Bremen

Y

Virtual Reality &

Physically-Based Simulation

Scenegraphs
& Game Engines

G. Zachmann

University of Bremen, Germany

cgvr.cs.uni-bremen.de

Bremen

e [] “’:; -.::.
W Overall System Architecture
Game Logic & Al
Sound Renderer Scene Graph Physically-based
(sound propagation) (3D geometry manager & database) simulation
: Force-Feedback
Sound Library OpenGL Library
G. Zachmann Virtual Reality & Simulation WS October 2017 Scenegraphs 4

Bremen

W Motivation

" [mmediate mode vs. retained mode:

= Immediate mode = OpenGL / Direc3D = Application sends polygons /
state change commands to the GPU - flexibler

= Retained mode = scenegraph = applications builds pre-defined data
structures that store polygons and state changes - easier and
(probably) more efficient rendering

Flat vs. Hierarchical scene descriptions:

= Code re-use and knowledge re-use!

= Descriptive vs. imperative (cv. Prolog vs. C)

= Thinking objects ... not rendering processes

G. Zachmann Virtual Reality & Simulation WS October 2017 Scenegraphs

53

5

Bremen

Y Structure of a Scene Graph

= Directed, acyclic graph (DAG)

= Often even a proper tree

= Consists of heterogeneous nodes

= Example:

= Most frequent operation on scene graph: rendering

= Amounts to depth-first traversal

O

Wheels

Transformations

Wheel geo

= Operation per node depends on kind of node

G. Zachmann

Virtual Reality & Simulation

WS

October 2017

7. cc

Light

Scenegraphs

VR

6

]

e
s

o

Bremen

W Semantics

= Semantics of a node:
= Root = "universe"
= Leaves = "content" (geometry, sound, ...)

= Inner nodes = forming groups, store state (changes), and
other non-geom. functionality, e.g., transforms

= Grouping: criteria for grouping is left to the application, e.qg., by
= Geometric proximity - scenegraph induces a nice BVH
= Material - good, because state changes cost performance!
= Meaning of nodes, e.qg., all electrical objs in the car under one node -
good for quickly switching off/on all electrical parts in the car
= Semantics of edges = inheritance of states
= Transformation
= Material

= Light sources (?)

G. Zachmann Virtual Reality & Simulation WS October 2017 Scenegraphs

7

Bremen

U

Kinds of Nodes

= There are 2 hierarchies: scenegraph hierarchy + class hierarchy

= The flexibility and the expressiveness of a scenegraph depends
heavily on the kinds and number of node classes!

= Some classes (or, rather, their instances) will not be part of the
scenegraph, but still be in the overall scene

< Nodes >

Inner nodes Leaves Material Texture

/N

LOD Group Geometry Sound

Particle system Light source?

Transform

G. Zachmann Virtual Reality & Simulation WS October 2017 Scenegraphs 8

Bremen

W Issues g

VR =

= Light sources:
Light source

= Usually part of the scenegraph

=
.-
.-

= Problem with naive semantics: what if
light source should move/turn, but
not the scene it shines on?

Part of scene that
is lighted by
lightsource

Beacon

= Solution: beacons

- Lightsource node lights its sub-scene underneath

- Position/orientation is taken from the beacon

= Camera: to be, or not to be a node
in the scenegraph?

e
= Both ways have dis-/advantages /'
= If not a node: use beacon principle k s Beacon

G. Zachmann Virtual Reality & Simulation WS October 2017 Scenegraphs 9

Bremen

U

Material s

= Material =

= Color, texture, lighting parameters (see Phongq)

= Property of a node

= Semantics of materials stored with inner nodes: top-down inheritance

= Path from leaf to root should have at least one material
= Consequence:

- Each leaf gets rendered with a unique, unambiguously defined material

- It's easy to determine it

= Bad idea (Inventor): inheritance of material from left to right!

G. Zachmann Virtual Reality & Simulation WS October 2017 Scenegraphs 10

LY

%
VR =

Bremen

Y Sharing of Geometry / Instancing

= Problem: large scenes with lots of identical geometry

= |dea: use a DAG (instead of tree)

= Problem: pointers/names of nodes are no
longer unique/unambiguous!

