptors created by CreateVkDescriptorSets(...) are used to package the
data and make it usable.

In the end, pipelines are defined which load shaders and set other parame-
ters, such as the viewport and depth/stencil operations. All these resources
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need to be linked by a command buffer so that geometry can be drawn. This
is done in CreateVkCommandBuffers(...).

4.5 GUI

ResourcesFunctionsEnums Structs

GUI

Figure 19: GUI source structure.

The GUI implementation is pretty straight forward and is based on ImGui
as explained in section 4.1.3. The source structure that can be seen in figure
19 reflects this. A Resources directory contains shader binaries similar to the
Resources directory in figure 14. I will refrain from explaining the Enums
and Structs directories in detail because they are rather trivial in that it
takes one look to understand what goes on. One thing to say though is,
that the GUI structure in the corresponding directory contains important
variables (mostly flags) which trigger GUI logic in the GetImGuiFrame(...)
function. This specific function is further explained in the next section. The
flags are mostly set via the callbacks mentioned in section 4.3.1. Enums
contains definitions of GUI types that can be used to differentiate between
GUI implementations and the application currently makes active use of it,
even though there is only one GUI implementation based on ImGui. The
reason for that is that in the future it might be desired to use other GUI
libraries which can be easily achieved with the current implementation.

4.5.1 Functions

Functions

CreateImGui
Resources.c

DrawImGui
Frame.c

GetImGui
Frame.c

Update
ImGui
Buffer.c

Figure 20: GUI functions.
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The functions in figure 20 contain everything that is needed to render the
GUI. The render-loop in section 4.3.2 only presents the resources which were
created based on these 4 functions. The functions are pretty self explanatory
by their name only, so a few words about them except for one will suffice.
CreateImGuiResources(...) is executed first to lay the basis for GUI render-
ing. It only needs to be called once for every window size, meaning that
in case of a window resize event, new resources need to be created. Draw-
ImGuiFrame(...) and UpdateImGuiBuffer(...) are called each frame and update
the VkCommandBuffer handles which in turn updates the GUI rendering.

The GetImGuiFrame(...) function defines the look and functionality of the
GUI. To read more about the design see the next section.

4.5.2 Design

For the design I implemented a window that is split into 4 elements, as can
be seen in figure 21. The red numbers in the figure correspond to a specific
window element and explanations for these elements can be read beneath the
figure.

Figure 21: Final GUI design.

The following explanations provide a basic understanding of the purpose of
the elements inside the main window. For more detailed insight, the appli-
cation provides a option to enable a dynamic help mechanic which displays
useful information based on where the cursor is hovering. To enable it, toggle
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the ’Show Dynamic Help’ button in the window on the right hand site (4 in
figure 21).

1. The viewport which shows the rendered scene: The viewport spans the
entire window and is rendered over by the GUI. Though that doesn’t mean
that the GUI obstructs the viewport. Each part of the GUI can be indi-
vidually toggled so that you can hide the GUI completely if you want to.
The viewport changes it size whenever the window resizes. This means that
I found it necessary to automatically re-render sphere-packings in order to
have it fit the updated viewport size. Beware of this because previous renders
will be lost when resizing the window.

2. A window with transparent background that shows status info and other
useful data: The window visibility can be enabled and disabled. It shows the
file path of the currently visible sphere-packing and the total sphere count.
More interesting is the part below that because it shows render statistics
such as the Turn Around Time (TAT). The TAT information is divided into
three parts. The ’Compute TAT’ measures how long the Vulkan device takes
to render a specific tile. The ’Partial TAT’ adds the ’Compute TAT’ and the
amount of time it takes to do everything else related to the tile. By ’tile’
mean the part of the frame that is being rendered. For more information on
the tile based rendering approach, see section 3.2.3. Finally, the ’Complete
TAT’ shows how long it took to render a complete frame.

3. An indicator for the tile that is being computed: The indicator in figure
21 is in the default idle position. The indicator can be toggled and it’s size
is adjustable. This means that a frame could be rendered using one tile (so
basically the entire frame is being rendered in one piece, which means that
the tile has the same size as the window) or up to thousands of tiles, de-
pending on the window size. Please note that each tile comes with a slight
performance-overhead during rendering, so the fewer tiles are needed the bet-
ter the performance is usually.

4. The main GUI window for changing settings: This is the heart of the GUI
and allows the user to make all kinds of changes. The user can toggle the
visibility of windows, enable dynamic help and choose the rendering device.
It also features the scene selector where the user can switch between mul-
tiple sphere-packings. Using a drop-down menu the user is able to choose
the shader and as a consequence, the look of the render. The pixel-chunk
size slider allows the user to alter the number of pixels in a tile and visually
changes the 3rd element of the GUI. At the bottom the user can find shader-
specific options.
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Section 8.3 provides a close-up look at the different GUI elements as well as
the Metaballs-specific GUI-panel, which has not been mentioned yet. The
Metaballs-Panel is shown when the user selects the metaballs shader. It en-
ables the user to change weight, threshold and sphere-count parameters.

