
Virtual Reality &
Physically-Based Simulation
Techniques for
Real-time Rendering

G. Zachmann
University of Bremen, Germany
cgvr.cs.uni-bremen.de

G. Zachmann 5Real-Time RenderingVirtual Reality & Simulation 28 November 2017WS

Simulator Sickness

§ Simulator sickness = more or less of the following symptoms (can
sometimes occur with prolonged stay in flight simulators / virtual
environments):
§ Nausea (including vomiting), eye strain, dizziness, drowsiness, blurred vision,

headache, fatigue
§ Cause is not entirely clear
§ Common hypothesis: inconsistent sensory input to brain, e.g.,

mismatch between vision and vestibular organ (organ for equilibrium)
§ E.g., when staying below deck for a prolonged time
§ In flight simulators with latency between motion of platform and rendering

§ Frequency: occurs with 20-40% of jet pilots
§ Occurs more frequently with experienced pilots than novices [sic]

§ Other observations with mismatching sensory inputs:
§ In a rotating field when walking forward, people tilt their heads and feel like

they are rotating in the opposite direction
§ If a person is walking on a treadmill holding onto a stationary bar and you

change the rate the visuals are passing by, it will feel to the person like the bar
is pushing or pulling on their hands

G. Zachmann 6Real-Time RenderingVirtual Reality & Simulation 28 November 2017WS

§ Definition: Latency = duration from a user's action (e.g., head
motion) until display shows a change caused by the user's
action ("from motion to photons")

§ Some human factors (here for visual displays):

Latency (Lag, Delay)

Latency (msec) Effect on the user

> 5 Noticeable

> 30 User performance decreases (and possibly simulator sickness)

> 500 Immersion vanishes (and probably presence)

Note: a user's head can rotate by as much as 1000 degrees/sec !

G. Zachmann 7Real-Time RenderingVirtual Reality & Simulation 28 November 2017WS

§ The latency pipeline:

§ Types/causes of lag:
§ Internal to devices
§ Transportation of data over communication channel (e.g., Ethernet)
§ Software (time for processing the data)
§ Synchronization delay

Tracking-
System

Filter

Application

Comm. Renderer Video
hardware

main

U
SB

Ethernet

60-240 Hz 20 Hz 60-120 Hz 60-120 Hz

~10 …10 2 50 0-16 16 msec

G. Zachmann 8Real-Time RenderingVirtual Reality & Simulation 28 November 2017WS

General Strategies for Solution

§ Gerät-Server-App-Kommunikation:

§ Put device and server
into continuous mode

§ Send "keep alive" messages
from client to server

§ Do time-critical computing:

§ Each and every module of the app
receives a specific time budget

§ Module tries to compute a usable(!)
partial solution as good as possible
within the time budget

§ Stop when time is up

§ Try to predict user/tracker position in x msec's time

App.Server BufferBufferdevice

App. Server Device

fe
tc

h
re

nd
er

G. Zachmann 9Real-Time RenderingVirtual Reality & Simulation 28 November 2017WS

Sources of Latency During Rendering

§ Classical graphics pipeline (parts of it):

§ Latency:

§ Idea for improvement: render more than just the viewport

render

he
ad

sw
ap

display

Scene graph
traversalTransform

Culling

Clipping
Viewport
mapping

Fr
on

t b
uf

fe
r

Ba
ck

 b
uf

fe
r

Pixel scan

DAC RGB

Head
pos & ori

Main
loop

Main
loop

G. Zachmann 10Real-Time RenderingVirtual Reality & Simulation 28 November 2017WS

Viewport-Independent Rendering

§ Conceptual idea:

§ Render the scene onto a sphere around the viewer ⟶ spherical viewport

§ If viewpoint rotates: just determine new cutout of the spherical viewport

§ Practical implementation:

§ Use cube as a viewport around user,
instead of sphere

§ This was also one of the motivations
to build Cave's

G. Zachmann 11Real-Time RenderingVirtual Reality & Simulation 28 November 2017WS

§ New pipeline:

§ Latency:

Scene graph
traversal

Transform

Classification Clipping

Fr
on

t b
uf

fe
r

Ba
ck

 b
uf

fe
r

Pixel scan

DAC RGB

Viewport
mapping

Head orientation

Locate
pixel

Anti-Aliasing

render

he
ad

sw
ap

display

Head
position

Main
loop

Main
loop

G. Zachmann 12Real-Time RenderingVirtual Reality & Simulation 28 November 2017WS

"Asynchronous Timewarp" (Oculus)

