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Conventions:

:marks denotes VIM command typed in Ex mode
visual denotes VIM command typed in Visual mode
[..] denotes an optional part of the command
file denotes command argument(s)
{..} denotes a set of characters
Space means pressed key/combination of keys
� this command/feature is VIM specific (not found in Vi)
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1 Movement Commands

1.1 Left-right motions

[n] h left (also: CTRL-H , BS , or ← key)
[n] l right (also: Space or → key)

0 to first character in the line (also: Home key)
^ to first non-blank character in the line
[n] $ to the last character in the line (n-1 lines lower) (also: End key)
[n] g0 to first character in screen line (differs from 0 when lines wrap)
[n] g^ to first non-blank character in screen line (differs from ^ when lines wrap)
[n] g$ to last character in screen line (differs from $ when lines wrap)
[n] gm to middle of the screen line
[n] | to column n (default: 1)
[n] f char to the n-th occurrence of char to the right
[n] F char to the n-th occurrence of char to the left
[n] t char till before the n-th occurrence of char to the right
[n] T char till before the n-th occurrence of char to the left
[n] ; repeat the last f, F, t, or T n times
[n] , repeat the last f, F, t, or T n times in opposite direction

1.2 Up-down motions

[n] k up n lines (also: CTRL-P and ↑ )

[n] j down n lines (also: CTRL-J , CTRL-N , NL , and ↓ )
[n] – up n lines, on the first non-blank character
[n] + down n lines, on the first non-blank character (also: CTRL-M and Ret )
[n] down n-1 lines, on the first non-blank character
[n] G goto line n (default: last line), on the first non-blank character
[n] gg goto line n (default: first line), on the first non-blank character
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n % goto line n percentage down in the file. n must be given, otherwise it is the %
command

[n] gk or g ↑ up n screen lines (differs from k when line wraps, and when used with an operator,
because it’s not linewise.)

[n] gj or g ↓ down n screen lines (differs from j when line wraps, and when used with an oper-
ator, because it’s not linewise.)

:[range]go[to] [count] Go to count byte in the buffer. Default count is zero, start of the file.
When giving range, the last number in it used. End-of-line characters are counted
depending on the current fileformat setting.

1.3 Text object motions

[n] w n words1

[n] W n blank-separated WORDS forward
[n] e forward to the end of the n-th word
[n] E forward to the end of the n-th blank-separated WORD
[n] b n words backward
[n] B n blank-separated WORDS backward
[n] ge backward to the end of the n-th word
[n] gE backward to the end of the n-th blank-separated WORD
[n] ) n sentences forward
[n] ( n sentences backward
[n] } n paragraphs forward
[n] { n paragraphs backward
[n] ]] n sections forward, at start of section
[n] [[ n sections backward, at start of section
[n] ][ n sections forward, at end of section
[n] [] n sections backward, at end of section
[n] [( n times back to unclosed (
[n] [{ n times back to unclosed {
[n] ]) n times forward to unclosed )
[n] ]} n times forward to unclosed }
[n] [# n times back to unclosed #if or #else
[n] ]# n times forward to unclosed #else or #endif
[n] [* n times back to start of comment /*
[n] ]* n times forward to end of comment */

1.4 Scrolling

[n] CTRL-E window n lines downwards (default: 1)
[n] CTRL-D window n lines Downwards (default: 1/2 window)
[n] CTRL-F window n pages Forwards (downwards)
[n] CTRL-Y window n lines upwards (default: 1)
[n] CTRL-U window n lines Upwards (default: 1/2 window)
[n] CTRL-B window n pages Backwards (upwards)

1For definition of word, WORD, sentence, paragraph and section see Section 2.11
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z Ret or zt redraw, current line at top of window
z. or zz redraw, current line at center of window
z– or zb redraw, current line at bottom of window
[n] zh scroll screen n characters to the right
[n] zl scroll screen n characters to the left
[n] zH scroll screen half a screenwidth to the right
[n] zL scroll screen half a screenwidth to the left

1.5 Various motions

% find the next brace, bracket, comment, or #if/#else/#endif
in this line and go to its match

[n] H go to the n-th line in the window, on the first non-blank
M go to the middle line in the window, on the first non-blank
[n] L go to the n-th line from the bottom, on the first non-blank
[n] go go to n-th byte in the buffer
:[range]go[to] [off] go to [off]set byte in the buffer

1.6 Marks and motions

m{a-zA-Z} mark current position with mark {a-zA-Z}
‘{a-z} go to mark {a-z} within current file
‘{A-Z} go to mark {A-Z} in any file
‘{0-9} go to the position where VIM was last exited
“ go to the position before the last jump
‘" go to the position when last editing this file
‘[ go to the start of the previously operated or put text
‘] go to the end of the previously operated or put text
‘< go to the start of the (previous) Visual area
‘> go to the end of the (previous) Visual area
’{a-zA-Z0-9[]’"<>} same as ‘, but on the first non-blank in the line
:marks display the active marks
[n] CTRL-O go to n-th older position in jump list
[n] CTRL-I go to n-th newer position in jump list
:ju[mps] display the jump list

1.7 Using tags

:ta[g][!] tag jump to tag

:[n] ta[g][!] jump to n-th newer tag in tag list
CTRL-] jump to the tag under cursor, unless changes have been made

[n] CTRL-T jump back from n-th older tag in tag list
:tj[ump][!] [tag] Jump to tag tag or select from list when there are multiple matches
:ts[elect][!] [tag] list matching tags and select one to jump to
:[n] tn[ext][!] jump to n-th next matching tag
:[n] tp[revious][!] jump to n-th previous matching tag
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:[n] tr[ewind][!] jump to n-th matching tag
:[n] po[p][!] jump back from n-th older tag in tag list
:tags print tag list
:pt[ag] tag open a preview window to show tag tag
CTRL-W } like CTRL-] but show tag in preview window
:pts[elect] like :tselect but show tag in preview window
:ptj[ump] like :tjump but show tag in preview window
:pc[lose] close tag preview window
CTRL-W z close tag preview window

2 Editing Commands

2.1 Inserting text

[n] a append text after the cursor (n times)
[n] A append text at the end of the line (n times)
[n] i insert text before the cursor (n times) (also: Ins )
[n] I insert text before the first non-blank in the line (n times)
[n] gI insert text in column 1 (n times)
[n] o open a new line below the current line, append text (n times)
[n] O open a new line above the current line, append text (n times)

2.2 Keys in Insert mode

char action in Insert mode2

Esc end Insert mode, back to Normal mode
CTRL-C like Esc , but do not complete an abbreviation begun
CTRL-A insert previously inserted text
CTRL-@ insert previously inserted text and stop insert
CTRL-O command execute command and return to Insert mode
CTRL-R {0-9a-z%#:.-="*} insert the contents of a register3 �
NL or Ret or CTRL-M or CTRL-J begin new line
CTRL-E insert the character from below the cursor
CTRL-Y insert the character from above the cursor
CTRL-V char insert character literally, or enter decimal byte value
CTRL-N insert next match of identifier before the cursor
CTRL-P insert previous match of identifier before the cursor
CTRL-X . . . complete the word before the cursor in various ways:

CTRL-X CTRL-D complete the definition or macro
CTRL-X CTRL-F complete the file name
CTRL-X CTRL-I complete the word searching the current and included files.
CTRL-X CTRL-K complete the word using dictionary files.
CTRL-X CTRL-L complete the whole line searching the current file
CTRL-X CTRL-N complete the word searching the current file

2See Section 13.1 for description of VIM modes
3See Section 13.2 for description of VIM registers



2 EDITING COMMANDS page 7

CTRL-X CTRL-] complete the tag

BS or CTRL-H delete the character before the cursor
Del delete the character under the cursor
CTRL-W delete word before the cursor
CTRL-U delete all entered characters in the current line
CTRL-T insert one shiftwidth of indent in front of the current line
CTRL-D delete one shiftwidth of indent in front of the current line
0 CTRL-D delete all indent in the current line
^ CTRL-D delete all indent in the current line, restore indent in next line

2.3 Special keys in Insert mode

cursor keys move cursor left/right/up/down
SHIFT-← / SHIFT-→ one word left/right
SHIFT-↑ / SHIFT-↓ one screenful backward/forward

CTRL-O command execute command

End cursor after last character in the line
Home cursor to first character in the line

2.4 Digraphs�
Digraphs are used to enter characters that normally cannot be entered by an ordinary keyboard.

These are mostly accented characters which have the eighth bit set.

:dig[raphs] show current list of digraphs
:dig[raphs] char1 char2 number . . . add digraph(s) to the list
CTRL-K char1 [char2] enter digraph
char1 BS char2 enter digraph if digraph option set

2.5 Special inserts

:r file insert the contents of file below the cursor
:r! command insert the standard output of command below the cursor

2.6 Deleting text

["x] [n] x delete n [into register "x] characters under and after the cursor
["x] [n] Del delete n [into register "x] characters under and after the cursor
["x] [n] X delete n [into register "x] characters before the cursor
["x] [n] d motion delete [into register "x] the text that is moved over with motion4

visual ["x] d delete [into register "x] the highlighted text
["x] [n] dd delete n [into register "x] lines
["x] [n] D delete [into register "x] to <EOL> (and n-1 more lines)
[n] J join n-1 lines (delete <EOL>)
[n] :j[oin][!] same as J, except with [!] the join does not insert or delete any spaces.

4for definition of motion see Section 1.3
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visual J join the highlighted lines
[n] gJ like J, but without inserting spaces
visual gJ like visual J, but without inserting spaces
:[range] d [x] delete range lines [into register x]

2.7 Copying and moving text

:reg show the contents of all registers
:reg arg show the contents of registers mentioned in arg

[n] ["x] y motion yank the text moved over with motion into a register ["x]
visual ["x] y yank the highlighted text into a register ["x]
["x] [n] yy yank n lines into a register ["x]
["x] [n] Y yank n lines into a register ["x]
["x] [n] p put a register ["x] after the cursor position (n times)
["x] gp like p but leave the cursor just after the new text.� the cursor position (n times)
["x] [n] P put a register ["x] before the cursor position (n times)
["x] gP like P but leave the cursor just after the new text.�
["x] ] MiddleMouse like p, but adjust indent to current line
["x] [n] ]p like p, but adjust indent to current line
["x] [n] [p like P, but adjust indent to current line

2.8 Changing text

[n] R enter Replace mode (repeat the entered text n times)
gR Enter Virtual replace mode: Each character you type replaces existing characters in

screen space.
[n] c motion delete motion text [into register “x”] and start insert.
visual c change the highlighted text
[n] cc change n lines
[n] S change n lines
[n] C change to the end of the line (and n-1 more lines)
[n] s change n characters
grchar replace the virtual characters under the cursor with char. This replaces in screen space,

not file space.
[n] r char replace n characters with char
[n] gr char replace n characters with char without affecting layout
[n] ∼ switch case for n characters and advance cursor
visual ∼ switch case for highlighted text
visual u make highlighted text lowercase
visual U make highlighted text uppercase
g∼ motion switch case for the text that is moved over with motion

[n] g∼∼ or g∼g∼ switch case of current line.�
gu motion make the text that is moved over with motion lowercase
gU motion make the text that is moved over with motion uppercase
[n] gugu or guu make current line uppercase.�.
g?motion Rot13 encode motion text.�
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visualg? Rot13 encode the highlighted text.�
g?? Rot13 encode current line.�
[n] gUU or gUgU make current line uppercase.�
[n] CTRL-A add n to the number at or after the cursor
[n] CTRL-X subtract n from the number at or after the cursor
[n] < motion move the lines that are moved over with motion one shiftwidth left
[n] << move n lines one shiftwidth left
[n] > motion move the lines that are moved over with motion one shiftwidth right
[n] >> move n lines one shiftwidth right
gqq format the current line. �
[n] gq motion format the lines that are moved over with motion to textwidth length
:[range] ce[nter] [width] center the lines in range

:[range] le[ft] [indent] left-align the lines in range with indent

:[range] ri[ght] [width] right-align the lines in range

2.9 Complex changes

[n] ! motion command Ret filter the lines that are moved over through command

[n] !! command Ret filter n lines through command

visual ! command Ret filter the highlighted lines through command

:[range] !command Ret filter range lines through command

[n] = motion filter the lines that are moved over through indent
[n] == filter n lines through indent

visual = filter the highlighted lines through indent

:[range] s[ubstitute]/pattern/string/[c e g p r i I] [n] substitute pattern by string in range lines
[n times]; with

c confirm each replacement
e when the search pattern fails, do not issue an error message and, in particular, con

tinue in maps as if no error occurred
g replace all occurrences of pattern
i Ignore case for the pattern.
I Don’t ignore case for the pattern.
p print the line containing the last substitute
r Only useful in combination with :& or :s without arguments. :&r works the sam

way as :∼.
:[range] sno[magic] . . . same as :substitute, but always use nomagic.
:[range] sm[agic] . . . same as :substitute, but always use magic.

Some characters in string have a special meaning:

magic nomagic action

& \& replaced with the whole matched pattern
\& & replaced with &
\0 \0 replaced with the whole matched pattern
\1 \1 replaced with the matched pattern in the first pair of ()
\2 \2 replaced with the matched pattern in the second pair of ()
...

...
\9 \9 replaced with the matched pattern in the ninth pair of ()
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magic nomagic action

∼ \∼ replaced with the string of the previous substitute
\∼ ∼ replaced with ∼
\u \u next character made uppercase
\U \U following characters made uppercase
\l \l next character made lowercase
\L \L following characters made lowercase
\e \e end of /u, /U, /l and /L (NOTE: not <Esc>!)
\E \E end of /u, /U, /l and /L

<CR> <CR> split line in two at this point
\r \r idem

CTRL-V <CR> CTRL-V <CR> insert a carriage-return <CTRL-M>
\n \n <NL>
\b \b <BS>
\t \t <Tab>

:[range] &[c e g r i I] [n]
:[range] [range] s[ubstitute] [c e g r i I] [n] repeat previous :s [n times] with new range and

options
:[range] ∼[c e g r i I] [n] repeat last substitute [n times] with same substitute string but with last

used search pattern.
& repeat previous :s on current line without options
:[range] ret[ab][!] [tabstop] set tabstop to new value and adjust white space accordingly

2.10 Visual mode�
v start or stop highlighting characters
V start or stop highlighting linewise
CTRL-V start or stop highlighting blockwise
o exchange cursor position with start of highlighting
gv start highlighting on previous visual area

Blockwise operators

Istring With a blockwise selection, Istring ESC will insert string at the start of block on every
line of the block, provided that the line extends into the block. TABs are split to retain
visual columns.

Astring With a blockwise selection, Astring ESC will append string to the end of block on every
line of the block. There is some differing behavior where the block RHS is not straight,
due to different line lengths.

c All selected text in the block will be replaced by the same text string. When using c the
selected text is deleted and Insert mode started. You can then enter text (without a line
break). When you hit Esc , the same string is inserted in all previously selected lines.

C Like using c, but the selection is extended until the end of the line for all lines.
> or < The block is shifted by shiftwidth. The RHS of the block is irrelevant. The LHS of the

block determines the point from which to apply a right shift, and padding includes TABs
optimally according to ts and et. The LHS of the block determines the point upto which
to shift left.
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R Every screen char in the highlighted region is replaced with the same char, i.e. TABs are
split and the virtual whitespace is replaced, maintaining screen layout.

