
Fachbereich 3: Mathematik und Informatik

Computer Graphics

Master Thesis

A Volume-Based Penetration Measure for 6DOF Haptic Rendering of
Streaming Point Clouds

Ein auf Volumen basiertes Eindringmaß für 6DOF Haptisches Rendern
von wechselnden Punktwolken

Maximilian Kaluschke

Matrikel Nr. 2475447

23th of December, 2016

(Revised 26th of January, 2017)

Primary Reviewer: Prof. Dr. Gabriel Zachmann

Secondary Reviewer: Dr. René Weller

Supervisor: Dr. René Weller

Maximilian Kaluschke: A Volume-Based Penetration Measure for 6DOF Hap-
tic Rendering of Streaming Point Clouds, © 23th of December, 2016

A B ST R AC T

I present a novel method to define the penetration volume between a sur-
face point cloud and arbitrary 3D CAD objects. Moreover, I have devel-
oped a massively-parallel algorithm to compute this penetration measure
efficiently on the GPU. The main idea is to represent the CAD object’s
volume by an inner bounding volume hierarchy while the point cloud does
not require any additional data structures. Consequently, my algorithm
is well suited for streaming point clouds that can be gathered online via
depth sensors like the Kinect. I have tested our algorithm in several de-
manding scenarios and our results show that our algorithm is fast enough
to be applied to 6-DOF haptic rendering while computing continuous
forces and torques.

Z U SA M M E N FA S S U NG

Ich stelle eine neuartige Methode zur Feststellung des Eindringvolumens
zwischen einer einfachen Punktwolke und beliebigen 3D CAD Objek-
ten vor. Außerdem habe ich einen massiv-parallele Algorithmus zur
effizienten Berechnung dieses Eindringmaßes auf der GPU entwickelt.
Die Kernidee ist, dass man das Volumen des 3D CAD Objekts durch
eine Bounding Volume Hierarchie die das Objekt von inner annähert,
während für die Punktwolke keine weitere Datenstruktur gebraucht wird.
Folglich ist mein Algorithmus gut geeignet für wechselende Punktwolken
welche man in Echtzeit von einer Tiefenbildkamera wie der Kinect ausle-
sen kann. Ich habe meinen Algorithmus in verschiedenen anspruchsvollen
Szenarien getestet und die Ergebnisse zeigen, dass mein Algorithmus
schnell genug ist für 6-DOF haptisches Rendern und liefert zugleich
stetige Kräfte und Drehmomente.

5

AC K NOW L E D G E M E N T S

This thesis is not only attributed to me but to many people that helped
me over the course of the last year.

Firstly, I want to thank my parents Liane and Martin for their support
and for allowing and encouraging me to keep learning.
I owe a lot to my advisor René for always finding time for me when I had
a problem and for letting us discuss many of our ideas with one another.
I also want to thank my professor Gabriel for giving me this opportunity
and for always offering me his insights and critical feedback.

7

CO N T E N T S

1 introduction 1
2 previous work 3

2.1 Collision Detection . 3
2.1.1 Parallelization of Collision Detection 3
2.1.2 Collision Detection on Point Clouds 4
2.1.3 Inner Sphere Trees Datastructure 4

2.2 Penetration Depth . 4
2.2.1 Translational Penetration Depth 4
2.2.2 Generalized Penetration Depth 5

2.3 Surface Estimation . 5
2.3.1 Voronoi-Based Estimation 5
2.3.2 Estimation Based on Covariance Matrices 5
2.3.3 Estimation by Averaging Triangles 6

2.4 Haptic Rendering . 6
2.4.1 Three Degrees of Freedom 6
2.4.2 Six Degrees of Freedom 7

3 concept 9
3.1 Challenge . 9

3.1.1 Inner Sphere Trees 9
3.2 Volumetric Penetration Measure 9

3.2.1 Boundary Spheres Collision Detection 11
3.2.2 Finding Inside Spheres using Brute Force 12
3.2.3 Finding Inside Spheres using Leaf-Graph 17

3.3 Leaf-Graph . 17
3.3.1 Construction . 17
3.3.2 Traversal . 21

3.4 Surface Estimation . 23
3.4.1 PCA Modifications 25
3.4.2 Depth Noise Reduction 27

3.5 Recognizing Edges in Ordered Point Clouds 27
3.6 Discontinuity in Point Cloud Stream 31

4 implementation 35
4.1 Architecture . 35
4.2 GPU Concurrency . 36
4.3 Visualization . 39

4.3.1 Dynamic Drawing of Spherical Caps 39
5 results 43

5.0.1 Realistic Conditions 43
5.0.2 Unknown Conditions 49

5.1 Quality . 50
5.1.1 Realistic . 50
5.1.2 Synthetic . 56

9

10 contents

6 conclusion & future work 65

Appendix 67
List of Figures 69
List of Algorithms 72

bibliography 73

1
I N T RO D U C T I O N

Collision detection is a fundamental problem that arises in all tasks in-
volving the simulated motion of objects that are not allowed to penetrate
each other. For instance, it is necessary for interactive physically-based
simulations that are widely used in computer graphics and VR, but also
in robotics or the simulation of molecular dynamics. Usually the virtual
objects are represented by an abstract geometric model like a triangle
mesh of the surface or mathematical functions like non-uniform rational
B-spline. In addition of finding collisions between such object represen-
tations, we also have to resolve them in a physically plausible way. Espe-
cially in time critical real-time simulations, e.g. when haptic interaction
is included, we typically use a penalty-based approach for this collision
handling. This means, we allow a small interpenetration of the objects
and apply an appropriate force and torque to separate them in the next
simulation step.

Obviously, resolving such a situation requires additional information
about the amount of interpenetration. Basically, there exist three kinds of
contact information for resolving collisions: We can try to find the exact
time of impact between two consecutive simulation steps. This is com-
putationally very expensive. Or we can define a minimum translational
vector to separate the objects. This is also hard to compute and even
worse, it may lead to discontinuities in case of heavy interpenetrations.
Finally, we can use the complete penetration volume. This penetration mea-
sure has been called ”the most complicated yet accurate method” [15] to
define the extend of interpenetration for a pair of objects.

While general collision detection has been a research topic since more
than three decades, the first algorithms to compute the penetration vol-
ume for arbitrary CAD objects were developed just a few years ago [13], [57].
However, they support only collision detection between pairs of water-
tight 3D CAD objects that must have a certain volume. Actually, today
virtual environments do not only consist of watertight volumetric objects.
Often they contain two-dimensional parts, like thin sheets in virtual pro-
totyping tasks of the automotive industry, or even dimensionless points
that form a point cloud. Such point cloud data often appears in case of
tracking data, e.g. from body trackers relying on depth sensors like the
Kinect or hand tracking devices like the Leap Motion. Collision detec-
tion with such tracking data is crucial because normally we add it to a
scene to apply interactions with other objects in the virtual environment.

Obviously, we could reconstruct 3D meshes from the point cloud data
and then apply the aforementioned collision detection techniques. Un-
fortunately, mesh reconstruction is time consuming [41] and moreover,

1

2 introduction

the collision detection methods often require additional time consuming
pre-processing that can be hardly performed in real time.

In this thesis, I present a novel method for collision detection between
virtual environments that are modelled by arbitrary 3D CAD objects and
unstructured point cloud data. The only pre-condition is that the CAD
models have to be watertight and that the points in the point cloud rep-
resent a surface and have consistent normal information.

In detail, I contribute the following novel ideas to the field of collision
detection:

• A volumetric penetration measure for point clouds and CAD mod-
els.

• A massively-parallel algorithm that computes this penetration vol-
ume efficiently on the GPU.

• A novel penalty-based collision response method relying on the
volumetric intersection data that computes continuous forces as
well as torques for full 6-DOF phyiscally-based simulations.

The main idea is to represent the volume of the CAD object by sim-
ple volumetric primitives and distinguish between parts of those prim-
itives that are inside and outside of the point cloud, based on normal
information. To do that, I use, similar to the inner sphere trees (ISTs)
described in [57], a polydisperse sphere packing for the CAD object. Ad-
ditionally, I compute a neighborhood graph to identify spheres that are
completely located inside the point cloud. The application of traditional
data structures for CAD vs CAD collision detection, like ISTs, has several
advantages: First, the re-usage of well known technology simplifies the
implementation and reduces errors and second, it is straight forward to
add multiple CAD objects to the same scene that can interact with each
other in a physically-plausible way, without the need to maintain different
data structures for CAD vs CAD and CAD vs pointcloud tests.

My algorithm is easy to implement and handles multiple contacts au-
tomatically in a physically plausible way. The results show that my algo-
rithm can perform collision queries at haptic rates for reasonable point
cloud sizes. As a use case I present the application of my algorithm to
6-DOF haptic rendering for streaming point clouds that are gathered live
via a Kinect. To do that, I additionally present a novel method for an
online pre-filtering of the point cloud and a new approach to handle gaps
produced by large differences in the depth values.

2
P R E V I O U S WO R K

Haptic rendering often incorporates multiple tasks to offer a complete
solution. I will outline the different tasks at hand and give a brief overview
of the state-of-art.

2.1 collision detection

The topic of collision detection is an essential part in most interactive sim-
ulations and computer graphics and it has been extensively researched
in the literature. Usually, 3D objects in these scenarios are represented
by polygonal meshes. Hence, most work on collision detection has been
spent to accelerate queries for this kind of object representation. Of-
ten, some kind of bounding volume hierarchy (BVH) is used in order
to early prune parts of the geometry that can not collide. Such hierar-
chies have been described for different bounding volumes that all have
their unique strengths and weaknesses, including axis aligned bounding
boxes (AABBs) [5], orientated bounding boxes [16], spheres [22] or dis-
crete oriented polytopes [66].

2.1.1 Parallelization of Collision Detection

All these approaches were designed for sequential processors. Implemen-
tations that use parallel CPU instructions like OpenMP [67] or SSE give
considerable speedups of around 2.7 compared to sequential algorithms,
but there is more potential in modern GPUs. For triangle mesh represen-
tations there already exist a few approaches that make use of massively
parallel processing of GPUs. For example [25] used the graphics card for
collision detection between multiple objects with a single common object.
Lauterbach et al. [33] implemented a distance computation using OBB
trees on the GPU. Some methods have been described that do not require
BVHs: for instance Faure et al. [13] used layered depth images, Mainzer
and Zachmann [39] proposed a parallel sweep-and-prune approach and
Weller et al. [55] showed an approach that is based on hierarchical grids.

[65] introduce p -partitioned fronts, which help to simplify load balanc-
ing for parallel collision detection implementations between two BVHs.
Recently, neural networks have been used to achieve fixed time collision
detection between two polyhedra [26].

3

4 previous work

2.1.2 Collision Detection on Point Clouds

Compared to mesh representations, the literature on collision detection
for point clouds is relatively sparse. One of the first approaches to detect
collision between point clouds was developed by [29]. They use a BVH
in combination with a sphere covering of parts of the surface. [30] pro-
posed an interpolation search approach of the two implicit functions in a
proximity graph in combination with randomized sampling. [12] support
only collisions between a single point probe and a point cloud. For this,
they fill the gaps surrounding the points with AABBs and use an octree
for further acceleration. [14] used R-trees, a hierarchical data structure
that stores geometric objects with intervals in several dimensions [18], in
combination with a grid for the broad phase. [44] described a stochastic
traversal of a bounding volume hierarchy. By using machine learning
techniques, their approach is also able to handle noisy point clouds.

Another approach is approximating the point cloud by a set of axis-
aligned cubes, called a collision map [46, 69].

2.1.3 Inner Sphere Trees Datastructure

Inner sphere trees are an object representation to have a close approxima-
tion to the ground truth for geometric queries, such as collisions [61] or
haptic rendering [59]. The big difference to other approximations is that
the volume is approximated from the inside instead of from the outside.

I will use an algorithm that is similar to one I presented in [24] to regis-
ter collisions between point clouds and inner sphere trees in a massively-
parallel fashion on a GPU. However, since I have no use for measuring
proximity, I will be using a simplified version of the algorithm. I just need
a boolean collision detection, so the computation will be a lot faster in
the uninteresting case of no collision, but otherwise the computational
times will be comparable.

2.2 penetration depth

Penetration depth is the measurement of how far two objects are collid-
ing with each other and can be segmented in two categories, translation
penetration depth (PDt) and generalized penetration depth (PDg).

2.2.1 Translational Penetration Depth

PDt describes the magnitude of the minimal translation of one of the
objects that resolves the collision between the two objects. The concept
was introduced by [4], which shows algorithms for calculating the PDt

between two convex primitives using Minkowski sum. There have been
many improvements published after that, mostly on more general data
structures.

2.3 surface estimation 5

A translational solution is of course only useful for translational haptic
rendering like 3-DOF, whereas 6-DOF requires torques to be calculated
as well. Although there are ways to combine multiple translational results
to approximate the rotational part [36], they do not offer accurate results.

2.2.2 Generalized Penetration Depth

PDg is the generalized penetration depth, measuring the minimal trans-
formation applied to one of the two colliding objects to resolve the col-
lision. The metric to compare the trajectory of general transformations
has to formulated by some metric, like [62, 63].

[64] introduced the concept by solving PDg between two polyhedral
models.

2.3 surface estimation

The topic of surface estimation has been researched for a long time, even
before range scanning cameras were common tools.

[21] first introduced the least-squares approach to estimate normals at
a specific point by looking at it’s neighbour points. Like here, the applica-
tion often does not require real-time ready computations. In robotics [38]
for example you can scan the whole environment that will be traversed
and compute the surface for the composition of all scans. So their fo-
cus is mostly on quality and computation times often are in the order
of seconds to analyze one point cloud [7, 40, 54], some don’t mention
computation times at all [37, 43].

2.3.1 Voronoi-Based Estimation

Visualization of point clouds is another application where most algo-
rithms are some form of Voronoi-based or Delauny-triangulation method [1,
2, 10, 50]. [9] compares multiple of approaches that fall into this category
with approaches that use least-squares based methods, which are shown
to be considerably faster, more accurate, but less reliable under noise.
Voronoi-based algorithms are geared more towards use-cases with static
scenes, where quality is significantly more important than speed.

One of the reasons these solutions take so much time is that they oper-
ate on unorganized point clouds. However, in this work I will be using a
Kinect to generate point clouds, so I will take advantage of the fact that
they are organized point clouds, simplifying the surface estimation.

2.3.2 Estimation Based on Covariance Matrices

There have also been studies on simpler and therefore faster algorithms
that are more fit my use case. For example [53] compares the accuracy

6 previous work

of several very basic approaches. Most of the simpler approaches use
principal component analysis (PCA) to fit a plane through a neighbour-
hood of points [3, 20, 53]. [23] compares various modifications of PCA,
singular value decomposition (SVD) and similar algorithms under dif-
ferent circumstances in detail, which shows plane fitting via PCA with
normalization to be most accurate and fastest on average. [28] illustrates
and compares different approaches in artificial and real point clouds.

I will be using a simplified version of plane fitting via PCA in my im-
plementation.

2.3.3 Estimation by Averaging Triangles

[28] also include another category of estimation methods that are based
on averaging triangles formed by neighbouring points. This type of tech-
nqiue is also utilized in [6]. [28] comes to the conclusion that they offer
less quality normals, especially under noisier data, so they are not fit for
my use-case. Their experiments show results similar to [23], which are
that plane fitting via PCA & SVD to be most accurate and fastest.

Other simpler approaches are based on calculating the crossproduct of
tangential vectors on the point that is being analyzed, most prominently
used in robotics in unknown terrain [19, 20, 32].

2.4 haptic rendering

Haptic rendering is a notion that describes a complete solution to per-
form haptic rendering, which includes solution to the problems previously
mentioned in this chapter.

Haptic rendering solutions are either penalty-based or constraint-based.
Penalty-based algorithms continuously check how far the virtual tool has
penetrated the environment and calculates an appropriate penalty which
is then applied to the physical haptic device. These algorithms are usu-
ally easier to implement but have trouble with the virtual tool popping
through thin parts of the environment.

Constraint based algorithms usually use some form of virtual-coupling,
which means there is an additional virtual object in the scene which can’t
penetrate objects. All the movement of the haptic device is applied to
the virtual object, but under the mentioned constraint. To calculate the
output force to be applied to the haptic device, a virtual spring is span
from the haptic device position to the virtual object.

2.4.1 Three Degrees of Freedom

This topic has been well-explored, the most notable approaches are the
constraint-based god-object [68] and proxy-method [45], both operate on
environments in polygonal data.

2.4 haptic rendering 7

[11] introduce an algorithm to perform haptic rendering on an unorga-
nized point cloud by pre-computing knowledge about their neighbouring
points into each point. [35] construct an implicit surface by defining meta-
balls at each point in the point cloud, resulting in a smooth surface. Both
of these have pre-computation times of about a second, so are not fit to
work on changing point clouds in real-time.

Another approach pre-computes a regular grid over the point cloud [51].
This enables very fast neighbourhood searches, but again will only be fea-
sible for static scenes.

There are also approaches that operates directly on live-streaming
point clouds from devices like a Kinect. [47, 49] extend the classic proxy-
method from [45] to work on changing point clouds retrieved from a
Kinect by fitting a plane through all points that are inside the spherical
proxy, similarly to [31, 51].

2.4.2 Six Degrees of Freedom

One of the early real-time capable solution here was [42], which voxelized
the virtual tool and represented the environment as point shells with
inwards facing normals. The environment point shells are transformed
by the inverse orientation of the virtual tool, but in itself is static.

There have been different solutions to 6-DOF haptic rendering on static
scenes since [8, 17, 27, 36], however the field is not as well explored 3-
DOF haptic rendering, because of the increased complexity.

Solutions that work on point clouds also exist already. [34] expand on
the meta-ball algorithm from [35] to allow for 6-DOF haptic rendering of
a static scene with the robot’s gripper as the virtual tool.