§ Shift image using current orientation of head

§ Do this only in case the renderer is not finished in time:

§ Requires GPU preemption (i.e., stop GPU's pipeline, including
shaders, immediately)

L1 R1 L2 R2 L3 R3

VSYNC VSYNC VSYNC VSYNC

A
T
W

A
T
W

A
T
W

Render thread

ATW thread

Head tracking
(rot. only)

G. Zachmann 13Real-Time RenderingVirtual Reality & Simulation 28 November 2017WS

§ Limitations:

§ Judder of animated objects

§ Incorrect positions of highlights and
specular lighting

§ Head rotation also changes position
of the viewpoint, but the image is
shifted only according to rotation of
viewing direction ⟶ judder for near
objects (even static objects)

G. Zachmann 14Real-Time RenderingVirtual Reality & Simulation 28 November 2017WS

Multi-Threaded Rendering and Image Composition

§ Conceptual idea:

§ Each thread renders only its "own" object in its own framebuffer

§ Video hardware reads framebuffer including Z-buffer

§ Image compositor combines individual images by comparing the Z
values of corresponding pixels

§ In practice:

§ Partition set of objects

§ Render each subset on one PC

G. Zachmann 15Real-Time RenderingVirtual Reality & Simulation 28 November 2017WS

Another technique: Prioritized Rendering

§ Observation: images of objects far away from viewpoint (or slow
relative to viewpoint) change slowly

§ Idea: render onto several cuboid viewport "shells" around user
§ Fastest objects on innermost shell, slowest/distant objects on outer shell

§ Re-render innermost shell very often, outermost very rarely

§ How many shells must be re-rendered depends on:
§ Framerate required by application

§ Complexity of scene

§ Speed of viewpoint

§ Speed of objects (relative to viewpoint)

§ Human factors have influence on priority, too:
§ Head cannot turn by 180° in one frame →

objects "behind" must be updated only rarely

§ Objects being manipulated must have highest priority

§ Objects in peripheral field of vision can be updated less often

G. Zachmann 16Real-Time RenderingVirtual Reality & Simulation 28 November 2017WS

Constant Framerate by "Omitting"

§ Reasons for a constant framerate:

§ Prediction in predictive filtering of tracking data of head/hands works only,
if all subsequent stages in the pipeline run at a known (constant) rate

§ Jumps in framerate (e.g., from 60 to 30 Hz) are very noticeable (called
stutter/judder)

§ Rendering is "time-critical computing":

§ Rendering gets a certain time budget (e.g., 17 msec)

§ Rendering algorithm has to produce an image "as good as possible"

§ Techniques for "omitting" stuff:

§ Levels-of-Detail (LODs)

§ Omit invisible geometry (Culling)

§ Image-based rendering

§ Reduce the lighting model, reduce amount of textures,

§ ... ?

G. Zachmann 17Real-Time RenderingVirtual Reality & Simulation 28 November 2017WS

The Level-of-Detail Technique

§ Example: do you see a difference?

§ Idea: render a reduced version of the object, where the amount
of reduction is chosen such that users can't see the difference
from the full-resolution version

G. Zachmann 18Real-Time RenderingVirtual Reality & Simulation 28 November 2017WS

§ Definition:
A level-of-detail (LOD) of an object is a simplified version,
i.e. that has less polygons.

§ The technique consists of two tasks:

1. Preprocessing: for each object in the scene, generate k LODs

- For instance, we generate LODs at 100%, 80%, 60%, ..., of number of polygons of
original model

2. Runtime: select "right" LOD, make switches between LODs unnoticeable

G. Zachmann 19Real-Time RenderingVirtual Reality & Simulation 28 November 2017WS

Selection of the LOD

§ Balance visual quality against "temporal quality"

§ Static selection algorithm:
§ Level i for a distance range

§ Depends on FoV

§ Problem: size of objects
is not considered

§ For some desktop applications,
e.g. terrain rendering,
this can be sufficient:

LOD

100% 50% 30%

G. Zachmann 20Real-Time RenderingVirtual Reality & Simulation 28 November 2017WS

§ Dynamic selection algorithm:

§ Estimate size of object on the screen

§ Advantage: independent from screen resolution,
FoV, size of objects

§ LOD depends on distance automatically

G. Zachmann 21Real-Time RenderingVirtual Reality & Simulation 28 November 2017WS

Estimation of Size of Object on the Screen

§ Naïve method:

§ Compute bounding box (bbox) of object in 3D (probably already
known by scenegraph for occlusion culling)

§ Project bbox onto 2D → 8x 2D points

§ Compute 2D bbox (axis aligned) around 8 points

§ Better method:

§ Compute true area of projected 3D bbox on screen

G. Zachmann 22Real-Time RenderingVirtual Reality & Simulation 28 November 2017WS

Idea of the Algorithm

§ Determine number of sides of 3D bbox that are visible:

§ Project only points on the silhouette (4 or 6) onto 2D:

§ Compute area of this (convex!) polygon

G. Zachmann 23Real-Time RenderingVirtual Reality & Simulation 28 November 2017WS

Implementation

§ For each pair of (parallel) box sides (i.e., each slab):

classify viewpoint with respect to this pair into "below", "above",

or "between"

§ Yields 3x3x3 = 27 possibilities

§ In other words: the sides of a cube partition space into 27 subsets

§ Utilize bit-codes (à la out-codes from clipping) and a lookup-table

§ Yields LUT with 26 entries (conceptually)

§ 27-1 entries of the LUT list each the 4 or 6 vertices of the silhouette

§ Then, project, triangulate (determined by each case in LUT),

accumulate areas

G. Zachmann 24Real-Time RenderingVirtual Reality & Simulation 28 November 2017WS

Psychophysiological LOD Selection

§ Idea: exploit human factors with respect to
visual acuity:

§ Central / peripheral vision:

§ Motion of obj (relative to viewpoint):

§ Depth of obj (relative to horopter):

b1q

t0

t1

Dj

j0

j1

b1

1

k1 =

�
e�(�–b1)/c1 , � > b1

1 , sonst

G. Zachmann 25Real-Time RenderingVirtual Reality & Simulation 28 November 2017WS

§ Determination of LODs:

1.

2.

3. Select level l such that

where Pl is the set of polygons of level l of an object, and r(p) = radius

of polygon p

§ Do we need eye tracking for this to work?

§ Disadvantages of eye tracking: expensive, imprecise, "intrusive"

§ Psychophysiology: eyes always deviate < 15° from head direction

§ So, assume eye direction = head direction, and choose b1= 15°

k = min{ki}·k0 , oder k =
�

ki ·k0

⇤p ⇥ Pl : r(p) � rmin

rmin = 1/k

G. Zachmann 26Real-Time RenderingVirtual Reality & Simulation 28 November 2017WS

Reactive vs. Predictive LOD Selection

§ Reactive LOD selection:

§ Keep history of rendering durations

§ Estimate duration Tr for next frame, based on history

§ Let Tb = time budget that can be spent for next frame

- Usually constant, e.g., 16 msec for 60 Hz framerate

§ If Tr > Tb : decrease LODs (use coarser levels)

§ If Tr < Tb: increase LODs (finer levels)

§ Then, render frame and record time duration in history

§ Reactive LOD selection can produce severe outliers

G. Zachmann 27Real-Time RenderingVirtual Reality & Simulation 28 November 2017WS

Predictive LOD Selection [Funkhouser &Sequin]

§ Definition object tuple (O,L,R):
O = object, L = level,
R = rendering quality (#textures, #light sources, …)

§ Evaluation functions on object tuples:
cost(O,L,R) = time needed for rendering
benefit(O,L,R) = "contribution to image"

§ Optimization problem:

find

under the condition

where S = { all possible object tuples in the scene }

max
S ��S

�

(O,L,R)⇥S �

benefit(O, L, R)

Tr =

X

(O,L,R)2S 0

cost(O, L, R)  Tb

G. Zachmann 28Real-Time RenderingVirtual Reality & Simulation 28 November 2017WS

§ Cost function depends on:

§ Number of vertices (≈ # coord. transforms + lighting calcs + clipping)

§ Setup time per polygon

§ Number of pixels (scanline conversions, alpha blending, texture fetching,
anti-aliasing, Phong shading)

§ Theoretical cost model:

§ Better determine the cost function by experiments:
Render a number of different objects
with all different parameter settings
possible

polygons

t

Cost(O, L,R) = max

�
C1 ·Poly + C2 ·Vert

C3 ·Pixels

⇥

G. Zachmann 29Real-Time RenderingVirtual Reality & Simulation 28 November 2017WS

§ Benefit function: "contribution" to image is affected by

§ Size of object

§ Shading method:

§ Distance from center (periphery, depth)

§ Velocity (similar to psychophysiological LOD factors)

§ Semantic "importance" (e.g., grasped objects are very important)

§ Hysteresis for penalizing LOD switches:

§ Together:

Rendering(O, L, R) =

�
⌅⇤

⌅⇥

1� c
pgons , flat

1� c
vert , Gouraud

1� c
vert , Phong

Benefit(O, L, R) =Size(O)·Rendering(O, L, R) ·
Importance(O)·O�Center(O) ·
Vel(O)·Hysteresis(O, L, R)

Hysterese(O, L, R) =
c1

1 + |L� L�| +
c2

1 + |R � R �|

G. Zachmann 30Real-Time RenderingVirtual Reality & Simulation 28 November 2017WS

§ Optimization problem = multiple-choice knapsack problem
® NP-complete

§ Idea: compute sub-optimal solution:

§ Reduce it to continuous knapsack problem (see algorithms class)

§ Solve this greedily (with one additional constraint)

§ Define

§ Sort all object tuples by value(O,L,R)

§ Choose the first k tuples until knapsack is full

§ Add'l constraint: no 2 object tuples must represent the same object

value(O, L, R) =
benefit(O, L, R)

cost(O, L, R)

G. Zachmann 31Real-Time RenderingVirtual Reality & Simulation 28 November 2017WS

§ Incremental solution:

§ Start with solution as of last frame

§ If

then find object tuple ,
such that

and

§ Analog, if

(Ok , Lk , Rk)

value(Ok , Lk + a, Rk + b)� value(Ok , Lk , Rk) = max

X

i

cost(Oi , Li ,Ri)  max. frame time

X

i 6=k

cost(Oi , Li ,Ri) + cost(Ok , Lk + a,Rk + b)  max. frame time

X

i

cost(Oi , Li ,Ri) > max. frame time

(O1, L1, R1), . . . , (On, Ln, Rn)

G. Zachmann 32Real-Time RenderingVirtual Reality & Simulation 28 November 2017WS

Example Scenario

G. Zachmann 33Real-Time RenderingVirtual Reality & Simulation 28 November 2017WS

Performance in the example scenes

G. Zachmann 34Real-Time RenderingVirtual Reality & Simulation 28 November 2017WS

Screenshots from Another Example Scene

§ Screenshots aus der Beispiel-Szene:

No detail elision, 19,821 polygons Optimization, 1,389 polys,
0.1 sec/frame target frame time

Level of detail: darker
gray means more detail

G. Zachmann 39Real-Time RenderingVirtual Reality & Simulation 28 November 2017WS

Problem with Discrete LODs

§ "Popping" when switching to next higher/lower level

1. Simplest solution: temporal hysteresis (reduces frequency of pops)

2. Alpha blending of the two adjacent
LOD levels ("Alpha-LODs"):

§ Instead of switching from level i
to i+1, fade out level i until gone,
at the same time fade in level i+1

§ "Man kommt vom Regen
in die Traufe"

§ Don't use them!

3. Continuous, view-dependent LODs using progressive meshes

G. Zachmann 40Real-Time RenderingVirtual Reality & Simulation 28 November 2017WS

Progressive Meshes

§ A.k.a. Geomorph-LODs

§ Initial idea / goal:

§ Given two LODs Mi and Mi+1 of the same object

§ Construct mesh M' "in-between" Mi and Mi+1

§ In the following, we will do more

§ Definition: progressive mesh = representation of an object,
starting with a high-resolution mesh M0, with which one can
continuously (up to the vertex level) generate "in-between"
meshes ranging from 1 polygon up to M0 (and do that extremely
fast).