Virtual Replace mode �
Virtual replace mode (enter it with gR) is similar to Replace mode, but instead of replacing

actual characters in the file, you are replacing screen real estate, so that characters further on in the
file never appear to move.

This mode is very useful for editing <Tab> separated columns in tables, for entering new data
while keeping all the columns aligned.

2.11 Text objects� (only in Visual mode or after an operator)

word a word consists of a sequence of letters, digits and underscores, or a sequence of
other non-blank characters, separated with white space (spaces, tabs, <EOL>). This
can be changed with the iskeyword option.

WORD a WORD consists of a sequence of non-blank characters, separated with white space.
An empty line is also considered to be a word and a WORD.

sentence a sentence is defined as ending at a “.”, “!” or “?” followed by either the end of
a line, or by a space. Any number of closing “)”, “]”, “"” and “’” characters may
appear after the “.”, “!” or “?” before the spaces or end of line. A paragraph and
section boundary is also a sentence boundary. The definition of a sentence
cannot be changed.

paragraph a paragraph begins after each empty line, and also at each of a set of para-
graph macros, specified by the pairs of characters in the paragraphs option. The
default is “IPLPPPQPP LIpplpipbp”, which corresponds to the macros “.IP”,
“.LP”, etc. (These are nroff macros, so the dot must be in the first column). A
section boundary is also a paragraph boundary. Note that this does not include
a “{” or “}” in the first column.

section a section begins after a form-feed (<C-L>) in the first column and at each of
a set of section macros, specified by the pairs of characters in the sections option.
The default is “SHNHH HUnhsh”, which defines a section to start at the nroff
macros “.SH”, “.NH”, “.H”, “.HU”, “.nh” and “.sh”.

[n] aw select a word

[n] iw select inner5 word
[n] aW select a WORD

[n] iW select inner WORD

[n] as select a sentence

[n] is select inner sentence

[n] ap select a paragraph

[n] ip select inner paragraph

[n] a[ or a] select [n] “[” “]” blocks.
[n] i[ or i] select [n] inner “[” “]” blocks.
[n] a), a( or ab select a block (from ( to ))
[n] i), i( or ib select inner block(from ( to ))
[n] a< or a> select [n] <> blocks.

5“inner” means that white spaces between words are included in count n
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[n] i< or i> select [n] <>inner blocks

[n] a}, a{ or aB select a Block (from { to })
[n] i}, i{ or iB select inner Block (from { to })

2.12 Repeating Commands

[n] . repeat last change (with n replaced with n)
q{a-z} � record typed characters into register {a-z}
q{A-Z} � record typed characters, appended to register {a-z}
q � stop recording
[n] @{a-z} execute the contents of register {a-z} (n times)
[n] @@ � repeat previous @{a-z} (n times)
:@{a-z} � execute the contents of register {a-z} as an Ex command
:@@ repeat previous :@{a-z}
:[range] g[lobal]/pattern/[cmd] execute Ex command cmd (default: :p) on the lines

within [range] where pattern matches
:[range] g[lobal]!/pattern/[cmd] execute Ex command cmd (default: :p) on the lines

within [range] where pattern does NOT match
:so[urce] file read Ex commands from file

:so[urce]! file read VIM commands from file

:[n] sl[eep] n [m] don’t do anything for n seconds. If m is included, sleep for n milliseconds.
[n] gs goto Sleep for n seconds

2.13 Undo/Redo Commands

[n] u � undo last n changes
[n] CTRL-R � redo last n undone changes
U restore last changed line

2.14 Command-line editing

Esc abandon command-line (if wildchar is Esc , type it twice)
CTRL-V char insert char literally
CTRL-V number enter decimal value of character (up to three digits)
CTRL-K char1 char2 � enter digraph
CTRL-R {0-9a-z"%#:-=*} insert the contents of a register6

CTRL-R CTRL-R {0-9a-z"%#:-=*} insert the contents of a register. Works like using a single
CTRL-R , but the text is inserted literally, not as if typed. This differs
when the register contains characters like <BS>.

← /→ cursor left/right
SHIFT-← / SHIFT-→ cursor one word left/right
CTRL-B / CTRL-E cursor to beginning/end of command-line
BS delete the character in front of the cursor
Del delete the character under the cursor
CTRL-W delete the word in front of the cursor

6See Section 13.2 for description of VIM registers
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CTRL-U remove all characters
↑ / ↓ recall older/newer command-line that starts with current command

SHIFT-↑ / SHIFT-↓ recall older/newer command-line from history
:his[tory][name] [first][, [last] List the contents of history name which can be:

c[md] or : command-line history
s[earch] or / search string history
e[xpr] or = expression register history
i[nput] or @ input line history
a[ll] all of the above

Context-sensitive completion on the command-line: �
wildchar (default: Tab ) do completion on the pattern in front of the cursor.

If there are multiple matches, beep and show the first one; further
wildchar will show the next ones

CTRL-A insert all names that match pattern in front of cursor
CTRL-D list all names that match the pattern in front of the cursor
CTRL-L insert longest common part of names that match pattern
CTRL-N after wildchar with multiple matches: go to next match
CTRL-P after wildchar with multiple matches: go to previous match
CTRL-R . . . insert the object under the cursor:

CTRL-F the “filename” under the cursor
CTRL-P the “filename” under the cursor, expanded with path
CTRL-W the “word” under the cursor
CTRL-A the “WORD” under the cursor

2.15 Encryption

Vim is able to write files encrypted, and read them back. The encrypted text cannot be read
without the right key. The normal way to work with encryption, is to use the :X command, which
will ask you to enter a key. A following write command will use that key to encrypt the file. If you
later edit the same file, Vim will ask you to enter a key. The algorithm used is breakable.

Warning: The swapfile and text in memory are not encrypted. A system administrator will
be able to see your text while you are editing it. Text you copy or delete goes to the numbered
registers. The registers can be saved in the “.viminfo” file, where they could be read. Change your
viminfo option to be safe. If you make a typo when entering the key and then write the file and
exit, the text will be lost!

:X Prompt for an encryption key. The typing is done without showing the actual text, so that
someone looking at the display won’t see it. The typed key is stored in the key option, which
is used to encrypt the file when it is written.

3 Key Mappings Abbreviations

3.1 Key mapping

These commands are used to map a key or key sequence to a string of characters. There are
five sets of mappings :

Normal mode: when typing commands. (e.g. :map <F3> o#include)
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Visual mode: when typing commands while the Visual area is highlighted.
Operator-pending mode: when an operator is pending (after “d”, “y”, “c”, etc.).
Insert mode: these are also used in Replace mode.
Command-line mode: when entering a “:” or “/” command.

Everything from the first non-blank after lhs up to the end of the line <EOL> (or “|”) is con-
sidered to be part of rhs. Inclusion of lhs in rhs results in a recursive mapping. Recursion depth is
controlled by maxmapdepth option. Use “nore” versions of mapping commands to avoid recur-
sion.

:ma[p] lhs rhs map lhs to rhs in Normal and Visual mode
:ma[p]! lhs rhs map lhs to rhs in Insert and Command-line mode
:no[remap][!] lhs rhs same as :map, no remapping for is rhs
:unm[ap] lhs remove the mapping of lhs for Normal and Visual mode
:unm[ap]! lhs remove the mapping of lhs for Insert and Command-line mode
:ma[p] [lhs] list mappings (starting with lhs) for Normal and Visual mode
:ma[p]! [lhs] list mappings (starting with lhs) for Insert and Command-line mode
:cmap/:cunmap/:cnoremap like :map!/:unmap!/:noremap! but for Command-line mode only
:imap/:iunmap/:inoremap like :map!/:unmap!/:noremap! but for Insert mode only
:nmap/:nunmap/:nnoremap like :map/:unmap/:noremap but for Normal mode only
:vmap/:vunmap/:vnoremap like :map/:unmap/:noremap but for Visual mode only
:omap/:ounmap/:onoremap like :map/:unmap/:noremap but only for when an operator is

pending
:mk[exrc][!] file � write current mappings, abbreviations, and settings to file

(default: .exrc; use ! to overwrite)
:mkv[imrc][!] file � same as :mkexrc, but with default .vimrc
:mks[ession][!] [file] like :mkvimrc, but store current files and directory too
:mapc[lear] remove mappings for Normal and Visual mode
:mapc[lear]! remove mappings for Insert and Cmdline mode
:imapc[lear] remove mappings for Insert mode
:vmapc[lear] remove mappings for Visual mode
:omapc[lear] remove mappings for Operator-pending mode
:nmapc[lear] remove mappings for Normal mode
:cmapc[lear] remove mappings for Cmdline mode

3.2 Abbreviations

Abbreviations are used in Insert, Replace and Command-line modes. Abbreviations are never
recursive. There are three types of abbreviations:

full-id this type consists entirely of keyword characters (letters and characters from iskeyword
option). (e.g. foo, g3, -1)

end-id this type ends in a keyword character, but all the other characters are not keyword
characters.(e.g. #i, ..f, $/7)

non-id � this type ends in a non-keyword character, the other characters may be of any type,
excluding <Space> and <Tab>. (e.g. def#, 4/7$)

:ab[breviate] lhs rhs add abbreviation for lhs to rhs
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:ab[breviate] lhs show abbreviations that start with lhs

:ab[breviate] show all abbreviations
:una[bbreviate] lhs remove abbreviation for lhs

:norea[bbrev] [lhs] [rhs] like :ab, but don’t remap rhs

:iab/:iunab/:inoreab like :ab, but only for Insert mode
:cab/:cunab/:cnoreab like :ab, but only for Command-line mode
:abc[lear] remove all abbreviations
:cabc[lear] remove all abbreviations for Cmdline mode
:iabc[lear] remove all abbreviations for Insert mode

3.3 User-defined commands�
It is possible to define your own Ex commands. A user-defined command can act just like

a built-in command, except that when the command is executed, it is transformed into a normal
Ex command and then executed. All user defined commands must start with an uppercase letter,
to avoid confusion with builtin commands. User-defined commands can have arguments, which
are subject to completion as filenames, buffers, etc. Exactly how this works depends upon the
command’s attributes, which are specified when the command is defined.

:com[mand] list all user-defined commands. When listing commands, the characters
in the first two columns are

! Command has the -bang attribute
" Command has the -register attribute

:com[mand] cmd list the user-defined commands that start with cmd

:com[mand][!] [attr . . . ] cmd rep define a user command. The name of the command is cmd
and its replacement text is rep. The command’s attributes (see below)
are attr. If the command already exists, an error is reported, unless a !
is specified, when the command is redefined.

:delc[ommand] cmd delete the user-defined command cmd.
:comc[lear] delete all user-defined commands.

Command attributes

Command attributes split into four categories:
1. argument handling: -nargs=char, where char can be 0,1, *, ? or +
2. completion behaviour: -complete=word, where word can be any of the following: au-

group buffer command dir event file help highlight menu option
tag

3. range handling: -range=n,% or -count=n
4. special cases: -bang – the command can take a ! modifier, -register – the first argu-

ment to the command can be an optional register name

Replacement text

The replacement text for a user-defined command is scanned for special escape sequences,
using <. . . > notation. Escape sequences are replaced with values from the entered command line,
and all other text is copied unchanged. The resulting string is executed as an Ex command. The
valid escape sequences are
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<line1> The starting line of the command range
<line2> The final line of the command range
<count> Any count supplied
<bang> Expands to a !, if specified
<reg> The optional register, if specified
<args> The command arguments, exactly as supplied
<lt> A single < character

Example
" Rename the current buffer
:com -nargs=1 -bang -complete=file Ren f <args>|w<bang>

" Replace a range with the contents of a file
" (Enter this all as one line)
:com -range -nargs=1 -complete=file

Replace <line1>-pu_|<line1>,<line2>d|r <args>|<line1>d

4 Options

4.1 Setting Options

:se[t] show all modified options
:se[t] all � show all options
:se[t] option toggle option on, show string or number option
:se[t] nooption toggle option off
:se[t] invoption � invert option

:se[t] option= value set string or number option to value

:se[t] option? show value of option

:se[t] option+=value Add the value to a number option, or concatenate the value to a string
option.

:se[t] option^=value Multiply the value to a number option, or prepend the value to a string
option.

:se[t] option-=value Subtract the value from a number option, or remove the value from a string
option, if it is there.

:se[t] option& reset option to its default value �
:fix[del] � set value of “t_kD” according to value of “ t_kb”

4.2 Short explanation of each option:

in () – an abbreviated version

aleph (al) � ASCII code of the letter Aleph (Hebrew)
allowrevins (ari) � Allow CTRL-_ in Insert and Command-line mode. See revins
altkeymap (akm) � for default second language (Farsi/Hebrew)
autoindent (ai) take indent for new line from previous line
autowrite (aw ) automatically write file if changed
background (bg) � “dark” or “light”, used for highlight colors
backspace (bs) � how backspace works at start of line
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backup (bk ) � keep backup file after overwriting a file
backupdir (bdir ) � list of directories for the backup file
backupext (bex) � extension used for the backup file
binary (bin) � edit binary file mode
bioskey (biosk ) � MS-DOS: use bios calls for input characters
breakat (brk ) � characters that may cause a line break
browsedir (bsdir ) � (only for GUI) which directory to start browsing in
cindent (cin) � do C program indenting
cinkeys (cink ) � keys that trigger indent when cindent is set
cinoptions (cino) � how to do indenting when cindent is set
cinwords (cinw ) � words where si and cin add an indent
cmdheight (ch) � number of lines to use for the command-line
columns (co) � number of columns in the display
comments (com) � patterns that can start a comment line
compatible (cp) � behave Vi-compatible as much as possible
complete (cpt) � specify how Insert mode completion works
confirm (cf ) � confirm certain operations that would normally fail because of