[49] started by extending the classic proxy-method to work on stream-
ing point clouds, but in this first version they supported only 3-DOF
haptic rendering because the haptic probe was represented by a single
point. The same author later introduced a method for 6-DOF haptic ren-
dering on streaming point clouds [48]. This is the closest publication to
what I want to achieve, however for slightly different data representations.
They rely on the classic VPS algorithm The running time are dependent
on the number of points in the pointshell.

Most implementations are available only for the CPU and hence, the
number of supported points in the pointshell is restricted. Moreover,
none of these extensions was able to overcome the huge memory-footprint
of the voxmap and the need for different data structures for moving and
fixed objects. Additionally, the resulting forces and torques are very noisy
[56].

3
CO NC E P T

Range data Point Cloud Surface Normals

Haptic State Collision Detection Penetration Depth Haptic Feedback

Figure 3.1: My haptic rendering pipeline.

3.1 challenge

As previously mentioned, haptic rendering includes multiple subtasks
that need to be performed. I illustrated an overview of these subtasks of
my application in Figure 3.1 in the form of a pipeline.

3.1.1 Inner Sphere Trees

One of the datastructures I deploy are inner sphere trees (ISTs) intro-
duced in [58] for the representation of the virtual tool. I included one
example inner sphere tree construction with its bounding volume hierar-
chy of the Stanford bunny in Figure 3.2.

ISTs are poly-disperse sphere packings of the CAD model, which can
be generated by the Protosphere algorithm [60]. This algorithm produces
space-filling sphere packings for almost any 3D object representation, in-
cluding polygonal meshes, CSG and NURBS. The virtual tool is assumed
to be rigid, so it suffices to pre-compute an IST once with the desired pre-
cision.

3.2 volumetric penetration measure

The core issue and contribution of my work is the design of a volumetric
penetration measure between point clouds and 3D CAD models approx-
imated by ISTs. The CAD model that is used as a virtual tool is required
to be water-tight and additionally, each point in the point cloud needs to
have a corresponding normal point towards the outside of the approxi-
mated environment. Many depth sensors provide these normals automat-
ically. However, the Kinect does not provide them, so we calculate our
own surface approximation as I later describe in section 3.4.

9

10 concept

(a) The original mesh as
ground truth.

(b) The sphere packing that
represents the volume.

(c) The bounding volume hi-
erarchy to accelerate the
traversal.

Figure 3.2: Polygonal mesh and it’s IST representation.

A point cloud that intersects an inner sphere tree basically divides the
spheres into three different parts:

• Boundary: Spheres that are intersected by at least one point.

• Outside: Spheres that are outside of the implicit surface generated
by the point cloud.

• Inside: Spheres that are located completely inside the point cloud
surface.

The penetration volume consists of the volume of all inside spheres and
the inside part of all boundary spheres. In case of a single intersecting
point in a boundary sphere, the intersection volume is simply the spher-
ical cap defined by the plane consisting of the point p, its normal n and
the boundary sphere s with radius r . The volume of the spherical cap is
given by

V =
1
3
𝜋h2(3r − h) (3.1)

where h is the height of the spherical cap, i.e. h = r − d with d being the
distance of the plane to the center c of s given by

d = n̂ × (c − p) (3.2)

The actual algorithm has to consider several other cases, which is why I
define it in its completeness in Algorithm 3.1. Unfortunately, this creates a
possible place where some discontinuity is introduced. Since in the worst
case a point can enter a sphere from the backside, effectively adding
almost all of the sphere’s volume to the penetration volume. I did not
solve this problem yet, but have come up with an idea that counteracts it.
However, I did not implement this yet, so no experiments will be given
to verify this proposal.

In order to avoid discontinuities that may appear from the previously
mentioned single point that enters a sphere and directly adds the com-
plete intersection volumeVcap , we add a weighting factorw that takes the

3.2 volumetric penetration measure 11

Algorithm 3.1: intersectedVolume(s Sphere, p Point, ®n Nor-
mal)

1: cs ← center of s
2: rs ← radius of s
3: d ← ®n · cs − (®n · p)
4: if |d | < rs then
5: h ← r − d
6: return 1

3𝜋h
2(3r − h)

7: if d ≥ 0 then
8: return 0 // Sphere completely in-front of plane

9: return 4r 3𝜋
3 // Sphere completely behind plane

distance of the point to the center into account dp = |p − c |. Moreover, we
have to consider, whether the point enters an inside or an outside sphere.
In case of outside spheres, we simply set wout = dp/r , in case of inside
spheres as win = r − dp/r . We switch w between wout and win in case
that woutV = 1 −winV and the points switched between the respective
hemisphere.

In case that several points pi and their normals ni with i ∈ {1, ...,N } hit
the same boundary sphere, we simply compute the normalized average
point ps of all points pi and the corresponding averaged normal ns as

ps =

N∑
i=0
pi

N
ns =

N∑
i=0
ni

N
(3.3)

We can then substitute p for ps and n for ns in Equation 3.2 to approx-
imate the total penetration volume of s as described in Algorithm 3.1.

3.2.1 Boundary Spheres Collision Detection

This task is closely related to traditional collision detection methods.
Hence, I use a very similar approach. In a pre-processing step I com-
pute a sphere packing as previously mentioned.

However, I additionally create a wrapped Inner Sphere Tree hierarchy
based on this sphere packing to accelerate collision queries, similar to
[57] (see Figure 3.2c). I use a typical recursive traversal scheme to find
the boundary spheres (see Algorithm 3.2). This can be easily performed
for all spheres in parallel. A similar approach has been used for distance
computations between CAD objects and point clouds in [24].

Obviously, in addition to simply marking the spheres we can directly
sum up the collided points and normals per sphere (as described in Equa-
tion 3.3), which are required for later collision response calculations.

12 concept

Algorithm 3.2: traverseIST(s Sphere, p Point)

1: if s is leaf then
2: mark s as boundary sphere

3: forall children s j of s do
4: if p inside s j then
5: traverseIST(s j , pi)

3.2.2 Finding Inside Spheres using Brute Force

After determining the boundary spheres while performing collision de-
tection, the next step is to determine inside spheres. Outside spheres do
not need to be explicitly identified, since they have no effect on the total
penetration volume in any case.

The simplest approach to identify inside spheres and compute their
respect penetration volumes is a brute force substitution approach. The
only difference between boundary spheres to all other spheres is that they
collided with one or more points, meaning they have collision informa-
tion which enables us to compute an exact penetration volume. The goal
of my brute force approach is to substitute the missing collision informa-
tion by borrowing it from suitable boundary spheres.

In Algorithm 3.3, I outline the basic principle. We initialize the global
total sums with zeros and start a massively-parallel array of threads, one
for each leaf sphere in the inner sphere tree. Now we have two basic
cases, either the sphere is a boundary sphere, so it has a collision plane
from which we simply calculate the penetration volume. In the other case,
the sphere has no collision plane, which we substitute by iterating over
all available boundary spheres and calculating the penetration volume
with regards to every of those boundary spheres’ collision plane. We
calculate the overall average of those, weighted by their priority in regards
to the current sphere. Afterwards, we normalize the weighted average
and add it to the global sum. There is no need for explicitly storing the
penetration volume, since it will automatically be the magnitude of the
force vector.

3.2.2.1 Simplification

One simplified variant of this algorithm that I tested was to substitute
missing collision information only with the most fitting boundary sphere
instead of taking the weighted average. One still has to iterate over all
possible boundary spheres and calculate the priority to them, however
the more time intensive computations would only have to be done once.
I described the whole procedure in Algorithm 3.4.

3.2 volumetric penetration measure 13

Algorithm 3.3: volumeBFSub(I Inner Sphere Tree)

1: Ftotal ← (0, 0, 0)T
2: 𝜏total ← (0, 0, 0)T
3: CI ← center of mass of I
4: forall Leaf Sphere s ∈ I do in parallel
5: if s is Boundary Sphere then
6: ps ← averaged collision point of s
7: ®ns ← averaged collision normal of s
8: V ← intersectedVolume(s , ps , ®ns)
9: F ← ®nsV

10: 𝜏 ← F × (ps −CI)
11: Ftotal ←* Ftotal + F
12: 𝜏total ←* 𝜏total + 𝜏
13: else
14: Fs ′ ← (0, 0, 0)T
15: 𝜏s ′ ← (0, 0, 0)T
16: wdenom ← 0
17: forall Leaf Sphere s ′ in Boundary of I do
18: w ← priority† of s ′ in relation to s
19: V ← intersectedVolume(s ′, ps ′ , ®ns ′)
20: F ← ®ns ′V
21: 𝜏 ← F × (ps ′ −CI)
22: Fs ′ ← Fs ′ +wF
23: 𝜏s ′ ← 𝜏s ′ +w𝜏
24: wdenom ← wdenom +w
25: if wdenom ≠ 0 then
26: Ftotal ←* Ftotal + Fs ′/wdenom

27: 𝜏total ←* 𝜏total + 𝜏s ′/wdenom

*Atomic add, since this is a concurrency hazard because Ftotal and Ftotal are global
variables.

14 concept

Algorithm 3.4: volumeBFSubSimple(I Inner Sphere Tree)

1: Ftotal ← (0, 0, 0)T
2: 𝜏total ← (0, 0, 0)T
3: CI ← center of mass of I
4: forall Leaf Sphere s ∈ I do in parallel
5: wbest ← −∞
6: sbest ← nil
7: forall Leaf Sphere s ′ in Boundary of I do
8: w ← 0
9: if s = s ′ then w ←∞‡

10: else w ← priority† of s ′ in relation to s
11: if w > wbest then
12: wbest ← w
13: sbest ← s ′

14: psbest ← averaged collision point of sbest

15: ®nsbest ← averaged collision normal of sbest

16: V ← intersectedVolume(s ′, psbest , ®nsbest)
17: F ←V ®nsbest

18: 𝜏 ← F × (psbest −CI)
19: Ftotal

+←−−* F
20: 𝜏total

+←−−* 𝜏

*Atomic add, since this is a concurrency hazard because Ftotal and Ftotal are global
variables.

I compared both approaches by evaluating the same recorded haptic
movement and Kinect environment with both approaches.

As expected, the computation time is reduced drastically, a speedup of
about 1.7 on average is achieved (see Figure 3.3). This can be explained
firstly by the reduced divergence, since we do not have to tread boundary
spheres explicitly different, instead they are just assigned the maximum
priority, which is a huge benefit for the GPU’s SIMD architecture. An-
other reason is the reduction in memory accesses, since we do not need
to read as much data on every single sphere, just the best fitting one.
Global memory writes are as well reduced, to one instance of several
writes instead of an instance of writes per boundary sphere.

Surprisingly, I also found that in some scenarios, the simplified ap-
proach produces smoother force feedback behaviour. The resulting force
feedback of both approaches can be seen in Figure 3.4 when using inverse
linear distance as priority. The simplified brute force produces notice-
ably smoother feedback, with less discontinuous spikes. Whereas with
collision count as priority (see Figure 3.5), the more expensive weighted
average brute force approach shows visibly better quality with none of the
errors the simplified version shows. Overall though, the more expensive
weighted average brute force produces better results in most cases.

3.2 volumetric penetration measure 15

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 2 4 6 8 10 12Pe
n.

de
pt

h
fr

am
e

ti
m

e
[m

s]

Simulation time [s]

Brute force

Brute force (simple)

Figure 3.3: Interaction scenario with a realistic point cloud to compare compu-
tational effort of both algorithms. The simplified variant is signifi-
cantly faster with a speedup of about 1.7.

−2

0

2

4

6

8

10

0 2 4 6 8 10 12

Fo
rc

e
di

re
ct

io
n

[N
]

Simulation time [s]

x

y

z

(a) Weighted Average Brute Force. Several noticeable spikes that deviate from the gen-
eral path.

−2

0

2

4

6

8

10

0 2 4 6 8 10 12

Fo
rc

e
di

re
ct

io
n

[N
]

Simulation time [s]

x

y

z

(b) Simplified Brute Force. Irregular spikes that are shown on the weighted average brute
force are missing or signifcantly less pronounced here.

Figure 3.4: Haptic feedback quality comparison of the same run evaluated with
the Brute Force and the Simplified Brute Force method. Priority
chosen as inverse linear distance between spheres.

16 concept

−2

0

2

4

6

8

10

12

0 2 4 6 8 10 12

Fo
rc

e
di

re
ct

io
n

[N
]

Simulation time [s]

x

y

z

(a) Weighted Average Brute Force. This priority choice is generally more noise, because
it does not take into account the relation of non-boundary spheres to the boundary
spheres they are weighted by. Instead, every non-boundary sphere will weight the
same boundary sphere exactly the same.

−2

0

2

4

6

8

10

0 2 4 6 8 10 12

Fo
rc

e
di

re
ct

io
n

[N
]

Simulation time [s]

x

y

z

(b) Simplified Brute Force. Severe errors are visible, multiple spikes from the general
path that no other evaluation method shows. This priority is extremely ill-fitting for
the simplification, since this essentially means every non-boundary sphere will use
the collision plane of the same single boundary sphere with the most collisions to
substitute their missing collision data.

Figure 3.5: Haptic feedback quality comparison of the same run evaluated with
the Brute Force and the Simplified Brute Force method. Priority
chosen as collision count of the boundary sphere.

3.3 leaf-graph 17

3.2.3 Finding Inside Spheres using Leaf-Graph

I also developed an alternative, graph-based algorithm to find inside
spheres, that takes into consideration the physical connection between
the individual spheres as presentations of volume. The brute force ap-
proaches check against any possible sphere that is in the boundary, this
can lead to incorrect penetration volumes in some however uncommon
cases. For example when the virtual tool is penetrating a point cloud at
an edge where part of the virtual tool is lying in a gap in-between points
(see Figure 3.6a). When I used the graph traversal to determine the in-
side spheres, I got the result shown in Figure 3.6b. It is arguable if this is
the perfect solution, however I think it is at least much better, since the
mannequin’s point cloud would continue on that side, if it was actually
that large as the inside volume seen in Figure 3.6a suggests.

3.3 leaf-graph

3.3.1 Construction

We construct the leaf-graph by creating a connected graph over all the
leaves of the inner sphere tree. However, I came to the conclusion that
we should not intend to construct a minimal graph. Instead, the graph
should represent the physical connectivity of the object’s volume as close
as possible. If we were to construct a minimal graph, we might leave
out edges in cases where a sphere has multiple very close neighbors. In
Figure 3.7, I included a simplified sketch to illustrate the construction
process.

The procedure will be explained in the following. Given is an arbitrary
object with a sphere packing of some level of precision. First, we connect
the spheres that have a touching contact. Touching contact is however
hard to clearly define. Typically, one would solve this with a simple dis-
tance test against a suitably small 𝜀. When it is unclear in what scale the
inner sphere tree exists, the choice of this 𝜀 is not as trivial as choosing
a static value. I defined touching contact as any distance that is smaller
than the diameter of the smallest sphere. This does not guarantee a
touching contact in the physical sense. It does however guarantee that
we do not have an edge that penetrates another sphere, which would be
equivalent to skipping physical volume by taking this edge in traversal.
Unfortunately, the inner sphere trees created by the Protosphere algo-
rithm are not always connected. Hence, we then continuously insert the
shortest bridge of all possible bridges until the graph is 1-connected.

You can see such a leaf-graph for a sphere packing with low resolution
of the Stanford bunny in Figure 3.8. A large sphere will typically have
many edges because it is near to many other spheres. For us, it is unclear
if this is a desirable property or not. It might be worth experimenting
with setting a maximum sphere radius when creating the sphere packing.

18 concept

(a) Brute force detection of inside spheres (blue filled spheres). An unconnected part of
the spiral is found to be inside.

(b) Leaf-graph detection of inside spheres. Any part of the spiral that is not connected
to the collided part is not found to be inside.

Figure 3.6: Difficult arrangement of the virtual tool inside the point cloud, as
part of it is not contacting any points. The point cloud is a real
recording of a mannequin by a Microsoft Kinect.

3.3 leaf-graph 19

1

2

3

4

5

6

7

8

9
10

11

(a) The scenario: An arbitrary object that
has a sphere packing. Unfilled space and
gaps between spheres are exagerrated
for simplicity and to make the problem
more obvious.

1

2

3

4

5

6

7

8

9
10

11

(b) All spheres that are touching, meaning
their distance is extremely small, we con-
nect with an edge.

1

2

3

4

5

6

7

8

9
10

11

(c) Next we repeatedly insert the shortest
possible bridge until the graph is con-
nected. Here, sphere 1 and 2 had the
shortest distance between them while
still being from different connected com-
ponents.

1

2

3

4

5

6

7

8

9
10

11

(d) The finished leaf-graph with all con-
nected components being merged to one.
The bridges between spheres 1 and 5
and 4 and 11 were inserted.

Figure 3.7: Leaf-graph creation procedure for a simple scenario.

20 concept

(a) The original mesh. (b) Leaf-graph. Edges with the same color
are incident.

Figure 3.8: Low-resolution sphere packing of the Stanford bunny.

3.3.1.1 Auxiliary Physics Precomputations

In order to calculate plausible torques we need to precompute physics
properties of the given inner sphere tree. Firstly, we need the IST’s center
of mass in order to process individual forces at each collision point. If
we have an inner sphere tree I, then the center of mass is given by

CI =

∑
Leaf spheres s ∈I

cs (4/3𝜋r 3
s)∑

Leaf sphere s ′∈I
4/3𝜋r 3

s ′
(3.4)

where cs and rs are the center and radius of s , and rs ′ is the radius of s ′.
Additionally, we need to compute an inertia tensor that represents the

inner sphere tree’s distribution of volume accurately. First, we calculate
the inertia tensor for each sphere s with mass ms and radius rs locally:

Is =


2
5ms r

2
s 0 0

0 2
5ms r

2
s 0

0 0 2
5ms r

2
s

 (3.5)

Then, we use the parallel axis theorem to transform the local inertia
tensors to be relative to the IST’s center of mass:

II =
∑︁

Leaf spheres s ∈I
Is +ms


R2
y +R2

z −RxRy −RxRz
−RxRy R2

x +R2
z −RyRz

−RxRz −RyRz R2
x +R2

y

 (3.6)

whereR = CI− cs , the difference of the sphere’s center to the IST’s center
of mass.