4.6 Core

Core

Enums External Functions

StructsCommon
.h

Macros.h

Types.h

Figure 22: Core source structure.

The Core contains things that are used throughout the implementation which
have a very basic and abstract nature. This will make more sense after read-
ing section 4.6.1. Figure 22 also shows some features that extend on this
principle. For example, it is the place where often used macros are defined
(Macros.h). This centralizing approach allows to quickly change or extend
macros. Combined with the Types.h file, it allows for fine control over popu-
lar used definitions and macros in the entire implementation. It is not needed
to include these files by themself, rather I recommend to include Common.h
which includes common components such as Macros.h and Types.h. Similar
to the structures from the Structs directory, enumerations are defined in the
Enums directory which are widely in use. One novelty is the External direc-
tory. It contains include only header files of external dependencies such as
Volk. It’s better to indirectly include a dependency by including a file which
includes the dependency because it avoids redundancy. This redundancy can
appear when definitions are needed to configure the include, which is the case
for some of the external dependencies.

4.6.1 Structs

The structures seen in 23 are really the foundation of the application and
represent a system independent layer. Hence, they abstract in a way that
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Structs

Device.h Instance.h Report.h

Thread.h Thread
Pool.h Window.h

Figure 23: Core structs.

makes it possible to work with them with different operating system targets
in mind. The Device struct contains information about devices such as GPU’s
or CPU’s which can be used for rendering. The Instance contains the state of
the program and its data. There is only one Instance structure at runtime and
it essentially contains pointers to every other resource. The Window struc-
ture contains, not surprisingly, everything related to the window provided
by the Window System Integration (WSI), ranging from Vulkan and general
WSI data, to GUI data. None of these structures are global, meaning that
everything must be passed to functions in one way or another to use them.
In general, the application does not use any global variables or structures,
because global data make programs harder to debug. In addition, using the
code inside a shared library (which may be something to be considered in
the future) becomes almost impossible when a lot of global data is used.

4.6.2 Functions

Functions

Acquire
Handle.c

Add
Work.c

Create
Thread
Pool.h

Init
Instance.h

Init
Report.h

Init
Thread.h

Destroy
Thread.h

Get
Thread.h

IsHandle
Valid.h

Set
Report.h

Figure 24: Core functions.
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The Core comprises functions which implement memory allocation, threading
and other fundamental tasks. InitInstance(...) is quite important, since it
is called at the beginning of execution and configures some variables used
throughout the program. The AcquireHandle(...) function allocates memory
from the thread, as explained in section 3.4. It does so by deciding if a new
chunk of a specific type of data should be allocated or if the current chunk
is enough. Then it returns a pointer to a memory address inside the chunk.

4.7 WSI

WSI

Enums Functions Structs

Figure 25: WSI source structure.

The Window System Integration (WSI) executes the callbacks in section
4.3.1. It can be seen as an important layer that allows the abstraction of
platform details. The WSI source structure is quite simple, as can be seen
in figure 25.

4.7.1 Functions

Functions

Create
Win32.c

Create
X11.c

Destroy
Win32.c

Destroy
X11.c

GetInput
FromX11

.c

GetInput
FromWin
32.c

Figure 26: WSI functions.

The functions in 26 are pretty self explanatory. They handle everything re-
lated to the corresponding structures. The purpose of the WSI is basically
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to provide windows for rendering and to relay user input, such as mouse
movement, clicks, and file drops. The Create and Destroy functions spawn
and destroy windows from the operating system. Those windows can then,
by association, be queried for input in the GetInput functions. The input
depending on its nature is then directed to the corresponding callback func-
tion in 4.3.1. Input querying is currently done by a single thread which does
so in 12 ms intervals. Based on section 4.1.4, these functions need to be
implemented twice since they are OS dependent. Because I do not deem
it necessary to show the aforementioned structures in a figure, here a little
explanation. The two corresponding structures are called Win32 and X11.
Naturally they can be found in the Structs directory seen in 25. These struc-
tures contain OS related WSI resources where Win32 covers the Window
platform and X11 the Linux platform.

4.8 Vulkan
The Vulkan directory has the same structure as seen in figure 25. The direc-
tory contains helper functions and structures which are useful when dealing
with Vulkan. The enumerations in the Enums directory are each used once
in 2 functions, so I will refrain from explaining them because they are really
more of a detail and their purpose can be examined in the source code.