= Solution: separate structure from content

= The tree proper now only consists of
one kind of node

= Nodes acquire specific properties/content
by attachments / properties

-~
-
-
~
-
-~
-
-
-~
-
-
-
-~
-~

= Advantages
- Everything can be shared now

- Many scenegraphs can be defined
over the same content

- All nodes can acquire lots of different
properties/content

G. Zachmann Virtual Reality & Simulation WS October 2017

Root

N

Trafos

Geom

Scenegraphs

.}E’. CcG

VR

11

]

ot

]

o

Bremen

Y Thread-Safe Scenegraphs for Multi-Threading P :x

.
e

L

User Input Culling
"= |dea: several copies of the scenegraph
= Problem: memory usage & sync! Physics _ Rendering
Simulation
= Solution:
. e "N
= Copy-on-Write of the attachments Collision Haptic
> "Aspects’ Detection Rendering
= Each thread "sees" their own aspect
= Problem: easy access via pointers
Node Attachments

geom->vertex[0]

does not work any more

= Solution (leveraging C++): l
- "Smart Pointers" Aspect 1 -

»>Needs one "pointer class" per node. Ex.: Aspect 2

geomptr = Geometry::create(..); Aspect 3

geomptr->vertex[0]

G. Zachmann Virtual Reality & Simulation WS October 2017 Scenegraphs 12

Bremen

@ Distributed Scenegraphs

Node with 2 attachments

= Synchronisation by changelists

= Make scene graph consistent
at one specific point during []
Thread 1 > >

each cycle of each thread -

— barrier synchronization

v

A B |« . B
At barrier sync
Changelist between threads Changelist

= Distributed rendering:
= Goal: rendering on a cluster
= Problem: changes in the scenegraph need to be propagated

= Solution: simply communicate the changelists

- Items in the changelist = IDs of nodes/attachments to be changed + new data

G. Zachmann Virtual Reality & Simulation WS October 2017 Scenegraphs 13

]

"

Bremen

W Issue: Memory-Layout for Fast Rendering b

" Frequent problem: the elegant way to structure data (from the
perspective of software engineering) is inefficient for fast rendering

= Terminology: "Array of Structs (AoS)" vs. "Struct of Arrays (SoA)"

= For illustration: example of visualization of molecules

= Following good SE practice, we should design classes like this

class Atom
{
public:
Atom(uint atom number, Vec3 position, ...);
private:
Vec3 position ;
uint atom number ;
Atom * bonds [max num bonds];

};

G. Zachmann Virtual Reality & Simulation WS October 2017 Scenegraphs 14

Bremen

Y

=" And the class for a molecule:

{

};

public:

private:

class Molecule

std: :vector<Atom> atoms ;

Molecule(const std::vector<Atom> & atoms) ;

" Memory layout of a molecule is now an AoS:

T
..

<N

E-X3)

B

pos

num

bonds

pos

num

bonds

pos

num

bonds

G. Zachmann

Virtual Reality & Simulation

WS

October 2017

Scenegraphs

15

Bremen

U

= Problem with that: memory transfer becomes slow

= Alternative: Struct of Arrays

class Molecule
{
private:
std: :vector<Vec3> position;
std: :vector<uint> atom number;
};

¥ cc o

“
]

"

VR =

pos[0] pos[1] pos[2] . .. atom_number[0] . ..

G. Zachmann Virtual Reality & Simulation WS October 2017

Scenegraphs

16

Bremen

Y Criteria for the Usage of Scenegraphs

= When is a hierarchical organization of the VE effective:

= Complex scenes: many hierarchies of transformations, lots of different
matierals, large environment with lots of geometry of which usually
only a part can be seen (culling)

= Mostly static geometry (opportunities for rendering optimization, e.g.,
LoD's)

= Specific features of the scenegraph, e.g., particles, clustering, ...
= When not to use a hierarchical organization / scenegraph:

= Simple scenes (e.g., one object at the center, e.g., molecular vis)
= Visualization of scientific data (e.g., CT/MRI, or FEM)
= Highly dynamic geometry (e.g., all objects are deformable)

G. Zachmann Virtual Reality & Simulation WS October 2017 Scenegraphs

18

Bremen

W Fields & Routes Concept by Way of X3D/VRML

= What is X3D/VRML:

= Specification of nodes, each of which has a specific functionality

Scene-graph definition & file format, plus ...