3.3 leaf-graph 21

3.3.2 Traversal

After we have found the boundary spheres, in order to find and process
all the inside spheres, I developed a two pass algorithm. First, for each
the boundary spheres we perform a graph traversal on the sphere graph
in order to mark all the inside spheres and collect reference boundary
spheres which will be used in the second pass. To perform the actual
traversal we will be using a recursive depth-first search. We stop the
search if we find either a boundary sphere or a sphere that we already
marked as inside (see Algorithm 3.5). We traverse only those edges that
are pointing away from the collision normal of the respective boundary
sphere. This ensures that we traverse only inside the part of the virtual
tool that is inside the point cloud. The traversal can be easily parallelized
by traversing all boundary spheres in parallel (see Algorithm 3.6).

Moreover, I tried further optimizing my implementation using CUDA’s
dynamic parallelism for the first iteration. This helps in cases where the
penetration depth is deep, otherwise the overhead of having additional
kernel launches negates the benefits.

Algorithm 3.5: traverseGraph(sb Boundary sphere, s Sphere)

1: if s is not marked and s is not a boundary sphere then
2: mark s as inside sphere
3: store reference of sb in s
4: forall edges (s , si) do
5: traverseGraph(sb , si)

Algorithm 3.6: kernel_graphPass1(I Inner sphere tree)

1: forall Boundary sphere s ∈ I do in parallel
2: forall edges (s , si) do
3: c ← center of s
4: ps ← averaged collision point of s
5: ®ns ← averaged collision normal of s
6: if c behind the plane defined by ps and ®ns then
7: traverseGraph(sb , si)

In a second pass, we iterate over all spheres and calculate the penetra-
tion volume and haptic feedback according to the connections found by
the traversal in the first pass (see Algorithm 3.7 for details on the second
pass).

Besides the fact that this approach honors the physical connectivity of
the volume, it also performances better in cases of shallow penetration
depth (see Figure 3.9).

22 concept

Algorithm 3.7: kernel_graphPass2(I Inner sphere tree)

1: Ftotal ← (0, 0, 0)T
2: 𝜏total ← (0, 0, 0)T
3: CI ← center of mass of I
4: forall Leaf sphere s ∈ Iwith reference to sb do in parallel
5: p Point
6: if s is a boundary sphere then
7: p ← averaged collision point of s
8: ®ns ← averaged collision normal of s
9: V ← intersectedVolume(s , p, ®ns)

10: F ← ®nsV
11: else
12: if s has any reference to boundary sphere sb then
13: V ← 4/3𝜋r 3 // Full sphere volume†

14: p ← center of s

15: 𝜏 ← F × (p −CI)
16: Ftotal ←* Ftotal + F
17: 𝜏total ←* 𝜏total + 𝜏

*Atomic add, since this is a concurrency hazard because Ftotal and 𝜏total are global
variables.
†Another possibility would be to select the best fitting boundary sphere in pass one and
calculate the penetration volume per inside sphere based on the best boundary sphere’s
collision information here.

0

0.1

0.2

0.3

0.4

0.5

0.6

0 2 4 6 8 10 12Pe
ne

ne
tr

at
io

n
de

pt
h

fr
am

e
ti
m

e
[m

s]

Simulation time [s]

Brute force

Brute force (simple)

Leaf-graph

Figure 3.9: Shallow penetration test scenario. The virtual tool is scraped
against a real recorded point cloud. The leaf-graph shows greater
variance (related to penetration depth), but better average compu-
tation times compared to both brute force approaches.

3.4 surface estimation 23

Even in non-shallow cases where the penetration depth is up to 25 %
and the IST has a small accuracy of around 0.5 k spheres, I usually get
better performance than with the simplified brute force approach (see Fig-
ure 3.10a), whereas the weighted averaged brute force is even slower until
about 32 % penetration depth. This behaviour is amplified with increasing
inner sphere tree accuracies of 5 k or 10 k (see Figures 3.10b and 3.10c),
leading to the leaf-graph algorithm performing best of all until about
40 %.

3.3.2.1 Challenges

There are however several issues with the graph approach. For one, it is
less suited for the GPU’s SIMD architecture, since the traversal introduces
a lot of thread divergence. Additionally, the traversal can only start from
a boundary sphere, so the thread count is also bound by the amount
of colliding spheres. Both of these facts contribute to this approach’s
worse performance in certain scenarios (for example general very deep
penetration).

Another example would be a collision in very few or even just one
sphere, this results in very few threads having to traverse the whole graph.
I even experienced crashes because the memory that was reserved for the
stack ran out on the GPU. This comes from the fact that recursion for
the massively-parallel architecture is not ideal, unless the function argu-
ments that need to be stored on the stack are very few or the recursion
depth can be estimated before-hand. In our case, the recursive function
takes only a single address as an argument, however the recursion depth,
in the worst case can be as many as the IST has leaves. I only experi-
enced crashes when working with ISTs that are filled with about 10 k or
more spheres, and those can be fixed by increasing the memory that is
reserved for the stack in the initialization of the CUDA context. However,
this shows that in general, the approach is not as suited for a GPU imple-
mentation as the brute force approaches. I want to explore more options
in the future regarding alternative traversal algorithms, that better take
advantage of the GPU’s architecture. For example stack-less tree traversal
is a method used for GPU-based implementations of ray tracing, which
might be applicable to this problem as well.

3.4 surface estimation

As the Kinect does not provide any surface information, we have to de-
termine normals for the points generated by the depth sensor. I use the
simple observation, that we have knowledge about the viewing direction
of the sensor and about the neighborhood of points in the depth image,
as it is an ordered point cloud.

Basically, I use a method that relies on fitting a plane through neighbor-
ing points using principal component analysis. More precisely, to com-

24 concept

0.01

0.1

1

10

100

0 25 50 75 100

536 spheres

Pe
n.

de
pt

h
fr

am
e

ti
m

e
[m

s]

Penetration depth [%]

Brute force

Brute force (simple)

Leaf-graph

(a) IST resolution of 536 spheres: As long as less than 25 % of the object is penetrated,
the graph approach consistently takes less time to calculate the penetration volume
than the simplified brute force.

0.01

0.1

1

10

100

0 25 50 75 100

5505 spheres

Pe
n.

de
pt

h
fr

am
e

ti
m

e
[m

s]

Penetration depth [%]

Brute force

Brute force (simple)

Leaf-graph

(b) IST resolution of 5505 spheres: The leaf-graph algorithm is the most efficient at
selecting the inside spheres until the object is about 40 % of the object is penetarted.

0.01

0.1

1

10

100

0 25 50 75 100

10062 spheres

Pe
n.

de
pt

h
fr

am
e

ti
m

e
[m

s]

Penetration depth [%]

Brute force

Brute force (simple)

Leaf-graph

(c) IST resolution of 10062 spheres: The leaf-graph algorithm is the most efficient at
selecting the inside spheres until the object is about 40 % of the object is penetarted.

Figure 3.10: Deep penetration test scenario. The virtual tool completely pen-
etrates a synthetic point cloud in a linear motion path. The
leaf-graph method shows a direct correlation between penetration
depth and computation times. With increasing IST resolutions the
graph algorithm behaves increasingly well in non-shallow penetra-
tion depths.

3.4 surface estimation 25

pute the normal np for point p, we consider its neighborhood of points
Qp by defining the matrix:

Mp =
∑︁
q ∈Qp

(
q − cQp

) (
q − cQp

)T
(3.7)

where cQp =

∑
q ′∈Qp q

′

|Qp |
, this is simply the mean of the neighborhood.

Then, we compute the eigenvector np ofMp that corresponds to the small-
est eigenvalue of Mp . Actually, the plane can have two different normals,
so we take the one that points towards the origin because a camera can
only see surfaces that point towards it.

np :=

{
−np , if np · p > 0

np , if np · p ≤ 0
(3.8)

This algorithm can be easily parallelized by simply starting a thread for
each point.

3.4.1 PCA Modifications

To improve our estimated surfaces, I looked at the state-of-the-art meth-
ods that are available to achieve better results. I implemented several
modifications of the PCA method which were presented in [23].

3.4.1.1 Anchoring

This includes anchoring of the plane origin at the reference point instead
of the neighborhood mean. This means our covariance matrix is simpli-
fied to

M A
p =

∑︁
q ∈Qp
(q − p) (q − p)T (3.9)

The only benefit of this modification is the reduced computational cost to
calculate neighborhood means. However, this does also introduce quite
some visibly erroneous surface normals in all cases (see Figure 3.11).
As this introduces significant errors, I do not enable this modification by
default. However, it can still be useful to have a flag for this because of the
performance boost, if the more expensive algorithm is not fast enough.
Especially when working with streaming point clouds, performance can
be an issue. Our implementation is fast enough without this, which is
why I do not enable this modification by default.

3.4.1.2 Weighting

Since we are working with ordered point clouds, two points can be ex-
tremely far away, while still being considered neighbors by their 2D grid

26 concept

(a) The complete scene
that was recorded, a
mannequin standing
on a table.

(b) No anchoring, plane is expected to pass through the
neighborhood mean. Few visible errors.

(c) Anchoring enabled, plane is expected to pass through ref-
erence point. The lighting shows multiple visibly erro-
neous surface normals on the mannequin’s chest.

Figure 3.11: Visual comparison of surface normals by using them for lighting a
white textured mesh that was constructed from the ordered point
cloud.

location. My initial solution to this problem was having a simple thresh-
old for how far neighbors can be away from each other for them to in-
fluence the plane fitting of each other. The problem with this approach
however is that a point that is just barely inside the threshold will be
weighted exactly the same as a point that is right next to the reference
point, which intuitively seems to be an unfair fitting method. This modifi-
cation solves this problem by using exponential weighting of neighboring
points by their euclidean distance to the reference point. The covariance
matrix would be modified to

MW
p =

∑︁
q ∈Qp

e
−
| |p−q | |22

2𝜎2
w

(
q − cQp

) (
q − cQp

)T
(3.10)

with 𝜎w being a weighting constant that determines how slowly the dis-
tance affects the overall weight.

3.4.1.3 Normalization

A possible problem that was mentioned by [23] is that the difference vec-
tors that are used for the covariance matrix will be shorter for neighbors
that are closer than of those that are farther away. The corresponding
covariance matrix is given by

M N
p =

∑︁
q ∈Qp

(
q − cQp

) (
q − cQp

)
| |q − cQp | |22

T

(3.11)

3.5 recognizing edges in ordered point clouds 27

I did not find much difference with or without this modification, which
might be related to the fact that we are operating on ordered point clouds
where distances not as random as in unordered ones. Since there seems
to be little to no benefit to this, I do not enable it by default to do without
the additional overhead, however small it may be here.

Any combination of the above modifications is possbile and is straight
forward enough to implement.

3.4.2 Depth Noise Reduction

The depth data received from the Kinect camera can be very noise de-
pending on the usecase (factors like lighting, scenery and materials of
objects play a role). I implemented a simple bilateral filter for the depth
map that is closely related to [52].

I weight each point by two gaussian functions applied to each of its
neighbouring points (in the ordered depth map, before transforming to
cartesian world coordinates). Let p be a point in cartesian world coordi-
nates with i (p) being its Kinect image space coordinates and i (p)x and
i (p)y are its 2D components, i (p)d is its raw depth value. Let Qp be the
neighborhood of p including itself inside the depth map, then we adjust
p by

p =

∑
q ∈Qp i (q)ze

− 1
2 (

d (p,q)
𝜎d
)2
e −

1
2 (

𝛿 (p,q)
𝜎s
)2

|Qp |
(3.12)

where

d (p, q) =
√︃
(i (p)x − i (q)x)2 + (i (p)y − i (q)y)2

𝛿(p, q) = | | (i (p)d − i (q)d) | |2

As closeness function I chose the gaussian weighted distance between the
neighbouring points in image space. I chose image space over cartesian
world space because camera transformation weights points by their depth
value, which led to unevenly skewed smoothing results. The similarity
function is simply the difference in depth values with a gaussian weight
as well.

3.5 recognizing edges in ordered point clouds

In depth images I often encounter the problem that there usually are
parts of the image with huge gaps in-between points. Ideally, one would
of course want to have a tight weave of points with next to no gaps in-
between neighboring points that. This would provide a reliable descrip-
tion of the environment’s surface.

Fortunately, these gaps are not random usually. Instead, they stem
from the simple fact that the depth camera can only see the front of any
object, so the back and sides of any object will have no surface descrip-
tion. See Figure 3.12 for an example scene with the corresponding bird’s

28 concept

eye view to show the depth changes. When processing a new depth map
to convert to a point cloud and it’s surface normals, afterwards I addi-
tionally run a discrete Laplace operator over the depth map to generate
the change in depth per point given as

lpz =

∑
q ∈Qp wq |i (p)d − i (q)d |

|Qp |
(3.13)

withwq being the weight of q based on its relative position in image space
from the reference point p . As I did not have a special use-case in mind
and I don’t need our value to be normalized to stay in the range of the
depth values I chose the following unbiased & simple kernel:

D2
xy =


1 1 1

1 1 1

1 1 1

 (3.14)

This of course means we weight every difference equally, so we can omit
wq in equations 3.13, 3.15 and 3.16 in the implementation. We did still
include it here for the sake of completeness.

(a) Camera perspective render of the scene.
Note the pillar in the foreground occlud-
ing a lot of the room.

(b) Orthographic bird’s eye view of the
same pillar scene. Depth value are ren-
dered along the y -axis, x remains x , the
original y -values are not visible for clar-
ity. Note the huge gaps between the pil-
lar and the background.

Figure 3.12: Pillar scene recorded with a Microsoft Kinect comparing the cam-
era perspective render with a orthographic bird’s eye view render
to showcase the gaps in the point cloud. This problem occurs in
most point clouds which are recorded from one perspective.

However, we don’t simply store the found Laplace value lpz , we also
want to later know in what 3D direction the depth change occurred. To
achieve that, we additionally find lpx and lpy as

lpx =

∑
q ∈Qp wq |i (p)d − i (q)d |

(
i (p)x − i (q)x

)
|Qp |

(3.15)

lpy =

∑
q ∈Qp wq |i (p)d − i (q)d |

(
i (p)y − i (q)y

)
|Qp |

(3.16)

3.5 recognizing edges in ordered point clouds 29

With this we get a 2D vector that points in the direction with the most
depth change, and it’s magnitude shows the Laplace value.

Figure 3.13: Cutout of the pillar scene from figure 3.12b. This is a visualiza-
tion of an intermediate step, where each point of the point cloud
has a depth-change vector associated to it. The green-purple col-
ored lines visualize those vectors. Green is the start, purple the
end of the line. The vector direction is the direction in which the
depth change was recognized, its magnitude indicates the value
of depth change that occurred. The left end of the pillar shows
great depth change in the left direction, which indicates an edge.
Analogously, the right side shows great depth change in the right
direction, indicating another edge.

In Figure 3.13, we included a screenshot of a debug view of the scene
described in Figure 3.12a with the same rendering settings described
in 3.12b. The Laplace results are displayed in the form of vectors that
start at the point they are associated with. By this, we implicitly define a
plane for Laplace value, since we have a point origin p and we use the pre-
viously defined vector components to define the normal lp = (lpx , lpy , 0)T .

When all of this data is computed we can use it to fit an edge through
all the Laplace planes that were accumulated by averaging the Laplace
planes to all points Cp and their associated Laplace vectors Cl that col-
lided with the virtual tool this frame by simply averaging them. The
detected edge’s plane with origin pl and normal nl is then given by

pl =

∑
p∈Cp p

|Cp |
nl =

∑
lp ∈Cl lp

|Cl |
(3.17)

This additional plane can then be used to check against when travers-
ing the leaf-graph. In Figure 3.14a we illustrated an example case where
there would be no sensible solution found. Instead, what we illustrated
in Figure 3.14b would happen, there would be no sphere considered the
outside volume.

The corrected behaviour is shown in Figure 3.14c. This is of course a
simplification to illustrate the basic principle in which the edge detection
works.

To implement this we simply introduce an additional test when in the
recursive traversal. We check if for a sphere S with center cS and radius
rS whether nl · cS − pl · n̂l < 0 holds. This means the center of the sphere
is located behind the plane, in which case traversal can be continued. In

30 concept

(a) The test case setup sketch as seen from the bird’s eye perspective. The red spheres
represent the virtual tool IST, black dots with arrows are point cloud points and their
surface normal. There is a larger gap between the 5th and 6th point.

(b) The evaluation of the penetrated IST volume with no edge detection. Shading indi-
cates collided or inside volume. The small edges between spheres indicate a possible
edge of the graph traversal. The gap in points on the right side causes the traversal
to tunnel to the wrong side of the IST, causing almost all of the volume to be consid-
ered collided or inside.

(c) The large difference in depth between the 5th and 6th point are recognized and plane
is fitted through the 5th point, indicated by the blue line. The traversal algorithm
will stop at spheres that are in front of the plane. This fixes the tunneling problem,
since the gap is no longer a valid path for the leaf-graph traversal.

Figure 3.14: Example case to illustrate the tunneling problem when using the
naive leaf-graph traversal algorithm.

3.6 discontinuity in point cloud stream 31

the other case we simply stop traversal there. Another possibility would
be to check for nl · cS − pl · n̂l + rS < 0, which would instead also rule
out spheres which are just intersecting the plane, but are not necessarily
completely behind it.