unsaved changes to a buffer
conskey (consk ) � get keys directly from console (MS-DOS only)
cpoptions (cpo) � flags for Vi-compatible behaviour
cscopeprg (csprg) � command to execute cscope
cscopetag (cst) � use cscope for tag commands
cscopetagorder (csto) � determines :cstag search order
cscopeverbose (csverb) � give messages when adding a cscope database
define (def ) � pattern to be used to find a macro definition
dictionary (dict) � list of file names used for keyword completion
digraph (dg) � enable the entering of digraphs in Insert mode
directory (dir ) list of directory names for the swap file
display (dy ) list of flags for how to display text
edcompatible (ed) � toggle flags of :substitute command
endofline (eol) � write <EOL> for last line in file
equalalways (ea) � windows are automatically made the same size
equalprg (ep) � external program to use for = command
errorbells (eb) ring the bell for error messages
errorfile (ef ) � name of the “errorfile” for the QuickFix mode
errorformat (efm) � description of the lines in the error file
esckeys (ek ) � recognize function keys in Insert mode
eventignore (ei) � a list of autocommand event names, which are to be ignored
expandtab (et) � use spaces when Tab is inserted
exrc (ex) � read .vimrc and .exrc in the current directory
fileencoding (fe) file encoding for multi-byte text
fileformat (ff ) � file format used for file I/O
fileformats (ffs) � automatically detected values for fileformat
filetype (ft) � type of file, used for autocommands
fkmap (fk ) � Farsi keyboard mapping
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formatoptions (fo) � how automatic formatting is to be done
formatprg (fp) � name of external program used with gq command
gdefault (gd) � the :substitute flag g is default on
grepformat (gfm) � format of grepprg output
grepprg (gp) � program to use for :grep
guicursor (gcr ) � GUI: settings for cursor shape and blinking
guifont (gfn) � GUI: Name(s) of font(s) to be used
guifontset (gfs)� GUI: Names of multi-byte fonts to be used
guiheadroom (ghr )� GUI: pixels room for window decorations
guioptions (go) � GUI: Which components and options are used
guipty � GUI: try to use a pseudo-tty for :! commands
helpfile (hf ) � name of this help file
helpheight (hh) � minimum height of a new help window
hidden (hid) � don’t unload buffer when it is abandoned
highlight (hl) � sets highlighting mode for various occasions
hlsearch (hls) � highlight matches with last search pattern
history (hi) � number of command-lines that are remembered
hkmapp (hkp) � Hebrew keyboard mapping
icon � set icon of the window to the name of the file
iconstring � string to use for the VIM icon
ignorecase (ic) ignore case in search patterns
include (inc) � pattern to be used to find an include file
incsearch (is) � highlight match while typing search pattern
infercase (inf ) � adjust case of match for keyword completion
insertmode (im) � start the edit of a file in Insert mode
isfname (isf ) � characters included in file names and pathnames
isident (isi) � characters included in identifiers
isprint (isp) � printable characters
iskeyword (isk ) � characters included in keywords
joinspaces (js) � two spaces after a period with a join command
key � encryption key
keymodel (km) � enable starting/stopping selection with keys
keywordprg (kp) � program to use for the K command
langmap (lmap) � alphabetic characters for other language mode
laststatus (ls) � tells when last window has status lines
lazyredraw (lz) � don’t redraw while executing macros
linebreak (lbr ) � wrap long lines at a blank
lines number of lines in the display
lisp automatic indenting for Lisp
list show Tab and <EOL>
listchars (lcs) � characters for displaying in list mode
magic changes special characters in search patterns
makeef (mef ) � name of the errorfile for :make
makeprg (mp) � program to use for the :make command
matchpairs (mps)� pairs of characters that “%” can match
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matchtime (mat) � tenths of a second to show the matching parenthesis,
when showmatch is set

maxfuncdepth (mfd) � maximum recursive depth for user functions
maxmapdepth (mmd) � maximum recursive depth for mapping
maxmem (mm) � maximum memory (in Kbyte) used for one buffer
maxmemtot (mmt) � maximum memory (in Kbyte) used for all buffers
modeline (ml) recognize modelines at start or end of file
modelines (mls) � number of lines checked for modelines
modified (mod) � buffer has been modified
more � pause listings when the whole screen is filled
mouse � enable the use of mouse clicks
mousefocus (mousef ) � keyboard focus follows the mouse
mousehide (mh) � hide mouse pointer while typing
mousemodel (mousem) � changes meaning of mouse buttons
mousetime (mouset) � max time between mouse double-click
nrformats (nf ) � number formats recognized for CTRL-A command
number (nu) print the line number in front of each line
osfiletype (oft)� operating system-specific filetype information
paragraphs (para) nroff macros that separate paragraphs
paste � allow pasting text
pastetoggle (pt)� key code that causes paste to toggle
patchmode (pm) � keep the oldest version of a file
path (pa) � list of directories searched with gf et al
previewheight (pvh)� height of the preview window
readonly (ro) � disallow writing the buffer
remap allow mappings to work recursively
report threshold for reporting number of lines changed
restorescreen (rs) � Win32: restore screen when exiting
revins (ri) � inserting characters will work backwards
rightleft(rl) � window is right-to-left oriented
ruler (ru) � show cursor line and column in the status line
rulerformat (ruf )� custom format for the ruler
scroll (scr ) lines to scroll with CTRL-U and CTRL-D

scrollbind (scb)� scroll in window as other windows scroll
scrolljump (sj) � minimum number of lines to scroll
scrolloff (so) � minimum number of lines above and below cursor
scrollopt (sbo)� how scrollbind should behave
sections (sect) nroff macros that separate sections
secure � secure mode for reading .vimrc in current dir
selection (sel) � what type of selection to use
selectmode (slm) � when to use Select mode instead of Visual mode
sessionoptions (ssop) � options for :mksession
shell (sh) name of shell to use for external commands
shellcmdflag (shcf ) � flag to shell to execute one command
shellpipe (sp) � string to put output of :make in error file
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shellquote (shq) � quote character(s) for around shell command
shellredir (srr ) � string to put output of filter in a temp file
shellslash (ssl)� use forward slash for shell file names
shelltype (st) � Amiga: influences how to use a shell
shellxquote (sxq) � like shellquote, but include redirection
shiftround (sr ) � round indent to multiple of shiftwidth
shiftwidth (sw ) number of spaces to use for (auto)indent step
shortmess (shm) � list of flags, reduce length of messages
shortname (sn) non-MS-DOS: Filenames assumed to be 8.3 chars
showbreak (sbr ) � string to use at the start of wrapped lines
showcmd (sc) show (partial) command in status line
showfulltag (sft) � show full tag pattern when completing tag
showmatch (sm) briefly jump to matching bracket if insert one
showmode (smd) message on status line to show current mode
sidescroll (ss) � minimum number of columns to scroll horizontal
smartcase (scs) � no ignore case when pattern has uppercase
smartindent (si) � smart autoindenting for C programs
smarttab (sta) � use shiftwidth when inserting Tab

softtabstop (sts) � number of spaces that Tab uses while editing
splitbelow (sb) � new window from split is below the current one
startofline (sol) � commands move cursor to first blank in line
statusline (stl)� custom format for the status line
suffixes (su) � suffixes that are ignored with multiple match
swapfile (swf ) � whether to use a swapfile for a buffer
swapsync (sws) � how to sync the swap file
switchbuf (swb)� sets behavior when switching to another buffer
syntax (syn) � syntax to be loaded for current buffer
tabstop (ts) number of spaces that Tab in file uses
tagbsearch (tbs)� use binary searching in tags files
taglength (tl) number of significant characters for a tag
tagrelative (tr ) � file names in tag file are relative
tags (tag) list of file names used by the tag command
tagstack (tgst)� push tags onto the tag stack
term name of the terminal
terse � shorten some messages
textauto (ta) � obsolete, use fileformats
textmode (tx) � obsolete, use fileformat
textwidth (tw ) � maximum width of text that is being inserted
tildeop (top) � tilde command ∼ behaves like an operator
timeout (to) time-out on mappings and key codes
timeoutlen (tm) time-out time in milliseconds
title � set title of window to the name of the file
titlelen (tm) � gives the percentage of “columns” to use for the length of the

window title
titleold � old title, restored when exiting
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titlestring � title to use for the VIM window
toolbar (tb)� GUI: which items to show in the toolbar
ttimeout � time-out on mappings
ttimeoutlen (ttm) � time-out time for key codes in milliseconds
ttybuiltin (tbi) � use built-in termcap before external termcap
ttyfast (tf ) � indicates a fast terminal connection
ttymouse (ttym) � type of mouse codes generated
ttyscroll (tsl) maximum number of lines for a scroll
ttytype (tty ) alias for term
undolevels (ul) � maximum number of changes that can be undone
updatecount (uc) � after this many characters flush swap file
updatetime (ut) � after this many milliseconds flush swap file
verbose (vbs) � give informative messages
viminfo (vi) � use .viminfofile upon startup and exiting
visualbell (vb) � use visual bell instead of beeping
warn warn for shell command when buffer was changed
weirdinvert (wi) � for terminals that have weird inversion method
whichwrap (ww ) � allow specified keys to cross line boundaries
wildchar (wc) � command-line character for wildcard expansion
wildcharm (wcm)� like wildchar but also works when mapped
winheight (wh) � minimum number of lines for
wildignore (wig) � files matching these patterns are not completed
wildmenu (wmnu)� use menu for command line completion
wildmode (wim) � mode for wilchar command-line expansion
winaltkeys (wak ) � when the windows system handles ALT keys the current window
winminheight (wmh) � minimum number of lines for any window
wrap � long lines wrap and continue on the next line
wrapmargin (wm) chars from the right where wrapping starts
wrapscan (ws) searches wrap around the end of the file
write � writing to a file is allowed
writeany (wa) write to file with no need for ! override
writebackup (wb) � make a backup before overwriting a file
writedelay (wd) � delay this many msec for each char (for debug)

5 Other Commands

5.1 Shell Commands

:sh[ell] start a shell
:! command execute command with a shell
K lookup keyword under the cursor with keywordprg program (default: “man”)
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5.2 QuickFix Commands�
VIM has a special mode to speedup the edit-compile-edit cycle. The idea is to save the er-

ror messages from the compiler in a file and use VIM to jump to the errors one by one. The
errorformat option should be set to match the error messages from your compiler (see below).

:cc[!] [num] display error num (default is the same again). Without “!” this doesn’t work
when jumping to another buffer, the current buffer has been changed, there is
the only window for the buffer and both hidden and autowrite are off. When
jumping to another buffer with “!” any changes to the current buffer are lost,
unless hidden is set or there is another window for this buffer.

:[n] cn[ext][!] display the n next error in the list that includes a file name. If there are no file
names at all, go to the n next error. See :cc for “!”.

:[n] cp[revious][!] display the n previous error in the list that includes a file name. If there are
no file names at all, go to the n previous error.

:[n] cnf[ile][!] display the first error in the n next file in the list that includes a file name. If
there are no file names at all or if there is no next file, go to the n next error.

:cl[ist] [from] [, [to]] list all errors that include a filename
:cl[ist]! list all errors
:cf read errors from the file “errorfile”
:cr[ewind][!] [nr] display error [nr]. If nr is omitted, the FIRST error is displayed.
:cla[st][!] [nr] display error [nr]. If nr is omitted, the LAST error is displayed.
:cq quit without writing and return error code (to the compiler)
:make [args] start make, read errors, and jump to first error
:gr[ep] [args] execute grepprg to find matches and jump to the first one.
:col[der] [n] go to older error list [n times].
:cnew[er] [n] go to newer error list [n times].

Errorformat option syntax

Spec Description Spec Description

%c column number (a number) %f file name (a string)
%l line number (a number) %m error message (a string)
%n error number (a number) %r matches the rest of a single-

line file message
%t error type (single character) %*<conv> any scanf non-assignable

conversion
%% the single “%” character

5.3 Viminfo Commands�
The viminfo_file is used to store:
• The command line history.
• The search string history.
• The input-line history.
• Contents of registers.
• Marks for several files.
• File marks, pointing to locations in files.
• Last search/substitute pattern (for “n” and “&”).
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• The buffer list.
• Global variables.

viminfo_file read registers, marks, history at startup, save when exiting
:rv[iminfo] file read info from viminfo file file
:rv[iminfo]! file idem, overwrite existing info
:wv[iminfo] file add info to viminfo file file
:wv[iminfo]! file write info to viminfo file file

Viminfo option syntax

The format of “viminfo” string: char string or char number, where char can
be:

’ – maximum number of previously edited files for which the marks are
remembered.

f – whether file marks need to be stored. If zero, file marks (’0 to ’9, ’A to
’Z) are not stored. When not present or when non-zero, they are all stored.

r – removable media. The argument is a string (up to the next “,”). This
parameter can be given several times. Each specifies the start of a path for
which no marks will be stored. Maximum length of each “r” argument is
50 characters.

¨ – maximum number of lines saved for each register. If zero then registers
are not saved. When not included, all lines are saved.

: – maximum number of items in the command line history to be saved.
When not included, the value of history is used.

/ – maximum number of items in the search pattern history to be saved. If
non-zero, then the previous search and substitute patterns are also saved.
When not included, the value of history is used.

n – name of the viminfo file. The name must immediately follow the “n”.
Must be the last one! If the “-i” argument was given when starting Vim,
that file name overrides the one given here with viminfo. Environment
variables are expanded when opening the file, not when setting the option.

% – save and restore the buffer list. If Vim is started with a file name argu-
ment, the buffer list is not restored. If Vim is started without a file name
argument, the buffer list is restored from the viminfo file. Buffers without
a file name and buffers for help files are not written to the viminfo file.

Automatic option setting when editing a file
vim:set-arg: .. in the first and last lines of the file (see ml option), set-arg is given as an argu-

ment to :set

5.4 Various Commands

:h[elp] � split the window and display the help file in read-only mode. If there
is a help window open already, use that one

:h[elp] subject Like :help, additionally jump to the tag subject. subject can include
wildcards like “*”, “?” and “[a-z]”

CTRL-L clear and redraw the screen
CTRL-G show current file name (with path) and cursor position
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ga show ASCII value of character under cursor in decimal, hex, and octal
g CTRL-G show cursor column, line, and character position
CTRL-C during searches: interrupt the search
CTRL-B break MS-DOS: during searches: interrupt the search
n Del while entering count n: delete last character
:ve[rsion] show version information
:mode n MS-DOS: set screen mode to n (number, C80, C4350, etc.)
:norm[al][!] commands execute Normal mode commands

Q switch to Ex mode
:redir >file redirect messages to file

:redir >>file redirect messages to file. Append if file already exists
:redi[r] @a-zA-Z redirect message to register a-z. Append to the contents of the register

if its name is given uppercase A-Z�
:redi[r] END end redirecting messages �
:[range] p[rint] [n] print n lines, starting with range

:[range] l[ist] [n] same as :print, but display unprintable characters

6 Ex ranges and search patterns

6.1 Ranges

, separates two line numbers
; idem, set cursor to the first line number before interpreting the second one
number an absolute line number

. the current line
$ the last line in the file
% equal to 1,$ (the entire file)
* equal to ’<,’> (visual area)
’t position of mark t

/pattern[/] the next line where pattern matches
?pattern[?] the previous line where pattern matches
+[num] add num to the preceding line number (default: 1)
-[num] subtract num from the preceding line number (default: 1)

6.2 Special Ex characters

| separates two commands (not for :global and :!)
" begins comment
% current file name (only where a file name is expected)
#[number] alternate file name number (only where a file name is expected)

Note: The next six are typed literally; these are not special keys!

