Virtual Reality & Physically-Based Simulation Mass-Spring-Systems

G. Zachmann
University of Bremen, Germany
cgvr.cs.uni-bremen.de
Definition

• A mass-spring system is a particle system consisting of:
 1. A set of point masses m_i with positions x_i and velocities v_i, $i = 1...n$;
 2. A set of springs $s_{ij} = (i, j, k_s, k_d)$, where s_{ij} connects masses i and j, with rest length l_0, spring constant k_s (= stiffness) and the damping coefficient k_d.

• Typical spring topology:
Some Properties

• Advantages:
 • Very easy to program
 • Ideally suited to study different kinds of solving methods
 • Ubiquitous in games (cloths, capes, sometimes also for deformable objects)

• Disadvantages:
 • Some parameters (in particular the spring constants) are not obvious, i.e., difficult to derive
 • No built-in volumetric effects (e.g., preservation of volume)
Example Mass-Spring System: Cloth
Forces in a Single Spring (Plus Damper)

• Given: masses m_i and m_j with positions x_i, x_j

• Let $r_{ij} = \frac{x_j - x_i}{\|x_j - x_i\|}$

• The force between particles i and j:

1. Force exerted by spring (Hooke's law):
 $$f_{s}^{ij} = k_s r_{ij}(\|x_j - x_i\| - l_0)$$
 acts on particle i in the direction of j

2. Force exerted on i by damper: $f_{d}^{ij} = -k_d ((v_i - v_j) \cdot r_{ij}) r_{ij}$

3. Total force on i:
 $$f^{ij} = f_{s}^{ij} + f_{d}^{ij}$$

4. Force on m_j:
 $$f^{ji} = -f^{ij}$$
Remarks

• A spring-damper element in reality:

• Alternative spring force: \(f_{s}^{ij} = k_{s} r_{ij} \frac{\| x_{j} - x_{i} \| - l_{0}}{l_{0}} \)

• Notice: from (4) it follows that the total momentum is conserved

 • Momentum \(p = \mathbf{v} \cdot m \)

 • Fundamental physical law (follows from Newton's laws)

• Note on terminology:

 • English "momentum" = German "Impuls" = velocity \(\times \) mass

 • English "Impulse" = German "Kraftstoß" = force \(\times \) time
Simulation of a Single Spring

• From Newton’s law, we have: \(\ddot{x} = \frac{1}{m} f \)

• Convert this differential equation (ODE) of order 2 into ODE of order 1:
 \[
 \dot{x}(t) = v(t) \\
 \dot{v}(t) = \frac{1}{m} f(t)
 \]

• Initial values (boundary values): \(v(t_0) = v_0, \ x(t_0) = x_0 \)

• By Taylor expansion we get: \(x(t + \Delta t) = x(t) + \Delta t \dot{x}(t) + O(\Delta t^2) \)

• Analogously: \(v(t + \Delta t) = v(t) + \Delta t \dot{v}(t) \)

• This integration scheme is called **explicit Euler integration**

• "Simulation" = "Integration of ODE's over time"
The Algorithm for a Mass-Spring System

forall particles i :
initialize x_i, v_i, m_i

loop forever:
forall particles i :

\[
f_i \leftarrow f^g + f^\text{coll} + \sum_{j,(i,j) \in S} f(x_i, v_i, x_j, v_j)
\]

forall particles i :

\[
v_i + = \Delta t \cdot \frac{f_i}{m_i}
\]

\[
x_i + = \Delta t \cdot v_i
\]

render the system every n-th time

\[
f^g = \text{gravitational force}
\]

\[
f^\text{coll} = \text{penalty force exerted by collision (e.g., from obstacles)}
\]
• Advantages:
 • Can be implemented very easily
 • Fast execution per time step
 • Is "trivial" to parallelize on the GPU (→ "Massively Parallel Algorithms")

• Disadvantages:
 • Stable only for very small time steps
 • Typically $\Delta t \approx 10^{-4} \ldots 10^{-3}$ sec!
 • With large time steps, additional energy is generated "out of thin air", until the system explodes 😶
 • Example: overshooting when simulating a single spring
 • Errors accumulate quickly
Example for the Instability of Euler Integration

• Consider the differential equation $\dot{x}(t) = -kx(t)$

• The exact solution: $x(t) = x_0 e^{-kt}$

• Euler integration does this: $x^{t+1} = x^t + \Delta t(-kx^t)$

• Case $\Delta t > \frac{1}{k}$: $x^{t+1} = x^t \left(1 - k\Delta t\right)$

 < 0

 ⇒ x^t oscillates about 0, but approaches 0 (hopefully)