G. Zachmann 41Real-Time RenderingVirtual Reality & Simulation 28 November 2017WS

Construction of Progressive Meshes

§ Approach: successive simplification, until only 1 polygon left

§ The fundamental operation: edge collapse

§ Reverse operation = vertex split

§ Not every edge can be chosen: bad edge collapses

v
u

v

vu

edge crossing!
polygon overlap

G. Zachmann 42Real-Time RenderingVirtual Reality & Simulation 28 November 2017WS

§ The direction of edge collapses is important, too:

§ Introduce measure of edge collapses that evaluates "visual effect"

§ Goal: first perform edge collapses that have the least visual effect

§ Remark: after every edge collapse, all remaining edges need to be
evaluated again, because their "visual effect" (if collapsed) might
be different now

u
v v u

G. Zachmann 43Real-Time RenderingVirtual Reality & Simulation 28 November 2017WS

§ Evaluation function for edge collapses is not trivial and, more
importantly, perception-based!

§ Factors influencing "visual effect":

§ Curvature of edge / surface

§ Lighting, texturing, viewpoint (highlights!)

§ Semantics of the geometry (eyes & mouth are very important in faces)

§ Examples of a progressive mesh:

G. Zachmann 44Real-Time RenderingVirtual Reality & Simulation 28 November 2017WS

§ Representation of a progressive mesh:

§ Mi = i-th refinement =
1 vertex more than Mi-1

§ Representation of an
edge collapse / vertex split:

§ Edge (= pair of vertices) affected by the collapse/split

§ Position of the "new" vertex

§ Triangles that need to be deleted / inserted

ecol

vsplit

M = Mn M1 M0…
ecoln-1 ecol0ecol1
vsplitn-1 vsplit0vsplit1

G. Zachmann 45Real-Time RenderingVirtual Reality & Simulation 28 November 2017WS

§ Follow this heuristic:

§ Delete small edges first

§ Move vertex U onto vertex V, if surface incident to U has smaller
(discrete) curvature than surface around V

§ A simple measure for an edge collapse from U onto V:

Example for a Simple Edge Evaluation Function

U
V n1

n2
nf

cost(U , V) = ⇥U � V ⇥·curv(U)

curv(U) =

1
2

�
1 � min

F (U)
max

i=1,2
nf ·ni

�

F(U) = set of all faces incident to U,
but not to V

G. Zachmann 46Real-Time RenderingVirtual Reality & Simulation 28 November 2017WS

§ Remark:

§ Example:

cost(U , V) �= cost(V , U)

Low visual
disturbance

High visual
disturbance

G. Zachmann 47Real-Time RenderingVirtual Reality & Simulation 28 November 2017WS

Demo

[Michael Garland: Qslim]

How can the Funkhouser-Sequin algorithms
be combined with progressive meshes?
And implemented on the GPU??

Master Thesis …

G. Zachmann 48Real-Time RenderingVirtual Reality & Simulation 28 November 2017WS

View-Dependent LOD's

§ Select different resolution within the same object, depending on
the view point, i.e., different parts of one object are rendered at
different resolutions

§ Defining metric: screen space error (measured in pixels)

§ Example: terrain – choose resolution according to projected area

View from eye point Birds-eye view

G. Zachmann 49Real-Time RenderingVirtual Reality & Simulation 28 November 2017WS

§ Additional factor: visual importance

§ Example: closed objects –
render with higher resolution
near silhouette border

§ Maximal screen space error
is modulated by (v.n)

§ Other possible criteria:

§ Specular highlights

§ Triangle budget

§ Time budget (time critical computing)

n

v

G. Zachmann 50Real-Time RenderingVirtual Reality & Simulation 28 November 2017WS

Pros and Cons

§ Advantages of Dynamic LODs (e.g., progressive meshes):

§ No popping artefacts

§ Can be turned into view-dependent LOD

§ Better rendering fidelity for given polygon count

§ Advantages of Static LODs:

§ Extremely simple for the renderer

- Easy to implement in the renderer

- No CPU overhead during rendering

§ Can upload LODs to GPU as vertex buffer objects (VBO)

G. Zachmann 51Real-Time RenderingVirtual Reality & Simulation 28 November 2017WS

Digression: Other Kinds of LODs

§ Idea: apply LOD technique to other non-geometric content

§ E.g. "behavioral LOD":

§ Simulate the behavior of an object exactly if in focus, otherwise
simulate it only "approximately"

G. Zachmann 52Real-Time RenderingVirtual Reality & Simulation 28 November 2017WS

Culling in Buildings (Portal Culling)

§ Observation: many rooms within the viewing frustum are not visible

§ Idea:

§ Partition the VE
into "cells"

§ Precompute
cell-to-cell-visibility

⟶ visibility graph

G. Zachmann 53Real-Time RenderingVirtual Reality & Simulation 28 November 2017WS

§ During runtime, filter cells from visibility graph by viewpoint and
viewing frustum:

G. Zachmann 54Real-Time RenderingVirtual Reality & Simulation 28 November 2017WS

§ State in OpenGL rendering =

§ Combination of all attributes

§ Examples for attributes: color, material, lighting parameters, textures
being used, shader program, render target, etc.