<cword> word under the cursor (only where a file name is expected)
<cWORD> WORD under the cursor (only where a file name is expected)
<cfile> filename under the cursor (only where a file name is expected)
<afile> filename for autocommand (only where a file name is expected)



6 EX RANGES AND SEARCH PATTERNS page 25

<abuf> when executing autocommands, is replaced with the currently effective buffer number.
<amatch> when executing autocommands, is replaced with the match for which this autocom-

mand was executed.
<sfile> filename of a :source’d file, within that file (only where a file name is expected)

After %, #, <cfile>, <sfile> or <afile>

:p full path :h head (file name removed)
:t tail (file name only) :r root (extension removed)
:e extension :. reduce file name to be relative to

current directory, if possible
:∼ reduce file name to be relative to

the home directory, if possible
:s/pat/sub/ substitute pat with sub

6.3 Pattern searches

[n] /pattern[/offset] Ret search forward for the n-th occurrence of pattern

[n] ?pattern[?offset] Ret search backward for the n-th occurrence of pattern

[n] / Ret repeat last search, in the forward direction
[n] ? Ret repeat last search, in the backward direction
[n] n repeat last search
[n] N repeat last search, in opposite direction
[n] * � search forward for the identifier under the cursor
[n] # � search backward for the identifier under the cursor
[n] g* � like *, but also find partial matches
[n] g# � like #, but also find partial matches
gd � goto local declaration of identifier under the cursor
gD � goto global declaration of identifier under the cursor

6.4 Special characters in search patterns

magic7 nomagic meaning

. \. matches any single character
^ ^ at beginning of pattern or after “\|” or “\(”, matches start of line; at

other positions, matches literal “^”
\^ \^ at any position, matches literal “^”
$ $ matches <EOL>
\< \< matches start of word
\> \> matches end of word

[a-z] \[a-z] matches a single char from the range
[^a-z] \[^a-z] matches a single char not in the range
\i \i matches an identifier char �
\I \I idem but excluding digits �
\k \k matches a keyword character �
\K \K idem but excluding digits �
\f \f matches a file name character �
\F \F idem but excluding digits �
\p \p matches a printable character �
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magic nomagic meaning

\P \P idem but excluding digits �
\s \s matches a white space character �
\S \S matches a non-white space character �
\d \d digit: [0-9] �
\D \D non-digit: [^0-9] �
\x \x hex digit: [0-9A-Fa-f] �
\X \X non-hex digit: [^0-9A-Fa-f] �
\o \o octal digit: [0-7] �
\O \O non-octal digit: [^0-7] �
\w \w word character: [0-9A-Za-z_] �
\W \W non-word character: [^0-9A-Za-z_] �
\h \h head-of-word character: [A-Za-z_] �
\H \H non-head-of-word character: [^A-Za-z_] �
\a \a alphabetic character: [A-Za-z] �
\A \A non-alphabetic character: [^A-Za-z] �
\l \l lowercase character: [a-z] �
\L \L non-lowercase character: [^a-z] �
\u \u uppercase character: [A-Z] �
\U \U non-uppercase character: [^A-Z] �

Note: using the atom is faster than the [] form

\e \e matches <Esc>
\t \t matches <Tab>
\r \r matches <Ret>
\b \b matches <BS>

\| \| separates two branches
\(\) \(\) group a pattern into an atom
∼ \∼ matches the last given substitute string

\1,\2,..,\9 \1,\2,..,\9 Matches the same string that was matched by the first, second .. ninth
sub-expression in \( and \).

Quantifiers

* \* matches 0 or more of the preceding atom
\+ \+ matches 1 or more of the preceding atom �
\= \= matches 0 or 1 of the preceding atom �
\{n,m} \{n,m} matches n to m of the preceding atom, as much as possible �
\{n} \{n} matches n of the preceding atom �
\{n,} \{n,} matches at least n of the preceding atom, as much as possible �
\{,m} \{,m} matches 0 to m of the preceding atom, as much as possible �
\{} \{} the same as * �
\{–n,m} \{–n,m} matches n to m of the preceding atom, as few as possible �
\{–n} \{–n} matches n of the preceding atom �
\{–n,} \{–n,} matches at least n of the preceding atom, as few as possible �
\{–,m} \{–,m} matches 0 to m of the preceding atom, as few as possible �
\{–} \{–} matches 0 or more of the preceding atom, as few as possible �

7see option magic, page 17
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Character class expression

A character class expression is evaluated to the set of characters belonging to that character
class. The brackets in character class expressions are additional to the brackets delimiting a range.
The following character classes are supported:

Name Contents Name Contents
[:alnum:] letters and digits [:alpha:] letters
[:ascii:] ASCII characters [:blank:] space and tab characters
[:cntrl:] control characters [:digit:] decimal digits
[:graph:] printable characters excluding space [:lower:] lowercase letters
[:print:] printable characters including space [:punct:] punctuation characters
[:space:] whitespace characters [:upper:] uppercase letters
[:xdigit:] hexadecimal digits

6.5 Offsets allowed after search command

[num] num lines downwards, in column 1
+[num] num lines downwards, in column 1
–[num] num lines upwards, in column 1
e[+num] num characters to the right of the end of the match
e[–num] num characters to the left of the end of the match
s[+num] num characters to the right of the start of the match
s[–num] num characters to the left of the start of the match
b[+num] num characters to the right of the start (begin) of the match
b[–num] num characters to the left of the start (begin) of the match
;search command execute search command next

7 Starting, Writing and Quitting Commands

7.1 Starting VIM

vim options start editing with an empty buffer
vim options file . . . start editing one or more files
vim options – read file from stdin
vim options –t tag edit the file associated with tag

vim options –q [file] start editing in QuickFix mode, display the first error

VIM arguments:

+/pattern file . . . � put the cursor at the first occurrence of pattern

+ command execute command after loading the file
+[num] put the cursor at line [num] (default: last line)
– – end of options, other arguments are file names
–b � binary mode
–C � compatible, set the compatible option
–d device � Amiga: open device to be used as a console
–e � Ex mode, start VIM in Ex mode
–F � Farsi mode (fkmap and rightleft are set)
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–f � GUI: foreground process, don’t fork; Amiga: do not restart VIM to open a win-
dow

–g � start GUI (also allows other options)
–H � Hebrew mode (hkmap and rightleft are set)
–i viminfo � read info from viminfo instead of other files
–l Lisp mode
–m modifications not allowed
–n � do not create a swap file
–N � nocompatible, reset the compatible option
–o n � open n windows (default: one for each file)
–r file .. recover aborted edit session
–r give list of swap files
–R � read-only mode, implies -n
–s scriptin � first read commands from the file scriptin

–T terminal � set terminal name
–U gvimrc � idem, for when starting the GUI
–u vimrc � read inits from vimrc instead of other inits
–V � verbose, give informative messages
–v Vi mode, start Ex in Normal mode
–w scriptout � write typed chars to file scriptout (append)
–W scriptout � write typed chars to file scriptout (overwrite)
–x use encryption to read/write files. Will prompt for a key, which is then stored in

the key option.
– read file from stdin

7.2 Editing a file

:e[dit] edit the current file, unless changes have been made
:e[dit]! edit the current file always. Discard any changes
:e[dit] file edit file, unless changes have been made
:e[dit]! file edit file always. Discard any changes
:ex [+cmd] [file] same as :edit, but also switch to Ex mode.
:fin[d][!] [+cmd] [file] � Find file in “$path” and then :edit it. not in Vi
:vi[sual][!] [+cmd] [file] when entered in Ex mode: Leave Ex mode, go back to Normal mode.
:vie[w] [+cmd] file when entered in Ex mode: Leave Ex mode, go back to Normal mode.
[n] CTRL-^ edit alternate file n (equivalent to :e n)
gf or ]f edit the file whose name is under the cursor
:pwd print the current directory name
:cd [path] change the current directory to path

:cd - back to previous current directory.
:f[ile] print the current file name and the cursor position
:f[ile] name set the current file name to name

:files show alternate file names
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7.3 Using the argument list

:ar[gs] print the argument list, with the current file in [ ]
:all or :sall open a window for every file in the arg list
:wn[ext][!] write file and edit next file

:wn[ext][!] file write to file and edit next file, unless file exists. With !, overwrite existing file

:wN[ext][!] file write file and edit previous file

in current window: in new window: description

:argu[ment] [n] :sar[gument] n edit file n
:n[ext] :sn[ext] edit next file
:n[ext] arglist :sn[ext] arglist define new arglist and edit first file
:N[ext] :sN[ext] edit previous file
:rew[ind][!] :srew[ind] edit first file
:last :slast edit last file

7.4 Writing and quitting

:[range]w[rite][!] write to the current file
:[range]w[rite] file write to file, unless it already exists
:[range]w[rite]! file write to file. Overwrite an existing file
:[range]w[rite][!] >> append to the current file
:[range]w[rite][!] >> file append to file

:[range]w[rite] !cmd execute cmd with range lines as standard input
:[range]up[date][!] write to current file if modified
:wall[!] write all changed buffers
:q[uit] quit current buffer, unless changes have been made. Exit VIM when there are

no other non-help buffers
:q[uit]! quit current buffer always, discard any changes. Exit VIM when there are no

other non-help buffers
:conf[irm] qa[ll] exit Vim. Bring up a prompt when some buffers have been changed.
:qa[ll] exit VIM, unless changes have been made
:qa[ll]! exit VIM always, discard any changes
:cq quit without writing and return error code
:wq[!] write the current file and exit
:wq[!] file write to file and exit
:x[it][!] file like :wq but write only when changes have been made
ZZ same as :x
ZQ same as :q!
:conf[irm] wqa[ll] or :conf[irm] xa[ll] write all changed buffers and exit Vim. Bring up a prompt

when some buffers are readonly or cannot be written for another reason.
:xa[ll][!] or :wqa[ll][!] write all changed buffers and exit
:st[op][!] suspend VIM or start new shell. If aw option is set and [!] not given write the

buffer
CTRL-Z same as :stop!
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8 Windows and Buffers functions

8.1 Multi-window functions�
CTRL-W s or :split split window into two parts
:[n] sp[lit] or new [+cmd] file split window and edit file in one of them. Execute the command

+cmd when the file has been loaded. Make new window n high.
:[n] sv[iew] [+cmd] file Same as :split, but set readonly option for this buffer.
:[n] sf[ind] [+cmd] file Same as :split, but search for file in “$path”. Doesn’t split if file is not

found.
CTRL-W ] split window and jump to tag under cursor
:pta[g][!] [tagname] Does :tag[!] [tagname] and shows the found tag in a “Preview” window

without changing the current buffer or cursor position. If a “Preview” window
already exists, it is re-used (like a help window is). If a new one is opened,
previewheight is used for the height of the window.

CTRL-W z or :pc[lose][!] Close any “Preview” windows currently open. When the hidden op-
tion is set, or when the buffer was changed and the [!] is used, the buffer
becomes hidden (unless there is another window editing it). The command
fails if any “Preview” buffer cannot be closed.

:[n] pp[op][!] Does :[n]pop[!] in the preview window.
CTRL-W } Use identifier under cursor as a tag and perform a :ptag on it. Make the new

“Preview” window (if required) N high. If N is not given, previewheight is
used.

CTRL-W g } Use identifier under cursor as a tag and perform a :ptjump on it. Make the new
Preview window (if required) N high. If N is not given, previewheight is used.

CTRL-W g ] split current window in two. Use identifier under cursor as a tag and perform
:tselect on it in the new upper window. Make new window N high.

CTRL-W g CTRL-] split current window in two. Use identifier under cursor as a tag and per-
form :tjump on it in the new upper window. Make new window N high.

CTRL-W f split window and edit file name under the cursor
CTRL-W CTRL-^ split window and edit alternate file
CTRL-W n or :new create new empty window
CTRL-W q or :q[uit] quit editing and close window
CTRL-W c or :cl[ose] make buffer hidden and close window
CTRL-W o or :on[ly][!] make current window only one on the screen
CTRL-W j move cursor to window below
CTRL-W k move cursor to window above
CTRL-W CTRL-W move cursor to window below (wrap)
CTRL-W W move cursor to window above (wrap)
CTRL-W t move cursor to top window
CTRL-W b move cursor to bottom window
CTRL-W p move cursor to previous active window
CTRL-W r rotate windows downwards
CTRL-W R rotate windows upwards
CTRL-W x exchange current window with next one
CTRL-W = make all windows equal height
CTRL-W – decrease current window height
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CTRL-W + or :res[ize] +n increase current window height [by n]
CTRL-W _ set current window height (default: very high)

8.2 Buffer list functions

:buffers or :files list all known buffer and file names
:ball or :sball edit all args/buffers
:unhide or :sunhide edit all loaded buffers
:bad[d] [+lnum] fname add file name fname to the list, without loading it. If lnum is specified,

the cursor will be positioned at that line when the buffer is first entered.
:bunload[!] [n] unload buffer n from memory
:bd[elete][!] [n] or :[n] bd[delete] unload buffer n and delete it from the buffer list

in current window: in new window: description

:[n] buffer [n] :[n] sbuffer [n] to arg/buf n
:[n] bnext [n] :[n] sbnext [n] to n-th next arg/buf
:[n] bNext [n] :[n] sbNext [n] to n-th previous arg/buf
:[n] bprevious [n] :[n] sbprevious [n] to n-th previous arg/buf
:brewind :sbrewind to first arg/buf
:blast :sblast to last arg/buf
:[n] bmod [n] :[n] sbmod [n] to n-th modified buf

9 Script Language�
9.1 Variables

VIM supports two types of variables: Number–a 32 bit signed number and String–a NULL
terminated string of 8-bit unsigned characters. They are converted automatically, depending on
how they are used. For boolean operators Numbers are used. Zero is FALSE, non-zero is TRUE.

A VIM variable name can be made up of letters, digits and underscore (“_”), but it cannot start
with a digit. An internal variable is created with the :let and destroyed with the :unlet command.
A variable name that is preceded with b: and w: is local to the current buffer and window,
respectively. Inside functions global variables are accessed with g:.

Built-in variables

v:count The count given for the last Normal mode command. Can be used to get the
count before a mapping. Read-only.

v:count1 Just like “v:count”, but defaults to one when no count is used.
v:errmsg Last given error message. This variable may be set.
v:warningmsg Last given warning message. It’s allowed to set this variable.
v:statusmsg Last given status message. It’s allowed to set this variable.
v:shell_error Result of the last shell command. When non-zero, the last shell command

had an error. When zero, there was no problem.
v:this_session Full filename of the last loaded or saved session file. See :mksession.
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v:version Version number of VIM. Major version number times 100 plus minor version
number. Version 5.01 is 501. Read-only.

9.2 Expression syntax

Operators:8

# Operator Description # Operator Description

1 || [. . . ]9 logical OR 9 =∼ regexp matches
2 && [. . . ] logical AND 10 !∼ regexp doesn’t match
3 == equal 11 + [. . . ] number addition
4 != not equal 12 – [. . . ] number subtraction
5 > greater than 13 . [. . . ] string concatenation
6 >= greater than or equal 14 * [. . . ] number multiplication
7 < smaller than 15 / [. . . ] number division
8 <= smaller than or equal 16 % [. . . ] number modulo

17 ! expr logical NOT 18 – expr unary minus

Description:
- All expressions within one level are parsed from left to right.
- Comparison operators can be appended with # – to “match case” or ? – to “ignore case” of

compared expressions.
- The arguments of *, +, –, %, /, || and && operations are (converted to) Numbers. When

comparing a String with a Number, the String is converted to a Number, and the
comparison is done on Numbers.

- Comparing two Strings is done with strcmp(). This results in the mathematical dif-
ference, not necessarily the alphabetical difference in the local language.

- The =∼ and !∼ operators match the left hand argument with the right hand argument, which
is used as a pattern. This matching is always done like magic was set, no matter what the ac-
tual value of magic is. The value of ignorecase does matter though. To avoid backslashes
in the regexp pattern to be doubled, use a single-quote string.

Operands:

Operand Description Operand Description

expr1[expr2] index in String number number constant
"string" string constant ’string’ literal string constant
&option option value (expr1) nested expression
variable internal variable $VAR environment variable
@r contents of register “r”

function(expr1, . . . ) function call

Description:

8numbered in order of increasing precedence
9[. . . ] indicates that the operations in this level can be concatenated.
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expr1[expr2] This results in a String that contains the expr2’th single character from expr1.
expr1 is used as a String, expr2 as a Number. The index starts with 0 (like in
C).

Careful: column numbers start with one!

If the length of the String is less than the index, the result is an empty String.
"string" A string constant may contain these special characters:

Character Description Character Description

\... 3-digit octal number \.. 2-digit octal number10

\. 1-digit octal number 11 \x.. 2-character hex number
\x. 1-character hex number12 \X.. same as \x..
\X. same as \x. \b backspace
\e escape \f formfeed
\n newline \r return
\t tab \\ backslash
\" double quote \<xxx> Special key name “xxx”

Note that \000 and \x00 force the end of the string.
’string’ This string is taken literally. No backslashes are removed or have a special mean-

ing. A literal string cannot contain a single quote. Use a normal string for that.
@r The result is the contents of the named register, as a single string. Newlines are

inserted where required. To get the contents of the unnamed register use “@@”.
The “=” register can not be used here.