• Case $\Delta t > \frac{2}{k}$: $\Rightarrow x^t \rightarrow \infty$!
- **Visualization:**

- Terminology: if \(k \) is large \(\rightarrow \) the ODE is called "stiff"
 - The stiffer the ODE, the smaller \(\Delta t \) has to be!
Visualization of Error Accumulation

• Consider this ODE:
 \[\dot{x}(t) = \begin{pmatrix} -x_2 \\ x_1 \end{pmatrix} \]

• Exact solution:
 \[x(t) = \begin{pmatrix} r \cos(t + \phi) \\ r \sin(t + \phi) \end{pmatrix} \]

• The solution by Euler integration moves in spirals outward, no matter how small \(\Delta t \)!

• Conclusion: Euler integration accumulates errors, no matter how small \(\Delta t \)!
Visualization of Differential Equations

- The general form of an ODE (ordinary differential equation):

$$\dot{x}(t) = f(x(t), t)$$

- Visualization of f as a vector field:
 - Notice: this vector field can vary over time!

- Solution of a boundary value problem = path through this field
Other Integrators

• Runge-Kutta of order 2:
 • Idea: approximate \(f(x(t), t) \) by using the derivative at positions \(x(t) \) and \(x(t + \frac{1}{2} \Delta t) \)
 • The integrator (w/o proof):
 \[
 a_1 = v^t \\
 a_2 = \frac{1}{m} f(x^t, v^t) \\
 b_1 = v^t + \frac{1}{2} \Delta t a_2 \\
 b_2 = \frac{1}{m} f(x^t + \frac{1}{2} \Delta t a_1, v^t + \frac{1}{2} \Delta t a_2) \\
 x^{t+1} = x^t + \Delta t b_1 \\
 v^{t+1} = v^t + \Delta t b_2
 \]

• Runge-Kutta of order 4:
 • The standard integrator among the explicit integration schemata
 • Needs 4 function evaluations (i.e., force computations) per time step
 • Order of convergence is: \(e(\Delta t) = O(\Delta t^4) \)
• Runge-Kutta of order 2:

\[y = y(x) \]

\[x_0 \]

\[x_n \]

\[x_{n+1} = x_n + h \]

\[y = y(x) \]

\[x_n \]

\[x_{n+1} \]

Euler

• Runge-Kutta of order 4:
Verlet Integration

- A general, alternative idea to increase the order of convergence: utilize values from the past

- Verlet integration = utilize $x(t - \Delta t)$

- Derivation:
 - Develop the Taylor series in both time directions:

\[
x(t + \Delta t) = x(t) + \Delta t \ddot{x}(t) + \frac{1}{2} \Delta t^2 \dddot{x}(t) + \frac{1}{6} \Delta t^3 \ddddot{x}(t) + O(\Delta t^4)
\]

\[
x(t - \Delta t) = x(t) - \Delta t \ddot{x}(t) + \frac{1}{2} \Delta t^2 \dddot{x}(t) - \frac{1}{6} \Delta t^3 \ddddot{x}(t) + O(\Delta t^4)
\]
• Add both:

\[x(t + \Delta t) + x(t - \Delta t) = 2x(t) + \Delta t^2 \ddot{x}(t) + O(\Delta t^4) \]

\[x(t + \Delta t) = 2x(t) - x(t - \Delta t) + \Delta t^2 \ddot{x}(t) + O(\Delta t^4) \]

• Initialization:

\[x(\Delta t) = x(0) + \Delta t v(0) + \frac{1}{2} \Delta t^2 \left(\frac{1}{m} f(x(0), v(0)) \right) \]

• Remark: the velocity does not occur any more! (at least, not explicitly)
Constraints

• Big advantage of Verlet over Euler & Runge-Kutta: it is very easy to handle constraints

• Definition: constraint = some condition on the position of one or more mass points

• Examples:
 1. A point must not penetrate an obstacle
 2. The distance between two points must be constant, or distance must be \(\leq \) some maximal distance
• Example: consider the constraint

\[\| \mathbf{x}_1 - \mathbf{x}_2 \| = l_0 \]

1. Perform one Verlet integration step \(\rightarrow \ddot{x}^{t+1} \) (tentative)

2. Enforce the constraint:

\[
d = \frac{1}{2} (\| \ddot{x}_2^{t+1} - \ddot{x}_1^{t+1} \| - l_0)
\]

\[
\mathbf{x}_1^{t+1} = \ddot{x}_1^{t+1} + d \mathbf{r}_{12}
\]

\[
\mathbf{x}_2^{t+1} = \ddot{x}_2^{t+1} - d \mathbf{r}_{12}
\]

• Problem: if several constraints are to constrain the same mass point, we need to employ constraint satisfaction algorithms
Time-Corrected Verlet Integration

• Big assumption in basic Verlet: time-delta's are constant!