§ At any time, each attribute has exactly 1 value out of a set of possible
attributes (e.g., color∈{ (0,0,0), …, (255,255,255) }

§ State changes are a serious performance killer!

§ Costs in old OpenGL:

Matrix stack
modification

Lighting
modification

Texture
modification

Shader program
modification

State Sorting

G. Zachmann 55Real-Time RenderingVirtual Reality & Simulation 28 November 2017WS

§ Costs of state changes in modern OpenGL [2014]:

§ Goal: render complete scene graph with minimal number of state
changes

Relative costs of State Changes

In decreasing cost…
Render Target
Program
ROP
Texture Bindings
Vertex Format
UBO Bindings
Vertex Bindings
Uniform Updates

Note: Not to scale

~1.5M / s

~10M / s

~300K / s

~60K / s Render target

Shader

ROP

Texture binding

Vertex format

Uniform buffer

Vertex binding

Uniform updates
Not to scale!

G. Zachmann 56Real-Time RenderingVirtual Reality & Simulation 28 November 2017WS

Solution: Sorting by State

§ Problem: optimal solution is NP-complete

§ Proof:

§ Each leaf of the scene graph can be
regarded as a node in a
complete graph

§ Costs of an edge = costs of the
corresponding state change
(different state changes cost
differently, e.g., changing the
transform is cheap)

§ Wanted: shortest path through graph

àTraveling Salesman Problem

§ Further problem: precomputation doesn't work with dynamic
scenes and occlusion culling

Scenegraph
leaf

Last part of
the state:

e.g., material1st part of the
state: e.g., light

source

G. Zachmann 57Real-Time RenderingVirtual Reality & Simulation 28 November 2017WS

Introducing the Sorting Buffer

§ Idea & abstraction:

§ For sake of argument: just consider one kind of attribute ("color")

§ Introduce buffer between application and graphics card

- (Could be incorporated into the driver, since an OpenGL command buffer is
already in place)

§ Buffer contains k elements

§ With each rendering step (= app sends "colored element" to
hardware/buffer), perform one of 3 operations:

1. Pass element directly on to graphics hardware; or,

2. Store element in buffer; or,

3. Extract subset of elements from buffer and send them to graphics hardware

Graphics hardwareSequence of objs Buffer for state sorting

G. Zachmann 58Real-Time RenderingVirtual Reality & Simulation 28 November 2017WS

Online Algorithms

§ There are 2 categories of algorithms:

§ "Online" algorithms: algo does not know which elements will be received

in the future!

§ "Offline" algorithms: algo does know elements that will be received in the

future (for a fair comparison, it still has to store/extract them in a buffer,

but it can utilize its knowledge of the future to decide whether to store it)

§ In the following, we consider wlog. only the "lazy" online strategy:

§ Extract elements from the buffer only in case of buffer overflow

§ Because every non-lazy online strategy can be converted into a lazy online

strategy with same complexity (= costs)

§ Question in our case: which elements should be extracted from the

buffer (in case of buffer overflow), so that we achieve the minimal

number of color changes?

G. Zachmann 59Real-Time RenderingVirtual Reality & Simulation 28 November 2017WS

Competitive Analysis

§ Definition c-competitive :
Let = costs of optimal offline strategy,
let = costs of some online strategy,
cost = number of color changes, k = buffer size.

Then, the online strategy is called "c-competitive" iff

where a must not depend on k (c may depend on k).

The ratio

is called the competitive-ratio.

§ Wanted: an online strategy with c(k) as small as possible
(i.e., c(k) should be in a low complexity class)

C
o↵

(k)

C
on

(k)

C
on

(k) = c ·C
o↵

(k) + a

C
on

(k)

C
o↵

(k)
⇡ c

G. Zachmann 60Real-Time RenderingVirtual Reality & Simulation 28 November 2017WS

Example: LRU strategy (Least-Recently Used)

§ The strategy:

§ Maintain a timestamp per color (not per element!)