Multimedia-Support

Hyperlinks

Behavior and animation

"VRML" = "Virtual Reality Modeling Language"

= X3D = successor & superset of VRML
= Based on XML

= VRML = different encoding, but same specification

= Encoding = "way to write nodes (and routes) in a file"

G. Zachmann Virtual Reality & Simulation WS October 2017 Scenegraphs

EEEEEEEEEE

21

Bremen

W Hello

" |n X3

World

D (strictly speaking: "XML encoding"):

Like the <html> tag
in HTML ——

Root node —,

<?xml version="1.0" encoding="UTF-8"?>
»<X3D profile='Immersive'>
 <Scene>

Definition —— <Shape>
ofnodes __| ., <Text string="Hello" "world!" />
</Shape>
</Scene>
</X3D>
" |n VRML:
No explicit #X3D V3.1 utfs
root node in ——
VRML Shape {

geometry Text {
string ["Hello" "world!"]

G. Zachmann

Virtual Reality & Simulation WS October 2017

Tip: Use an
ASCII editor
wich identifies
matching brackets
as a text unit

Scenegraphs

% CG

VR

22

=

LY

]

Bremen

v

W Nodes and Fields (aka. Entities and Components) "
= Nodes are used for describing ...

= ... the scenengraph (the usual suspects):

- Geometry, Transform, Group, Lights, LODs, ...

= ... the behavior graph, which implements all response to user input (later)
= Node := set of fields

= "Single-valued fields" and "multiple-valued fields"

= Each field of a node has a unique identifier

= These are predefined by the X3D/VRML specification
= Field types:

= fleld = actual data in the external file

= eventln, eventOut = used only for connecting nodes, data that won’t be
saved in a file

= exposedField = combination of these (xxx, set_xxx, xxx_changed)

G. Zachmann Virtual Reality & Simulation WS October 2017 Scenegraphs 23

Bremen

Y Types of Fields

= All field types exist as "single valued" (SF...) and as "multiple

valued" kind (MF...)

= Example of an SF field:

<Material diffuseColor="0.1 0.5 1" />

material Material {
diffuseColor 0.1 0.5 1

= MF fields are practically the same as arrays

X3D

VRML

= Special notation for signifying an MF field and to separate elements

G. Zachmann Virtual Reality & Simulation WS October 2017

Scenegraphs

¥ cc =

“
]

o

VR &

24

Bremen

U

= Primitive data types: the usual suspects

Field type

X3D example

VRML example

SFBool
SFInt32
SFFloat
SFDouble
SFString

true / false
12

1.2
3.1415926535
"hello"

TRUE / FALSE
-17
-1.7

"world"

= Higher data types:

Field type example
SFColor 0 0.51.0
SFColorRGBA 0 0.5 1.0 0.75
SFVec3f 1.2 3.4 5.6
SFMatrix3f 100 O 0O 001
SFString "hello"

G. Zachmann Virtual Reality & Simulation WS October 2017

Reminder:
for each
SF-field
there exists
an MF-field

Scenegraphs 25

Bremen

3]

[N] 7 ‘?" -
U g
. ce

VR &

= Special field types:

Field type X3D example VRML example
SFNode <Shape> ... </Shape> Shape { ... }
MFNode <Shape>.. , <Group>.. Transform {

oder <Transform>... children [...] }

SFRotation 0 1 0 3.1415

SFTime 0

G. Zachmann Virtual Reality & Simulation WS October 2017 Scenegraphs 26

Bremen

U

= General remarks on the design of X3D/VRML:
= The design is orthogonal in that there exists a MF-type for every SF-type

= The design is not orthogonal in that some types are generic (e.g.
SFBool, SFVec3f) while others have very specific semantics (e.g.
SFColor, SFTime, etc.)

- Itis not clear whether this is good or bad ...