9.3 Functions

argc() The result is the number of files in the argument list. See arglist.
argv(n) The result is the n-th file in the argument list.
browse(save, title, initdir, default) Put up a file requester. This only works only in some GUI

versions. The input fields are:
save when non-zero, select file to write title title for the requester
initdir directory to start browsing in default default file name

append(lnum, string) Append the text string after line lnum in the current buffer. lnum can be
zero, to insert a line before the first one. Returns 1 for failure (lnum out of
range) or 0 for success.

bufexists(var) The result is a Number, which is non-zero if a buffer called var exists. If
the var argument is a string, it must match a buffer name exactly. If the var
argument is a number, buffer numbers are used. Use buffer_exists(0) to test
for the existence of an alternate file name.

bufloaded(expr) The result is a Number, which is non-zero if a buffer called expr exists and is
loaded (shown in a window or hidden). The expr argument is used like with
bufexists().

bufname(expr) The result is the name of a buffer, as it is displayed by the :ls command. If
expr is a Number, that buffer number’s name is given. If expr is a String, it is
used as a regexp pattern to match with the buffer names.

10must be followed by non-digit
12must be followed by non-hex
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bufnr(expr) The result is the number of a buffer, as it is displayed by the :ls command.
bufwinnr(expr) The result is a Number, which is the number of the first window associated

with buffer expr. For the use of expr, see bufname() above. If buffer expr
doesn’t exist or there is no such window, -1 is returned.

byte2line(byte) Return the line number that contains the character at byte count byte in the
current buffer. This includes the end-of-line character, depending on the ’file-
format’ option for the current buffer. The first character has byte count one.

char2nr(expr) Return ASCII value of the first char in expr.
col(expr) The result is a Number, which is the column of the file position given with

expr. The accepted positions are:
. the cursor position
’x position of mark “x” (if the mark is not set, 0 is returned).

Only marks in the current file can be used. The first column is 1. 0 is returned
for an error.

confirm(msg, choices[, default [, type ])] msg is displayed in a dialog with choices as the al-
ternatives. default is the number of the choice that is made if the user hits
CR . If default is omitted, 0 is used. The optional type argument gives the
type of dialog.

delete(fname) Deletes the file by the name fname. The result is a Number, which is 0 if the
file was deleted successfully, and non-zero when the deletion failed.

did_filetype() Returns non-zero when autocommands are being executed and the FileType
event has been triggered at least once. Can be used to avoid triggering the
FileType event again in the scripts that detect the file type.

escape(string, chars) Escape the characters in chars that occur in string with a backslash.
exists(expr) The result is a Number, which is 1 if var is defined, zero otherwise. The expr

argument is a string, which contains one of these:
&option-name VIM option
$ENVNAME environment variable
varname internal variable.

expand(expr, [, flag]) Expand the file wildcards in expr. The result is a String. When the
result of expr starts with %, # or <, the expansion is done like for the cmdline-
special variables with their associated modifiers. There cannot be a white
space between the variables and the following modifier. When the current or
alternate file name is not defined, % or # use an empty string. Using %:p in a
buffer with no name results in the current directory, with a “/”added.

filereadable(fname) The result is a Number, which is TRUE when a file with the name fname
exists, and can be read. If fname doesn’t exist, or is a directory, the result is
FALSE. fname is any expression, which is used as a String.

fnamemodify(fname, mods) Modify file name fname according to mods. mods is a string of
characters like it is used for file names on the command line.

getcwd() The result is a String, which is the name of the current working directory.
getftime(fname) The result is a Number, which is the last modification time of the given file

fname. The value is measured as seconds since 1st Jan 1970, and may be
passed to strftime().

getline(lnum) The result is a String, which is line lnum from the current buffer.
getwinposx() The result is a Number, which is the X coordinate in pixels of the left hand

side of the GUI vim window. The result will be -1 if the information is not
available.
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getwinposy() The result is a Number, which is the Y coordinate in pixels of the top of the
GUI vim window. The result will be -1 if the information is not available.

glob(expr) Expand the file wildcards in expr. The result is a String. When there are
several matches, they are separated by NL characters. If the expansion fails,
the result is an empty string.

has(feature) The result is a Number, which is 1 if the feature is supported, zero otherwise.
The feature argument is a string. See Feature-list below.

hostname() The result is a String, which is the name of the machine on which VIM
is currently running. Machine names greater than 256 characters long are
truncated.

histadd(history, item) Add the String item to the history history which can be one of:
cmd or : command line history
search or / search pattern history
expr or = typed expression history
input or @ input line history

If item does already exist in the history, it will be shifted to become the newest
entry. The result is a Number: 1 if the operation was successful, otherwise 0
is returned.

histdel(history [, item]) Clear history, i.e. delete all its entries. If the parameter item is given as
String, this is seen as regular expression. All entries matching that expression
will be removed from the history (if there are any). If item is a Number, it will
be interpreted as index. The respective entry will be removed if it exists. The
result is a Number: 1 for a successful operation, otherwise 0 is returned.

histget(history [, index]) The result is a String, the entry with Number index from history. See
hist-names for the possible values of history, and :history-indexing for in-
dex. If there is no such entry, an empty String is returned. When index is
omitted, the most recent item from the history is used.

histnr(history) The result is the Number of the current entry in history. See hist-names for
the possible values of history. If an error occurred, -1 is returned.

hlexists(name) The result is a Number, which is non-zero if a highlight group called name
exists. The group may have been defined as a highlight group or as a syntax
item or both. Not necessarily when highlighting has been defined for it, it
may also have been used for a syntax item.

hlID(name) The result is a Number, which is the ID of the highlight group with name
name. When the highlight group doesn’t exist, zero is returned.

input(prompt) The result is a String, which is whatever the user typed on the command-line.
The parameter is either a prompt string, or a blank string (for no prompt). A
n can be used in the prompt to start a new line.

isdirectory(directory) The result is a Number, which is TRUE when a directory with the name
directory exists. If directory doesn’t exist, or isn’t a directory, the result is
FALSE. directory is any expression used as a String.

libcall(libname, funcname, argument) Call function funcname in the run-time library libname
with argument argument. The result is the String returned. If argument is a
number, it is passed to the function as an int; if param is a string, it is passed
as a null-terminated string. If the function returns NULL, this will appear
as an empty string to Vim. WARNING: If the function returns a non-valid
pointer, Vim will crash! This also happens if the function returns a number.
For Win32 systems, libname should be the filename of the DLL without the
“.dll” suffix. A full path is only required if the DLL is not in the usual places.
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line(expr) The result is a Number, which is the line number of the file position given
with expr. The accepted positions are:

. the cursor position
$ the last line in the current buffer
’x position of mark “x” (if the mark is not set, 0 is returned)

Only marks in the current file can be used.
line2byte(lnum) Return the byte count from the start of the buffer for line lnum. This includes

the end-of-line character, depending on the ’fileformat’ option for the current
buffer. The first line returns 1. When lnum is invalid -1 is returned.

localtime() Return the current time, measured as seconds since 1st Jan 1970.
maparg(name[, mode]) Return the rhs of mapping name in mode mode. When there is no

mapping for name, an empty String is returned. These characters can be used
for mode:
“n” Normal “v” Visual
“o” Operator-pending “i” Insert
“c” Cmd-line "" Normal, Visual and Operator-pending

When mode is omitted, the modes from "" are used. The name can have
special key names, like in the “:map” command. The returned String has
special characters translated like in the output of the “:map” command listing.

mapcheck(name[, mode]) Check if there is a mapping that matches with name in mode mode.
When there is no mapping that matches with name, and empty String is re-
turned. If there is one, the rhs of that mapping is returned. If there are several
matches, the rhs of one of them is returned. This function can be used to
check if a mapping can be added without being ambiguous.

match(expr, pat) The result is a Number, which gives the index in expr where pat matches.
If there is no match, -1 is returned. See pattern for the patterns that are
accepted.

matchend(expr, pat) Same as match(), but return the index of first character after the match.
matchstr(expr, pat) Same as match(), but return the matched string.
nr2char(expr) Return a string consisting of a single character with the ASCII value expr.
rename(from, to) Rename the file by the name from to the name to. This should also work to

move files across file systems. The result is a Number, which is 0 if the file
was renamed successfully, and non-zero when the renaming failed.

setline(lnum, line) Set line lnum of the current buffer to line. If this succeeds, 0 is returned. If
this fails (most likely lnum is invalid) 1 is returned.

strftime(format[, time]) The result is a String, which is the current date and time, as specified
by the format string. See the manual page of the C function strftime()
for the format. The maximum length of the result is 80 characters.

strlen(expr) The result is a Number, which is the length of the String expr.
strpart(src, start, len) The result is a String, which is part of src, starting from character

start, with the length len. When characters beyond the length of the string are
implied, this doesn’t result in an error, the characters are simply omitted.

strtrans(expr) The result is a String, which is expr with all unprintable characters translated
into printable characters.

substitute(expr, pat, sub, flags) The result is a String, which is a copy of expr, in which
the first match of pat is replaced with sub. This works like the :substitute
command (without any flags). But the magic option is ignored, the pat is
always processed as if magic is set. When pat does not match in expr, expr is
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returned unmodified. When flags is g, all matches of pat in expr are replaced.
Otherwise flags should be "".

synID(line, col, trans) The result is a Number, which is the syntax ID at the position line and
col in the current window. The syntax ID can be used with synIDattr() and
synIDtrans() to obtain syntax information about text. col is 1 for the leftmost
column, line is 1 for the first line.
When trans is non-zero, transparent items are reduced to the item that
they reveal. This is useful when wanting to know the effective color. When
trans is zero, the transparent item is returned. This is useful when want-
ing to know which syntax item is effective (e.g. inside parentheses).

synIDattr(synID, what) [, mode] The result is a String, which is the what attribute of syntax
ID synID. This can be used to obtain information about a syntax item. mode
can be gui, cterm or term, to get the attributes for that mode.

synIDtrans(synID) The result is a Number, which is the translated syntax ID of synID. This is
the syntax group ID of what is being used to highlight the character. Highlight
links are followed.

system(expr) Get the output of the shell command expr. Note: newlines in expr may cause
the command to fail. This is not to be used for interactive commands. The
result is a String. To make the result more system-independent, the shell
output is filtered to replace <CR> with <NL> for Macintosh, and <CR><NL>
with <NL> for DOS-like systems.

tempname() The result is a String, which is the name of a file that doesn’t exist. It can be
used for a temporary file. The name is different for each least 26 consecutive
calls a unique file.

visualmode() The result is a String, which describes the last Visual mode used. Initially
it returns an empty string, but once Visual mode has been used, it returns
“v”, “V”, or “CTRL-V” (a single CTRL-V character) for character-wise, line-
wise, or block-wise Visual mode respecively.

virtcol(expr) The result is a Number, which is the screen column of the file position given
by expr. The column number is return as if the screen were of infinite width.
If there is a <Tab> at that position, the returned Number is the last column
occupied by the <Tab>. For example, for a <Tab> in column 1, with ts set
to 8, it returns 8; The accepted positions are:

. the cursor position
’x position of mark “x” (if the mark is not set, 0 is returned)

Only marks in the current file can be used.
winbufnr(n) The result is a Number, which is the number of the buffer associated with

window n. When n is zero, the number of the buffer in the current window is
returned. When window n doesn’t exist, −1 is returned.

winheight(n) The result is a Number, which is the height of window nr. When n is zero,
the height of the current window is returned. When window n doesn’t exist,
−1 is returned. An existing window always has a height of zero or more.

winnr() The result is a Number, which is the number of the current window. The top
window has number 1.

Feature-list:
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Feature Description

all_builtin_terms all builtin terminals enabled.
amiga Amiga version of VIM.
arp ARP support (Amiga).
autocmd autocommands support.
beos BeOS version of VIM.
browse :browse support, and browse() will work.
builtin_terms some builtin terminals.
byte_offset support for “o” in statusline
cindent cindent support.
clipboard clipboard support.
cmdline_compl cmdline-completion support.
cmdline_info showcmd and ruler support.
comments comments support.
cryptv encryption support encryption.
cscope :cscope support.
compatible Compiled to be very Vi compatible.
debug DEBUG defined.
dialog_con console dialog support.
dialog_gui GUI dialog support.
digraphs support for digraphs.
dos32 32 bits DOS (DJGPP) version of VIM.
dos16 16 bits DOS version of VIM.
emacs-tags support for Emacs tags.
eval expression evaluation support.
ex_extra extra Ex commands.
extra_search support for incsearch and hlsearch
farsi Farsi support (farsi ).
file_in_path support for gf and <cfile>
find_in_path support for include file searches
fname_case Case in file names matters (Unix only).
fork Compiled to use fork()/exec() instead of system().
gui GUI enabled.
gui_athena Athena GUI.
gui_beos BeOs GUI.
gui_gtk GTK+ GUI.
gui_mac Macintosh GUI.
gui_motif Motif GUI.
gui_win32 MS Windows Win32 GUI.
gui_win32s ibid, and Win32s system being used (Windows 3.1)
gui_running VIM is running in the GUI, or it will start soon.
hangul_input Hangul input support.
insert_expand support for CTRL-X expansion commands in Insert mode.
langmap langmap support.
linebreak linebreak, breakat and showbreak
support. lispindent support for lisp indenting.
mac Macintosh version of VIM.
menu support for :menu.
mksession support for :mksession.
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Feature Description

modify_fname file name modifiers.
mouse support mouse.
mouse_dec support for Dec terminal mouse.
mouse_gpm support for gpm (Linux console mouse)
mouse_netterm support for netterm mouse.
mouse_xterm support for xterm mouse.
multi_byte support for Korean et al.
multi_byte_ime support for IME input method
ole OLE automation support for Win32.
os2 OS/2 version of Vim.
osfiletype support for osfiletypes.
perl Perl interface.
python Python interface.
quickfix quickfix support.
rightleft rightleft support.
scrollbind scrollbind support.
smartindent smartindent support.
sniff SniFF interface support.
statusline support for statusline, rulerformat and special formats of titlestring

and iconstring.
syntax syntax highlighting support.
syntax_items There are active syntax highlighting items for the current buffer.
system Compiled to use system() instead of fork()/exec().
tag_binary binary searching in tags files.
tag_old_static support for old static tags.
tag_any_white support for any white characters in tags files.
tcl Tcl interface.
terminfo terminfo instead of termcap.
textobjects support for text-objects.
tgetent tgetent support, able to use a termcap or terminfo file.
title window title support title.
unix Unix version of VIM.
user-commands User-defined commands.
viminfo viminfo support.
vim_starting True while initial source’ing takes place.
visualextra extra Visual mode commands.
vms VMS version of Vim.
wildignore wildignore option.
win32 Win32 version of VIM (Windows 95/NT).
wildmenu wildmenu option.
wildignore wildignore option.
winaltkeys winaltkeys option.
win16 Win16 version of Vim (Windows 3.1).
win32 Win32 version of Vim (Windows 95/NT).
writebackup writebackup default on.
xim X input method support.
xfontset X fontset support.
xterm_clipboard support for xterm clipboard.
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Feature Description

xterm_save support for saving and restoring the xterm screen.
x11 X11 support.

9.4 User-Defined Functions

New functions can be defined. They can be called with “Name()”, just like built-in functions.
The name must start with an uppercase letter, to avoid confusion with builtin functions.