4.8.1 Structs

Structs

VkBuffer
2.h

VkCommand
Buffer2.h

VkDevice
Link.h

VkDevice
Memory
Info.h

VkImage
2.h

VkImGui.h VkLink.h VkPipeline
2.h VkTask.h VkWindow

Link.h

VkDescrip
torSet2.h

Figure 27: Vulkan helper structures.

Most of the structures seen in figure 27 are just wrapper around the cor-
responding Vulkan structures. For example, VkBuffer2 wraps the opaque
structure VkBuffer and so on. I have done this because some structures are
frequently used in combination with each other and it’s handy to have them
in one place. A VkBuffer, for example, does not contain the buffer memory
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on its own, for this a separate VkDeviceMemory structure is used. So having
these 2 structures combined in one structure is very convenient. Most of the
other structures follow the same principle.

4.8.2 Functions

Functions

Bind
VkDevice
Memory.h

CreateVk
Buffer2.h

Create
VkImage2.h

CreateVk
Pipeline2.h

Destroy
VkBuffer2

.h

Destroy
VkDescrip
torSet2.h

Destroy
VkPipeline

2.h

Map
VkDevice
Memory.h

CreateVk
Descriptor
Set2.h

Figure 28: Vulkan functions.

The functions 28 are not very complex and quite similar in purpose, so I won’t
mention every single one. They are mainly helpful because they abstract
some of the explicit procedures that occur quite frequently. For example
CreateVkImage2(...) creates an image while also binding and mapping the
related memory. Additionally it can create the view and sampler of the image.
The function name already hinds that it creates a VkImage2 structure, which
is a wrapper of VkImage from the Vulkan API.

4.9 Shaders
The shaders have been named according to their function and can be easily
identified 29. The imgui shaders implement the drawing routine for the GUI.

They are included into the program by the CreateVkResources(...) function
20. More precisely: The function creates and passes a pipeline object to the
driver which in turn loads and executes the shaders.

The present shaders are also quite substantial since they draw images created
by the compute (.comp) shaders to the screen. They present, so to say, the
computation output. The output from shaders such as raytracing_grid.comp
is stored in GPU-local memory to achieve maximum access speeds. Based on
the double-buffer principle, the program allocates two such memory locations
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and alternates between them. The present shaders look up the data (color
information in the RGBA format) from these memory locations and draw
them to the screen. The present.frag shader is also responsible for drawing
the tile-visualization, which can be seen in figure 19.

Shaders

imgui.frag imgui.vert pathtracing
_bvh.comp

present
.frag

present
.vert

raytracing
_bvh_aa_
x4.comp

raytracing
_bvh_aa_
x9.comp

raytracing
_bvh.comp

raytracing
_bvh_visua
lization.comp

metaballs
.comp

raytracing
_grid.comp

raytracing
_grid_visua
lization.comp

Figure 29: Shaders used by the program.

The only time that the rasterization pipeline is touched, except for GUI
drawing, is when the present shaders use a rectangle (made up of 2 triangles)
to map image data onto. The image data was generated beforehand by a
specific compute shader. The rectangle covers up the entire viewport.

Each compute shader implements the tiled rendering routine 3.2.3 so that
it’s consistent across each use-case, even regarding the metaball shaders.
Please note that when looking at the actual shader-directory, you will notice
additional metaball shaders with suffixes ranging from 1 to 3. These shaders
can be tested by changing the name to metaballs.comp and recompiling the
application.

The different metaball shaders are all based on the approach laid out in sec-
tion 3.2.2. The result section 5 covers two of these shaders in detail, the
others are merely experiments. All metaball shaders are to varying degrees
based on shadertoy-shaders. The source-code references the sources accord-
ingly.

4.10 Mentionable Difficulties
One interesting problem I encountered was that with Vulkan, because of
its low level nature, inconsistencies between devices make developing cross-
platform a real challenge. For example, Vulkan driver memory layouts of
GPU’s from different manufactures vary in such a way, that the programmer
(under circumstances) has to compensate for these differences. I recommend
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the Vulkan Hardware Database [26] for a thorough view of Vulkan capable
devices and their differences, ranging from extensions and formats to mem-
ory.

Another difficulty regarding portability was actually compiler related. I de-
veloped on Linux using GCC. Once I wanted to port the application over
to Windows, I had to ask myself which compiler I should use on Windows.
An obvious choice would have been MinGW or Cygwin, but those would
have resulted in big dependencies. I figured, since most users will probably
have Visual Studio installed in one way or another, that the MSVC compiler
which comes with Visual Studio is a good choice. What I did not expect
was, that the MSVC implementation of the C11 standard is actually not
complete. This resulted in some rewrites regarding non-MSVC compliant
code sections, such as dynamic arrays. The MSVC compiler also gives some
extra warnings which I did not have with GCC, so I mostly ignored them
which is quite common for secondary build procedures.