G. Zachmann Virtual Reality & Simulation WS October 2017 Scenegraphs

LY

' CG

VR =

27

Bremen

Y Types of Nodes to Describe the Scenengraph

= All scenegraphs have a set of different kinds of nodes to define
the tree:
1. Nodes for grouping / hierarchy building
2. Nodes for storing actual geometry

3. Nodes for storing appearance, i.e., material def's, textures, etc.

= |n X3D/VRML, for instance:
1. Shape, Group, Transform, Switch , Billboard, LOD,

2. TriangleSet, IndexedTriangleSet, IndexedFaceSet,
IndexedTriangleStripSet, Box, Sphere, Cylinder,

NurbsPatchSurface, ElevationGrid ,

3. Appearance, Material , ImageTexture ,

G. Zachmann Virtual Reality & Simulation WS October 2017 Scenegraphs 28

Bremen

Y

A Simple Example

#X3D V3.1 utfs
Shape ({
geometry Cone {
bottomRadius 1
height 2
}
appearance Appearance {
material Material {
ambientIntensity 0.256

Shape
HE:
5|8
3|5
AR

N
e

.«u%.,u .‘“”

<N

E-X3)

Cone

snipeywonoq

ybIay

diffuseColor 0.029 0.026 0.027
shininess 0.061
specularColor 0.964 0.642 0.980
}
}
}
G. Zachmann Virtual Reality & Simulation WS October 2017

Appear-
ance

material

|

Material

JojoDasnyip
sSauUIUIYsS

I0j0DJejndads

Scenegraphs

29

B

Bremen

Y Specifying the Material
® Usually, the Phong model is assumed: , " r
]out —]amb +]diff +]spec v V

Lyisr = kglin COS @

Ispec = kslin(cos 6)”

Iyt = kg1, + Z(kd cos ¢; + ks cos” 0;)- 1

Jj=1

= kql, + i(ka(nl) + ks(rv)P)-I;

Jj=1

kq = diffuse reflection coefficient
ks = specular reflection coefficient
p = shininess

G. Zachmann Virtual Reality & Simulation WS October 2017 Scenegraphs 30

B

Bremen

.
Y 4

= [n VRML/X3D:

Material {
SFFloat ambientIntensity O.
SFColor diffuseColor
SFColor specularColor

0.8 0.8

SFFloat shininess
SFColor emissiveColor

O O O O O

SFFloat transparency

G. Zachmann Virtual Reality & Simulation WS October 2017 Scenegraphs 31

Bremen

@ common Data Structures to Specify Geometry

= Most scene graphs and game engines

have internal data structures to store Indexed-
geometry in memory-efficient ways Faceset /—\
= One very prominent data structure is coord Coordinate
the IndexedFaceSet (herein VRML): .
coord point
Index
IndexedFaceSet {] :%
SFNode coord NULL [H— [T 1]
MFInt32 coordIndex [] [™, L [1]
SFBool ccw TRUE El‘\ _%
SFBool normalPerVertex TRUE] [T1]
SFBool solid TRUE {IZI [T 1]
SFFloat creaseAngle 0.0 [] %
) —4 T
/| g H-
: [(T1]
Coordinate { .]
) "Sentinel"—
MFVec3f point []
}

G. Zachmann Virtual Reality & Simulation WS October 2017 Scenegraphs 32

Bremen : -
7 4 l.l

[N] U "‘? Ee)
U . cc B
VR =

"® O O file:///Users/zach/Documents/Lehre/VR/vrml/example_trianglese... |

= Example:

Shape ({
geometry IndexedFaceSet ({
coord Coordinate {
point [-2 0 3, -0 1 1
020, 231
35 -2, 4142

|
N
w
=

example indexedtriangleset.wrl

}
coordIndex [01 2 -1 345 -1 6 47 -1]

solid FALSE
ccw TRUE

}

appearance Appearance { .. }

}

= Geometry stored this way is called a mesh

= Although this example rather looks like a "polygon soup"

G. Zachmann Virtual Reality & Simulation WS October 2017 Scenegraphs 33

Bremen

U

Specification of Further Attributes per Vertex

" In meshes, you can always
specify additional vertex
attributes , eg., normals or
texture coordinates per vertex

" Texture coords are stored as

follows:

IndexedFaceSet {
SFNode coord
MFInt32 coordIndex
SFNode texCoord
MFInt32 texCoordIndex
SFBool ccw
SFBool normalPerVertex
SFBool solid

}

G. Zachmann Virtual Reality & Simulation WS

Tex
Coor

©

Sitemssasei:

é;;j—\\\\
dinate

oint

S

OOEOOOELLLL

Indexed-
FaceSet

|

coord

4

texCoord

October 2017

cIn-
dex

tIn-
dex

8 O 5

Coordinate

point

Scenegraphs

34

]