:fu[nction] List all functions and their arguments.
:fu[nction] name List function name.
:fu[nction][!] name ([arguments]) [range] [abort] Define a new function by the name name.

The name must be made of alphanumeric characters and underscore, and must
start with a capital. An argument can be defined by giving its name. In the
function this can then be used as “a:name” (“a:” for argument). Up to 20
arguments can be given, separated by commas. An argument “. . . ” can be
specified, which means that more arguments may be following. In the func-
tion they can be used as “a:1”, “a:2”, etc. “a:0” is set to the number of
extra arguments (which can be 0). When not using “. . . ”, the number of argu-
ments in a function call must be equal the number of named arguments. When
using “. . . ”, the number of arguments may be larger. The body of the function
follows in the next lines, until “:endfunction”. When a function by this
name already exists and [!] is not used an error message is given. When
[!] is used, an existing function is silently replaced. When the range argu-
ment is added, the function is expected to take care of a range itself. The range
is passed as “a:firstline” and “a:lastline”. If range is excluded, a
“:call” with a range will call the function for each line, with the cursor on
the start of each line. When the [abort] argument is added, the function
will abort as soon as an error is detected.

:endf[unction] The end of a function definition.
:delf[unction] name Delete function name.
:retu[rn] [expr] Return from a function. When expr is given, it is evaluated and returned as the

result of the function. If expr is not given, the number 0 is returned. When a
function ends without an explicit “:return”, the number 0 is returned.

Inside a function variables can be used. These are local variables, which will disappear when
the function returns. Global variables need to be accessed with g:.

9.5 Commands

:let var-name = expr Set internal variable var-name to the result of the expression expr. The
variable will get the type from the expr. If var-name didn’t exist yet, it is
created.

:let $env-name = expr Set environment variable env-name to the result of the expression expr.
The type is always String.

:let @reg-name = expr Write the result of the expression expr in register reg-name. reg-name
must be a single letter, and must be the name of a writable register. “@@”
can be used for the unnamed register. If the result of expr ends in a
<CR> or <NL>, the register will be linewise, otherwise it will be set to
characterwise.
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:let &option-name = expr Set option option-name to the result of the expression expr. The type
of the option is always used.

:unl[et][!] var-name Remove the internal variable var-name. Several variable names can be
given, they are all removed. With [!] no error message is given for
non-existing variables.

:if expr . . . :en[dif] Execute the commands until the next matching :else or :endif if expr
evaluates to non-zero. Note: from VIM version 4.5 until 5.0, every Ex
command between the :if and :endif is ignored.

:el[se] Execute the commands until the next matching :else or :endif if they
were not already being executed.

:elsei[f] expr Short for :else :if, with the addition that there is no extra :endif.
:wh[ile] expr . . . :endw[hile] Repeat the commands between :while and :endwhile, as long as

expr evaluates to non-zero. When an error is detected from a command
inside the loop, execution continues after the :endwhile.

Note: The :append and :insert commands don’t work properly inside a
:while loop.

:con[tinue] When used inside a :while, jumps back to the :while.
:brea[k] When used inside a :while, skips to the command after the matching

:endwhile.
:ec[ho] expr . . . Echoes each expr, with a space in between and a terminating <EOL>.

See also :comment.
:echon expr . . . Echoes each expr, without anything added. Also see :comment.
:echoh[l] name Use the highlight group name for the following :echo[n] commands.
:exe[cute] expr . . . Executes the string that results from the evaluation of expr as an Ex com-

mand. Multiple arguments are concatenated, with a space in between.

Note: :execute, :echo and :echon cannot be followed by a comment directly, because they see
the " as the start of a string. But, you, however, can use “|” followed by a comment.

10 GUI�
10.1 Mouse Control

The mouse only works if the appropriate flag in the mouse option is set. When the GUI is
switched on, the mouse option is set to a, enabling it for all modes except for the “hit return
to continue” message. This can be changed from the gvimrc file. A quick way to set these is
with the “:behave” command.

:be[have] model set behavior for mouse and selection. Valid arguments are: mswin (MS-
Windows behavior) and xterm (Xterm behavior)

Using “:behave” changes these options:

option mswin xterm option mswin xterm
selectmode mouse,key – mousemodel popup extend
keymodel startsel,stopsel – selection exclusive inclusive
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Visual Selection with Mouse

The mouse can be used to start a selection. How depends on the mousemodel option: If
selectmode contains mouse, then the selection will be in Select mode. This means that typing
normal text will replace the selection. Otherwise, the selection will be in Visual mode.

Right button: Click the right button to extend the visual selection to the position pointed to with
the mouse. In Visual mode the closest end will be extended, otherwise Visual mode is started
and extends from the old cursor position to the new one.

Left button: Double clicking may be done to make the selection word-wise, triple clicking
makes it line-wise, and quadruple clicking makes it rectangular block-wise.

X11 vs. Win32 GUI

X11 GUI: In Visual mode, the highlighted text may be pasted into other windows. Likewise, the
selected text from other windows may be pasted into VIM in Normal mode, Insert mode, or
on the Command line by clicking the middle mouse button.

Win32 GUI: Visually selected text is only copied to the clipboard when using a y command, or
another operator when the “*” register is used.

Other Text Selection with Mouse

In Command-line mode, at the hit-return prompt or if the mouse option is turned off, a
different kind of selection is used: the left button selects, the right button extends the selection and
the middle one pastes the text back.

Various Mouse Clicks

Left or right click on the status line makes that window current. Drag the status line to resize
the windows above and below.

S-LeftMouse Search forward for the word under the mouse click.
S-RightMouse Search backward for the word under the mouse click.
C-LeftMouse Jump to the tag name under the mouse click.
C-RightMouse Jump back to position before the previous tag jump

GUI Selections

A special register “*” is used for storing GUI selection. Nothing is put in there unless the
information about what text is selected is about to change, or when another application wants to
paste the selected text. Similarly, when we want to paste a selection from another application, the
selection is put in the “*” register first, and then put like any other register.

Note: when pasting text from one VIM into another separate VIM, the type of selection
(character, line, or block) will also be copied.

Mouse Mappings

The mouse events, complete with modifiers, may be mapped.
Example

:map <S-LeftMouse> <RightMouse>
:map <S-LeftDrag> <RightDrag>

Note: Mouse mapping with modifiers does not work for xterm-like selection.
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10.2 Window Position

Vim tries to make the window fit on the screen when it starts up. This avoids that you can’t
see part of it. You can change the height that is used for the window title and a task bar with the
guiheadroom option.

:winp[os] Display current position of the top left corner of the GUI vim window in pixels. Does
not work in all versions.

:winp[os] X Y Put the GUI vim window at the given X and Y coordinates. The coordinates
should specify the position in pixels of the top left corner of the window. Does not work in all
versions.

10.3 Menus

The default menus are read from the file “$VIMRUNTIME/menu.vim”. Motif and Win32
GUIs support Tear-off menus.

Creating New Menus

:me :menu :noreme :noremenu :am :amenu :an :anoremenu
:nme :nmenu :nnoreme :nnoremenu :ome :omenu :onoreme :onoremenu
:vme :vmenu :vnoreme :vnoremenu :ime :imenu :inoreme :inoremenu
:cme :cmenu :cnoreme :cnoremenu

To create a new menu item, use the :menu commands. They work exactly like the :map set of
commands but the first argument is a menu item name, given as a path of menus and sub-menus
with a “.” between them.

The :amenu command can be used to define menu entries for all modes at once. To make
the command work correctly, a character is automatically inserted for modes: Normal⇒ nothing,
Insert⇒ <CTRL-O>, Cmdline⇒ <CTRL-C>, Visual⇒ <Esc>, Op-pending⇒ <Esc>.

Careful: In Insert mode this only works for a SINGLE Normal mode command, because of the
CTRL-O . If you have two or more commands, you will need to use the :imenu command.

Special characters in a menu name:

& The next character is the shortcut key. Make sure each shortcut key is only used once in a
(sub)menu.

<Tab> Separates the menu name from right-aligned text. This can be used to show the equivalent
typed command.

Menu-priority

The position of a menu item on the menu bar is determined by its “priority”. The priority is
given as a number before the :menu command. Menus with a higher priority go more to the right.
When no priority is given, 500 is used. The highest possible priority is about 32000. Currently,
you can only give a priority for the location of the menu in the menu bar, not for the location of a
menu item in a menu. The default menus have these priorities: File �→10; Edit �→20; Tools �→40;
Syntax �→50; Buffers �→60; Window �→70; Help �→9999; The same mechanism can be used to
position a submenu. The priority is then given as a dot-separated list of priorities, before the menu
name.
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Toolbar

Currently, the toolbar is only available in the Win32 and gtk+ GUI. It should turn up in other
GUIs in due course. The display of the toolbar is controlled by the guioptions letter T. The toolbar
is defined as a special menu called ToolBar, which only has one level.

Tooltips & Menu tips

These are currently only supported for the Win32 GUI.

:tm[enu] menupath rhs Define a tip for a menu or tool. When a tip is defined for a menu item,
it appears in the command-line area when the mouse is over that item. When a tip is defined
for a toolbar item, it appears as a tooltip when the mouse pauses over that button.

:tu[nmenu] menupath Remove a tip for a menu or tool.

Showing What Menus Are Mapped To

To see what an existing menu is mapped to, use just one argument after the menu commands
(similar to the :map commands). If the menu specified is a submenu, then all menus in that
hierarchy will be shown. If no argument is given after :menu at all, then ALL menu items are
shown for the appropriate mode (e.g. Command-line mode for :cmenu).

Note: while entering a menu name after a menu command, Tab may be used to complete the
name of the menu item.

Deleting Menus

:unme :unmenu :aun :aunmenu :nunme :nunmenu
:ounme :ounmenu :vunme :vunmenu :iunme :iunmenu
:cunme :cunmenu

To delete a menu item or a whole submenu, use the :unmenu commands, which are analogous to
the :unmap commands. To remove all menus use:

:unmenu \* " remove all menus in Normal and visual mode
:unmenu! \* " remove all menus in Insert and Command-line mode

10.4 Miscellaneous

This section describes other features which are related to the GUI.
- Typing ^V followed by a special key in the GUI will insert <Key>, since the internal string

used is meaningless. Modifiers may also be held down to get <Modifiers-Key>.
- In the GUI, the modifiers <SHIFT>, <CTRL>, and <ALT> (or <META>) may be used

within mappings of special keys and mouse events
- In the GUI, several normal keys may have modifiers in mappings etc, these are <Space>,
<Tab>, <NL>, <CR>, <Esc>.

- Executing an external command from the GUI will not always work. “Normal” commands
like ls, grep and make mostly work fine. Commands that require an intelligent terminal
like less and ispell won’t work. Some may even hang and need to be killed from
another terminal. For the X11 GUI the external commands are executed inside the gvim
window. For the Win32 GUI the external commands are executed in a separate window.
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- Normally, Vim takes control of all <Alt>-<Key> combinations, to increase the number
of possible mappings. This clashes with the standard use of Alt in Win32 as the key for
accessing menus. The quick way of getting standard behavior is to set the winaltkeys option
to yes. This however prevents you from mapping <Alt> keys at all. Another way is to
set winaltkeys to menu. Menu shortcut keys are then handled by windows, other ALT keys
can be mapped. This doesn’t allow a dependency on the current state though. To get round
this, the :simalt key command allows Vim (when winaltkeys is not set to yes) to fake a
Windows-style <Alt> keypress.

This example shows how to add and remove a menu item for the keyword under the cursor.
The register z is used

Example
:nmenu Words.Add\ Var wb"zye:menu! Words.<C-R>z <C-R>z<CR>
:nmenu Words.Remove\ Var wb"zye:unmenu! Words.<C-R>z<CR>
:vmenu Words.Add\ Var "zy:menu! Words.<C-R>z <C-R>z <CR>
:vmenu Words.Remove\ Var "zy:unmenu! Words.<C-R><CR>
:imenu Words.Add\ Var <Esc>wb"zye:menu! Words.<C-R>z <C-R>z<CR>a
:imenu Words.Remove\ Var <Esc>wb"zye:unmenu! Words.<C-R>z<CR>a

11 Syntax highlighting �
Syntax highlighting provides the possibility of showing parts of the text in another font or

color. To start using syntax highlighting, type this command: :sy[ntax] on. This will enable
automatic syntax highlighting. The type of highlighting will be selected using the file name exten-
sion, and sometimes using the first line of the file. The name of the acitve syntax is stored in the
“current_syntax” variable.

11.1 Syntax files

The syntax and highlighting commands for one language are normally stored in a syntax file
named “name.vim”, where name is the [abbreviated] name of the language. The syntax file can
contain any Ex commands.

Naming Conventions

To allow each user to pick his favorite set of colors, a set of pre-defined names for highlight
groups common for many languages has been chosen. These are the preferred names for different
highlight groups:

Name Used for: Name Used for:

*Comment any comment *Constant any constant
*Error any erroneous construct *Identifier any variable name
*Ignore left blank, hidden *PreProc generic Preprocessor
*Special any special symbol *Statement any statement
*Todo anything that needs extra at-

tention
*Type int, long, char . . .

Boolean a boolean constant Character a character constant
Conditional if, then, else ... Debug debugging statements
Define #define Delimiter delimiting character
Exception try, catch, throw Float a floating point constant
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Name Used for: Name Used for:

Function function and class method
names

Include #include

Keyword any other keyword Label case, default
Macro same as Define Number a number constant
Operator sizeof, +, * . . . PreCondit #if, #else . . .
Repeat for, do, while ... SpecialChar special character in a con-

stant
SpecialComment special things inside a com-

ment
StorageClass static, register . . .

String a string constant Structure struct, union, enum
. . .

Tag use CTRL-] on this Typedef a typedef

The names marked with “*” are the preferred groups, the other are minor groups. For the
preferred groups, the “syntax.vim” file contains default highlighting. The highlight group names
are not case sensitive. The following names are reserved and cannot be used as a group name:
NONE ALL ALLBUT contains contained.

11.2 Defining a syntax

VIM understands three types of syntax items:

keyword can only contain keyword characters, defined by to the iskeyword option. Keyword
cannot contain other syntax items. It will only be recognized when there is a complete match
(there are no keyword characters before or after the match), e.g. if would match in if(a=b),
but not in ifdef x.

match a match with a single regexp pattern. It must be within one line.
region starts at a match of the start regexp pattern and ends with a match of the end regexp

pattern. A skip regexp pattern can be used to avoid matching the end pattern.

Several syntax items can be put into one syntax group. For a syntax group you can provide
highlighting attributes. You are free to make a highlight group for one syntax item, or to put all
items into one group. In case where more than one item matches at the same position, the one
that was defined last wins. A keyword always goes before a match or region. A keyword with
matching case always goes before a keyword with ignoring case.

:sy[ntax] case [match|ignore] defines whether the following :sy[ntax] commands will work with
matching case, when using match, or with ignoring case, when using ignore. Note that any
items before this are not affected, and all items until the next :sy[ntax] case command are
affected.

:sy[ntax] keyword group-name [options] keyword . . . [options] defines a number of keywords,
where:

group-name – syntax group name, e.g. Comment.

options – See “Syntax arguments” below.

keyword . . . – list of keywords which belong to this group.

The options can be given anywhere in the line. They will apply to all keywords given, also for
options that come after a keyword. When you have a keyword with an optional tail, like Ex
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commands in VIM, you can put the optional characters inside [ ], to define all the variations
at once.