I also have to admit that I underestimated the difficulties of programming a
cross-platform application without any big dependencies such as Qt or Gtk
while using a low-level programming language. The development platform
was Linux, so the application will perform best on Linux-based systems. I
tested four different windows-machines and it ran fine most of the time, but
time-constraints did not allow me to fix quirks that I encountered which were
hard to debug. The most serious bug I encountered was process-termination
on window-resizing. I suspect this has something to do with Vulkan in com-
bination with Windows since I never encountered this on Linux. Thus, cross-
platform is more of a experimental feature. In retrospect I would recommend
avoiding the low-level route if its not required. It also depends on experience
and time constraints.

Last but not least I want to mention that its probably better not to over-
do architecture planning. For example, I have a lot of abstraction in places
where its not really necessary at this time. A dangerous line of thought occurs
when one thinks that something may be necessary in the future. This just
adds overhead and slows down initial development. However, I’m fine with
the current architecture of the application because in the overall approach,
extensibility is pretty important.

4From wikimedia.org/Vulkan_API_logo (public domain)
5From wikimedia.org/SPIR_logo_2014 (public domain)
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5 Results
Here I present the resulting functionality of the application. First, I will focus
on the visual fidelity of the implemented rendering algorithms in section 5.1
by looking at some renders and commenting on them. I will also look at
the performance using multiple test cases and systems. I will try to draw
many implementation parallels, so that this section and section 4 supplement
each other as much as possible. In the case of the Metaball-shaders I will
actually talk quite a bit about the implementation because its easier to follow
explanations when pictures are involved.

5.1 Rendering
5.1.1 Simple ray-tracing

I implemented 3 different types of simple ray-tracing. These types differ only
in the ’sharpness’ or ’smoothness’ of the image they produce. The dragon
in figure 30 does not feature any Anti-Aliasing (AA) thus the sphere edges
appear to be ’jagged’. The counter example can be seen in figure 31. Here
a shader applies AA and the sphere edges appear smooth. However, in it’s
current implementation this comes with a significant performance drop of
factor 2.

Figure 30: Dragon, 2000 spheres, no AA.

The good thing is that each of these implementations works with BVH accel-
eration structures. Reasonable performance can be achieved by playing with
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the settings regarding the BVH depth. The first algorithm which produces
output as seen in figure 30 also works with the grid acceleration structure,
which allows performance comparisons.

Figure 31: Dragon, 2000 spheres, 9xAA.

Another thing to note is that I encountered visual inconsistencies between
different Vulkan driver versions. I used the mesa linux driver (running on
a Intel(R) HD Graphics 5500) as the reference Vulkan driver. While the
shaders producing figure 30 run fine on all tested systems and drivers, the
shaders producing figure 31 caused artifacts on Windows using NVIDIA’s
proprietary Vulkan driver. As of now I don’t know what the cause for this
is, because the validation layers do not hint on any likely causes.

5.1.2 Path-tracing

The path-tracing algorithm is by far the slowest, purely ray-tracing based al-
gorithm for rendering that the application supports, but its also the most vi-
sually appealing. The algorithm adds ambient occlusion which makes the im-
age look more believable. The quality of the produced image mostly depends
on the number of samples the algorithm uses to approximate the ground
truth. Figure 32 shows a render with only two samples, thus producing a
noisy image. If one is to look closely, he or she would also spot lines running
across the image forming up a grid pattern. These are caused by the tiled
rendering process and vanish with higher sample count. For example 33 does
not show any lines.
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Figure 32: Pig, 2000 spheres, 2 samples.

One other difference from the algorithms from section 5.1.1 is that the path-
tracing algorithm does not support the Grid acceleration structure. How-
ever, it supports the BVH acceleration structure which speeds up rendering
tremendously. I implemented the algorithm because I wanted a visual bench-
mark which produces some fine looking images. For very quick rendering I
recommend to use simpler algorithms like the aforementioned ones.

Figure 33: Pig, 2000 spheres, 48 samples.
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5.1.3 Visualizer

To make sure that the acceleration structures are valid, I implemented two
shaders that visualize the structures calculated by the acceleration algo-
rithms. More info about these can be found in section 4.4.2. Combined
with the dynamic nature of the implementation, these visualizations also
hold educational value because they show the space partitioning and how it
changes depending on the parameters.

Figure 34: BVH Visualizer, box
count: 7

Figure 35: BVH Visualizer, box
count: 15

Figure 36: Grid visualizer, cuts: 1 Figure 37: Grid visualizer, cuts: 6

Both visualizers render bounding boxes that contain at least one sphere.
Currently there are some overlapping issues from certain perspectives, but
for its purpose the implementation suffices. The visualizers can be activated
by choosing the corresponding shaders in the shader selection.