Whichever solution one chooses, this does introduce discontinuity, since
from one frame to the next whole spheres could suddenly be considered
inside then outside or the other way around. A solution to this problem is
to calculate the volume that was intersected by the edge plane. However,
for spheres that actually collided with points are already intersected and
cut off by their respective collision plane. To calculate the volume that
results from a sphere that is being intersected by two arbitrary planes
would probably greatly increase the computational effort of the overall
algorithm, which is why we did not look into this issue anymore.

3.6 discontinuity in point cloud stream

A big challenge we found, was the slow update rate of the range sensor,
which emphasizes the discretization of the input data. For the Microsoft
Kinect, we are given 30 FPS, so about 33 ms between a frame. Of course a
lot can happen in this time, such as moving objects change their position
or orientation. This is a major problem when our goal is to achieve
continuous forces, this is simply impossible if the input data is already
discontinuous. This means it is essential to find a good solution to this
problem.

One approach we considered and implemented was having some form
of a moving average of the point cloud. We experimented with the simple
moving average of 8 frames, as well as with several exponential moving
averages with different weighting of older data. This approach simply
reduces the change that happens between frames by a certain amount,
but it does not solve the core problem that data is only updated every
33th haptic frame, meaning the data is still discontinuous from the view
of the haptic rendering. Additionally, the more we reduce the change
between frames, the more we have to rely on historic data, which results
in a washed out moving picture. So with this approach, it is always a
trade-off between having washed out data and having sudden changes in
the point cloud. Both states are of course not desirable.

An approach we came up with that we found to have better results is
a simple interpolation of the point cloud that is done every time before
we calculate new haptic feedback. It sounds like this would be a lot of
additional work, however since we have to transform every single point
in the point cloud anyway to apply the haptic device’s position and ori-
entation anyway, we might as well do a bit of extra work to do a linear
interpolation before we transform, the write access is needed in any case.

The interpolation is done by always storing the last two point clouds
and estimating the delay until we will get a new frame. If the last frame

32 concept

0

5

10

15

20

25

3.5 4 4.5 5 5.5

Fo
rc

e
di

re
ct

io
n

[N
]

Time [s]

Raw PCD

Interpolated PCD

(a) The setup was a synthetic point cloud wall moving towards the virtual tool, which
itself was moving towards the wall. Without interpolation, there are noticeable steps
every 33th frame, from the sudden point cloud update.

0

5

10

15

20

25

0 0.5 1 1.5 2 2.5 3 3.5 4

Fo
rc

e
di

re
ct

io
n

[N
]

Time [s]

Raw PCD

Interpolated PCD

(b) The setup was a real recorded point cloud of a wall that was moving (we moved the
camera) back and forth, the virtual tool was only moving slightly. Results are similar
to that of figure 3.15a, steps of point cloud updates are signifcantly reduced.

Figure 3.15: Force experiment to compare force feedback with PCD interpola-
tion turned on and turned off.

3.6 discontinuity in point cloud stream 33

was received at time tL , we currently have time tC and the estimated
frame-delay is tD , then our interpolation factor is given by

t =
tC − tL
tD

(3.18)

We simply interpolate every point in world space from the previous frame
towards its new value by this factor. However, we don’t interpolate values
when either of the values are zero, or the distance exceeds a certain
threshold. This is done mainly because the Kinect often has missing
depth values which will be assigned to zero, even though it does not
match the real scenery (see Figure 3.16).

(a) (b) (c)

Figure 3.16: Example case in which general interpolation would cause an error.
(a) and (b) are raw point clouds, in (b) is a red zero depth point
(happens very frequently). (c) is a possible interpolation between
(a) and (b). If we regard zero depth points we risk getting non-
linear interpolation of the resulting volume.

In Figure 3.15a and 3.15b we demonstrate the benefit of the interpola-
tion. The raw force plots show noticeable steps from the slowly updating
Kinect depth data. When we turn on interpolation of the point clouds in
both scenarios we get force plots that are noticeably smoother and most
of the sharp steps are completely gone. However, the plots also show that
the interpolated data is always behind the real point cloud by a maximum
of one frame time, since we do need to know the target we are interpo-
lation towards before we can start interpolation. As far as we could find,
this is the best solution to this problem, since we get updated data for
every time we calculate new forces, making the input data continuous.

4
I M P L E M E N TAT I O N

4.1 architecture

In this section I will give a brief overview of my current implementation
of my algorithm in general and the use case in particular. I have imple-
mented my approach in C++ and CUDA. I used OGRE3D as a scene-
graph for visualization, CHAI3D to operate a haptics device, namely a
Sensable Phantom and finally OpenNI to operate the Kinect. The Phan-
tom supports 6-DOF input but only 3-DOF output. However, the virtual
coupling shows a visually correct behaviour also for the torques, even if
they are not rendered to the haptic device.

Even if all my algorithms run completely on the GPU, I made heavy
use of multi-threading in my implementation. The main reason for this
are the different frequencies of the haptic and graphics rendering, but
also of the slow Kinect camera. For instance, the Kinect captures a new
frame only every 33 ms while the haptic rendering should maintain 1 kHz
refresh rate. Moreover, I decided to spent an extra collision detection
thread in addition to the haptic rendering thread: even if my collision de-
tection is very fast, in case of deep inter-penetrations it may happen that
it exceeds the 1 ms computation interval. Hence, in such cases I interpo-
late the forces for the haptic rendering in an extra thread. I implemented
most of the inter-thread communication using double-buffers, in order to
avoid explicit synchronization (see Figure 4.1 for an overview).

Visuals

Haptics

Kinect

Collisions

Gpu
Virtual Tool

Transform

Point Cloud

Haptic Feedback Haptic Feedback

Transformation 1. Interpolate Point Cloud
2. Collision Detection
3. Volume Measurement

1. Upload Point Cloud
2. Surface Estimation
3. Edge Detection

Render 3D Scene

Figure 4.1: Thread communication model. Data transfers are visualized as
solid black edges and GPU accesses as dashed red edges.

35

36 implementation

4.2 gpu concurrency

The previously mentioned tasks both benefit from the architecture of the
GPU and it’s advantages, which is why I implemented both in CUDA.
This additionally saves me the data transfer of the resulting surface nor-
mals, since the results can simply be written to global GPU memory,
which can be used by the other tasks in execution.

However, in principle I want to occupy the GPU as much as possible
with the execution of the haptic rendering algorithm, since this will make
feedback more responsive. The challenge is that I want to utilize the GPU
for the surface estimation while blocking the execution of the rendering
algorithm as little as possible.

CUDA has the ability to perform concurrent kernel execution with the
right hardware. However, it is not very reliable from my experience,
if the two kernels occupy too many of the same resources for example,
concurrency will simply not happen, or very infrequently. Of course,
in a production setting, one would simply install two GPUs and share
the results of surface estimation with the other GPU. I did not have this
option, so I decided to implement a workaround that will not solve but
reduce the impact that the concurrent kernels have on one another.

In practice, if surface estimation is running and a new haptic rendering
frame is lined up to be performed on the GPU, that execution thread will
simply wait until all previous kernels have finished in most cases. Since
my implementation of surface estimation takes on average about 3 ms, I
want to avoid having haptic rendering frame be delayed by 3 ms before
it even starts its work, resulting in about 4 ms of potential frame time,
which exceeds the 1000 Hz margin by far. It is arguable if this kind of
delay every 30th frame would be noticeable, but I still tried to improve
on it.

I split up the surface estimation in smaller chunks of work and launch
a kernel for each chunk. However, when I do this naively, there is no
synchronization between GPU and CPU by default, so I would instantly
fill up the stream with the equivalent of the complete task, it would just
be split up in multiple chunks. This is not desirable, since all kernel
launches for the individual chunks will be issued before a haptic frame
has enough time to utilize the GPU in-between.

Having explicit stream synchronization and sleeping the CPU thread
that will issue the next chunk’s kernel launch for a short time gives enough
time for other kernels to take priority, because they are issued before the
next chunk of surface normals.

I decided to implement a solution that would automatically maximize
the sleep times to make the surface estimation as slow as it can be to keep
up with the Kinect frequency. I want to of course avoid slowing down the
calculations so much that we do not render every available Kinect frame,
so I aim for a maximum frame time of 33 ms.

4.2 gpu concurrency 37

We calculate the total time available to be slept in-between chunks as

tT = max{min{tI − t𝜆 , tI }, tM } (4.19)

where tI is the ideal time a frame would take, chosen as 33 ms in the
case of the Kinect. t𝜆 is the estimated time the actual work takes, so that
we can fill up the difference with sleep time. We continuously update
the estimate t𝜆 in the form of a simple moving average, so that we have
a reliable and stable estimate. If the previous frame time is tF ′ we add
tF ′ − tT to the simple moving average, since this is the effective work that
was done last frame. tT is then evenly spread as sleep in-between kernel
launches for all chunks.

0.1

1

10

100

1000

0 1 2 3 4 5 6

Fr
am

e
ti
m

e
[m

s]

Simulation time [s]

Haptic

Kinect

(a) Kinect thread does not use chunking, so all work is performed as fast as possible.
The frame time is fluctuating with high spikes (Mean=0.74, SD=0.37).

0.1

1

10

100

1000

0 1 2 3 4 5 6

Fr
am

e
ti
m

e
[m

s]

Simulation time [s]

Haptic

Kinect

(b) Kinect thread uses all of its time by splitting up its work in 16 equal chunks and
thereby giving priority to haptic rendering. Frame time spikes are noticeably less
pronounced (M=0.69, SD=0.28).

Figure 4.2: Comparison of different scheduling approaches.

Figure 4.2 shows a comparison of the frame times that are produced by
the two different approaches. On one side (see Figure 4.2a), the whole
work of the Kinect frame is performed in a single piece, which gives

38 implementation

fast Kinect frame times of around 3 ms. However, the spikes of the hap-
tic frame times are very high here, since in unfortunate scheduling the
haptic thread will be blocked for multiple milliseconds. The plot on in
Figure 4.2b side shows that the Kinect frame time is always around 30 ms,
which is close to the maximum allowed frame time. The fluctuation of
Kinect frame times in the beginning comes from the fact that I use a
moving average estimate, which only becomes representative after the
first few starting frames. The spikes in the haptic frame time are notice-
ably smaller.

Figure 4.3 shows a debugging time-line of all kernel launches over
about one Kinect frame in with different chunking settings. These time-
lines also show, the chunking significantly reduces the blocking of the
haptic rendering task.

30 ms

(a) Normals are processed in one single pass. The whole Kinect frame is processed in
a fraction of the available 33 ms while blocking the haptic rendering for the whole
duration.

(b) Normals are processed in 8 evenly split chunks of input data. The problem visible
in (a) is already significantly better.

(c) Normals are processed in 128 evenly split chunks of input data. Haptic rendering
is not blocked for any significant amount of time because the Kinect work is evenly
spread across most of the available 33 ms

Figure 4.3: Exemplary kernel threading overview. NVIDIA Visual Profiler view
of kernel launches over time on each stream. Top stream is hap-
tic rendering tasks, bottom stream are point cloud related tasks.
Note that kernel activity when it is being recorded shows unusual
behaviour because of the additional debugging overhead, which is
why actual results are better than can be shown here.

4.3 visualization 39

4.3 visualization

To visualize the results of the algorithm I implemented drawing of dy-
namic spheres that are colored according to their state. Exemplary scenes
can be seen in Figure 4.4.

4.3.1 Dynamic Drawing of Spherical Caps

While I was developing the debugging capabilities of my software I wanted
to draw dynamic spherical caps. I was surprised to find that there seem
to be very little resources on solving this problem, so I will present the
way I solved this problem.

What we want to visualize here is a portion of a sphere that cut off by
an intersecting plane (a collision plane). For that we need to calculate
triangles to represent the surface of the spherical cap appropriately.

The first step is to calculate the intersection circle, given the intersect-
ing sphere’s center S , its radius r and the collision plane’s origin O and
it’s normal ®n. If | ®n · S − ®n ·O | > r holds we have an intersection with the
following center and radius:

C = S − ®n (®n · S − ®n ·O) (4.20)

r ′ =
√︃
r 2 − (®n · S − ®n ·O)2 (4.21)

Of course, the normal is equal to the plane’s normal ®n.

In Figure 4.5, I show an exemplary case for a sphere at S = (3, 1, 2)
with radius r = 3 and a collision at point O = (1.14, 1.1, 1.8) with normal
n = (−0.52, 0.77,−0.36). The corresponding triangle mesh that we get
with large interpolation steps can be seen in Figures 4.6 and 4.7.

I wanted to have the typical UV-sphere mesh-typology to have evenly
spread vertices which result in a smooth surface. Interpolation needs to
happen in spherical coordinates, for which we need to have an orthonor-
mal basis that has one axis along the normal of the plane and both other
axes reside in the collision plane. We choose ®e1 = n̂, ®e2 = ®e1 × v̂ , where ®v
is any linearly independent vector from ®e1, and finally ®e3 = ®e1 × ®e2.

With this new basis we can interpolate towards surface points that are
at the two poles that are created by the intersection circle in spherical co-
ordinates. For the interpolation step for the segments we have to choose
an appropriate Δ𝜃 , and for the rings we choose a radian angle step size
Δ𝜙.

The Algorithm 4.1 shows the process. We first iterate over the seg-
ments, where the intersection circle is the first ring that we connect (this
will represent the cut surface). We then follow the current segment line
and interpolate the 𝜃 angle towards the north pole to get to the next ring
of the sphere mesh. We span triangles across the current segment’s ring
to the next segment’s ring until we reach the pole N at 𝜃 = 𝜋. I illustrated
the view of one iteration in Figure 4.8.

40 implementation

(a) The bunny is penetrating a synthetically generated point cloud.

(b) This point cloud was generated from a real recording of a mannequin.

(c) Wireframe renderings of a close-up view of the debugging spherical caps generated
to visualize the penetrated volume with complete detail.

Figure 4.4: The penetration volume of the stanford bunny: Blue spheres rep-
resent completely penetrated volume, purple ones are boundary
volume, meaning those spheres have collisions. Red spheres are
completely on the outside of the environment.

4.3 visualization 41

S r

C

O

®n

Figure 4.5: Example sphere and plane and the resulting intersection circle.

Figure 4.6: The resulting spherical cap triangle mesh in front of the plane ren-
dered in wireframes.

Figure 4.7: The resulting spherical cap triangle mesh behind the plane ren-
dered in wireframes.

42 implementation

Normal calculation is not included here, since it is simply the nor-
malized difference of the point itself and the sphere center. Except the
vertices of the cut surface, which is flat with all normals being the inverse
of the intersection circle’s normal.

Algorithm 4.1: intersectionMesh (sphere s , point O , normal
®n)

1: Triangle list T
2: for 𝜙 ∈ {0,Δ𝜙, . . . , 2𝜋 − Δ𝜙} do
3: P ← C + cos(𝜙)r ®e2 + sin(𝜙)r ®e3
4: P ′ ← C + cos(𝜙 + Δ𝜙)r ®e2 + sin(𝜙 + Δ𝜙)r ®e3
5: T append←−−−−−−− (C ,P ,P ′)
6: 𝜃P ← arccos (P −S) ·®e1r
7: 𝜙P ← arctan2((P − S) · ®e3, (P − S) · ®e2)
8: 𝜙P ′ ← arctan2((P ′ − S) · ®e3, (P ′ − S) · ®e2)
9: Q ← P

10: Q ′ ← P ′

11: for t ∈ {Δ𝜃 , 2Δ𝜃 , . . . , 1}* do
12: 𝜃 ← (1 − t)𝜃P + t𝜋
13: v ← S + ®e2r sin(𝜃) cos(𝜙P) + ®e3r sin(𝜃) sin(𝜙P) + ®e1r cos(𝜃)
14: v ′ ←

S + ®e2r sin(𝜃) cos(𝜙P ′) + ®e3r sin(𝜃) sin(𝜙P ′) + ®e1r cos(𝜃)
15: T append←−−−−−−− (v ,v ′,Q)
16: T append←−−−−−−− (v ′,Q ′,Q)
17: Q ← v
18: Q ′ ← v ′

19: return T

*In case 1 is not a multiple of Δ𝜃 , simply do as many iterations as fit with t < 1, then
do a final iteration with t = 1. This will however make the last triangle ring smaller than
the rest.

O
n

C

v

v ′P

P ′

Q

Q ′

N
𝜃

𝜃P

𝜙P

𝜙P ′

Figure 4.8: Second iteration of the inner loop described in Algorithm 4.1.

5
R E S U LT S

I tested my implementation on a computer that is running 64bit Windows
7, has an Intel Core i7–4770K CPU clocked at 3.5 GHz, 16 GB of DDR3
memory and an NVIDIA GeForce GTX 780 graphics card with 4 GB
of GDDR5 memory. To evaluate my implementation and in turn my ap-
proach, I implemented and ran several experiments. I used synthetic and
recorded sensor data in order to have reproducible experiments which I
also used to test my implementation while developing it. The recorded
sensor data for the haptic are generated while I performed real haptic
interaction. For the depth sensor data I recorded depth frames that were
generated from a Microsoft Kinect.

The computation times in general will be recorded in single-threaded
operation, if not stated otherwise. This is done to eliminate the compu-
tational concurrency on the GPU that I described in Section 4.2.

5.0.1 Realistic Conditions

Firstly, I prepared an experiment with a realistic setup, i.e. all parameters
are chosen close to what would happen in a real use-case. In Figure 5.1 I
included an overview of the performance of all my presented approaches
in this realistic setup. The setup is a pre-recorded haptic interaction with
a pre-recorded Kinect frame. I ran the experiment with different IST
resolution that represented the virtual tool, ranging from 500 to nearly
17 k.

0.1

1

10

100

2000 4000 6000 8000 10 00012 00014 00016 000

A
ve

ra
ge

fr
am

e
ti
m

e
[m

s]

Sphere packing resolution [Number of spheres]

Brute force

Brute force (simple)

Leaf graph

Figure 5.1: Realistic performance comparison. I compare my three approaches
in a setup with data recorded from real environments and interac-
tion with on average 10 % interpenetration. In all cases, the leaf-
graph performs better than both brute force approaches.