• Solution for non-constant Δt's:

 • Time steps are: $t_i = t_{i-1} + \Delta t_{i-1}$ and $t_{i+1} = t_i + \Delta t_i$

 • Expand Taylor series in both directions:

 $$x(t_i + \Delta t_i) \quad \text{and} \quad x(t_i - \Delta t_{i-1})$$

 • Divide the expansions by Δt_i and Δt_{i-1}, respectively, then add both, like in the derivation of the basic Verlet

 • Rearranging and omitting higher-order terms yields:

 $$x(t_i + \Delta t_i) = x(t_i) + \frac{\Delta t_i}{\Delta t_{i-1}} (x(t_i) - x(t_i - \Delta t_{i-1})) + \ddot{x}(t_i) \frac{\Delta t_i + \Delta t_{i-1}}{2} \cdot \Delta t_i$$

• Note: basic Verlet is a special case of time-corrected Verlet
Implicit Integration (a.k.a. Backwards Euler)

• All explicit integration schemes are only conditionally stable
 • I.e.: they are only stable for a specific range for Δt
 • This range depends on the stiffness of the springs

• Goal: unconditionally stability

• One option: implicit Euler integration

 explicit
 \[x_i^{t+1} = x_i^t + \Delta t v_i^t \]
 \[v_i^{t+1} = v_i^t + \Delta t \frac{1}{m_i} f(x^t) \]

 implicit
 \[x_i^{t+1} = x_i^t + \Delta t v_i^{t+1} \]
 \[v_i^{t+1} = v_i^t + \Delta t \frac{1}{m_i} f(x^{t+1}) \]

• Now we've got a system of non-linear, algebraic equations, with x_i^{t+1} and v_i^{t+1} as unknowns on both sides → implicit integration
Solution Method

• Write the whole spring-mass system with vectors ($n = \#\text{mass points}$):

$$
\mathbf{x} = \begin{pmatrix}
 x_0 \\
 x_1 \\
 \vdots \\
 x_{n-1} \\
 x_{3n-1}
\end{pmatrix}, \quad
\mathbf{v} = \begin{pmatrix}
 v_0 \\
 v_1 \\
 \vdots \\
 v_{n-1} \\
 v_{3n-1}
\end{pmatrix}, \quad
\mathbf{f}(\mathbf{x}) = \begin{pmatrix}
 f_0(\mathbf{x}) \\
 \vdots \\
 f_{n-1}(\mathbf{x})
\end{pmatrix}
$$

\[
\mathbf{f}_i = \begin{pmatrix}
 f_{3i+0}(\mathbf{x}) \\
 f_{3i+1}(\mathbf{x}) \\
 f_{3i+2}(\mathbf{x})
\end{pmatrix}, \quad
\mathbf{M}_{3n \times 3n} = \begin{pmatrix}
 m_0 & m_0 & m_0 \\
 m_0 & m_1 & m_1 \\
 m_0 & m_1 & \ddots \\
 & m_{n-1} & m_{n-1} & m_{n-1}
\end{pmatrix}
\]
• Write all the implicit equations as one big system of equations:

\[Mv^{t+1} = Mv^t + \Delta tf(x^{t+1}) \] \hspace{1cm} (1)

\[x^{t+1} = x^t + \Delta t v^{t+1} \] \hspace{1cm} (2)

• Plug (2) into (1):

\[Mv^{t+1} = Mv^t + \Delta t f(x^t + \Delta tv^{t+1}) \] \hspace{1cm} (3)

• Expand f as Taylor series:

\[f(x^t + \Delta t v^{t+1}) = f(x^t) + \frac{\partial}{\partial x} f(x^t) \cdot (\Delta t v^{t+1}) + O((\Delta t v^{t+1})^2) \] \hspace{1cm} (4)
Plug (4) into (3): \[Mv^{t+1} = Mv^t + \Delta t \left(f(x^t) + \frac{\partial}{\partial x} f(x^t)(\Delta tv^{t+1}) \right) \]

\[= Mv^t + \Delta tf(x^t) + \Delta t^2 K v^{t+1} \]