As can be seen from figure 34 to 37 the bounding boxes behave as expected
depending on the algorithm. Please note that both acceleration algorithms
work with any kind of sphere-packing. Something else to note is that the
BVH visualizer only renders leaf-boxes.
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5.1.4 First Metaballs Shader

The outcome of rendering Metaballs mostly depends on the various variables
that can be set in the algorithm. As already mentioned 3.2.2, the imple-
mentation allows the user to change the threshold which defines when the
charge-sum is big enough to cause the pixel to be colored. I therefore want to
show the differences between the rendered images depending on the thresh-
old.

The first figure 38 shows a render-outcome using a Metaball-Threshold of
10. This is the maximum threshold that the user can define and it renders
the spheres mostly like the other ray-tracing techniques, that is, you can tell
apart each sphere.

Figure 38: First Metaballs Shader, Threshold: 10, AABB count: 15

The next figure 39 shows a render-outcome using a much lower threshold.
As can be seen, it’s harder to tell apart each sphere because they merge
at specific points. Also, because the threshold is now much lower and thus
causing more charge-sums to pass beyond the threshold, the model appears
to be thicker.

As a side note, I found that altering the AABB count also alters the Meta-
ball behavior. While a lot of AABB’s cause the model to slim down, less
AABB’s cause it to appear thicker. This is most definitely because more
AABB’s also means that less charges are accumulated per step, thus causing
fewer charge-sums to reach the threshold. The AABB-Metaball relation can
be seen when comparing figure 40 and 42. Even though both images where
created using two different algorithms to color the pixel it’s clearly visible
that in the second render, featuring a much lower AABB count, the model
has a higher volume then in the first render.

Figure 40 shows a great increase of volume compared to the last two fig-
ures. A lot of spheres appear to be merged and the model looks a good bit
smoother. The coloring of the surface is based on a mixing algorithm which
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Figure 39: First Metaballs Shader,
Metaballs Threshold: 3

Figure 40: First Metaballs Shader,
Metaballs Threshold: 1

tries to mix the colors of the different contributing spheres depending on
the contribution amount. The algorithm does not perform any interpolation
between color values so that’s why it looks like there may be clipping issues,
when in fact its just the coloring algorithm.

To research the algorithm a little further, I wanted to see what the contri-
bution distribution looks like for the metaball-surface. For this, I changed
the algorithm which colors the pixel when the threshold is reached. The new
algorithm colors the pixel in the color of the sphere which contributed the
most to the charge-sum. Not surprisingly, figure 41 shows an image not to
different from the images in section 5.1.1. This means that the each sphere
has the highest contribution in there own radius, which is exactly what we
want. After that it gets interesting though.

Figure 41: First Metaballs Shader,
Threshold: 10, AABB count: 1

Figure 42: First Metaballs Shader,
Threshold: 1, AABB count: 1

Figure 42 shows that spheres with relatively immense radius contribute the
most to much of the metaball-surface. To see this, compare the colors of
the big spheres in figure 41 to the color of the surface of figure 42. The
problematic is caused by the different sphere sizes when working with sphere-
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packings. The big spheres are packed tightly by the smaller spheres which
means that each ray, which is close to a smaller sphere, will also gather a
rather large charge from the big spheres. Now because the big spheres have a
wide radius, this charge will be greater than most charges gathered from the
small spheres, even in the immediate vicinity of these smaller spheres. Only
spheres that are far enough from the big spheres or are placed in a secluded
area will be rendered individually. This characteristic causes the surface to
lose it’s features depending on the threshold.

5.1.5 Second Metaballs Shader

I implemented another metaballs shader, which creates images using almost
the same technique as 5.1.4. The main difference rendering wise lies in the
coloring algorithm which adds lighting and material simulation. The second
Metaballs-Shader is also the default one when using ProtoRender. It can be
considered as the improved version of the first metaballs shader.

The main points made in section 5.1.4 apply to this shader as well. However,
instead of implicitly controlling the volume with the AABB count, the shader
uses user-defined weight parameters to scale sphere-contributions depending
on sphere-size ranges. The GUI interface can be seen in figure 61.

Figure 43: Second Metaballs
Shader, Spheres: 1700, Threshold:
0.92

Figure 44: Second Metaballs
Shader, Spheres: 1700, Threshold:
1.26

Comparing figure 43 and 44 shows us the same behavior we have already seen
in the first metaballs shader, but with better color calculation. The back-
ground is black because of the otherwise low contrast but can be changed
easily. Despite the improved picture quality, the shader still has some draw-
backs though. It can take quite some time to find good weight-values. Also
there is some behavior where the shader forms disc-shaped plateaus instead
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of merging the spheres. This is noticeable in figure 44. These artifacts can
be mostly compensated by finding good weight values.