43

44 results

I found that in this realistic setup, the graph approach shows the best
performance. Moreover, the leaf-graph algorithm manages to stay fast
enough for real-time haptic interactions (1 kHz) until a sphere packing
size of around 5 k spheres. The brute force approaches are slower for all
tested IST resolutions. However, they still manage to process an IST of
smaller resolutions in the target 1 ms. The weighted average brute force
approach can calculate penetration depth of an IST with up to 1 k spheres
in under 1 ms. The simplified brute force even manages to process an IST
with more than 2 k in under 1 ms.

In Section 3.3.2 I already showed that the graph approach might not
always be the fastest option and that its performance is directly depen-
dent on the penetration depth of the IST. This stems from the fact that
I have to traverse more of the graph the deeper the boundary spheres
are located inside the object. In Figure 5.2 and Figure 5.3 I compare the
time the volume computation takes for different haptic interactions that
have significantly different average penetration depths.

As expected, for haptic interactions with an average penetration depth
of 15 % and lower, the leaf-graph performs the best. If we look at the
performance for haptic interaction with 16 % interpenetration (see Fig-
ure 5.2c), the simplified brute force approach actually calculates the pen-
etration volume of an IST with 700 spheres or less faster. This behaviour
gets more emphasized the larger the average penetration depth of the
haptic interaction is. In those cases the performance difference is di-
rectly linked to the resolution of the IST. From these experiments, we
can conclude that in general, the leaf-graph approach performs better if
the resolution of the inner sphere tree is large. Additionally, as I already
suggested, the performance of the leaf-graph is better for shallow pene-
trating interactions. To make this clearer, I included a plot in Figure 5.4.
These are the data of two individual interaction benchmarks with the
penetration depths and computation time of the graph traversal plotted
over the simulation time. The direct correlation between the penetration
depth and the volume computation times is clearly shown here.

To further validate my observations I broke-down some of the previ-
ously mentioned experiments and recorded the time of each individual
sub-task. The results are shown in Figure 5.5. The most time inten-
sive sub-tasks are the collision detection and the volume computation
via graph traversal. The computation effort of the collision detection
shows very little dependence on the actual use-case, neither penetration
depth nor IST resolution have a great impact. On the contrary, the graph
traversal takes increasingly longer to come up with a result when the IST
resolution is increased. Subsequently, the leaf-graph traversal shows the
most potential to further optimize the overall implementation by. The
penetration depth, as previously mentioned, is another parameter that
makes the traversal perform worse. This might not be easy to overcome,
since by design there is less work to be done when less of the graph needs
to be traversed.

results 45

0.1

1

10

100

2000 4000 6000 8000 10 00012 00014 00016 000

7% average penetration

A
ve

ra
ge

pe
n.

de
pt

h
fr

am
e

ti
m

e
[m

s]

Sphere packing resolution [Number of spheres]

Brute force

Brute force (simple)

Leaf graph

(a) The graph approach computes its results faster in shallow penetrations.

0.1

1

10

100

2000 4000 6000 8000 10 00012 00014 00016 000

10% average penetration

A
ve

ra
ge

pe
n.

de
pt

h
fr

am
e

ti
m

e
[m

s]

Sphere packing resolution [Number of spheres]

Brute force

Brute force (simple)

Leaf graph

(b) The graph approach computes its results faster in inter-penetrations of 10%.

0.1

1

10

100

2000 4000 6000 8000 10 00012 00014 00016 000

16% average penetration

A
ve

ra
ge

pe
n.

de
pt

h
fr

am
e

ti
m

e
[m

s]

Sphere packing resolution [Number of spheres]

Brute force

Brute force (simple)

Leaf graph

(c) The graph approach computes its results faster in medium penetrations of 10–16%.
This is true in almost all IST resolutions, only if they are less than 1 k is the simplified
brute force approach.

Figure 5.2: Realistic computation time comparison in shallow-medium pene-
trations. I compare the three algorithms in a realistic setup with
a recorded PCD with recorded haptic interactions The haptic in-
teractions have the respectively noted averaged penetration depths
in the range of 7–16% of the virtual tool’s volume. Brute force ap-
proaches show virtually no different computation times, no matter
the penetration depth. Leaf-graph traversal shows heavily differing
computation effort depending on the penetration depth.

46 results

0.1

1

10

100

2000 4000 6000 8000 10 00012 00014 00016 000

28% average penetration

A
ve

ra
ge

pe
n.

de
pt

h
fr

am
e

ti
m

e
[m

s]

Sphere packing resolution [Number of spheres]

Brute force

Brute force (simple)

Leaf graph

(a) For IST resolutions of 4 k to 12 k, the graph traversal is as fast as the simplified
brute force approach or even faster. For sphere packings upwards of 12 k, I again get
significantly faster results.

0.1

1

10

100

2000 4000 6000 8000 10 00012 00014 00016 000

40% average penetration

A
ve

ra
ge

pe
n.

de
pt

h
fr

am
e

ti
m

e
[m

s]

Sphere packing resolution [Number of spheres]

Brute force

Brute force (simple)

Leaf graph

(b) For extreme penetration depth of 40%, the graph approach more quickly calculates
the penetration depth if the IST has a resolution of about 13 k or more.

0.1

1

10

100

2000 4000 6000 8000 10 00012 00014 00016 000

46% average penetration

A
ve

ra
ge

pe
n.

de
pt

h
fr

am
e

ti
m

e
[m

s]

Sphere packing resolution [Number of spheres]

Brute force (simple)

Brute force

Leaf graph

(c) Comparable behaviour as for 40%, explained in Figure 5.3b

Figure 5.3: Computation time comparison in deep penetrations. I compare
the three algorithms in a setup with a recorded PCD with recorded
haptic interactions. The interactions have the respectively noted
averaged penetration depths in the range of 28–46% of the virtual
tool’s volume. Brute force behaves equally to all cases showed in
Figure 5.2. The graph traversal takes longer than the brute force
approaches in case of low IST resolutions and deep penetrations.

results 47

0

1

2

3

4

5

6

7

8

9

10

0 0.5 1 1.5 2 2.5

0

25

50

75

100
Pe

n.
de

pt
h

fr
am

e
ti
m

e
[m

s]

Pe
ne

tr
at

io
n

de
pt

h
[%

]

Simulation time [s]

Penetration depth

Leaf-graph pen. depth frame time

Brute force pen. depth frame time

(a) This is one of the runs presented in Figure 5.3a that resulted in an average penetration
depth of 28 %. The inner sphere tree was generated from a sphere packing of about
5 k spheres.

0

1

2

3

4

5

6

7

8

9

10

0 0.5 1 1.5 2 2.5 3 3.5 4

0

25

50

75

100

Pe
n.

de
pt

h
fr

am
e

ti
m

e
[m

s]

Pe
ne

tr
at

io
n

de
pt

h
[%

]

Simulation time [s]

Penetration depth

Leaf-graph pen. depth frame time

Brute force pen. depth frame time

(b) This interaction was used to generate data for Figure 5.3b. It has very deep penetra-
tions. Overall, this resulted in 40 % average inter-penetration. The inner sphere tree
is made up of about 5 k spheres.

Figure 5.4: Computational times for specific interactions over their simulation
time. These are individual interactions that show their penetration
depth and the corresponding computation time the leaf-graph took
to calculate the penetration volume. The correlation between pen-
etration depth and computation effort is very obvious.

48 results

0.1

1

10

100

2000 4000 6000 8000 10 00012 00014 00016 000

10% average penetration

A
ve

ra
ge

fr
am

e
ti
m

e
[m

s]

Sphere packing resolution [Number of spheres]

Leaf-graph traversal

Collision detection

(a) Test scenario with average penetration depth of 10 %.

0.1

1

10

100

2000 4000 6000 8000 10 00012 00014 00016 000

16% average penetration

A
ve

ra
ge

fr
am

e
ti
m

e
[m

s]

Sphere packing resolution [Number of spheres]

Leaf-graph traversal

Collision detection

(b) Test scenario with average penetration depth of 16 %.

0.1

1

10

100

2000 4000 6000 8000 10 00012 00014 00016 000

28% average penetration

A
ve

ra
ge

fr
am

e
ti
m

e
[m

s]

Sphere packing resolution [Number of spheres]

Leaf-graph traversal

Collision detection

(c) Test scenario with average penetration depth of 28 %.

Figure 5.5: Performance break-down per subtask. Break-down of the perfor-
mance trends of the two main subtasks of the leaf-graph approach
based haptic rendering. The collision detection slope is very flat
with increasing IST sizes and penetration depths compared to the
graph traversal.

results 49

Overall, the best choice of my presented approaches based on perfor-
mance is largely decided by the average penetration depth. The antici-
pated depth of the inter-penetrations largely depends on the stiffness of
the haptic simulation that you choose for your use-case. If you expect an
average penetration depth of more than 30%, the simplified brute force
will likely perform better on average. I found that a stiffness that reaches
the maximum feedback at 1/8th of the total volume to be reasonable for
my use-case. This means I will have a maximum penetration depth of
12.5%, so the average will stay far below that, making the graph approach
the best option by far.

I find it noteworthy that the performance curve of the graph algorithm
shows more fluctuation than both other approaches. For example, Fig-
ure 5.3a and Figure 5.3c show the algorithm taking longer for the 8 k
IST than for the 10 k. This suggests that some sphere packings are more
suited to be used for the graph-based approach than others. However, I
did not look further into this matter, since it would go beyond the scope
of this work.

Another characteristic that I noticed in the shown plots is the increase
in computational time after 12 k for both brute force approaches. For
sphere packings of sizes up to 12 k, the trend of the plots is always very
identical, only after 12 k comes a noticeable increase in the plot’s slope.
I suspect that this is caused by the increasing demand for parallel work
reaching the limits of the hardware. It could be interesting to run the
same benchmarks on better hardware to see if the plot’s slope will rise
after a bigger IST resolution.

5.0.2 Unknown Conditions

The benchmarks in Section 5.0.1 are only a useful resource if you can
estimate the average penetration depth of your individual application. If
you can not make any guess on what kind of haptic interaction you are
anticipating, I included a synthetic benchmark. In Figure 5.6, you can
see the results of a synthetic benchmark.

I set it up so that there is an even distribution of possible penetration
depth from 0–100 %, so the average is 50 %. The haptic interactions was a
synthetically generated perfect linear movement towards a synthetically
generated perfect wall of points. I categorize this interaction as highly
unrealistic, since usually objects do not pass through each other in rigid
physics. And in general, haptic rendering is a physical simulation of the
real world. This is basically the worst case scenario for the leaf-graph,
because of the deep penetrations.

As such, it is not a surprise to see, that it only performs better with
very high resolution inner sphere trees. In any other case, the simplified
brute force is the best option in terms of performance, maintaining an
average of around 1 ms up to a sphere packing size of around 2 k spheres.
This also means its performance should be suitable for real-time hap-

50 results

0.1

1

10

100

2000 4000 6000 8000 10 00012 00014 00016 000

linear 1–100% penetration

A
ve

ra
ge

fr
am

e
ti
m

e
[m

s]

Sphere packing resolution [Number of spheres]

Brute force

Brute force (simple)

Leaf-graph

Figure 5.6: Full penetration in a synthetic setup. I show the computation be-
haviour averaged over all possible penetration depths. If the range
of penetration depth can not be estimated beforehand, this data
can be used evaluate the on average best performing choice based
on the resolution of the virtual tool’s IST.

tic interaction, regardless of the exact use-case and its specific average
penetration depths.

5.1 quality

5.1.1 Realistic

I evaluate the quality of my volume measure in a realistic setting by tak-
ing the logged data of the benchmarks presented in Section 5.0.1. Each
benchmark produces a penetration volume with a direction, which can
then be scaled up with the desired stiffness to cover the whole range of
the used haptic device. Subsequently, when I inspect the generated hap-
tic forces, I am also checking the penetration measure’s quality. In the
following experiments, I chose a haptic device that has a maximum lin-
ear force feedback of 10 N, so a haptic feedback of 5 N would correspond
to a 50 % penetration volume.

I will inspect the generated penetration volume’s progress over the sim-
ulation time looking for as little as possible undesirable discontinuities
in the measured volume.

In Figure 5.7, I show the results of the low penetrating benchmark.
Overall, the forces show a considerable amount of continuity. There is
however a small amount of discontinuity only in the direction of the x -
axis. All of my possible algorithm setups handle this situation well, but
in the weighted average brute force approach produces the smoothest
result by a small margin. For comparison, see the graph traversal forces
in Figure 5.8.

5.1 quality 51

−2

−1.5

−1

−0.5

0

0.5

1

0 0.5 1 1.5 2 2.5 3

7%
Fo

rc
e

di
re

ct
io

n
[N

]

Simulation time [s]

x

y

z

Figure 5.7: Force plot for interaction with average penetration depth of 7 %.
Sphere packing has a size of 5 k spheres. Brute force with proximity-
based priority used for volume computation.

−2

−1.5

−1

−0.5

0

0.5

1

0 0.5 1 1.5 2 2.5 3

7%

Fo
rc

e
di

re
ct

io
n

[N
]

Simulation time [s]

x

y

z

Figure 5.8: Force plot for interaction with average penetration depth of 7 %.
Sphere packing has size of 5 k spheres. Leaf-graph used for volume
computation.

52 results

In Figure 5.9, I ran a medium deep penetration benchmark. This time
I show the results that the faster leaf-graph produces, there is again a
noticeable increase in discontinuity in the produced forces.

−2.5
−2
−1.5
−1
−0.5

0
0.5

1
1.5

0 0.5 1 1.5 2 2.5 3

10%

Fo
rc

e
di

re
ct

io
n

[N
]

Simulation time [s]

x

y

z

Figure 5.9: Force plot for interaction with average penetration depth of 10 %.
Sphere packing has size of 3 k spheres. Leaf-graph used for volume
computation.

In general, I notice this discrepancy in most of my experiments, it
is however more pronounced the deeper the penetration is. Even the
simplified brute force will produce forces with less discontinuities in some
of those cases. If you for example consider one of my deep penetration
experiments of 40 % average inter-penetration. The forces produced by
the graph algorithm are shown in Figure 5.10.

−8
−6
−4
−2

0
2
4

0 0.5 1 1.5 2 2.5 3 3.5

31%

Fo
rc

e
di

re
ct

io
n

[N
]

Simulation time [s]

x

y

z

Figure 5.10: Force plot for interaction with deep penetration depth of 31 % on
average. Sphere packing has size of 1 k spheres. Leaf-graph used
for volume computation.

The have a great amount of discontinuity, especially compared to the
clear forces produced by the simplified brute force algorithm (see Fig-
ure 5.11).

Of course, the weighted average brute force produces an even more
desired result (see Figure 5.12). Considering the great speed-up of the
simplification of the brute force, this is however not a big difference.

In Figures 5.13, 5.14 and 5.15, I show various other benchmarks of
experiments I conducted. I used various inner sphere tree resolutions to
show that there is no major difference between low and high resolution
ISTs.

5.1 quality 53

−8

−6

−4

−2

0

2

4

0 0.5 1 1.5 2 2.5 3 3.5

31%
Fo

rc
e

di
re

ct
io

n
[N

]

Simulation time [s]

x

y

z

Figure 5.11: Force plot for interaction with deep penetration depth of 31 % on
average. Sphere packing has size of 1 k spheres. Simplified brute
force with proximity-based priority used for volume computation.

−8

−6

−4

−2

0

2

4

0 0.5 1 1.5 2 2.5 3 3.5

31%

Fo
rc

e
di

re
ct

io
n

[N
]

Simulation time [s]

x

y

z

Figure 5.12: Force plot for interaction with deep penetration depth of 31 % on
average. Sphere packing has size of 1 k spheres. Weighted average
brute force with proximity-based priority used for volume compu-
tation.

54 results

−8
−6
−4
−2

0
2
4

0 0.5 1 1.5 2 2.5 3 3.5 4

40%

Fo
rc

e
di

re
ct

io
n

[N
]

Simulation time [s]

x

y

z

Figure 5.13: Force plot for interaction with very deep penetration depth of 40 %
on average. Sphere packing has size of 8 k spheres. Weighted
average brute force with proximity-based priority used for volume
computation.

−6
−5
−4
−3
−2
−1

0
1
2
3

0 0.5 1 1.5 2 2.5 3 3.5

46%

Fo
rc

e
di

re
ct

io
n

[N
]

Simulation time [s]

x

y

z

Figure 5.14: Force plot for interaction with very deep penetration depth of 46 %
on average. Sphere packing has size of 12 k spheres. Weighted
average brute force with proximity-based priority used for volume
computation.

−8

−6

−4

−2

0

2

4

0 0.5 1 1.5 2 2.5 3 3.5

70%

Fo
rc

e
di

re
ct

io
n

[N
]

Simulation time [s]

x

y

z

Figure 5.15: Force plot for interaction with extremely deep penetration depth
of 70 % on average. Sphere packing has size of 1.5 k spheres.
Weighted average brute force with proximity-based priority used
for volume computation.

5.1 quality 55

In fact, I want to further show how small the difference between the pro-
duced forces of very differently sized sphere packings is. In Figure 5.16,
I plotted the calculated penetration depth with an sphere packing of 1 k
spheres and the other one with 17 k spheres. All other variables for the
benchmarks are exactly the same. The plot shows that the volume that is
calculated from the low-resolution IST is slightly different the volume of
the high-resolution IST. It is not always a subset of the higher resolution
result, which is what I suspected. This likely stems from the fact that the
distribution of the spheres is different and as a consequence the volume
is differently distributed. However, the difference is so minuscule that it
is very questionable why one should consider the additional 16 k spheres.
As shown in Figure 5.3a, this would increase the computational effort by
nearly two orders of magnitude.