- \(K \) is the Jacobi-Matrix, i.e., the derivative of \(f \) wrt. \(x \):

\[
K = \begin{pmatrix}
\frac{\partial}{\partial x_0} f_0 & \frac{\partial}{\partial x_1} f_0 & \cdots & \frac{\partial}{\partial x_{3n-1}} f_0 \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial}{\partial x_0} f_{3n-1} & \cdots & \cdots & \frac{\partial}{\partial x_{3n-1}} f_{3n-1}
\end{pmatrix}
\]

- \(K \) is called the tangent stiffness matrix

- (The normal stiffness matrix is evaluated at the equilibrium of the system; here, the matrix is evaluated at an arbitrary "position" of the system in phase space, hence the name)
• Now reorder terms:

\[(M - \Delta t^2 K) \mathbf{v}^{t+1} = M \mathbf{v}^t + \Delta t \mathbf{f(x^t)}\]

• Now, this has the form:

\[A \mathbf{v}^{t+1} = \mathbf{b}\]

mit \(A \in \mathbb{R}^{3n \times 3n}, \quad \mathbf{b} \in \mathbb{R}^{3n}\)

• Solve this system of linear equations with any of the standard iterative solvers

• Don't use a non-iterative solver, because

 • \(A\) changes with every simulation step
 • We can "warm start" the iterative solver with the solution as of last frame

 • Incremental computation
Computation of the Stiffness Matrix

- First of all, understand the anatomy of matrix K:
 - A spring (i,j) adds the following four 3×3 block matrices to K:

- Block matrix K_{ij} arises from the derivation of $f_i = (f_{3i}, f_{3i+1}, f_{3i+2})$ wrt. $x_j = (x_{3j}, x_{3j+1}, x_{3j+2})$:

- In the following, consider only f^s (spring force)
• First of all, compute K_{ii}:

$$K_{ii} = \frac{\partial}{\partial x_i} f_i(x_i, x_j)$$

$$= k_s \frac{\partial}{\partial x_i} \left((x_j - x_i) - l_0 \frac{x_j - x_i}{\|x_j - x_i\|} \right)$$

$$= k_s \left(-I - l_0 \frac{-I \cdot \|x_j - x_i\| - (x_j - x_i) \cdot \frac{(x_j - x_i)^T}{\|x_j - x_i\|}}{\|x_j - x_i\|^2} \right)$$

$$= k_s \left(-I + l_0 \frac{1}{\|x_j - x_i\|} I + \frac{l_0}{\|x_j - x_i\|^3} (x_j - x_i)(x_j - x_i)^T \right)$$
• Reminder:

\[
\left(\frac{f}{g} \right)' = \frac{f'g - fg'}{g^2}
\]

\[
\frac{\partial}{\partial \mathbf{x}} \|\mathbf{x}\| = \frac{\partial}{\partial \mathbf{x}} \left(\sqrt{x_1^2 + x_2^2 + x_3^2} \right) = \frac{\mathbf{x}^T}{\|\mathbf{x}\|}
\]
• From some symmetries, we can analogously derive:

• \(K_{ij} = \frac{\partial}{\partial x_j} f_i(x_i, x_j) = -K_{ii} \)

• \(K_{jj} = \frac{\partial}{\partial x_j} f_j(x_i, x_j) = \frac{\partial}{\partial x_j} (-f_i(x_i, x_j)) = K_{ii} \)

• \(K_{ji} = K_{ij} \)
Overall Algorithm for Solving Implicit Euler Integration

- Initialize $K = 0$

- For each spring (i,j) compute $K_{ii}, K_{ij}, K_{ji}, K_{jj}$ and accumulate it into K at the right places

- Compute $\mathbf{b} = M \mathbf{v}^t + \Delta t \mathbf{f}(\mathbf{x}^t)$

- Solve the linear equation system $A\mathbf{v}^{t+1} = \mathbf{b} \rightarrow \mathbf{v}^{t+1}$

- Compute $\mathbf{x}^{t+1} = \mathbf{x}^t + \Delta t \mathbf{v}^{t+1}$
Advantages and Disadvantages

- Explicit integration:
 ✓ Very easy to implement
 - Small step sizes needed
 - Stiff springs don't work very well
 - Forces are propagated only by one spring per time step