Bremen

@ The OB| File Format g |

= Only geometry and textures

= Usually only used for polygonal geometry

= Can store NURBS, too
= Only in ASCII
= Very easy to read and parse as a human

= Extremely easy to write a loader (takes just an afternoon)

= No hierarchy

G. Zachmann Virtual Reality & Simulation WS October 2017 Scenegraphs 35

Bremen

Y

0.000000 0.000000 -1.000000
-1.000000 -0.000000 -0.00000O0
-0.000000 -0.000000 1.000000
-0.000001 0.000000 1.000000
1.000000 -0.000000 0.0000OO
1.000000 0.000000 0.000001
0.000000 1.000000 -0.000000

-0.000000
usemtl Material ray.png

5/1/1
5/1/1
3/5/2
3/5/2
2/9/3

-1.000000 0.000000

1/2/1 4/3/1
4/3/1 8/4/1
7/6/2 8/7/2
8/7/2 4/8/2
6/10/3 3/5/3

6/10/4 7/6/4 3/5/4

1/2/5
5/1/6
5/1/7

5/1/5 2/9/5
6/10/6 2/9/6
8/11/7 6/10/7

8/11/7 7/12/7 6/10/7

1/2/8
1/2/8

2/9/8 3/13/8
3/13/8 4/14/8
/13/ LILYJLJ

Example

A cube vn
mtllib cube.mtl vn
v 1.000000 -1.000000 -1.000000 vn
v 1.000000 -1.000000 1.000000 vn
v -1.000000 -1.000000 1.000000 vn
v -1.000000 -1.000000 -1.000000 vn
v 1.000000 1.000000 -1.000000 vn
v 0.999999 1.000000 1.000001 vn
v -1.000000 1.000000 1.000000

v -1.000000 1.000000 -1.000000 £
vt 0.748573 0.750412 £
vt 0.749279 0.501284 £
vt 0.999110 0.501077 £
vt 0.999455 0.750380 £
vt 0.250471 0.500702 £
vt 0.249682 0.749677 £
vt 0.001085 0.750380 £
vt 0.001517 0.499994 £
vt 0.499422 0.500239 £
vt 0.500149 0.750166 £
vt 0.748355 0.998230 £
vt 0.500193 0.998728

vt 0.498993 0.250415

vt 0.748953 0.250920

Keyword tells what the information the line contains
(v = vertex, vt = texture coords, vn = vertex normal, f = face)

G. Zachmann

Virtual Reality & Simulation

WS October 2017

Indices defining one
vertex of a face
(v-ID/vt-ID/vn-ID)

Scenegraphs

36

Bremen

W The FBX File Format g |

= Geometry and textures
= Scene graphs (geometry hierarchies)
= Animations

= ASCII (pretty well human readable) and binary

G. Zachmann Virtual Reality & Simulation WS October 2017 Scenegraphs 37

Bremen

@J) Transformations

= Transformations are stored by special kinds of nodes Ro0t
= All children underneath will get transformed by it ?
= There are three ways how to store transforms in a
Transform
scenegraph node
= A single transform node can store just one transform, Trans.
e.g., rotation formed
subtree

= A single transform node can store one xform per kind

(only the common ones), in a pre-defined order

= A single transform node can store a 4x4 matrix

- Itis up to the application programmer to convert standard xforms
(e.g., rotation + translation) to 4x4 matrix

G. Zachmann Virtual Reality & Simulation WS October 2017 Scenegraphs 38

Bremen

Y

= The transformation node:

Transform ({
MFNode children [1] .
SFVec3f center 000 C translation
SFRotation scaleOrientation 0 0 1 0 | Ry rotation
SFVec3f scale 111 S scaling
SFRotation rotation 0 01 0| Ry rotation
SFVec3f translation 000 T translation

}

= Meaning:
M=T-CR-R-S-R™C
with

Pworld = M'pmodel

G. Zachmann Virtual Reality & Simulation WS October 2017 Scenegraphs

.«u%.,u .‘“”

<N

39

E-X3)

B

Bremen

Y

Hierarchical Transformations

= One of the core concepts of scenegraphs

" Transformation node

new local coordinate system (frame)
= Always specified as a transformation
relative to its parent coord frame
= In OpenGL 2:
pushMatrix () ;
multMatrix(M) ;
traverse sub-tree
popMatrix () ;

G. Zachmann Virtual Reality & Simulation

WS October 2017

/-

AAT A\
et

-
o
5
N
N
S
~
q_
2 =

Scenegraphs 40

Bremen QJ %
@ Another Example £ g

Transform node

Book Book ' Maonitor | heybﬂarg

Worldl le S Geom nodes

= Advantage:
= Transform in node TableT makes table + objs on top of it move

= Change of transformation in Top1 makes all the objs on the table top
move, but not the table

G. Zachmann Virtual Reality & Simulation WS October 2017 Scenegraphs 41

Bremen

Y

= Very convenient for articulated objects

= E.g., robots, skeletons, ..