0

10

20

30

40

50

60

70

0 0.5 1 1.5 2 2.5

28%

Pe
ne

tr
at

io
n

de
pt

h
[%

]

Simulation time [s]

17 k spheres

1 k spheres

Figure 5.16: Force plot for interaction with deep penetration depth of 28 % on
average. Weighted average brute force with proximity-based prior-
ity used for volume computation.

Overall, the quality of my presented approaches behaves in relation to
their respective performance. The most expensive method, the weighted
average brute force produces the smoothest forces. The simplification
of the brute force offers a significant performance boost, but the forces
have noticeably more steps, because collision data of just one boundary

56 results

sphere is taking into consideration. The graph-based approach offers a
great increase in performance under the right circumstances. Its quality
is similar in some cases and worse in cases where the penetration depth is
very high. In those cases, the penetration depth and the resulting forces
show considerable amounts of discontinuity. This can be explained by
the different approach to process the inside spheres. The brute force
approaches will intersect the inside spheres with collision data of appro-
priate boundary spheres, where the graph algorithm simply counts them
as fully inside.

5.1.2 Synthetic

It is difficult to know how the penetration depth is supposed to look when
using real sensor data, so it is hard to judge how well the penetration mea-
sure is performing, besides tracking the amount of discontinuity. To have
a more solid idea of how precise my penetration measure is, I conducted
a series of experiments with synthetic sensor data, giving me quantifiable
results of the quality. In these scenarios I simulated sensor data of famil-
iar and simple environments and interactions. The sphere packing that
represents the virtual tool is chosen as one of three simple objects here
(a cube, a tetrahedron and an octahedron), so that I am dealing with
familiar distributions of volume. The haptic interaction here is usually
just a linear translation along a straight path in order see the progress of
the recognized penetration volume against various environments that are
approximated by an artificial point cloud. I constructed the point cloud
environment from the same resolution of Microsoft’s Kinect (about 307 k
points) in order to have a realistic density of points.

5.1.2.1 Wall

The first synthetic environment is a simple wall that is perpendicular to
the z -axis (see Figure 5.17). The virtual tool is a cube that is approx-

(a) The virtual tool is a cube filled with
about 1 k spheres.

(b) The virtual tool is a octahedron filled
with about 1 k spheres.

Figure 5.17: Synthetic wall setup. The point cloud is a perfect wall.

imated by about 1 k spheres (see Figure 5.17a). It is traveling along a

5.1 quality 57

linear path along the z -axis, perpendicular to the wall. The resulting
penetration depth over the progress of the simulation can be seen in Fig-
ure 5.18. The ideal line would be a straight line from (0, 0) to (100, 100).

0

25

50

75

100

0 100

Pe
ne

tr
at

io
n

de
pt

h
[%

]

Completion of path along z -axis [%]

x

y

z

Figure 5.18: Penetration depth for a cube entering a wall.

The result is nearly that, the slight rounding off of the edges comes from
the fact that the spheres can’t represent a perfectly sharp edge of the
volume distribution, which a sharp cube would have.

If I conduct a similar experiment, however I let an octahedron pass
through the wall instead of a cube (see Figure 5.17b), I get the result
shown in Figure 5.19. The curve looks very smooth going from 0% to

0

25

50

75

100

0 100

Pe
ne

tr
at

io
n

de
pt

h
[%

]

Completion of path along z -axis [%]

x

y

z

Figure 5.19: Penetration depth for an octahedron entering a wall.

100% as well. The steeper incline in the middle is the result of the volume
distribution of the octahedron. It has a crosscut that is largest in the
middle and tapers off towards the ends. This is perfectly represented in
the curve. My algorithm generates nearly perfect results for a simple wall.
A wall is a perfectly uniform object, which is why these tests are easy to
handle for my algorithm.

58 results

5.1.2.2 Spheres

I want to test my penetration measure in more irregular environments.
For that I generated more synthetic point cloud environments. In Fig-
ure 5.20, you can see the various synthetic setups that I used in the fol-
lowing. I generated point clouds in the form of spheres’ outsides and

(a) Outside of a large sphere with a radius
of 480 pixel.

(b) Inside of a large sphere with a radius a
480 pixel.

(c) Outside of a medium-sized sphere with a
radius of 320 pixel.

(d) Inside of a medium-sized sphere with a
radius of 320 pixel.

(e) Outside of a small sphere with a radius
of 160 pixel.

(f) Inside of a small sphere with a radius of
160 pixel.

Figure 5.20: Synthetic point cloud spheres at various radii (given in Kinect
image space pixel units).

insides at various radii.
As one would suspect, we find out that more irregular point clouds

are a more difficult circumstance to compute the penetration depth for
my algorithm. Firstly, we look at the case of a cube entering a large
sphere. As a sphere gets larger the surface that contacts the virtual tool
is more resembled of a wall. Thus, it is not surprising that my algorithm
handles a large sphere (as seen in Figure 5.20b) quite well. In Figure 5.21
the resulting penetration depth for a cube with about 1 k spheres can be
seen leaving a large sphere from the inside. The result looks very similar
to the perfect wall example, except for a very small amount of noise on

5.1 quality 59

0

25

50

75

100

0 100

Pe
ne

tr
at

io
n

de
pt

h
[%

]

Completion of path along z -axis [%]

x

y

z

Figure 5.21: Penetration depth of a cube leaving a large sphere.

the x - and y -axes. Also, the penetration depth shows some irregularities
towards the end of the simulation, when the cube is leaving the point
cloud contact. Overall, this is still a very good result, the penetration
depth is correctly measured at almost all ranges of the simulation.

Now, if we reduce the size of the sphere further we create an even more
irregular surface. I conducted the same experiment for a medium-sized
sphere (as seen in Figure 5.20d). Figure 5.22 shows the results. However,

0

25

50

75

100

0 100

Pe
ne

tr
at

io
n

de
pt

h
[%

]

Completion of path along z -axis [%]

x

y

z

Figure 5.22: Penetration depth of a cube leaving a medium-sized sphere.

we find that again, the result is very close to that of the perfect wall with
some added noise on the other axes and an irregular progression towards
the end.

The above experiments were against the inside of a sphere. When take
take the outside of a sphere as the point cloud environment, the results
look very different. For example, an equally sized sphere as previously,
approached from the outside can be seen in Figure 5.20c. The resulting
penetration depth over the course of the simulation are shown in Fig-
ure 5.23. The beginning of the plot is very similar to the one where the
sphere was approached from the inside, however the later parts have more

60 results

0

25

50

75

100

0 100

Pe
ne

tr
at

io
n

de
pt

h
[%

]

Completion of path along z -axis [%]

x

y

z

Figure 5.23: Penetration depth of a cube entering a medium-size sphere.

exaggerated irregularities. There are significant amounts of penetration
depths that are attributed to be in the direction of the x - and y -axis, while
it should just be in the direction of the z -axis. In Figure 5.24, you can see
the result of smaller sphere (see Figure 5.20e) as the point cloud being
penetrated. The plot shows large amount of penetration volume being

0

25

50

75

100

0 100

Pe
ne

tr
at

io
n

de
pt

h
[%

]

Completion of path along z -axis [%]

x

y

z

Figure 5.24: Penetration depth of a cube entering a medium-size sphere.

falsely ascribed to the x - and y -axis. In fact, all of the errors look exactly
like in the plot to the medium-sized sphere, just scaled up. Besides these
errors towards the end, the penetration depth is close to the ideal until
about 75 %, which is still a large range. To show that these errors are
not caused by the size of the sphere, just enhanced, I also conducted the
experiment again where I approached the sphere from the inside (see
Figure ??). There are no big errors visible, the results look very similar
to those of the large sphere (as seen in Figure 5.21).

5.1.2.3 Ridges & Corners

My previous experiments indicate that my algorithm handles concave
environments better than convex ones. In the following part I will look

5.1 quality 61

0

25

50

75

100

0 100

Pe
ne

tr
at

io
n

de
pt

h
[%

]

Completion of path along z -axis [%]

x

y

z

Figure 5.25: Penetration depth of a cube entering a medium-size sphere.

at the behaviour that the penetration measure shows when we penetrate
a ridge as the point cloud environment (see Figure 5.26). For the virtual
tool I used a tetrahedron. It has a similar volume distribution as the
octahedron, so the penetration volume curve will look similarly steeper
in the mid section and tapes off towards the ends.

(a) Blunt ridge with an opening angle of
135◦.

(b) Sharp ridge with an opening angle of
90◦.

(c) Blunt corner with an opening angle of
225◦.

(d) Sharp corner with an opening angle of
270◦.

Figure 5.26: Different corners and ridges with various angles as point cloud
environments.

The first experiment is against a blunt corner (see Figure 5.26d). The
resulting penetration depth progression over the course of the simula-
tion are shown in Figure 5.27. Overall, the curve shows the anticipated
penetration volume along the z -axis, with a steeper incline in the mid-

62 results

0

25

50

75

100

0 100

Pe
ne

tr
at

io
n

de
pt

h
[%

]

Completion of path along z -axis [%]

x

y

z

Figure 5.27: Penetration depth of tetrahedron penetrating a blunt corner with
an opening angle of 225◦.

dle. Above 80 % penetration depth there starts to be a significant amount
of volume being ascribed to the x -axis. The penetration measurements
would in application result in a force towards either of the x directions
when penetration the corner. Ideally, the resulting feedback would point
into just the z direction, the direction of the biggest opening of the corner.
However, that is the case for a large portion of the simulation path, in
the more realistic range of penetration depth.

In the next benchmark, I used a blunt ridge instead of a corner, so I
simply changed the same angled wall sections from concave to convex,
expecting a worse result. The resulting penetration depth can be seen in

0

25

50

75

100

0 100

Pe
ne

tr
at

io
n

de
pt

h
[%

]

Completion of path along z -axis [%]

x

y

z

Figure 5.28: Penetration depth of tetrahedron penetrating a blunt ridge with
an opening angle of 135◦.

Figure 5.28. As expected, the penetration measurement degrades earlier
than in the concave example. After about 60 % of penetration depth, the
measured volume would result in a considerable force in the x direction.
This result in this case is not a big fault, as in reality when pushing against
a ridge, the pushed object would be propelled towards either of the sides
of the ridge.

5.1 quality 63

−50
−25

0
25
50
75

100

0 100

Pe
ne

tr
at

io
n

de
pt

h
[%

]

Completion of path along z -axis [%]

x

y

z

Figure 5.29: Penetration depth of tetrahedron penetrating a sharp ridge with
an opening angle of 90◦.

In Figure 5.29, I repeated the same experiment, just with a sharper
ridge. As the virtual tool enters the ridge, the penetration measure again
results in a large portion of the volume being ascribed to either of the
x sides. When generating forces from this penetration volume, the hap-
tic feedback would propel the virtual tool sooner towards either of the
sides of the ridges. Only until about 45 % of penetration depth would the
generated force keep a relatively stable force in the z -direction alone.

6
CO NC LU S I O N & F U T U R E WO R K

I presented a novel penetration measure that works for general 3D objects
in environments that are approximated by a range sensor. I conceived
three different algorithms and describe how to implement them. All of
them are suited for GPU parallelized implementations.

I have developed an efficient implementation of a working prototype,
which I used to test and evaluate my concept. I compare the different
approaches under various circumstances to illustrate their respective ad-
vantages and disadvantages. All of the presented approaches can manage
to stay within haptic-ready frame times, however for differently accurate
approximations of the 3D CAD object. The brute force approaches have
the general draw back of not respecting the connectivity of the geometry
of the virtual tool in order to propagate collisions through the object’s vol-
ume. Instead, the brute force algorithms affect spheres globally, regard-
less of the underlying volume topology. In scenarios where the virtual
tool is concave, this might lead to spheres being influenced by boundary
spheres that have no valid connection to it. Both presented brute force
approaches are however straight forward to implement and exhibit very
stable behaviour both in terms of performance and feedback quality un-
der various circumstances. There is an opportunity to further explore
the priority of boundary spheres in regard to other spheres beyond the
simple metrics of distance or collision count, which were introduced here.
The performance of both brute force approaches is unaffected by pene-
tration depth, however the collision detection will be slower because it
has to traverse farther into the bounding volume hierarchy.

The performance of the graph-based approach is shown to be very fast
and significantly faster for haptic interactions that exhibit a low average
penetration depth. Especially for very large sphere packings, the graph-
based traversal shows better performance, managing to process the same
penetration situation an order of magnitude faster (for sufficiently shal-
low penetration and highly accurate sphere packings). The graph-based
approach manages to avoid having to process a large portion of the inner
spheres, since the algorithm uses preprocessed neighbourhood connec-
tivity to search for affected spheres locally. The graph algorithm shows a
noticeable amount of noise in the calculated force directions. This stems
from the fact the algorithm has concurrent threads potentially traversing
the same parts of the graph and marking spheres. This results in the
sphere associations being non-deterministic, so the surface direction the
inside volume will be contributed to is unstable. I demonstrated that this
does not affect the overall volume that was calculated however. I suspect
that there is an opportunity to explore how different parameters of the
sphere packings affect the performance of the graph-based algorithm, as

65

66 conclusion & future work

I noticed a pattern in the performance benchmarks that favored specific
sphere packings over others.

I successfully combined real-time surface estimation with my new pen-
etration measure on a shared GPU to realize 6-DOF haptic rendering of
streaming point clouds. The shared GPU caused the haptic rendering
tasks to occasionally be blocked by the surface estimation. I solved this
problem by partitioning a single Kinect frame in small chunks and pro-
cessing them slowly over the total amount of frame time that is available
to stay in real-time limits. This reduced the blockage of the haptic thread,
thus decreasing the average frame time as well as decreasing its variance,
leading to a more stable frame time.

My experiments show that my penetration measure can handle con-
cave point cloud environments well. Convex point clouds can lead to
irregular penetration volume on axis that should not be affected. This
problem does however only arise when the penetration depth is extremely
large or the virtual tool is nearly passing through the point cloud. As this
is a very unrealistic circumstance I find that my penetration measure is
well suited for many types of point cloud environments, as long as the
interactions stay within a realistic limit.

I think it is worth to further develop this method. Some ideas that I
have were already mentioned in this chapter or earlier, but I want to offer
you more of my thoughts. Firstly, the implementation has still room to
be optimized. For example, some memory accesses that are not random
are not yet implemented to be coalesced accesses. The implementation
could also be enhanced in order to support a multi GPU setup, where one
GPU handles all the surface estimation and transfers the point cloud and
its normals to the other GPU afterwards, additionally the 3D rendering
would be done on that GPU. The other GPU would simply do the colli-
sion detection and penetration depth computations continuously, without
being interrupted for anything.

The core concept could also be improved. For example, holes in the
point cloud are an issue for the graph-based approach because it can
cause tunneling of the traversal to the wrong side of the surface, leaving
all spheres to be considered inside. The edge detection that I presented
only works for a single edge, this could be increased to more. Another
possibility would be to implement a more general solution that groups
similarly located points and normals with high depth change values to-
gether and fitting a plane per group. The mentioned problem with the
direction of the forces of the graph-based approach is another issue that
can be improved.

A P P E N D I X

67

L I ST O F F I G U R E S

1 introduction 1
2 previous work 3
3 concept 9
Figure 3.1 My haptic rendering pipeline. 9
Figure 3.2 Polygonal mesh and it’s IST representation. . . . 10
Figure 3.3 Comparison of frame times of brute force algo-

rithms. 15
Figure 3.4 Feedback quality comparison of brute force algo-

rithms. 15
Figure 3.5 Another feedback quality comparison between the

brute force approaches. 16
Figure 3.6 Screenshots of a difficult arrangement evaluated

by different algorithms. 18
Figure 3.7 Leaf-graph creation procedure for a simple sce-

nario. 19
Figure 3.8 Low-resolution sphere packing of the Stanford bunny. 20
Figure 3.9 Shallow penetration test scenario 22
Figure 3.10 Deep penetration test scenario. 24
Figure 3.11 Visual comparison of surface estimation with PCA

with anchoring and without. 26
Figure 3.12 Pillar Kinect point cloud to visualize changes in

depth values. 28
Figure 3.13 Depth-change vectors visualized for the pillar scene. 29
Figure 3.14 Example case that shows tunneling of leaf-graph

traversal . 30
Figure 3.15 Comparison of enabled point cloud interpolation. 32
Figure 3.16 Exceptions in PCD interpolation showcased. . . 33
4 implementation 35
Figure 4.1 Thread communication model. 35
Figure 4.2 Comparison of different scheduling approaches. 37
Figure 4.3 Exemplary kernel threading overview. 38
Figure 4.4 The penetration volume of the stanford bunny . 40
Figure 4.5 Example sphere and plane and the resulting in-

tersection circle. 41
Figure 4.6 The resulting spherical cap triangle mesh in front

of the plane rendered in wireframes. 41
Figure 4.7 The resulting spherical cap triangle mesh behind

the plane rendered in wireframes. 41
Figure 4.8 Second iteration of the inner loop described in

Algorithm 4.1. 42
5 results 43

69

70 LIST OF FIGURES

Figure 5.1 Realistic performance comparison. 43
Figure 5.2 Realistic computation time comparison in shallow-

medium penetrations. 45
Figure 5.3 Computation time comparison in deep penetra-

tions. 46
Figure 5.4 Computational times for specific interactions over

their simulation time. 47
Figure 5.5 Performance break-down per subtask. 48
Figure 5.6 Full penetration in a synthetic setup. 50
Figure 5.7 Force plot for interaction with average penetra-

tion depth of 7 %. 51
Figure 5.8 Force plot for interaction with average penetra-

tion depth of 7 %. 51
Figure 5.9 Force plot for interaction with medium average

penetration depth of 10 %. 52
Figure 5.10 Force plot for interaction with deep penetration

depth of 31 % on average. 52
Figure 5.11 Force plot for interaction with deep penetration

depth of 31 % on average. 53
Figure 5.12 Force plot for interaction with deep penetration

depth of 31 % on average. 53
Figure 5.13 Force plot for interaction with very deep penetra-

tion depth of 40 % on average. 54
Figure 5.14 Force plot for interaction with very deep penetra-

tion depth of 46 % on average. 54
Figure 5.15 Force plot for interaction with extremely deep

penetration depth of 70 % on average. 54
Figure 5.16 Force plot for interaction with deep penetration

depth of 28 % on average. 55
Figure 5.17 Synthetic wall setup. 56
Figure 5.18 Penetration depth for a cube entering a wall. . . 57
Figure 5.19 Penetration depth for an octahedron entering a

wall. 57
Figure 5.20 Synthetic point cloud spheres at various radii. . . 58
Figure 5.21 Penetration depth of a cube leaving a large sphere. 59
Figure 5.22 Penetration depth of a cube leaving a medium-

sized sphere. 59
Figure 5.23 Penetration depth of a cube entering a medium-

size sphere. 60
Figure 5.24 Penetration depth of a cube entering a medium-

size sphere. 60
Figure 5.25 Penetration depth of a cube entering a medium-

size sphere. 61
Figure 5.26 Different corners and ridges with various angles

as point cloud environments. 61

LIST OF FIGURES 71

Figure 5.27 Penetration depth of tetrahedron penetrating a
blunt corner. 62

Figure 5.28 Penetration depth of tetrahedron penetrating a
blunt ridge. 62

Figure 5.29 Penetration depth of tetrahedron penetrating a
sharp ridge. 63

6 conclusion & future work 65

L I ST O F A LG O R I T H M S

3.1 intersectedVolume(s Sphere, p Point, ®n Normal) 11
3.2 traverseIST(s Sphere, p Point) 12
3.3 volumeBFSub(I Inner Sphere Tree) 13
3.4 volumeBFSubSimple(I Inner Sphere Tree) 14
3.5 traverseGraph(sb Boundary sphere, s Sphere) 21
3.6 kernel_graphPass1(I Inner sphere tree) 21
3.7 kernel_graphPass2(I Inner sphere tree) 22

4.1 intersectionMesh (sphere s , point O , normal ®n) 42

72

B I B L I O G R A P H Y

[1] Nina Amenta and Marshall Bern. “Surface Reconstruction by Voronoi
Filtering.” In: Proceedings of the Fourteenth Annual Symposium on Com-
putational Geometry. SCG ’98. Minneapolis, Minnesota, USA: ACM,
1998, pp. 39–48. isbn: 0-89791-973-4. doi: 10.1145/276884.276889.
url: http://doi.acm.org/10.1145/276884.276889.