§ When element gets stored in buffer ®
timestamp of its color is set to current time

- Notice: timestamps of other elements in buffer can change, too

§ Buffer overflow → extract elements, whose color has oldest timestamp

§ The lower bound on the competitive-ratio:

§ Proof by example:

§ Set , wlog. m is even

§ Choose the input

§ Costs of the online LRU strategy: color changes

§ Costs of the offline strategy: color changes,

because its output is

(m + 1)·2·m2

(xky k)
m
2
c

m
1 · · · cmm

2·m2 +m = 2m

G. Zachmann 61Real-Time RenderingVirtual Reality & Simulation 28 November 2017WS

The Bounded Waste & the Random Choice Strategy

§ Idea:

§ Count the number of all elements in buffer that have the same color

§ Extract those elements whose color is most prevalent in the buffer

§ Introduce waste counter W(c) :

§ With new element on input side: increment W(c), c = color of new element

§ Bounded waste strategy:

§ With buffer overflow, extract all elements of color c', whose W(c') = max

§ Competitive ratio (w/o proof):

§ Random choice strategy:

§ Randomized version of bounded waste strategy

§ Choose uniformly a random element in buffer, extract all elements with
same color (most prevalent color in buffer has highest probability)

§ Consequence: more prevalent color gets chosen more often, over time each
color gets chosen W(c) times

O
�
log

2 k
�

G. Zachmann 62Real-Time RenderingVirtual Reality & Simulation 28 November 2017WS

The Round Robin Strategy

§ Problem: generation of good random numbers is fairly costly

§ Round robin strategy:

§ Variant of random choice strategy

§ Don't choose a random slot in the buffer,

§ Instead, every time choose the next slot

§ Maintain pointer to current slot, move pointer to next slot every time a
slot is chosen

G. Zachmann 63Real-Time RenderingVirtual Reality & Simulation 28 November 2017WS

Comparison

§ Take-home message:

§ Round-robin yields very good results
(although/and it is very simple)

§ Worst case doesn't say too much about
performance in real-world applications

Buffer size Buffer size

Re
nd

er
in

g
tim

e
/

m
se

c

St
at

e
ch

an
ge

s

G. Zachmann 64Real-Time RenderingVirtual Reality & Simulation 28 November 2017WS

Stereoscopic Image Warping (Stereo without 2x rendering)

§ Observation: left & right image differ not very much

§ Idea: render once for right image, then move pixels to
corresponding positions in left image → image warping

§ Algo: consider all pixels on each scanline from right to left,
draw each pixel k at the new x-coordinate

𝛥 = pixel width

§ Problems:

§ Up-vector must be vertical

§ Holes!

§ Ambiguities & aliasing

§ Reflections and specular
highlights are at wrong position

e

z0

zk

?

x

0
k = xk +

e

�

zk

zk + z0

G. Zachmann 65Real-Time RenderingVirtual Reality & Simulation 28 November 2017WS

§ Oculus display refreshes at 90 Hz; if appl. can render only at
45 Hz, ASW produces frames "in between" by prediction:

§ Some details about the method (guessed):

§ Extra thread kicks in if app has not finished rendering in time; stops
rendering and graphics pipeline (GPU preemption)

§ Take previous two images, predict 2D motion of image parts

- Optical flow algorithms? use GPU video encoding hardware?

§ Fill holes by stretching neighborhood (image inpainting)

"Asynchronous Spacewarp" (Oculus)

Rendered by appl.

Predicted by ASW/Oculus from previous 2 app. frames

1/90 s

G. Zachmann 66Real-Time RenderingVirtual Reality & Simulation 28 November 2017WS

Example Frames

§ Can you spot the artefacts?

Dis-
occlusion
trail

Change
in

lighting

G. Zachmann 67Real-Time RenderingVirtual Reality & Simulation 28 November 2017WS

Reducing Latency by Image Warping

§ A naïve VR system:

§ Latency in this system (stereo with 60 Hz → display refresh = 120 Hz):

Tracking
system

T0 T4

Appl.
(Simul.)