A keyword always has higher priority than a match or region; the keyword is used if more
than one item matches. Keywords do not nest and a keyword can’t contain anything else. The
maximum length of a keyword is 80 characters. The same keyword can be defined multiple
times, when its containment differs.

:sy[ntax] match group-name [options] [excludenl] pattern [options] defines one match, where
pattern is the search pattern that defines the match. excludenl– don’t make a pattern with the
end-of-line “$” extend a containing match or item. Only useful for end patterns.

:sy[ntax] region group-name [options] [matchgroup=group_name] [keepend] start = start_pattern
. . . [skip = skip_pattern] end = end_pattern . . . [options]
defines one region, where:

[matchgroup=group-name] – the syntax group to use for the following start or end
pattern matches only. Not used for the text in between the matched start and end patterns.
Use NONE to reset to not using a different group for the start or end match.

keepend – doesn’t allow contained matches to go past a match with the end pattern.

start=start_pattern – the search pattern that defines the start of the region.

skip=skip_pattern – the search pattern that defines text inside the region where not to
look for the end pattern.

end=end_pattern – the search pattern that defines the end of the region.

The start/skip/end patterns and the options can be given in any order. There can be
zero or one skip pattern. There must be one or more start and end patterns.

Cleaning up

:sy[ntax] clear switches off syntax highlighting. It’s a good idea to include this command at the
beginning of a syntax file.

:sy[ntax] off disables syntax highlighting for all buffers
:sy[ntax] clear sync-group-name . . . removes all patterns and keywords for group-name in the

current buffer.

Listing syntax items

:sy[ntax] [list] lists all the syntax items
:sy[ntax] list group-name shows the syntax items for one syntax group
:sy[ntax] list grouplist-name shows the syntax groups for one group list

11.3 Syntax arguments

The :sy[ntax] commands that define syntax items take a number of arguments. The common
ones are explained here. The arguments may be given in any order and may be mixed with the
patterns.

contained when the contained argument is given, this item will not be recognized at the top
level, but only when it is mentioned in the contains field of another match.

transparent if the transparent argument is given, this item will not be highlighted itself, but
will take the highlighting of the item it is contained in. This is useful for syntax items that
don’t need any highlighting but are used only to skip over a part of the text. The same groups
as the item it is contained in are used, unless a contains argument is given too.
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oneline the oneline argument indicates that the region does not cross a line boundary. It must
match completely in the current line. However, when the region has a contained item that
does cross a line boundary, it continues on the next line anyway. A contained item can be
used to recognize a line continuation pattern.

contains=groupname, . . . the contains argument is followed by a list of syntax group names.
These groups will be allowed to begin inside the item (they may extend past the containing
group’s end). This allows for recursive nesting of matches and regions. If there is no contains
argument, no groups will be contained in this item. The group names do not need to be defined
before they can be used here.

contains=ALL if the only item in the contains list is ALL, then all groups will be accepted inside
the item.

contains=ALLBUT, group-name, . . . if the first item in the contains list is ALLBUT, then all
groups will be accepted inside the item, except the ones that are listed, and the contained
items.

The group-name in the contains list can be a pattern. All group names that match the pattern
will be included (or excluded, if ALLBUT is used). The pattern cannot contain white space or
a comma.

nextgroup=groupname, . . . the nextgroup argument is followed by a list of syntax group names,
separated by commas (just like with contains, so you can also use patterns). If the nextgroup
argument is given, the mentioned syntax groups will be tried for a match, after the match or
region ends. If none of the groups match, highlighting continues normally. If there is a match,
this group will be used, even when it is not mentioned in the contains field of the current
group. This is like giving the mentioned group priority over all other groups

skipwhite skip over <Space> and <Tab> characters. When skipwhite is present, the white
space is only skipped if there is no next group that matches the white space.

skipnl skip over the end of a line. When skipnl is present, the match with nextgroup may be
found in the next line. This only happens when the current item ends at the end of the current
line. When skipnl is not present, the nextgroup will only be found after the current item in
the same line.

skipempty skip over empty lines (implies a skipnl)

Note: the skipwhite, skipnl and skipempty are only used in combination with nextgroup.

11.4 Syntax patterns

In the syntax commands, a pattern must be surrounded by two identical characters (delimiters).
Syntax patterns are always interpreted as if the magic option is set and the “l” flag is not included
in cpoptions. The pattern can be followed by a character offset, which can be used to change the
highlighted part and to change the text area included in the match or region. Note: no white space
is allowed between the pattern and the character offset(s).

The offset takes the form of what=offset, where what can be one of six strings:
ms Match Start offset for the start of the matched text
me Match End offset for the end of the matched text
hs Highlight Start offset for where the highlighting starts
he Highlight End offset for where the highlighting ends
rs Region Start offset for where the body of a region starts
re Region End offset for where the body of a region ends
lc Leading Context offset past “leading context” of pattern

The offset can be:
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s start of the matched pattern
s+num start of the matched pattern plus num chars to the right
s-num start of the matched pattern plus num chars to the left
e end of the matched pattern
e+num end of the matched pattern plus num chars to the right
e-num end of the matched pattern plus num chars to the left
num (for lc only): start matching num chars to the left

Offsets can be concatenated, separated by commas.

Leading context

The lc offset specifies a leading context: a part of the pattern that must be present, but is not
considered part of the match. An offset of lc=n will cause VIM to step back n columns before
attempting the pattern match, allowing characters which have already been matched in previous
patterns to also be used as the leading context for this match.

The ms offset is automatically set to the same value as the lc offset, unless you set ms explic-
itly.

11.5 Synchronizing

:sy[ntax] sync [ccomment [group-name] |minlines=N | . . . ]
There are three ways to synchronize. For all three methods, the line range within which the

parsing can start is limited by minlines and maxlines.
If the minlines=N argument is given, the parsing always starts at least that many lines back-

wards. This can be used if the parsing may take a few lines before it’s correct, or when it’s not
possible to use syncing.

If the maxlines=N argument is given, the number of lines that are searched for a comment or
syncing pattern is restricted to N lines backwards (after adding minlines). This is useful if you
have few things to sync on and a slow machine.

First syncing method:

For the first method, only the ccomment argument needs to be given. When VIM finds that
the line where displaying starts is inside a C-style comment, the first region syntax item with the
group-name Comment will be used.

The maxlines argument can be used to restrict the search to a number of lines. The minlines
argument can be used to start at least a number of lines back (e.g., for when there is some construct
that only takes a few lines, but is hard to sync on).

Second syncing method:

For the second method, only the minlines=N argument needs to be given. VIM will subtract
N from the line number and start parsing there. This means N extra lines need to be parsed, which
makes this method a bit slower.
Note: lines and minlines are equivalent.

Third syncing method:

The idea is to synchronize on the end of a few specific regions, called a sync pattern. The
search starts in the line just above the one where redrawing starts. From there the search continues
backwards in the file.
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A line continuation pattern can be given here. It is used to decide which group of lines need to
be searched as if they were a single line. This means that the search for a match with the specified
items starts in the first of the following that contains the continuation pattern.

When a match with a sync pattern is found, the rest of the line (or group of adjacent lines) is
searched for another match. The last match is used. This is used when a line can contain both the
start and the end of a region (e.g., in a C-comment like /* this */, the last */ is used).

There are two ways how a match with a sync pattern can be used:

• Parsing for highlighting starts where redrawing starts (and where the search for the sync
pattern started). The syntax group that is expected to be valid there must be specified. This
works well when the regions that cross lines cannot contain other regions.

• Parsing for highlighting continues just after the match. The syntax group that is expected
to be present just after the match must be specified. This can be used when the previous
method doesn’t work well. It’s much slower, because more text needs to be parsed.

Both types of sync patterns can be used at the same time. Besides the sync patterns, other
matches and regions can be specified, to avoid finding unwanted matches.

:sy[ntax] sync match group-name grouphere sync-group-name . . . define a match that is used
for syncing. sync-group-name is the name of a syntax group that follows just after the match.
Parsing of the text for highlighting starts just after the match. A region must exist for this
sync-group-name. The first one defined will be used. NONE can be used for when there is no
syntax group after the match.

:sy[ntax] sync match group-name groupthere sync-group-name . . . like grouphere, but sync-
group-name is the name of a syntax group that is to be used at the start of the line where
searching for the sync point started. The text between the match and the start of the sync
pattern searching is assumed not to change the syntax highlighting.

:sy[ntax] sync match . . . , :sy[ntax] sync region . . . define a region or match that is skipped while
searching for a sync point.

:sy[ntax] sync linecont pattern when pattern matches in a line, it is considered to continue in the
next line. This means that the search for a sync point will consider the lines to be concatenated.

If the maxlines=N argument is given too, the number of lines that are searched for a match is
restricted to N.

Clearing syntax

:sy[ntax] sync clear clears all sync settings
:sy[ntax] sync clear group-name . . . clears specific sync patterns

11.6 Highlight command

There are two types of highlight groups:

• The groups used for specific languages. For these the name starts with the name of the
language. Many of these don’t have any attributes, but are linked to a group of the second
type.

• The groups used for all languages. These are also used for the highlight option.

:hi[ghlight] list all the current highlight groups that have attributes set.
:hi[ghlight] group-name list one highlight group.
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:hi[ghlight] clear group-name, :hi[ghlight] group-name NONE disable the highlighting for one
highlight group.

:hi[ghlight] group-name key=arg . . . add a highlight group, or change the highlighting for an
existing group.

Highlight arguments for black and white terminals (vt100, xterm)

term=attr-list attr-list is a comma separated list (without spaces) of the following items (in any
order): NONE (no attributes used), bold, underline, reverse, inverse (same as re-
verse), italic, standout.

start=term-list, stop=term-list These lists of terminal codes can be used to get non-standard at-
tributes on a terminal.

The escape sequence specified with the start argument is written before the characters in the
highlighted area. It can be anything that you want to send to the terminal to highlight this
area. The escape sequence specified with the stop argument is written after the highlighted
area. This should undo the start argument.

The term-list can have two forms:

• A string with escape sequences. This is any string of characters, except that it can’t start
with t_ and blanks are not allowed. The <> notation is recognized here, so you can use
things like <Esc> and <Space>.

• A list of terminal codes. Each terminal code has the form t_xx, where xx is the name
of the termcap entry. The codes have to be separated with commas.

Note: white space is not allowed.

Default highlight group

These are the default highlighting groups. These groups are used by the highlight option
default.

Cursor the character under the cursor
Directory directory names (and other special names in listings)
ErrorMsg error messages
IncSearch incsearch highlighting
ModeMsg showmode message
MoreMsg more-prompt
NonText ∼ and at the end of the window and characters from
Question hit-return prompt and yes/no questions
SpecialKey Meta and special keys listed with “:map”
StatusLine status line of current window
StatusLineNC status lines of not-current windows
Title titles for output from :set all, “:autocmd” etc.
Visual Visual mode selection
WarningMsg warning messages
LineNr line number for “:number” and “:#” commands, and when number
Normal normal text
Search last search pattern highlighting (see hlsearch)
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Highlight arguments for color terminals (MS-DOS console, color-xterm)

cterm=attr-list The cterm argument is likely to be different from term, when colors are used.
For example, in a normal terminal comments could be underlined, in a color terminal they can
be made Blue.

Note: Many terminals (e.g., DOS console) can’t mix these attributes with coloring. Use only
one of cterm= OR ctermfg= OR ctermbg=.

ctermfg=color-num, ctermbg=color-num The color-num argument is a color number. It ranges
from zero to the number given by the termcap entry “Co” (non-inclusive). The actual color
with this number depends on the type of terminal and its settings. Sometimes the color also
depends on the settings of cterm. For example, on some systems cterm=bold ctermfg=3
gives another color, on others you just get color 3.

The following names are recognized, with the color number used:

NR-16 NR-8 Color Name NR-16 NR-8 Color Name

0 0 Black 8 0* DarkGray
1 4 DarkBlue 9 4* Blue, LightBlue
2 2 DarkGreen 10 2* Green, LightGreen
3 6 DarkCyan 11 6* Cyan, LightCyan
4 1 DarkRed 12 1* Red, LightRed
5 5 DarkMagenta 13 5* Magenta, LightMagenta
6 3 Brown 14 3* Yellow
7 7 LightGray13, Gray 15 7* White

The number under NR-16 is used for 16-color terminals (“t_Co” greater than or equal to
16). The number under NR-8 is used for 8-color terminals (“t_Co” less than 16). The “*”
indicates that the bold attribute is set for ctermfg. In many 8-color terminals (e.g. linux),
this causes the bright colors to appear. This doesn’t work for background colors. The case of
the color names is ignored.

Highlight arguments for the GUI

gui=attr-list These give the attributes to use in the GUI mode. Note that bold can be also sed
here and by specifying a bold font. It has the same effect.

font=font-name font-name is the name of a font as it is used on the system VIM runs on. The
font-name NONE can be used to revert to the default font. When setting the font for the
Normal group, this becomes the default font (until the guifont option is changed; the last one
set is used).
Note: all fonts used should be of the same character size as the default font!

guifg=color-name guibg=color-name These give the foreground (guifg) and background (guibg)
color to use in the GUI. There are a few special names:

NONE no color (transparent)
background (bg) use normal background color
foreground (fg) use normal foreground color

You can also specify a color in the RGB format #rrggbb, where rr is the Red value, bb is
the Blue value and gg is the Green value. All values are hexadecimal, range from 00 to ff.

13Gray can be spelled as Grey
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11.7 Linking groups

:hi[ghlight][!] link from-group to-group If you want to use the same highlighting for several
syntax groups, you can do this by linking these groups into one common highlight group, and
give the color attributes only for that group.

Notes:
• If the from-group and/or to-group doesn’t exist, it is created. You don’t get an error message

for a non-existent group.
• If the to-group is NONE, the link is removed from the from-group.
• As soon as you use a :highlight command for a linked group, the link is removed.
• If there are already highlight settings for the from-group, the link is not made, unless the !

is given. For a :highlight link command in a sourced file, you don’t get an error message.
This can be used to skip links for groups that already have settings.

12 Automatic Commands�
You can specify commands to be executed automatically for when reading or writing a file,

when entering or leaving a buffer or window, and when exiting VIM.

12.1 Defining autocommands

:au[tocmd] [group] event pat [nested] cmd Add cmd to the list of commands that will be auto-
matically executed on event for a file matching pat. VIM always adds the cmd after existing
autocommands, so that the autocommands execute in the order in which they were given.

The :autocmd command cannot be followed by another command, since any “|” is consid-
ered part of the command. Special characters (e.g. %, <cword>) in the :autocmd arguments
are not expanded when the autocommand is defined. These will be expanded when the event is
recognized, and the cmd is executed. When your “.vimrc” file is sourced twice, the autocom-
mands will appear twice. To avoid this, put :autocmd! in your “.vimrc” file, before defining
autocommands.

When the group argument is not given, VIM uses the current group (as defined with :au-
group); otherwise, VIM uses the group defined with [group].
Note: while testing autocommands, it might be useful to set verbose=9. This causes the
executed autocommands to be echoed.

12.2 Removing autocommands

:au[tocmd]! [group] event pat [nested] cmd Remove all autocommands associated with event
and pat, and add the command cmd.

:au[tocmd]! [group] event pat Remove all autocommands associated with event and pat.
:au[tocmd]! [group] * pat Remove all autocommands associated with pat for all events.
:au[tocmd]! [group] event Remove ALL autocommands for event.
:au[tocmd]! [group] Remove ALL autocommands.