= Remark: 2D drawing programs
(Photoshop et al.) create a similar
hierarchy when you group objects

G. Zachmann Virtual Reality & Simulation WS October 2017

Scenegraphs

44

B

Bremen

Y Specialized Transform Nodes

= Billboard: O

= Automatically computes a rotation, such that it's local z axis always

points towards the viewpoint
= Applies this transformation to the subtree underneath »4/

= Usage: fake complex geometry by r q>
textured rendered on a single polygon

(or a few) V

= Geometry has to be far away

—_——————
\
\
\
\
OL

\
1
1
1
|
1
1
v

G. Zachmann Virtual Reality & Simulation WS October 2017 Scenegraphs 45

Bremen

Y The Behavior Graph § i

= Animations and simulation eventually cause changes in the scene
graph; e.g.:
= Changes of transformations, i.e. the position of objects, e.g. of a robot arm
= Modification of the materials, e.g. color or texture of an object

= Deformation of an object, i.e. changes in the vertex coords

= All these changes are equivalent to the change of a field of a node at
runtime

G. Zachmann Virtual Reality & Simulation WS October 2017 Scenegraphs 46

Bremen

@J Events and Routes

* The mechanism for changing the X3D/VRML scene graph:
= Fields are connected to each other by so-called routes
= A change of a field produces a so-called event

= When an event occurs, the content of the field from the route-start is
copied to the field of the route-end ("the event is propagated")

= Other terminology: data flow paradigm / data flow graph

= Used in most game engines today,
and in scientific visualization tools for a long time

= Syntax of routes:

. =
. cc =

VR =

ROUTE NodelName.outputFieldName TO NodeZName.inputFieldName

G. Zachmann Virtual Reality & Simulation WS October 2017 Scenegraphs

47

Bremen

@ A simple example

DEF timer TimeSensor ({
loop TRUE
cycleInterval 5

}
DEF pi PositionInterpolator ({
key [O 0.5 1 1
keyValue [0 -1 0, 01 0, O -1 0]
}

DEF trf Transform {
translation 0 0 O
children [
Shape { geometry Box { } }

}

ROUTE timer.fraction changed TO pi.set fraction
ROUTE pi.value changed TO trf.set translation

exampls

> _route_bounce.wrl

Timer :@ (Xform
node k{ﬂigy/ node

G. Zachmann Virtual Reality & Simulation WS October 2017

Scenegraphs

'6 06 ﬁle:///Users/zach/Documents/Lehre/VR/vrmIlexample_route_bouA.A‘

48

Bremen

U

= Routes connect nodes — behavior graph:
= |s given by the set of all routes
= A.k.a. route graph, or event graph (blueprint in Unreal engine)

= |s a second graph, superimposed on the scenengraph

G. Zachmann Virtual Reality & Simulation WS October 2017

Scenegraphs

o
<N

49

za
B

Bremen

Y

Example from Unreal

G. Zachmann

Create end with LMB

,’/‘ | o

£ —

Spaggitile grid \ j A
v. 1 ,:" -

=

VO e—

il 110 =i oy

A* path finding behavior graph

Virtual Reality & Simulation WS October 2017

Scenegraphs

50

B

Bremen

@J) Digression: The AEO-concept

< =0
Actions O 04\) | | (3 O) Events

Objects

v

%Oﬁ<

User
= In X3D/VRML:

= Actions & objects are all nodes in the same scene graph

= Events are volatile and have no "tangible" representation

G. Zachmann Virtual Reality & Simulation WS October 2017 Scenegraphs

LY

' CG

VR =

51

Bremen

Y New Concepts for Data Flow in VR/Game Engines §

= Modern systems usually consist of many different components
= Classic approach: fields-and-routes-based data flow