[2] Nina Amenta, Marshall Bern, and Manolis Kamvysselis. “A New
Voronoi-based Surface Reconstruction Algorithm.” In: Proceedings
of the 25th Annual Conference on Computer Graphics and Interactive
Techniques. SIGGRAPH ’98. New York, NY, USA: ACM, 1998, pp. 415–
421. isbn: 0-89791-999-8. doi: 10 . 1145 / 280814 . 280947. url:
http://doi.acm.org/10.1145/280814.280947.

[3] H. Badino, D. Huber, Y. Park, and T. Kanade. “Fast and accurate
computation of surface normals from range images.” In: Robotics
and Automation (ICRA), 2011 IEEE International Conference on. May
2011, pp. 3084–3091. doi: 10.1109/ICRA.2011.5980275.

[4] Gino Van Den Bergen. “Proximity queries and penetration depth
computation on 3D game objects.” In: In Game Developers Conference.
2001.

[5] Gino van den Bergen. “Efficient Collision Detection of Complex
Deformable Models Using AABB Trees.” In: J. Graph. Tools 2.4 (Jan.
1998), pp. 1–13. issn: 1086-7651. doi: 10.1080/10867651.1997.
10487480. url: http://dx.doi.org/10.1080/10867651.1997.
10487480.

[6] Michael Bosse and Robert Zlot. “Map Matching and Data Associ-
ation for Large-Scale Two-dimensional Laser Scan-based SLAM.”
In: Int. J. Rob. Res. 27.6 (June 2008), pp. 667–691. issn: 0278-3649.
doi: 10.1177/0278364908091366. url: http://dx.doi.org/10.
1177/0278364908091366.

[7] Alexandre Boulch and Renaud Marlet. “Fast and Robust Normal
Estimation for Point Clouds with Sharp Features.” In: Computer
Graphics Forum 31.5 (Aug. 2012), pp. 1765–1774. issn: 0167-7055.
doi: 10.1111/j.1467-8659.2012.03181.x. url: http://dx.
doi.org/10.1111/j.1467-8659.2012.03181.x.

[8] S. Chan, F. Conti, N. H. Blevins, and K. Salisbury. “Constraint-
based six degree-of-freedom haptic rendering of volume-embedded
isosurfaces.” In: World Haptics Conference (WHC), 2011 IEEE. 2011,
pp. 89–94. doi: 10.1109/WHC.2011.5945467.

73

https://doi.org/10.1145/276884.276889
http://doi.acm.org/10.1145/276884.276889
https://doi.org/10.1145/280814.280947
http://doi.acm.org/10.1145/280814.280947
https://doi.org/10.1109/ICRA.2011.5980275
https://doi.org/10.1080/10867651.1997.10487480
https://doi.org/10.1080/10867651.1997.10487480
http://dx.doi.org/10.1080/10867651.1997.10487480
http://dx.doi.org/10.1080/10867651.1997.10487480
https://doi.org/10.1177/0278364908091366
http://dx.doi.org/10.1177/0278364908091366
http://dx.doi.org/10.1177/0278364908091366
https://doi.org/10.1111/j.1467-8659.2012.03181.x
http://dx.doi.org/10.1111/j.1467-8659.2012.03181.x
http://dx.doi.org/10.1111/j.1467-8659.2012.03181.x
https://doi.org/10.1109/WHC.2011.5945467

74 bibliography

[9] Tamal K. Dey, Gang Li, and Jian Sun. “Normal Estimation for
Point Clouds: A Comparison Study for a Voronoi Based Method.”
In: Proceedings of the Second Eurographics / IEEE VGTC Conference
on Point-Based Graphics. SPBG’05. New York, USA: Eurographics
Association, 2005, pp. 39–46. isbn: 3-905673-20-7. doi: 10.2312/
SPBG/SPBG05/039-046. url: http://dx.doi.org/10.2312/
SPBG/SPBG05/039-046.

[10] Tamal K. Dey and Jian Sun. “Normal and Feature Approximations
from Noisy Point Clouds.” In: FSTTCS 2006: Foundations of Software
Technology and Theoretical Computer Science: 26th International Confer-
ence, Kolkata, India, December 13-15, 2006. Proceedings. Ed. by S. Arun-
Kumar and Naveen Garg. Berlin, Heidelberg: Springer Berlin Hei-
delberg, 2006, pp. 21–32. isbn: 978-3-540-49995-4. doi: 10.1007/
11944836_5. url: http://dx.doi.org/10.1007/11944836_5.

[11] N. R. El-Far, N. D. Georganas, and A. El Saddik. “An algorithm
for haptically rendering objects described by point clouds.” In: Elec-
trical and Computer Engineering, 2008. CCECE 2008. Canadian Con-
ference on. 2008, pp. 001443–001448. doi: 10.1109/CCECE.2008.
4564780.

[12] Naim R. El-Far, Nicolas D. Georganas, and Abdulmotaleb El Sad-
dik. “Collision Detection and Force Response in Highly-Detailed
Point-Based Hapto-Visual Virtual Environments.” In: Proceedings of
the 11th IEEE International Symposium on Distributed Simulation and
Real-Time Applications. DS-RT ’07. Washington, DC, USA: IEEE
Computer Society, 2007, pp. 15–22. isbn: 0-7695-3011-7. doi: 10.
1109/DS-RT.2007.17. url: http://dx.doi.org/10.1109/DS-
RT.2007.17.

[13] François Faure, Sébastien Barbier, Jérémie Allard, and Florent Falipou.
“Image-based Collision Detection and Response between Arbitrary
Volumetric Objects.” In: ACM Siggraph/Eurographics Symposium on
Computer Animation, SCA 2008, July, 2008. Dublin, Irlande, July 2008.

[14] Mauro Figueiredo, Joao Oliveira, Bruno Araujo, and Joao Madeiras.
“AN EFFICIENT COLLISION DETECTION ALGORITHM FOR
POINT CLOUD MODELS.” In: Proceedings of Graphicon. 2010.

[15] Susan Fisher and Ming Lin. “Fast Penetration Depth Estimation
for Elastic Bodies Using Deformed Distance Fields.” In: Proc. Inter-
national Conf. on Intelligent Robots and Systems (IROS). 2001, pp. 330–
336.

[16] S. Gottschalk, M. C. Lin, and D. Manocha. “OBBTree: A Hier-
archical Structure for Rapid Interference Detection.” In: Proceed-
ings of the 23rd Annual Conference on Computer Graphics and Interac-
tive Techniques. SIGGRAPH ’96. New York, NY, USA: ACM, 1996,
pp. 171–180. isbn: 0-89791-746-4. doi: 10.1145/237170.237244.
url: http://doi.acm.org/10.1145/237170.237244.

https://doi.org/10.2312/SPBG/SPBG05/039-046
https://doi.org/10.2312/SPBG/SPBG05/039-046
http://dx.doi.org/10.2312/SPBG/SPBG05/039-046
http://dx.doi.org/10.2312/SPBG/SPBG05/039-046
https://doi.org/10.1007/11944836_5
https://doi.org/10.1007/11944836_5
http://dx.doi.org/10.1007/11944836_5
https://doi.org/10.1109/CCECE.2008.4564780
https://doi.org/10.1109/CCECE.2008.4564780
https://doi.org/10.1109/DS-RT.2007.17
https://doi.org/10.1109/DS-RT.2007.17
http://dx.doi.org/10.1109/DS-RT.2007.17
http://dx.doi.org/10.1109/DS-RT.2007.17
https://doi.org/10.1145/237170.237244
http://doi.acm.org/10.1145/237170.237244

bibliography 75

[17] A. Gregory, A. Mascarenhas, S. Ehmann, Ming Lin, and D. Manocha.
“Six degree-of-freedom haptic display of polygonal models.” In: Vi-
sualization 2000. Proceedings. 2000, pp. 139–146. doi: 10 . 1109 /
VISUAL.2000.885687.

[18] Antonin Guttman. “R-trees: a dynamic index structure for spatial
searching.” In: SIGMOD Rec. 14.2 (June 1984), pp. 47–57. issn: 0163-
5808. doi: 10.1145/971697.602266. url: http://doi.acm.org/
10.1145/971697.602266.

[19] Dirk Holz, Stefan Holzer, Radu Bogdan Rusu, and Behnke. “Real-
time Plane Segmentation Using RGB-D Cameras.” In: Robot Soccer
World Cup XV. Ed. by Thomas Röfer, Norbert Michael Mayer, Jesus
Savage, and Uluç Saranlı. Berlin, Heidelberg: Springer-Verlag, 2012,
pp. 306–317. isbn: 978-3-642-32059-0. url: http://dl.acm.org/
citation.cfm?id=2554542.2554572.

[20] S. Holzer, R. B. Rusu, M. Dixon, S. Gedikli, and N. Navab. “Adap-
tive neighborhood selection for real-time surface normal estimation
from organized point cloud data using integral images.” In: 2012
IEEE/RSJ International Conference on Intelligent Robots and Systems.
Oct. 2012, pp. 2684–2689. doi: 10.1109/IROS.2012.6385999.

[21] Hugues Hoppe, Tony DeRose, Tom Duchamp, John McDonald,
and Werner Stuetzle. “Surface Reconstruction from Unorganized
Points.” In: SIGGRAPH Comput. Graph. 26.2 (July 1992), pp. 71–
78. issn: 0097-8930. doi: 10.1145/142920.134011. url: http:
//doi.acm.org/10.1145/142920.134011.

[22] P. M. Hubbard. “Interactive collision detection.” In: 1993 (4th) Inter-
national Conference on Computer Vision (1993), pp. 24–31. url: http:
//dx.doi.org/10.1109/VRAIS.1993.378267.

[23] K. Jordan and P. Mordohai. “A quantitative evaluation of surface
normal estimation in point clouds.” In: 2014 IEEE/RSJ International
Conference on Intelligent Robots and Systems. Sept. 2014, pp. 4220–
4226. doi: 10.1109/IROS.2014.6943157.

[24] Max Kaluschke, Uwe Zimmermann, Marinus Danzer, Gabriel Zach-
mann, and René Weller. “Massively-Parallel Proximity Queries for
Point Clouds.” In: Virtual Reality Interactions and Physical Simula-
tions (VRIPhys). Bremen, Germany: Eurographics Association, Sept.
2014.

[25] Tero Karras. Thinking Parallel, Part II: Tree Traversal on the GPU. Nov.
2012. url: http://devblogs.nvidia.com/parallelforall/
thinking-parallel-part-ii-tree-traversal-gpu/.

[26] M. Khouil, N. Saber, and M. Mestari. “Collision detection for three
dimension objects in a fixed time.” In: 2014 Third IEEE Interna-
tional Colloquium in Information Science and Technology (CIST). 2014,
pp. 235–240. doi: 10.1109/CIST.2014.7016625.

https://doi.org/10.1109/VISUAL.2000.885687
https://doi.org/10.1109/VISUAL.2000.885687
https://doi.org/10.1145/971697.602266
http://doi.acm.org/10.1145/971697.602266
http://doi.acm.org/10.1145/971697.602266
http://dl.acm.org/citation.cfm?id=2554542.2554572
http://dl.acm.org/citation.cfm?id=2554542.2554572
https://doi.org/10.1109/IROS.2012.6385999
https://doi.org/10.1145/142920.134011
http://doi.acm.org/10.1145/142920.134011
http://doi.acm.org/10.1145/142920.134011
http://dx.doi.org/10.1109/VRAIS.1993.378267
http://dx.doi.org/10.1109/VRAIS.1993.378267
https://doi.org/10.1109/IROS.2014.6943157
http://devblogs.nvidia.com/parallelforall/thinking-parallel-part-ii-tree-traversal-gpu/
http://devblogs.nvidia.com/parallelforall/thinking-parallel-part-ii-tree-traversal-gpu/
https://doi.org/10.1109/CIST.2014.7016625

76 bibliography

[27] Young J. Kim, Miguel A. Otaduy, Ming C. Lin, and Dinesh Manocha.
“Six-degree-of-freedom Haptic Rendering Using Incremental and
Localized Computations.” In: Presence: Teleoper. Virtual Environ. 12.3
(June 2003), pp. 277–295. issn: 1054-7460. doi: 10.1162/105474603765879530.
url: http://dx.doi.org/10.1162/105474603765879530.

[28] Klaas Klasing, Daniel Althoff, Dirk Wollherr, and Martin Buss.
“Comparison of Surface Normal Estimation Methods for Range
Sensing Applications.” In: Proceedings of the 2009 IEEE International
Conference on Robotics and Automation. ICRA’09. Kobe, Japan: IEEE
Press, 2009, pp. 1977–1982. isbn: 978-1-4244-2788-8. url: http://
dl.acm.org/citation.cfm?id=1703435.1703753.

[29] Jan Klein and Gabriel Zachmann. “Point Cloud Collision Detec-
tion.” In: Computer Graphics forum (Proc. EUROGRAPHICS). Ed. by
M.-P. Cani and M. Slater. Vol. 23. Grenoble, France, 2004, pp. 567–
576. url: http://www.gabrielzachmann.org/.

[30] Jan Klein and Gabriel Zachmann. “Interpolation Search for Point
Cloud Intersection.” In: Proc. of WSCG 2005. University of West Bo-
hemia, Plzen, Czech Republic, 2005, pp. 163–170. isbn: 80-903100-
7-9. url: http://www.gabrielzachmann.org/.

[31] P. Kumari, K. G. Sreeni, and S. Chaudhuri. “Scalable rendering
of variable density point cloud data.” In: World Haptics Conference
(WHC), 2013. 2013, pp. 91–96. doi: 10.1109/WHC.2013.6548390.

[32] L. Kurnianggoro and K. H. Jo. “Free road space estimation based
on surface normal analysis in organized point cloud.” In: 2014 IEEE
International Conference on Industrial Technology (ICIT). Feb. 2014,
pp. 609–613. doi: 10.1109/ICIT.2014.6895000.

[33] Christian Lauterbach, Q. Mo, and Dinesh Manocha. “gProxim-
ity: Hierarchical GPU-based Operations for Collision and Distance
Queries.” In: Comput. Graph. Forum 29.2 (2010), pp. 419–428. url:
http://dblp.uni-trier.de/db/journals/cgf/cgf29.html\
#LauterbachMM10.

[34] A. Leeper, S. Chan, K. Hsiao, M. Ciocarlie, and K. Salisbury. “Constraint-
based haptic rendering of point data for teleoperated robot grasp-
ing.” In: 2012 IEEE Haptics Symposium (HAPTICS). 2012, pp. 377–
383. doi: 10.1109/HAPTIC.2012.6183818.

[35] A. Leeper, S. Chan, and K. Salisbury. “Point clouds can be repre-
sented as implicit surfaces for constraint-based haptic rendering.”
In: Robotics and Automation (ICRA), 2012 IEEE International Confer-
ence on. 2012, pp. 5000–5005. doi: 10.1109/ICRA.2012.6225278.

