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Motivation

§ Immediate mode vs. retained mode:

§ Immediate mode = OpenGL / Direc3D = Application sends polygons / 
state change commands to the GPU → flexibler

§ Retained mode = scenegraph = applications builds pre-defined data
structures that store polygons and state changes → easier and
(probably) more efficient rendering

§ Flat vs. Hierarchical scene descriptions:

§ Code re-use and knowledge re-use!

§ Descriptive vs. imperative (cv. Prolog vs. C)

§ Thinking objects … not rendering processes 
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Structure of a Scene Graph

§ Directed, acyclic graph (DAG)

§ Often even a proper tree

§ Consists of heterogeneous nodes

§ Example:

§ Most frequent operation on scene graph: rendering

§ Amounts to depth-first traversal

§ Operation per node depends on kind of node

Car

Wheels Body

Transformations

Wheel geo

Light

Root
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Semantics

§ Semantics of a node:
§ Root = "universe"

§ Leaves = "content" (geometry, sound, …)

§ Inner nodes = forming groups, store state (changes), and
other non-geom. functionality, e.g., transforms

§ Grouping: criteria for grouping is left to the application, e.g., by

§ Geometric proximity → scenegraph induces a nice BVH

§ Material → good, because state changes cost performance!

§ Meaning of nodes, e.g., all electrical objs in the car under one node →
good for quickly switching off/on all electrical parts in the car

§ Semantics of edges = inheritance of states

§ Transformation

§ Material

§ Light sources (?)
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Kinds of Nodes

§ There are 2 hierarchies: scenegraph hierarchy + class hierarchy

§ The flexibility and the expressiveness of a scenegraph depends 

heavily on the kinds and number of node classes!

§ Some classes (or, rather, their instances) will not be part of the 

scenegraph, but still be in the overall scene

Nodes

Inner nodes Leaves

Geometry

Transform

GroupLOD Sound

Particle system

Non-nodes

Material Texture

Light source?
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Issues

§ Light sources:

§ Usually part of the scenegraph

§ Problem with naïve semantics: what if 
light source should move/turn, but 
not the scene it shines on?

§ Solution: beacons

- Lightsource node lights its sub-scene underneath

- Position/orientation is taken from the beacon

§ Camera: to be, or not to be a node 
in the scenegraph?

§ Both ways have dis-/advantages

§ If not a node: use beacon principle
Pos/Ori

Beacon

Beacon

Light source

Part of scene that
is lighted by
lightsource
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Material 

§ Material =

§ Color, texture, lighting parameters (see Phong)

§ Property of a node

§ Semantics of materials stored with inner nodes: top-down inheritance

§ Path from leaf to root should have at least one material

§ Consequence:

- Each leaf gets rendered with a unique, unambiguously defined material

- It's easy to determine it

§ Bad idea (Inventor): inheritance of material from left to right!
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Sharing of Geometry / Instancing

§ Problem: large scenes with lots of identical geometry

§ Idea: use a DAG (instead of tree)

§ Problem: pointers/names of nodes are no
longer unique/unambiguous!

§ Solution: separate structure from content

§ The tree proper now only consists of 
one kind of node

§ Nodes acquire specific properties/content 
by attachments / properties

§ Advantages

- Everything can be shared now

- Many scenegraphs can be defined
over the same content

- All nodes can acquire lots of different
properties/content

Root

Trafos

Geom

Root

Trafos

Geom
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Thread-Safe Scenegraphs for Multi-Threading 

§ Idea: several copies of the scenegraph

§ Problem: memory usage & sync!

§ Solution: 

§ Copy-on-Write of the attachments
→ "Aspects"

§ Each thread "sees" their own aspect

§ Problem: easy access via pointers
geom->vertex[0]

does not work any more

§ Solution (leveraging C++):

- "Smart Pointers"

ØNeeds one "pointer class" per node.  Ex.:
geomptr = Geometry::create(…);

geomptr->vertex[0] ...