Figure 45: Second Metaballs
Shader, Spheres: 1700, Threshold:
1.39

Figure 46: Second Metaballs
Shader, Spheres: 2100, Threshold:
1.39

Comparing figure 45 and 46 shows that using a higher sphere count can result
in a more accurate representation of the model. On the flip side, a higher
sphere count also means drastically lower performance and a higher chance
of bad spots.

Additional pictures can be seen in section 8.4.

5.1.6 Miscellaneous

While working on the different techniques mentioned in previous sections, I
also came up with other ways to color spheres. One technique can be seen in
figure 47. These techniques can be activated by defining specific constants
in some shaders.

Figure 47: Miscellaneous shader
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5.2 Performance
To measure the performance I used different kind of systems ranging from
low-end to high-end rigs 1. I tested both Linux (Arch Linux) and Windows
(Windows 10) implementations. The tests were performed using 1 integrated
(Intel HD Graphics 5500) and 4 external GPU’s. The Vulkan drivers of these
devices are all based on different API versions 2. There aren’t any major dif-
ferences between these versions except some added extensions.

I prepared different test-cases for each of the implemented algorithms. For
the ray-tracing algorithm I tested using sphere counts ranging from 5.000
to 300.000 spheres. The tests for the path-tracing algorithm span sphere-
counts from 2000 and up to 100.000 spheres. I set the viewport resolution
at 1000x1000 pixel across all tests to make sure that the data is compara-
ble. This is a good middle-ground resolution taking in mind common laptop
displays as well as desktop monitors. I also used the same camera position
(x = 3, y = 3, z = 3) for all measurements which means that the calcula-
tions are mostly the same in that regard (different camera angles can cause
different amounts of intersections).

GPU CPU RAM OS
Intel HD Graphics 5500 Intel i3 5005U 8 GB Arch Linux
NVIDIA GTX 1070 Intel Core i5-7600K 16 GB Windows 10

AMD R9 390 AMD Ryzen 9 3900X 64 GB Arch Linux
NVIDIA GTX 1080 TI Intel Core i7-6700K 32 GB Windows 10
NVIDIA RTX 2080 TI Intel Core i7-7800X 64 GB Windows 10

Table 1: Test-Systems

GPU Vulkan API version release date
Intel HD Graphics 5500 v1.1.106 Apr 2019
NVIDIA GTX 1070 v1.1.121 Sep 2019
AMD Radeon R9 390 v1.1.113 Jul 2019
NVIDIA GTX 1080 TI v1.1.109 May 2019
NVIDIA RTX 2080 TI v1.1.99 Feb 2019

Table 2: Tested Vulkan API versions
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For a detailed documentation of the tests and precise values, see PERFOR-
MANCE.txt in the root directory of ProtoRender [1].

Example: The performance-test scene in figure 48 shows most of the dragon
model and is a good approximation of a common render scenario. The weird
rotation is caused by the default loading process. I did not change the default
point of view, which made replication of the test a lot simpler and less error
prone. The figure was rendered using the ray-casting algorithm, to test the
path-tracing algorithm I used a similar scene.

Figure 48: Perfomance-test scene, 50.000 spheres.

Regarding graph tables:

All performance graph tables follow the same layout. The x-axis
defines the used acceleration algorithm. When no acceleration
algorithm was used it will say ’No acceleration’. The y-axis rep-
resents the seconds it took to render the performance-test scene.
Each color at the bottom of the graph-tables represents a specific
sphere count. These colors map to the columns which represent
individual tests.

5.2.1 Ray-tracing

First of, I tested how fast brute ray-tracing runs. This means that there
is no acceleration algorithm in play to discard unnecessary operations. The
result is that it’s still somewhat interactive at a sphere count of 50.000 using
a reasonably fast GPU, for example a GTX 1070 (figure 49).

Further (not documented) tests show, that the algorithm becomes unusable
at a sphere count close to and beyond 100.000 (meaning render times longer
than 10 seconds) even with fast hardware. This is not surprising, since the
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GPU has to iterate relatively complex mathematics over 50.000 spheres about
1.000.000 times each frame. The GPU will execute these operations on many
cores (e.g. there are 1920 cores on a GTX 1070) using many threads, but
its still quite an undertaking. Taking all this into consideration, it’s fairly
remarkable what hardware nowadays is capable of.