T1

Renderer
T2

Display
(e.g. HMD)

T3
User

L R L R
Display

16.6 ms

System

T0

Tracker

10 ms

T1

Application (Simul) Renderer

T2

30 ms

T3

swaplock

50 ms 8 ms

T4

New appl. frame

G. Zachmann 68Real-Time RenderingVirtual Reality & Simulation 28 November 2017WS

§ Problems / observations:

§ The appl. framerate (incl. rendering) is typically much slower than the
display refresh rate

§ The tracking data, which led to a specific image, were valid in the
"distant" past

§ The tracker could deliver data more often

§ Consecutive frames differ from each other (most of the time) only
relatively little (→ temporal coherence)

L R L R
Display

16.6 ms

System

T0

Tracker

T4

New appl. frame

10 ms

T1

Application (Simul) Renderer

T2

30 ms

T3

swaplock

50 ms 8 ms

G. Zachmann 69Real-Time RenderingVirtual Reality & Simulation 28 November 2017WS

Idea of the Solution

§ Decouple simulation/animation, rendering, and tracker polling:

Object transform.,
camera position

Input devices (tracker)

Simulation / Animation

Shared
scene graph

Appl. renderer
(client)

GPU 1 shared memory GPU 2

Display

Warping
renderer
(server)Only

object
Transf.

20 Hz

Framebuffer

60 Hz Transform
10242x GL_POINTs

Camera pos.

Texture

G. Zachmann 70Real-Time RenderingVirtual Reality & Simulation 28 November 2017WS

An Application Frame (Client)

§ At time t1, the application renderer generates a normal frame

§ Color buffer and Z-buffer

§ Henceforth called "application frame"

§ … but also saves additional information:

1. With each pixel, save ID of object visible at that pixel

2. Save camera transformations at time t1

3. With each object i , save its transformation

Tt1,cam�img , Tt1,wld�cam

G. Zachmann 71Real-Time RenderingVirtual Reality & Simulation 28 November 2017WS

Warping of a Frame (Server)

§ At a later time t2 , the server generates an image from an
application frame by warping

§ Transformations at this time:

§ A pixel in the appl. frame will be "warped" to its
correct position in the (new) server frame:

§ This transform. matrix can be
precomputed for each object
and each new server frame

t
1

t
2

Appl. frame →

← Server frame

T i
t2,wld�obj Tt2,img�cam Tt2,cam�wld

G. Zachmann 72Real-Time RenderingVirtual Reality & Simulation 28 November 2017WS

PA
Appl-Frame
(t1)

PA
Appl Frame
(t1)

-z
Camera (t1)

y

x

-z
Camera (t1)

y

x

x
World (t1)

y

z

x
World (t1)

y

z
x

Object

y

z

P

x
Object

y

z

P

x
World (t2)

y

z

xWorld (t2)

y

z

-z
Camera (t2)

y

x

-zCamera (t2)

y

x

PAWarped
Server-Frame
(t2)

PS

PA
Warped
Server Frame
(t2)

PS

G. Zachmann 73Real-Time RenderingVirtual Reality & Simulation 28 November 2017WS

Remarks

§ Implementation of the warping:

§ In the vertex shader

- Doesn't work in the fragment shader, because the output (= pixel) position is
fixed in fragment shaders!

§ Warping renderer treats the image in the FBO containing the appl.
frame as a texture , and it loads all the Ti’s

§ Render 1024x1024 many GL_POINTs (called point splats)

§ Advantages:

§ The frames (visible to the user) are now "more current", because of
more current camera and object positions

§ Server framerate is independent of number of polygons

G. Zachmann 74Real-Time RenderingVirtual Reality & Simulation 28 November 2017WS

§ Problems:
§ Holes in server frame

- Need to fill them, e.g., by ray casting

§ Server frames are fuzzy
(because of point splats)

§ How large should the point splats be?

§ The application renderer (full image
renderer) can be only so slow
(if it's too slow, then server frames
contain too many holes)

§ Unfilled parts along the border
of the server frames
- Potential remedy: make the viewing frustum for the appl. frames larger

§ Performance gain:
§ 12M polygons, 800 x 600 frame size

§ Factor ~20 faster

t1

t2

Hole!

G. Zachmann 75Real-Time RenderingVirtual Reality & Simulation 28 November 2017WS

Videos

G. Zachmann 76Real-Time RenderingVirtual Reality & Simulation 28 November 2017WS

G. Zachmann 77Real-Time RenderingVirtual Reality & Simulation 28 November 2017WS