User Input

Collision
Detection

Rendering

Culling

Physics
Simulation

Haptic
Rendering

Node Attachments

Aspect 1

Aspect 2

Aspect 3
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Distributed Scenegraphs

§ Synchronisation by changelists

§ Make scene graph consistent
at one specific point during
each cycle of each thread
⟶ barrier synchronization

§ Distributed rendering:

§ Goal: rendering on a cluster 

§ Problem: changes in the scenegraph need to be propagated

§ Solution: simply communicate the changelists

- Items in the changelist = IDs of nodes/attachments to be changed + new data

A B

Node with 2 attachments

A, B B

Changelist
At barrier sync

between threads

Thread 1

Thread 2

Changelist
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Issue: Memory-Layout for Fast Rendering

§ Frequent problem: the elegant way to structure data (from the 
perspective of software engineering) is inefficient for fast rendering 

§ Terminology: "Array of Structs (AoS)" vs. "Struct of Arrays (SoA)"

§ For illustration: example of visualization of molecules

§ Following good SE practice, we should design classes like this

class Atom
{
public:

Atom( uint atom_number, Vec3 position, ... );
private:

Vec3   position_;
uint atom_number_;
Atom * bonds_[max_num_bonds];
...

};
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§ And the class for a molecule:

§ Memory layout of a molecule is now an AoS:

class Molecule
{
public:

Molecule( const std::vector<Atom> & atoms );
private:

std::vector<Atom> atoms_;
...

};

pos num bonds pos num bonds pos num bonds
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§ Problem with that: memory transfer becomes slow

§ Alternative: Struct of Arrays

class Molecule
{
private:

std::vector<Vec3>  position;
std::vector<uint>  atom_number;
...

};

pos[0] pos[1] pos[2] . . . atom_number[0] . . .
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Criteria for the Usage of Scenegraphs

§ When is a hierarchical organization of the VE effective:

§ Complex scenes: many hierarchies of transformations, lots of different 
matierals, large environment with lots of geometry of which usually 
only a part can be seen (culling)

§ Mostly static geometry (opportunities for rendering optimization, e.g., 
LoD's)

§ Specific features of the scenegraph, e.g., particles, clustering, …

§ When not to use a hierarchical organization / scenegraph:

§ Simple scenes (e.g., one object at the center, e.g., molecular vis)

§ Visualization of scientific data (e.g., CT/MRI, or FEM)

§ Highly dynamic geometry (e.g., all objects are deformable)



G. Zachmann 21ScenegraphsVirtual Reality & Simulation 26 October 2017WS

Fields & Routes Concept by Way of X3D/VRML

§ What is X3D/VRML:

§ Specification of nodes, each of which has a specific functionality

§ Scene-graph definition & file format, plus …

§ Multimedia-Support

§ Hyperlinks

§ Behavior and animation

§ "VRML" = "Virtual Reality Modeling Language"

§ X3D = successor & superset of VRML

§ Based on XML 

§ VRML = different encoding, but same specification

§ Encoding = "way to write nodes (and routes) in a file"
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Hello World

§ In X3D (strictly speaking: "XML encoding"):

§ In VRML:

<?xml version="1.0" encoding="UTF-8"?>
<X3D profile='Immersive'>
<Scene>
<Shape>
<Text string="Hello" "world!" />

</Shape>
</Scene>
</X3D>

#X3D V3.1 utf8
Shape {
geometry Text {
string [ "Hello" "world!" ]

}
}

Tip: Use an 
ASCII editor

wich identifies
matching brackets

as a text unit

Like the <html> tag
in HTML

Definition
of nodes

Root node

No explicit 
root node in 

VRML
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Nodes and Fields (aka. Entities and Components)

§ Nodes are used for describing … 

§ … the scenengraph (the usual suspects):

- Geometry, Transform, Group, Lights, LODs, …

§ … the behavior graph, which implements all response to user input (later)

§ Node := set of fields

§ "Single-valued fields" and "multiple-valued fields"

§ Each field of a node has a unique identifier

§ These are predefined by the X3D/VRML specification

§ Field types:

§ field = actual data in the external file

§ eventIn, eventOut = used only for connecting nodes, data that won’t be 
saved in a file

§ exposedField = combination of these (xxx, set_xxx, xxx_changed)
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Types of Fields

§ All field types exist as "single valued" (SF…) and as "multiple 
valued" kind (MF…)

§ Example of an SF field:

§ MF fields are practically the same as arrays

§ Special notation for signifying an MF field and to separate elements

<Material diffuseColor="0.1 0.5 1" />

material Material {
diffuseColor  0.1 0.5 1

}

X3D

VRML
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§ Primitive data types: the usual suspects

§ Higher data types:

Field type X3D example VRML example

SFBool true / false TRUE / FALSE

SFInt32 12 -17

SFFloat 1.2 -1.7

SFDouble 3.1415926535

SFString "hello" "world"