- Implicit Integration:
 ✓ Unconditionally stable
 ✓ Stiff springs work better
 ✓ Global solver → forces are being propagated throughout the whole spring-mass system within one time step
 - Large time steps needed, b/c one step is much more expensive (if real-time is needed)
 - The integration scheme introduces damping by itself (might be unwanted)
• Visualization of: \(\dot{x}(t) = -x(t) \)

• Informal Description:
 • **Explicit** jumps forward blindly, based on current information
 • **Implicit** tries to find a future position and a backwards jump such that the backwards jump arrives exactly at the current point (in phase space)
Demo

http://www.dhteumeuleu.com/dhtml/v-grid.html
Mesh Creation for Volumetric Objects

• How to create a mass-spring system for a **volumetric** model?
 • Challenge: volume preservation!
 • Approach 1: introduce additional, volume-preserving constraints
 • **Springs** to preserve distances between mass points
 • **Springs** to prevent shearing
 • **Springs** to prevent bending
 • No change in model & solver required
 • You could also introduce "angle-preserving springs" that exert a **torque** on an edge
• Approach 2 (and still simple): model the inside volume explicitly
 • Create a tetrahedron mesh out of the geometry (somehow)
 • Each vertex (node) of the tetrahedron mesh becomes a mass point, each edge a spring
 • Distribute the masses of the tetrahedra (= density \times volume) equally among the mass points
• Generation of the tetrahedron mesh (simple method):
 • Distribute a number of points uniformly (perhaps randomly) in the interior of the geometry (so called "Steiner points")
 • Dito for a sheet/band outside the surface
 • Connect the points by Delaunay triangulation (see my course "Computational Geometry")

• Anchor the surface mesh within the tetrahedron mesh:
 • Represent each vertex of the surface mesh by the barycentric combination of its surrounding tetrahedron vertices
• Approach 3: kind of an "in-between" between approaches 1 & 2
 • Create a virtual shell around the two-manifold mesh
 • Connect the shell with the "real" mesh by diagonal springs

• Video:
 1. no virtual shells,
 2. one virtual shell,
 3. several virtual shells
Collision Detection for Mass-Spring Systems

- Put all tetrahedra in a 3D grid (use a hash table!)
- In case of a collision in the hash table:
 - Compute exact intersection between the 2 involved tetrahedra
Collision Response

• Given: objects P and Q (= tetrahedral meshes) that collide
• Task: compute a penalty force
• Naïve approach:
 • For each mass point of P that has penetrated, compute its closest distance from the surface of Q → force = amount + direction
• Problem:
 • Implausible forces
 • "Tunneling" (s. a. the chapter on force-feedback)
Examples

inconsistent consistent inconsistent consistent
Consistent Penalty Forces

1. Phase: identify all points of \(P \) that penetrate \(Q \)

2. Phase: determine all edges of \(P \) that intersect the surface of \(Q \)
 - For each such edge, compute the exact intersection point \(x_i \)
 - For each intersection point, compute a normal \(n_i \)
 - E.g., by barycentric interpolation of the vertex normals of \(Q \)
3. Phase: compute the approximate force for border points

- Border point = a point \(p \) that penetrates \(Q \) and is incident to an intersecting edge
- Observation: a border point can be incident to several intersecting edges
- Approximate the penetration depth for point \(p \) by

\[
d(p) = \frac{\sum_{i=1}^{k} \omega(x_i, p) (x_i - p) \cdot n_i}{\sum_{i=1}^{k} \omega(x_i, p)}
\]

where \(x_i = \) point of the intersection of an edge incident to \(p \) with surface \(Q \),
\(n_i = \) normal to surface of \(Q \) at point \(x_i \),
and \(\omega(x_i, p) = \frac{1}{\|x_i - p\|} \)
• Set the direction of the penalty force on border points:

\[
 r(p) = \frac{\sum_{i=1}^{k} \omega(x_i, p) n_i}{\sum_{i=1}^{k} \omega(x_i, p)}
\]

4. Phase: propagate forces by way of breadth-first traversal through the tetrahedron mesh

\[
 d(p) = \frac{\sum_{i=1}^{k} \omega(p_i, p)((p_i - p) \cdot r_i + d(p_i))}{\sum_{i=1}^{k} \omega(x_i, p)}
\]

where \(p_i \) = points of \(P \) that have been visited already, \(p \) = point not yet visited, \(r_i \) = direction of the estimated penalty force in point \(p_i \).
Video

http://cg.informatik.uni-freiburg.de
Art with Mass-Spring Systems