[36] Y. Li, M. Tang, S. Zhang, and Y. J. Kim. “Six-degree-of-freedom
haptic rendering using translational and generalized penetration
depth computation.” In: World Haptics Conference (WHC), 2013. 2013,
pp. 289–294. doi: 10.1109/WHC.2013.6548423.

https://doi.org/10.1162/105474603765879530
http://dx.doi.org/10.1162/105474603765879530
http://dl.acm.org/citation.cfm?id=1703435.1703753
http://dl.acm.org/citation.cfm?id=1703435.1703753
http://www.gabrielzachmann.org/
http://www.gabrielzachmann.org/
https://doi.org/10.1109/WHC.2013.6548390
https://doi.org/10.1109/ICIT.2014.6895000
http://dblp.uni-trier.de/db/journals/cgf/cgf29.html\#LauterbachMM10
http://dblp.uni-trier.de/db/journals/cgf/cgf29.html\#LauterbachMM10
https://doi.org/10.1109/HAPTIC.2012.6183818
https://doi.org/10.1109/ICRA.2012.6225278
https://doi.org/10.1109/WHC.2013.6548423

bibliography 77

[37] C. Liu, D. Yuan, and H. Zhao. “3D point cloud denoising and nor-
mal estimation for 3D surface reconstruction.” In: 2015 IEEE Inter-
national Conference on Robotics and Biomimetics (ROBIO). Dec. 2015,
pp. 820–825. doi: 10.1109/ROBIO.2015.7418871.

[38] M. Liu, F. Pomerleau, F. Colas, and R. Siegwart. “Normal estima-
tion for pointcloud using GPU based sparse tensor voting.” In: 2012
IEEE International Conference on Robotics and Biomimetics (ROBIO).
Dec. 2012, pp. 91–96. doi: 10.1109/ROBIO.2012.6490949.

[39] David Mainzer and Gabriel Zachmann. “CDFC: Collision Detec-
tion Based on Fuzzy Clustering for Deformable Objects on GPU’s.”
In: WSCG 2013 - POSTER Proceedings. Vol. 21. 3. Poster. Plzen,
Czech Republic, July 2013, pp. 5–8. isbn: 978-80-86943-76-3.

[40] Z. C. Marton, R. B. Rusu, and M. Beetz. “On fast surface recon-
struction methods for large and noisy point clouds.” In: Robotics and
Automation, 2009. ICRA ’09. IEEE International Conference on. 2009,
pp. 3218–3223. doi: 10.1109/ROBOT.2009.5152628.

[41] Zoltan Csaba Marton, Radu Bogdan Rusu, and Michael Beetz.
“On Fast Surface Reconstruction Methods for Large and Noisy
Datasets.” In: in Proceedings of the IEEE International Conference on
Robotics and Automation (ICRA). 2009.

[42] William A. McNeely, Kevin D. Puterbaugh, and James J. Troy. “Six
Degree-of-freedom Haptic Rendering Using Voxel Sampling.” In:
Proceedings of the 26th Annual Conference on Computer Graphics and
Interactive Techniques. SIGGRAPH ’99. New York, NY, USA: ACM
Press/Addison-Wesley Publishing Co., 1999, pp. 401–408. isbn: 0-
201-48560-5. doi: 10.1145/311535.311600. url: http://dx.
doi.org/10.1145/311535.311600.

[43] Niloy J. Mitra and An Nguyen. “Estimating Surface Normals in
Noisy Point Cloud Data.” In: Proceedings of the Nineteenth Annual
Symposium on Computational Geometry. SCG ’03. San Diego, Cali-
fornia, USA: ACM, 2003, pp. 322–328. isbn: 1-58113-663-3. doi:
10.1145/777792.777840. url: http://doi.acm.org/10.1145/
777792.777840.

[44] Jia Pan, Sachin Chitta, and Dinesh Manocha. “Probabilistic Colli-
sion Detection between Noisy Point Clouds using Robust Classifi-
cation.” In: International Symposium on Robotics Research. Flagstaff,
Arizona, 2011. url: http://www.isrr-2011.org/ISRR-2011/
/Program_files/Papers/Pan-ISRR-2011.pdf.

[45] Diego C. Ruspini, Krasimir Kolarov, and Oussama Khatib. “The
Haptic Display of Complex Graphical Environments.” In: Proceed-
ings of the 24th Annual Conference on Computer Graphics and Interactive
Techniques. SIGGRAPH ’97. New York, NY, USA: ACM Press/Addison-
Wesley Publishing Co., 1997, pp. 345–352. isbn: 0-89791-896-7. doi:

https://doi.org/10.1109/ROBIO.2015.7418871
https://doi.org/10.1109/ROBIO.2012.6490949
https://doi.org/10.1109/ROBOT.2009.5152628
https://doi.org/10.1145/311535.311600
http://dx.doi.org/10.1145/311535.311600
http://dx.doi.org/10.1145/311535.311600
https://doi.org/10.1145/777792.777840
http://doi.acm.org/10.1145/777792.777840
http://doi.acm.org/10.1145/777792.777840
http://www.isrr-2011.org/ISRR-2011//Program_files/Papers/Pan-ISRR-2011.pdf
http://www.isrr-2011.org/ISRR-2011//Program_files/Papers/Pan-ISRR-2011.pdf

78 bibliography

10.1145/258734.258878. url: http://dx.doi.org/10.1145/
258734.258878.

[46] R. B. Rusu, I. A. ¿ucan, B. Gerkey, S. Chitta, M. Beetz, and L. E.
Kavraki. “Real-time perception-guided motion planning for a per-
sonal robot.” In: 2009 IEEE/RSJ International Conference on Intelli-
gent Robots and Systems. 2009, pp. 4245–4252. doi: 10.1109/IROS.
2009.5354396.

[47] F. Rydén and H. J. Chizeck. “A Proxy Method for Real-Time 3-DOF
Haptic Rendering of Streaming Point Cloud Data.” In: IEEE Trans-
actions on Haptics 6.3 (2013), pp. 257–267. issn: 1939-1412. doi:
10.1109/TOH.2013.20.

[48] F. Rydén and H. J. Chizeck. “A method for constraint-based six
degree-of-freedom haptic interaction with streaming point clouds.”
In: Robotics and Automation (ICRA), 2013 IEEE International Confer-
ence on. 2013, pp. 2353–2359. doi: 10.1109/ICRA.2013.6630896.

[49] F. Rydén, S. Nia Kosari, and H. J. Chizeck. “Proxy method for
fast haptic rendering from time varying point clouds.” In: 2011
IEEE/RSJ International Conference on Intelligent Robots and Systems.
2011, pp. 2614–2619. doi: 10.1109/IROS.2011.6094673.

[50] Hoi Sheung and Charlie C. L. Wang. “Robust Mesh Reconstruc-
tion from Unoriented Noisy Points.” In: 2009 SIAM/ACM Joint Con-
ference on Geometric and Physical Modeling. SPM ’09. San Francisco,
California: ACM, 2009, pp. 13–24. isbn: 978-1-60558-711-0. doi:
10.1145/1629255.1629258. url: http://doi.acm.org/10.
1145/1629255.1629258.

[51] K. G. Sreeni and S. Chaudhuri. “Haptic rendering of dense 3D
point cloud data.” In: 2012 IEEE Haptics Symposium (HAPTICS).
2012, pp. 333–339. doi: 10.1109/HAPTIC.2012.6183811.

[52] C. Tomasi and R. Manduchi. “Bilateral Filtering for Gray and Color
Images.” In: Proceedings of the Sixth International Conference on Com-
puter Vision. ICCV ’98. Washington, DC, USA: IEEE Computer
Society, 1998, pp. 839–. isbn: 81-7319-221-9. url: http://dl.acm.
org/citation.cfm?id=938978.939190.

[53] Caihua Wang, H. Tanahashi, H. Hirayu, Y. Niwa, and K. Yamamoto.
“Comparison of local plane fitting methods for range data.” In:
2001. Proceedings of the 2001 IEEE Computer Society Conference on Com-
puter Vision and Pattern Recognition (CVPR). Vol. 1. 2001, pp. 663–
669. doi: 10.1109/CVPR.2001.990538.

[54] Jan W. Weingarten, Gabriel Gruener, and Alpnach Dorf. “Proba-
bilistic plane fitting in 3d and an application to robotic mapping.”
In: IEEE Int. Conf. on Robotics and Automation (ICRA). 2004, pp. 927–
932.

https://doi.org/10.1145/258734.258878
http://dx.doi.org/10.1145/258734.258878
http://dx.doi.org/10.1145/258734.258878
https://doi.org/10.1109/IROS.2009.5354396
https://doi.org/10.1109/IROS.2009.5354396
https://doi.org/10.1109/TOH.2013.20
https://doi.org/10.1109/ICRA.2013.6630896
https://doi.org/10.1109/IROS.2011.6094673
https://doi.org/10.1145/1629255.1629258
http://doi.acm.org/10.1145/1629255.1629258
http://doi.acm.org/10.1145/1629255.1629258
https://doi.org/10.1109/HAPTIC.2012.6183811
http://dl.acm.org/citation.cfm?id=938978.939190
http://dl.acm.org/citation.cfm?id=938978.939190
https://doi.org/10.1109/CVPR.2001.990538

bibliography 79

[55] Rene Weller, Udo Frese, and Gabriel Zachmann. “Parallel Colli-
sion Detection in Constant Time.” In: Virtual Reality Interactions
and Physical Simulations (VRIPhys). Lille, France: Eurographics As-
sociation, Nov. 2013.

[56] René Weller, David Mainzer, Mikel Sagardia, Thomas Hulin, Gabriel
Zachmann, and Carsten Preusche. “A benchmarking suite for 6-
DOF real time collision response algorithms.” In: Proceedings of
the 17th ACM Symposium on Virtual Reality Software and Technology.
VRST ’10. Hong Kong: ACM, 2010, pp. 63–70. isbn: 978-1-4503-
0441-2. doi: http://doi.acm.org/10.1145/1889863.1889874.
url: http://cg.in.tu-clausthal.de/publications.shtml#
vrst2010.

[57] Rene Weller and Gabriel Zachmann. “A Unified Approach for Physically-
Based Simulations and Haptic Rendering.” In: Sandbox 2009: ACM
SIGGRAPH Video Game Proceedings. New Orleans, LA, USA: ACM
Press, Aug. 2009. url: http : / / cg . in . tu - clausthal . de /
research/ist.

[58] Rene Weller and Gabriel Zachmann. “Inner Sphere Trees for Prox-
imity and Penetration Queries.” In: 2009 Robotics: Science and Sys-
tems Conference (RSS). Seattle, WA, USA, June 2009. url: http :
//cg.in.tu-clausthal.de/research/ist.

[59] Rene Weller and Gabriel Zachmann. “Stable 6-DOF Haptic Ren-
dering with Inner Sphere Trees.” In: International Design Engineering
Technical Conferences & Computers and Information in Engineering Con-
ference, (IDETC/CIE). CIE/VES Best Paper Award. San Diego, CA,
USA: ASME, Aug. 2009. url: http://cg.in.tu-clausthal.de/
research/ist.

[60] René Weller and Gabriel Zachmann. “ProtoSphere: A GPU-Assisted
Prototype Guided Sphere Packing Algorithm for Arbitrary Objects.”
In: ACM SIGGRAPH ASIA 2010 Sketches. Seoul, Republic of Korea:
ACM, Dec. 2010, 8:1–8:2. isbn: 978-1-4503-0523-5. doi: http://
doi.acm.org/10.1145/1899950.1899958. url: http://cg.in.
tu-clausthal.de/research/protosphere.

[61] Rene Weller and Gabriel Zachmann. “Inner Sphere Trees and Their
Application to Collision Detection.” In: Virtual Realities. Ed. by
Sabine Coquillart, Guido Brunnett, and Greg Welch. Springer (Dagstuhl),
2011. Chap. 10, pp. 181–202. isbn: 978-3-211-99177-0. doi: 10 .
1007/978-3-211-99178-7.

[62] Liangjun Zhang, Young J. Kim, and Dinesh Manocha. “A Fast and
Practical Algorithm for Generalized Penetration Depth Computa-
tion.” In: Robotics: Science and Systems Conference (RSS07). 2007.

[63] Liangjun Zhang, Young J. Kim, and Dinesh Manocha. “C-DIST: Ef-
ficient Distance Computation for Rigid and Articulated Models in
Configuration Space.” In: Proceedings of the 2007 ACM Symposium on

https://doi.org/http://doi.acm.org/10.1145/1889863.1889874
http://cg.in.tu-clausthal.de/publications.shtml#vrst2010
http://cg.in.tu-clausthal.de/publications.shtml#vrst2010
http://cg.in.tu-clausthal.de/research/ist
http://cg.in.tu-clausthal.de/research/ist
http://cg.in.tu-clausthal.de/research/ist
http://cg.in.tu-clausthal.de/research/ist
http://cg.in.tu-clausthal.de/research/ist
http://cg.in.tu-clausthal.de/research/ist
https://doi.org/http://doi.acm.org/10.1145/1899950.1899958
https://doi.org/http://doi.acm.org/10.1145/1899950.1899958
http://cg.in.tu-clausthal.de/research/protosphere
http://cg.in.tu-clausthal.de/research/protosphere
https://doi.org/10.1007/978-3-211-99178-7
https://doi.org/10.1007/978-3-211-99178-7

80 bibliography

Solid and Physical Modeling. SPM ’07. Beijing, China: ACM, 2007,
pp. 159–169. isbn: 978-1-59593-666-0. doi: 10 . 1145 / 1236246 .
1236270. url: http://doi.acm.org/10.1145/1236246.1236270.

[64] Liangjun Zhang, Young J. Kim, Gokul Varadhan, and Dinesh Manocha.
“Generalized Penetration Depth Computation.” In: Proceedings of
the 2006 ACM Symposium on Solid and Physical Modeling. SPM ’06.
Cardiff, Wales, United Kingdom: ACM, 2006, pp. 173–184. isbn:
1-59593-358-1. doi: 10.1145/1128888.1128914. url: http://
doi.acm.org/10.1145/1128888.1128914.

[65] X. Zhang and Y. J. Kim. “Scalable Collision Detection Using p-
Partition Fronts on Many-Core Processors.” In: IEEE Transactions on
Visualization and Computer Graphics 20.3 (2014), pp. 447–456. issn:
1077-2626. doi: 10.1109/TVCG.2013.239.

[66] Wei Zhao and Lei Li. “Improved K-DOPs collision detection algo-
rithms based on genetic algorithms.” In: Electronic and Mechanical
Engineering and Information Technology (EMEIT), 2011 International
Conference on. Vol. 1. 2011, pp. 338–341. doi: 10 . 1109 / EMEIT .
2011.6022939.

[67] Wei Zhao, Rui pu Tan, and Wen-Hui Li. “Parallel collision detec-
tion algorithm based on mixed BVH and OpenMP.” In: System Sim-
ulation and Scientific Computing, 2008. ICSC 2008. Asia Simulation
Conference - 7th International Conference on. 2008, pp. 786–792. doi:
10.1109/ASC-ICSC.2008.4675468.

[68] C. B. Zilles and J. K. Salisbury. “A constraint-based god-object
method for haptic display.” In: Intelligent Robots and Systems 95.
’Human Robot Interaction and Cooperative Robots’, Proceedings. 1995
IEEE/RSJ International Conference on. Vol. 3. 1995, 146–151 vol.3.
doi: 10.1109/IROS.1995.525876.

[69] I. A. Şucan, M. Kalakrishnan, and S. Chitta. “Combining planning
techniques for manipulation using realtime perception.” In: Robotics
and Automation (ICRA), 2010 IEEE International Conference on. 2010,
pp. 2895–2901. doi: 10.1109/ROBOT.2010.5509702.

https://doi.org/10.1145/1236246.1236270
https://doi.org/10.1145/1236246.1236270
http://doi.acm.org/10.1145/1236246.1236270
https://doi.org/10.1145/1128888.1128914
http://doi.acm.org/10.1145/1128888.1128914
http://doi.acm.org/10.1145/1128888.1128914
https://doi.org/10.1109/TVCG.2013.239
https://doi.org/10.1109/EMEIT.2011.6022939
https://doi.org/10.1109/EMEIT.2011.6022939
https://doi.org/10.1109/ASC-ICSC.2008.4675468
https://doi.org/10.1109/IROS.1995.525876
https://doi.org/10.1109/ROBOT.2010.5509702

	Cover
	Abstract
	Acknowledgements
	Contents
	Contents
	1 Introduction
	2 Previous Work
	2.1 Collision Detection
	2.1.1 Parallelization of Collision Detection
	2.1.2 Collision Detection on Point Clouds
	2.1.3 Inner Sphere Trees Datastructure

	2.2 Penetration Depth
	2.2.1 Translational Penetration Depth
	2.2.2 Generalized Penetration Depth

	2.3 Surface Estimation
	2.3.1 Voronoi-Based Estimation
	2.3.2 Estimation Based on Covariance Matrices
	2.3.3 Estimation by Averaging Triangles

	2.4 Haptic Rendering
	2.4.1 Three Degrees of Freedom
	2.4.2 Six Degrees of Freedom

	3 Concept
	3.1 Challenge
	3.1.1 Inner Sphere Trees

	3.2 Volumetric Penetration Measure
	3.2.1 Boundary Spheres Collision Detection
	3.2.2 Finding Inside Spheres using Brute Force
	3.2.3 Finding Inside Spheres using Leaf-Graph

	3.3 Leaf-Graph
	3.3.1 Construction
	3.3.2 Traversal

	3.4 Surface Estimation
	3.4.1 PCA Modifications
	3.4.2 Depth Noise Reduction

	3.5 Recognizing Edges in Ordered Point Clouds
	3.6 Discontinuity in Point Cloud Stream

	4 Implementation
	4.1 Architecture
	4.2 GPU Concurrency
	4.3 Visualization
	4.3.1 Dynamic Drawing of Spherical Caps

	5 Results
	5.0.1 Realistic Conditions
	5.0.2 Unknown Conditions
	5.1 Quality
	5.1.1 Realistic
	5.1.2 Synthetic

	6 Conclusion & Future Work
	Appendix
	List of Figures
	List of Figures
	List of Algorithms

	List of Algorithms
	Bibliography