= Problem: many-to-many connectivity

&)
[Input Devices } [Scene GraphT b
| (Prcedural Content} Physics i
K { Particle System }]3@; /

G. Zachmann Virtual Reality & Simulation WS October 2017 Scenegraphs 54

Bremen

Y

= Quickly becomes inviable

Dynamic Player Movement (CryEninge 3)

G. Zachmann Virtual Reality & Simulation WS October 2017 Scenegraphs 55

Bremen

@ Our Novel Approach: the Key-Value Pool

= Assign a unique key to each route (link, connection)
= Producer stores value with key in KV pool — KV pair

= Corresponds to generating an event in the data flow paradigm

= Consumer reads value from KV pair every time in its loop

Set of all KV pairs — KV pool

4 o

Input Devices]

Key-value

000l Physics

Procedural Content

[AI]'_;ﬁ;

[Particle System]

- T

[Scene Graphﬁfﬁ;@

/

G. Zachmann Virtual Reality & Simulation WS October 2017

Scenegraphs

, o
. ce :'.:

VR =

56

Bremen

Y Advantages of the Approach

= KV pool holds complete state of the virtual environment
= Can save/load state, or unwind to earlier state

= One-to-many connections are trivial

G. Zachmann Virtual Reality & Simulation WS October 2017

Scenegraphs

b -::
7, CcG
VR =

57

“
]

Bremen
€
1";" cG "]

W Classic Blocking Data Structures

"

= One lock per KV pair, or one lock for the whole KV pool — both
have disadvantages — in any case: lots of waiting

i

i ﬁ‘ii‘

[=]
=

I

Input Devices J [Scene Graph};ﬁj

,S

S '
Procedural Content Key-value Physics
pool
[Particle System J [Al J’ﬁ
Thread 1 Lock Access Unlock >
Thread 2 | Lock Access Unlock >

N
Access Unlock > Scenegraphs 58
|1

G.zachr Thread 3 i Lock

W Pperformance: Read (50%) & Write (50%) Operations g

160
140
120

—
-
o

80
60

Access time in ms

40
20

G. Zachmann

—Our Approach (KV Pool) | 1
—Lock-Based Approach

—Wait-Free Approach

—Optimistic Approach

—Filtered Approach

A e ‘_‘ﬁ” 3
~ S e ———————
25 50 100 150 250 500

Number of threads accessing the key-value pool

Virtual Reality & Simulation WS October 2017 Scenegraphs 59

Bremen

W Demos

<n
za
B

Javascript? (for Mac) Credits, credits ©

lllustration of
complicated
kinematics

310\ gsb\ VR Vorlesung e\ e (hier: Schmidt

J File Edit View Favoites Tools Help

| Be gt Vew Faoies Lo we K ;
J =Bk ~ = - D f;H Q) Search 5] Favorites ¢ 4 History \%-g 22 Offset Coupllng)

| Address [2] CgabWR-Vorlesunghvmivzainizarin. i | @60 |J|.inks =
= = = = —

| Adchess [5] C:\gabWR Vorlesungwimsphere_eversion.wi <] @6o |[Liks >

L . : S R .
|@&] 7386 fps l_ [S My Computer 4

Cultural heritage
(Quelle: www.aqrazavi.org) I

o Education
Bsp.: sphere eversion

&] 85.33fps [| [My Computer 7

G. Zachmann Virtual Reality & Simulation WS October 2017 Scenegraphs 60

Bremen

@ Sphere Eversion (Video)

http://www.youtube.com/watch?v=BVVfs4zKrgk

G. Zachmann Virtual Reality & Simulation WS October 2017

Scenegraphs

61

Bremen

)

® O Ofile:///Users/zach/Documents/Lehre/VR/vrml/gears/spurbevelwrl | ® O O file:///Users/zach/Documents/Lehre/VR /vrml/gears [ujoint/ujoint....

G. Zachmann

® O O file:///Users/zach/Documents/Lehre/VR/vrml/penrose_staircase.wrl

Shssrans
Il
SEssannn
SEsaaan
SEEsaann
SRR RREnn

3.2 Kb - Each Time Different

public beta INStantreality

- instantreality

Virtual Reality & Simulation WS October 2017 Scenegraphs

#- =
. cc

u
]

wn
wn
wn

VR &

62