No acceleration BVH Grid
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NVIDIA GTX 1070

No acceleration BVH Grid
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NVIDIA GTX 1070

Figure 49: Ray-tracing performance using NVIDIA GTX 1070

It is also interesting to note that while there is about a 20% second perfor-
mance difference between 49 and 50 using the no acceleration approach, the
performance difference between 50 and 51 is even bigger. When comparing
certain sphere counts (e.g. 150.000) these differences can be larger than a
factor of 1.5. I didn’t expect that because although the RTX 2080 TI has
more stream processors, the GTX 1080 TI has a higher base clock and only
a slightly slower boost clock. This indicates to me that the program benefits
from parallel processing even more so then from fast throughput. Hardware
architecture changes could also have a hand in this, keeping in mind that
the RTX is one of the first consumer grade GPU’s that features hardware
accelerated ray-tracing (even though the program doesn’t make use of it di-
rectly).

A render-time speed up of about factor 10 can be measured when rendering
using a BVH compared to the brute method. One frame takes about 130
milliseconds on a GTX 1070 with a sphere count of 50000. A RTX 2080
TI renders the scene almost twice as fast, taking only 78 milliseconds. On
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low-end hardware, such as the integrated graphics of the Intel i3 processor,
the render still finishes in under one second.
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Figure 50: Ray-tracing performance using NVIDIA GTX 1080 TI

The BVH and Grid acceleration algorithms perform quite similar across the
bank. However, comparing for example the results of figure 50, there is a
tendency to discover that the BVH algorithm performs slightly better. Com-
paring these measurements, the BVH algorithm is between 10 and 300 mil-
liseconds faster in most cases, than it’s counterpart. This is quite interesting
and may be explained by the tight fitting nature of the AABB’s used in the
BVH algorithm. Later tests with a higher sphere count show similar results.
It is also interesting to note that NVIDIA cards perform best across all per-
formance tests. NVIDIA and Vulkan have a infamous reputation where it is
said, that NVIDIA cards do not perform as well using Vulkan as the AMD
counterparts. This is partly caused by differences in architecture and the
fact, that Vulkan is based on AMD’s Mantle API. The tests do not support
these speculations, even though they are not completely meaningful in that
regard, since the AMD R9 390 has generally lower specs compared to the
other NVIDIA cards.

It is save to say that the performance almost linearly worsens/improves re-
lated to the sphere count. Using the GTX 1080 TI 50 as reference, the
performance slows down about 200 milliseconds when increasing the sphere
count by 50000. This sounds pretty bad but depending on the hardware,
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interactive frames can still be achieved even with a high sphere count. For
low/mid-range hardware tests, go to section 8.1.
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Figure 51: Ray-tracing performance using NVIDIA RTX 2080 TI

5.2.2 Path-tracing

Path-tracing works by accumulating multiple samples of pseudo random gen-
erated outcomes. This algorithm principle has great impact on the perfor-
mance. The tests are all based on a sample count of 16 and render the pig
sphere-packing 33. I chose this sample count because at this point, most of
the pixels are close to or have converged to the expected result. Apart from
these differences, the tests follow the setup method previously mentioned
5.2.

It is quite easy to see that there aren’t any big differences between figure
52 and figure 53 regarding not accelerated path-tracing. Some 10 to 20
seconds differences mainly at higher sphere counts, but that was to be ex-
pected. Again, what caught my attention was the RTX 2080 TI 54, where
even sphere-packings containing 100.000 spheres have finished rendering 16
samples in under 1 minute. You might have noticed that I neglected showing
the tests using 75.000 and 100.000 spheres in figure 52 and 53 in the not
accelerated section. That’s because it took so long to render these sphere-
packings that it would have dominated the chart, making it difficult to tell
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apart the other tests with lower sphere counts.

The RTX 2080 TI runs the tests regarding not accelerated path-tracing
around 3 to 5 times faster than the GTX 1080 TI. This goes in line with
observations in section 5.2.1.

0

20

40

60

80

No acceleration BVH

2k 5k 10k 20k 30k 40k 50k 75k 100k

NVIDIA GTX 1070

0

20

40

60

80

No acceleration BVH

2k 5k 10k 20k 30k 40k 50k 75k 100k

NVIDIA GTX 1070

Figure 52: Path-tracing performance using NVIDIA GTX 1070, 16 samples

A huge performance increase can be observed when comparing non acceler-
ated and BVH accelerated path-tracing. The performance increase measures
factor 4 to 10, which is similar to section 5.2.1. This means that it becomes
feasible to render sphere-packings with a sphere count higher than 50.000
even on mid-range cards, such as 52.