When the group argument is not given, VIM uses the current group (as defined with :au-
group); otherwise, VIM uses the group defined with group.
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12.3 Listing autocommands

:au[tocmd] [group] event pat Show the autocommands associated with event and pat.
:au[tocmd] [group] * pat Show the autocommands associated with pat for all events.
:au[tocmd] [group] event Show all autocommands for event.
:au[tocmd] [group] Show all autocommands.

If you provide the group argument, VIM lists only the autocommands for group; otherwise,
VIM lists the autocommands for ALL groups. Note that this argument behavior differs from that
for defining and removing autocommands.

12.4 Events

The following events are recognized. Case is ignored; for example, BUFread and bufread
can be used instead of BufRead.

BufFilePre Before changing the name of the current buffer with the “:file” command.
BufFilePost After changing the name of the current buffer with the “:file” command.
BufNewFile When starting to edit a file that doesn’t exist. Can be used to read in a skeleton

file.
BufReadPre When starting to edit a new buffer, before reading the file into the buffer. Not used

if the file doesn’t exist.
BufRead or BufReadPost When starting to edit a new buffer, after reading the file into the

buffer, before executing the modelines. This does NOT work for :r file. Not used
when the file doesn’t exist. Also used after successfully recovering a file.

FileReadPre Before reading a file with a :read command.
FileReadPost After reading a file with a :read command. Note that VIM sets the ’[ and ’] marks

to the first and last lines of the read. This can be used to operate on the lines just
read.

FilterReadPre Before reading a file from a filter command. VIM checks the pattern against the
the name of the current buffer, not the name of the , not the name of the temporary
file that is the output of the filter command.

FilterReadPost After reading a file from a filter command. VIM checks the pattern against the
the name of the current buffer as with FilterReadPre.

FileType When the filetype option has been set. <afile> can be used for the name of the file
where this option was set, and <amatch> for the new value of filetype.

Syntax When the syntax option has been set. <afile> can be used for the name of the file
where this option was set, and <amatch> for the new value of syntax.

StdinReadPre Before reading from stdin into the buffer. Only used when the “-” argument
was used when VIM was started.

StdinReadPost After reading from stdin into the buffer, before executing the modelines. Only
used when the “-” argument was used when VIM was started.

BufWrite or BufWritePre Before writing the whole buffer to a file.
BufWritePost After writing the whole buffer to a file (should undo the commands for

BufWritePre).
FileWritePre Before writing to a file, when not writing the whole buffer.
FileWritePost After writing to a file, when not writing the whole buffer.
FileAppendPre Before appending to a file.
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FileAppendPost After appending to a file.
FilterWritePre Before writing a file for a filter command. The file name of the current buffer is

used to match with the pattern, not the name of the temporary file that is the input
for the filter command.

FilterWritePost After writing a file for a filter command. Like FilterWritePre, the file name of
the current buffer is used.

FileChangedShell After VIM runs a shell command and notices that the modification time of
the current file has changed since editing started. Run in place of the “has been
changed” message. See timestamp. Useful for reloading related buffers which
are affected by a single command.

FocusGained When Vim got input focus. Only for the GUI version and a few console versions
where this can be detected.

FocusLost When Vim lost input focus. Only for the GUI version and a few console versions
where this can be detected.

CursorHold When the user doesn’t press a key for the time specified with updatetime. Not
re-triggered until the user has pressed a key (i.e. doesn’t fire every updatetime
ms if you leave Vim to make some coffee. :) Note: Interactive commands and
“:normal” cannot be used for this event.

BufEnter After entering a buffer. Useful for setting options for a file type. Also executed
when starting to edit a buffer, after the BufReadPost autocommands.

BufLeave Before leaving to another buffer. Also when leaving or closing the current window
and the new current window is not for the same buffer.

BufUnload Before unloading a buffer. This is when the text in the buffer is going to be freed.
This may be after a BufWritePost and before a BufDelete.

BufHidden Just after a buffer has become hidden. That is, when there are no longer windows
that show the buffer, but the buffer is not unloaded or deleted. NOTE: When this
autocommand is executed, the current buffer “%” may be different from the buffer
being unloaded <afile>.

BufCreate Just after creating a new buffer. Also used just after a buffer has been renamed.
NOTE: When this autocommand is executed, the current buffer “%” may be dif-
ferent from the buffer being deleted <afile>.

BufDelete Before deleting a buffer from the buffer list. The BufUnload may be called first
(if the buffer was loaded).

WinEnter After entering another window. Not done for the first window, when VIM has
been just started. Useful for setting the window height. If the window belongs to a
different buffer from the one previously being edited, VIM executes the BufEnter
autocommands after the WinEnter autocommands.

WinLeave Before leaving a window. If the window to be entered next is for a different
buffer, VIM executes the BufLeave autocommands before the WinLeave auto-
commands.

GUIEnter After starting the GUI succesfully, and after opening the window. It is triggered
before VimEnter when using gvim. Can be used to position the window from a
.gvimrc file:

VimEnter After doing all the startup stuff, including loading .vimrc files, executing the “-c
cmd” arguments, creating all windows and loading the buffers in them.

VimLeavePre Before exiting Vim, just before writing the .viminfo file. This is executed only
once, if there is a match with the name of what happens to be the current buffer
when exiting.
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VimLeave Before exiting VIM, just before writing the .viminfo file.
User Never executed automatically. To be used for autocommands that are only exe-

cuted with :doautocmd.
FileEncoding Fires off when you change the file encoding with “:set fileencoding”. Allows

you to set up fonts or other language sensitive settings.
TermChanged After the value of term was changed. Useful for re-loading the syntax file to

update the colors, fonts and other terminal-dependent.

12.5 Patterns

The file pattern is tested for a match against the file name in one of two ways:

• When there is no “/” in the pattern, VIM checks for a match against only the tail part of the
file name (without its leading directory path).

• When there is a “/” in the pattern, VIM checks for a match against the short file name (as
you typed it) and the full file name (after expanding it to a full path, resolving symbolic
links).

The pattern is interpreted like mostly used in file names. When the pattern starts with “/”, this
does not mean it matches the root directory. It can match any “/” in the file name. To match the
root directory, use “^/”.

For all systems the “/” character is used for path separator (even on MS-DOS and OS/2). This
was done because the backslash is difficult to use in a pattern, and to make the autocommands
portable across different systems.

Using “∼” in a file name (for home directory) doesn’t work. Use a pattern that matches the
full path name, for example “*home/user/.cshrc”.

12.6 Filetypes

On systems which support filetypes you can specify that a command should only be executed
if the file is of a certain type. The actual type checking depends on which platform you are running
Vim on. To use filetype checking in an autocommand you should put a list of types to match in
angle brackets in place of a pattern.

To enable file type detection, use this command in your vimrc: :filetype on. This command
will load the file $VIMRUNTIME/filetype.vim, which defines autocommands for the FileType
event. If the file type is not found by the name, the file $VIMRUNTIME/scripts.vim is used to
detect it from the contents of the file.

12.7 Groups

:aug[roup] name Define the autocmd group name for the following :autocmd commands. The
name “end” or “END” selects the default group.

When no specific group is selected, VIM uses the default group. The default group does not
have a name. You cannot execute the autocommands from the default group separately; you can
execute them only by executing autocommands for all groups.

Normally, when executing autocommands automatically, VIM uses the autocommands for all
groups. The group only matters when executing autocommands with :doautocmd or :doautoall,
or when defining or deleting autocommands.

The group name can contain any characters except white space. The group name end is re-
served (also in uppercase).
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12.8 Executing autocommands

Autocommands can also be executed manually. This can be used after adjusting the autocom-
mands, or when the wrong autocommands have been executed (file pattern match was wrong).

Note: there is currently no way to disable the autocommands.

:do[autocmd] [group] event [fname] Apply the autocommands matching [fname] (default: cur-
rent file name) for event to the current buffer. This can be used when the
current file name does not match the right pattern, after changing settings,
or to execute autocommands for a certain event. It’s possible to use this
inside an autocommand too, so you can base the autocommands for one
extension on another extension.

When the [group] argument is not given, VIM executes the autocom-
mands for all groups. When the [group] argument is included, VIM exe-
cutes only the matching autocommands for that group.

Note: if you use an undefined group name, VIM gives you an error mes-
sage.

:doautoa[ll] [group] event [fname] Like :doautocmd, but apply the autocommands to each
loaded buffer.

Careful: Don’t use this for autocommands that delete a buffer, change
to another buffer or change the contents of a buffer, the result is unpre-
dictable. It is only meant to perform autocommands that set options,
change highlighting, and so on.

12.9 Using autocommands

Reading files

For reading files there are three possible pairs of events. VIM uses only one pair at a time:

BufNewFile start editing a non-existent file
BufReadPre BufReadPost start editing an existing file
FilterReadPre FilterReadPost read the temp file with filter out-
put
FileReadPre FileReadPost any other file read

Reading compressed files
Example

:autocmd! BufReadPre,FileReadPre *.gz set bin
:autocmd BufReadPost,FileReadPost *.gz ’[,’]!gunzip
:autocmd BufReadPost,FileReadPost *.gz set nobin
:autocmd BufReadPost,FileReadPost *.gz execute ":doautocmd BufReadPost" . %:r

Writing Files

For writing files there are four possible pairs of events. VIM uses only one pair at a time:

BufWritePre BufWritePost write the whole buffer
FilterWritePre FilterWritePost write to the temp file with filter input
FileAppendPre FileAppendPost append to a file
FileWritePre FileWritePost any other file write
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Writing compressed files
Example

:autocmd! BufWritePost,FileWritePost *.gz !mv <afile> <afile>:r
:autocmd BufWritePost,FileWritePost *.gz !gzip <afile>:r
:autocmd! FileAppendPre *.gz !gunzip <afile>
:autocmd FileAppendPre *.gz !mv <afile>:r <afile>
:autocmd! FileAppendPost *.gz !mv <afile> <afile>:r
:autocmd FileAppendPost *.gz !gzip <afile>:r

Nesting

By default, autocommands do not nest. If you use :e or :w in an autocommand, VIM does not
execute the BufRead and BufWrite autocommands for those commands. If you do want this, use
the nested flag for those commands in which you want nesting. The nesting is limited to 10 levels
to get out of recursive loops.

Order of execution

All matching autocommands will be executed in the order that they were specified. It is rec-
ommended that your first autocommand be used for all files by using “*” as the file pattern. This
means that you can define defaults you like here for any settings, and if there is another matching
autocommand it will override these. But if there is no other matching autocommand, then at least
your default settings are recovered (if entering this file from another for which autocommands did
match). Note that “*” will also match files starting with “.”, unlike Unix shells.

Search Patterns

The search patterns are saved and restored, so that the autocommands do not change them.
While executing autocommands, you can use search patterns normally, e.g. with the n command.
After the autocommands finish, the patterns from before the autocommand execution are restored.
This means that the strings highlighted with the hlsearch option are not affected by autocommands.

13 Miscellany

13.1 VIM modes

BASIC modes

Vim has six BASIC modes14:

Normal mode
In Normal mode you can enter all the normal editor commands. If you start the editor you are
in this mode. This is also known as command mode.

Visual mode
This is like Normal mode, but the movement commands extend a highlighted area. When a
non-movement command is used, it is executed for the highlighted area.

Select mode
This looks most like the MS-Windows selection mode. Typing a printable character deletes
the selection and starts Insert mode.

14The type of the mode is shown on the status line if the showmode option is set
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Insert mode
In Insert mode the text you type is inserted into the buffer.

Command-line mode
In Command-line mode (also called Cmdline mode) you can enter one line of text at the
bottom of the window. This is for the Ex commands, “:”, the pattern search commands, “?”
and “/”, and the filter command, “!”.

Ex mode
Like Command-line mode, but after entering a command you remain in Ex mode. Very limited
editing of the command line.

ADDITIONAL modes

There are five ADDITIONAL modes:

Operator-pending mode
This is like Normal mode, but after an operator command has started, and Vim is waiting for
a motion to specify the text that the operator will work on.

Replace mode
Replace mode is a special case of Insert mode. You can do the same things as in Insert mode,
but for each character you enter, one character of the existing text is deleted.

Insert Normal mode
Entered when CTRL-O given in Insert mode. This is like Normal mode, but after executing
one command Vim returns to Insert mode.

Insert Visual mode
Entered when starting a Visual selection from Insert mode. When the Visual selection ends,
Vim returns to Insert mode.

Insert Select mode
Entered when starting Select mode from Insert mode. When the Select mode ends, Vim
returns to Insert mode.

Switching from mode to mode

If for any reason you do not know which mode you are in, you can always get back to Normal
mode by typing Esc twice.

FROM ↓ TO→ Normal Visual Select Insert Replace Cmd-line Ex

Normal – v V ^V – – R : / ? ! Q
Visual – – ^G c C – : –
Select – ^O ^G – – – : –
Insert Esc – – – Ins – –
Replace Esc – – Ins – – –
Cmd-line – – – :start – – –
Ex :vi – – – – – –

13.2 VIM registers

There are nine types of VIM registers:
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1. Unnamed register ""

This register is used to place all text deleted with the “d”, “c”, “s”, “x” commands or copied
with the yank command, regardless of whether or not a specific register was used (e.g. "xdd). An
exception is the _ register: "_dd does -not store the deleted text in any register.The contents of this
register are used by any put command (p or P) which does not specify a register. It can be also
accessed by the name ".

2. Numbered registers "0–"9

These are filled with yank and delete commands. Register “0” is filled with the last yank
command, unless another register was specified. Register “1” is filled with the text that was
deleted by each delete or change command, unless another register was specified or the text is less
than one line (text deleted with “x” or “dw” will be put in the small delete register).
The contents of register “1” are put in “2”, “2”→ “3”, and so forth. The content of register “9”
is lost.

3. Small delete register "-

This one is filled with delete commands that delete less than one line, except when another
register was specified.

4. Named registers "a–"z and "A–"Z

These are only filled when you say so. They are named “a” to “z” normally. If you use an
uppercase letter, the same register as with the lower case letter is used, but the text is appended to
the previous content. With a lower case letter the previous content is lost.

5. Read-only registers ":, "., "% and "#

They can only be used with the commands “p”, “P”, “:put” and with CTRL-R .

". Contains the last inserted text (the same as what is inserted with the insert mode commands
CTRL-A and CTRL-@ ).
Note: this doesn’t work with CTRL-R on the command line.

"% Contains the name of the current file.
"# Contains the name of the alternate file.
": Contains the last command line. It can be used with “@:”, this repeats the last command line.

6. Expression register "=

This is not really a register that stores text, but a way to use an expression where a register
can be used. It is read-only, you cannot put text into the expression register. After the
“=”, the cursor moves to the command line, where you can enter any expression. All normal
command line editing commands are available, including a special history for expressions. When
you end the command line by typing <CR>, the result of the expression is computed. If you end
it with <Esc>, the expression is abandoned. If the entered command line is empty, the previous
expression is used.



13 MISCELLANY page 61

7. Selection register "*

This is used for storing and retrieving the selected text for the GUI.
If you use a put command without specifying a register, the register that was last written to is

used (this is also the content of the unnamed register). If you are confused, use the “:dis”
command to find out what will be put.

8. Black hole register "_

When writing to this register, nothing happens. This can be used to delete text without affecting
the normal registers. When reading from this register, nothing is returned.

9. Last search pattern register "/

Contains the most recent search-pattern. This is used for n and hlsearch.
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NOTES
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