Because bouncing rays are elemental to path-tracing, segmentation via a
BVH comes with a loss of shadow, ambient occlusion and color bleeding qual-
ity. That’s because rays can only hit spheres which are inside the bounding
box, otherwise the performance gain using a BVH wouldn’t be as drastic.
Luckily, at a relatively low bounding box count these quality trait offs are
not noticeable, meaning that one can find sweet spots between image quality
and performance. For the tests, I tried to find the bounding box count which
gives the best performance. Even with obvious quality trait offs, the image
quality was still far superior than 5.2.1.
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Figure 53: Path-tracing performance using NVIDIA GTX 1080 TI, 16 sam-
ples
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Figure 54: Path-tracing performance using NVIDIA RTX 2080 TI, 16 sam-
ples

Using a RTX 2080 TI 54, rendering 100.000 spheres takes only 3.609 seconds,
which is more than twice as fast as with a GTX 1080 TI 53. What’s also
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interesting about the RTX 2080 TI is that there is a lot less difference in BVH
accelerated render performance using different sphere counts. It scales much
better than the GTX 1080 TI even though they are quite similar specification
wise. Additional tests using low to medium-range rigs can be found in the
appendix 8.2.

5.2.3 Metaballs

I used the dragon sphere-packing for testing Metaballs performance. The
test-scene looks similar to figure 45 and covers about 3/4 of the viewport.
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Figure 55: Metaballs performance using NVIDIA RTX 2080 TI

As can be seen in figure 55, the sphere count has massive impact on the
performance. Rendering a frame takes between 2 and 2.5 times longer when
doubling the sphere count, which is something I expected. In reality, I think
it is quite unlikely that someone would need to use this shader on more
than 2000 spheres since the output won’t change much at that point. In
my experience, around 2000 spheres suffice to create a good approximation
of the model. Thanks to the possibility to dynamically change the sphere-
count when using the metaballs-shader, it is also possible to configure the
parameters using a low sphere count and switching to a higher sphere count
once all parameters are set.

An additional performance test can be seen in section 8.4. The test shows
the same behavior as the first test.
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6 Conclusion
In conclusion, I want to say that the task set out in section 1.2 was achieved:
A renderer with multiple rendering and acceleration techniques was imple-
mented. The rendering methods are both useful for quick visualizations or
for creating presentable images. The performance in the first case is good
enough for interactive rendering while the latter case takes longer. However,
combining these two methods (e.g. use a fast shader to position the camera
and then use a slower, but more realistic shader to make the final render)
yields a good user-experience as well as good looking images. Experiments
with Metaballs show interesting results and may prove to be a good starting
point for future work.

The application is interactive in that it let’s the user decide on a lot of de-
tails, even regarding the rendering approach. The user can choose the tile
size, thus changing the way the application interacts with the GPU. In addi-
tion, the user is able to change parameters concerning acceleration activated
shaders, with which the complexity (depth or divisions) of these structures
can be altered. There are other features (e.g. GPU selection on multi-GPU
systems or the dynamic sample count), which all contribute to fulfilling the
approach that was set out at the beginning, which said that the application
should be extensible and customizable.

The software is based on technology that makes it future proof for the next
years to come. This is important, because in the ever so fast world of com-
puter science, relying on established technology is a good way to makes sure
that dependencies won’t break the program. Even though time constraints
based on the 12 CP workload resulted in some features being scrapped (for
example further optimization or better Metaballs), I think the implementa-
tion in its current state shows good results and can be expanded on in a lot
of possible ways. Related works may be faster performance wise, but the
approach laid out in this report is feature-rich and simple to work with.
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7 Future Work
Future work can be of various nature:

Most of the rendering algorithms can be further optimized, especially meta-
balls and path-tracing.

The application could also be ported to macOS. General implementations
like memory allocation could be extended like it’s mentioned in section 3.4.

The acceleration structures could be improved upon. More specifically, sec-
tion 3.3.2 talks about further enhancements to the grid acceleration structure.
The limitations of the BVH approach 3.3.1 could also be dealt with.

Another thing which could benefit from additional work is the GUI. Some
ideas regarding this have been mentioned in section 3.5.

Lastly, it is probably a good idea fix some cross-platform related issues, for
more info on that see section 4.10.
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8 Appendix

8.1 Ray-tracing Performance
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Figure 56: Ray-tracing performance using i3 5005u
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Figure 57: Ray-tracing performance using AMD R9 390
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8.2 Path-tracing Performance
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Figure 58: Path-tracing performance using i3 5005u, 16 samples
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Figure 59: Path-tracing performance using AMD R9 390, 16 samples
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8.3 GUI close-ups

Figure 60: Main-Panel Figure 61: Metaballs-Panel

Figure 62: Status-Panel
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8.4 Metaballs
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Figure 63: Metaballs performance using AMD R9 390

Figure 64: Second Metaballs
Shader, Spheres: 1800, Threshold:
0.93

Figure 65: Second Metaballs
Shader, Spheres: 1800, Threshold:
1.29
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