Reminder: 
for each
SF-field
there exists
an MF-field

Field type example

SFColor 0 0.5 1.0

SFColorRGBA 0 0.5 1.0 0.75

SFVec3f 1.2 3.4 5.6

SFMatrix3f 1 0 0  0 1 0  0 0 1

SFString "hello"
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§ Special field types:

Field type X3D example VRML example

SFNode <Shape> ... </Shape> Shape { ... }

MFNode <Shape>… , <Group>… 

oder <Transform>…

Transform {

children [... ] }

SFRotation 0 1 0 3.1415

SFTime 0
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§ General remarks on the design of X3D/VRML:

§ The design is orthogonal in that there exists a MF-type for every SF-type 

§ The design is not orthogonal in that some types are generic (e.g. 
SFBool, SFVec3f) while others have very specific semantics (e.g. 
SFColor, SFTime, etc.)

- It is not clear whether this is good or bad …
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Types of Nodes to Describe the Scenengraph

§ All scenegraphs have a set of different kinds of nodes to define
the tree:

1. Nodes for grouping / hierarchy building

2. Nodes for storing actual geometry

3. Nodes for storing appearance, i.e., material def's, textures, etc.

§ In X3D/VRML, for instance:

1. Shape, Group, Transform , Switch , Billboard, LOD, ...

2. TriangleSet, IndexedTriangleSet, IndexedFaceSet, 

IndexedTriangleStripSet, Box, Sphere, Cylinder, 

NurbsPatchSurface, ElevationGrid , ... ...

3. Appearance, Material , ImageTexture , 
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A Simple Example

#X3D V3.1 utf8
Shape {
geometry Cone {
bottomRadius 1
height 2

}
appearance Appearance {
material Material {
ambientIntensity 0.256
diffuseColor 0.029 0.026 0.027
shininess 0.061
specularColor 0.964 0.642 0.980

}
}

}

Shape
ap

p
earance

geom
etry

Cone

bottom
Radius

height

Appear-
ance

material

Material

diffuseC
olor

shininess

sp
ecularC

olor
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Specifying the Material

§ Usually, the Phong model is assumed:

kd = diffuse reflection coefficient 
ks = specular reflection coefficient 
p  = shininess

l
r

v

n

I
out

= I
amb

+ I
di↵

+ I
spec

= kdIa +
nX

j=1

( kd(nl) + ks(rv)
p )·Ij

Idi↵ = kdIin cos�

Ispec = ksIin(cos ✓)
p

I
out

= kd ·Ia +
nX

j=1

(kd cos�j + ks cos
p ✓j)·Ij
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§ In VRML/X3D:

Material {
SFFloat ambientIntensity 0.2
SFColor diffuseColor 0.8 0.8 0.8
SFColor specularColor 0 0 0
SFFloat shininess 0.2
SFColor emissiveColor 0 0 0 
SFFloat transparency 0

}
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Common Data Structures to Specify Geometry

§ Most scene graphs and game engines 
have internal data structures to store 
geometry in memory-efficient ways

§ One very prominent data structure is 
the IndexedFaceSet (here in VRML):

Indexed-
FaceSet

coord
Index

coord Coordinate

point

-1

-1

IndexedFaceSet {
SFNode coord NULL
MFInt32 coordIndex []
SFBool ccw TRUE
SFBool normalPerVertex TRUE
SFBool solid       TRUE
SFFloat creaseAngle 0.0

}

Coordinate {
MFVec3f point []

}

"Sentinel"
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§ Example:

§ Geometry stored this way is called a mesh

§ Although this example rather looks like a "polygon soup"

Shape {
geometry IndexedFaceSet {
coord Coordinate {
point [ -2 0 3, -0 1 1, -1 3 0,

0 2 0,  2 3 1, -2 3 1,
3 5 -2, 4 4 2 ]

}
coordIndex [ 0 1 2 -1  3 4 5 -1  6 4 7 -1 ]
solid FALSE
ccw TRUE

}
appearance Appearance { … }

}

example_indexedtriangleset.wrl
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Specification of Further Attributes per Vertex

§ In meshes, you can always 
specify additional vertex
attributes , eg., normals or
texture coordinates per vertex

§ Texture coords are stored as
follows:

Indexed-
FaceSet

cIn-
dex

coord
Coordinate

point

-1

-1

texCoord

tIn-
dex

-1

-1

Texture-
Coordinate

point

IndexedFaceSet {
SFNode coord
MFInt32 coordIndex
SFNode texCoord
MFInt32 texCoordIndex
SFBool ccw
SFBool normalPerVertex
SFBool solid

}
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The OBJ File Format

§ Only geometry and textures

§ Usually only used for polygonal geometry

§ Can store NURBS, too

§ Only in ASCII

§ Very easy to read and parse as a human

§ Extremely easy to write a loader (takes just an afternoon)

§ No hierarchy



G. Zachmann 36ScenegraphsVirtual Reality & Simulation 26 October 2017WS

Example

# A cube
mtllib cube.mtl
v 1.000000 -1.000000 -1.000000 
v 1.000000 -1.000000 1.000000 
v -1.000000 -1.000000 1.000000 
v -1.000000 -1.000000 -1.000000 
v 1.000000 1.000000 -1.000000 
v 0.999999 1.000000 1.000001 
v -1.000000 1.000000 1.000000 
v -1.000000 1.000000 -1.000000 
vt 0.748573 0.750412 
vt 0.749279 0.501284 
vt 0.999110 0.501077 
vt 0.999455 0.750380 
vt 0.250471 0.500702 
vt 0.249682 0.749677 
vt 0.001085 0.750380 
vt 0.001517 0.499994 
vt 0.499422 0.500239 
vt 0.500149 0.750166 
vt 0.748355 0.998230 
vt 0.500193 0.998728 
vt 0.498993 0.250415 
vt 0.748953 0.250920

vn 0.000000 0.000000 -1.000000 
vn -1.000000 -0.000000 -0.000000 
vn -0.000000 -0.000000 1.000000 
vn -0.000001 0.000000 1.000000 
vn 1.000000 -0.000000 0.000000 
vn 1.000000 0.000000 0.000001 
vn 0.000000 1.000000 -0.000000 
vn -0.000000 -1.000000 0.000000 
usemtl Material_ray.png 
f 5/1/1 1/2/1 4/3/1 
f 5/1/1 4/3/1 8/4/1 
f 3/5/2 7/6/2 8/7/2 
f 3/5/2 8/7/2 4/8/2 
f 2/9/3 6/10/3 3/5/3 
f 6/10/4 7/6/4 3/5/4 
f 1/2/5 5/1/5 2/9/5 
f 5/1/6 6/10/6 2/9/6 
f 5/1/7 8/11/7 6/10/7 
f 8/11/7 7/12/7 6/10/7 
f 1/2/8 2/9/8 3/13/8 
f 1/2/8 3/13/8 4/14/8 

Keyword tells what the information the line contains 
(v = vertex, vt = texture coords, vn = vertex normal, f = face)

Indices defining one
vertex of a face 
(v-ID/vt-ID/vn-ID)
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The FBX File Format

§ Geometry and textures

§ Scene graphs (geometry hierarchies)

§ Animations

§ ASCII (pretty well human readable) and binary
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Transformations

§ Transformations are stored by special kinds of nodes

§ All children underneath will get transformed by it 

§ There are three ways how to store transforms in a 
scenegraph

§ A single transform node can store just one transform, 
e.g., rotation

§ A single transform node can store one xform per kind 
(only the common ones), in a pre-defined order

§ A single transform node can store a 4x4 matrix

- It is up to the application programmer to convert standard xforms
(e.g., rotation + translation) to 4x4 matrix

Root

Transform
node

Trans-
formed
subtree
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§ The transformation node:

§ Meaning:

with

Transform {
MFNode     children         []
SFVec3f    center           0 0 0
SFRotation scaleOrientation 0 0 1 0
SFVec3f    scale            1 1 1
SFRotation rotation         0 0 1 0
SFVec3f    translation      0 0 0

}

C
R1

R2

S

T

M = T ·C ·R2 ·R1 ·S ·R�1
1 ·C�1

p
world

= M ·p
model

translation
rotation
scaling
rotation
translation
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Hierarchical Transformations

§ One of the core concepts of scenegraphs

§ Transformation node  º
new local coordinate system (frame)

§ Always specified as a transformation
relative to its parent coord frame

§ In OpenGL 2:
pushMatrix();

multMatrix( M );

traverse sub-tree
popMatrix();
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Another Example

§ Advantage: 

§ Transform in node Table1 makes table + objs on top of it move

§ Change of transformation in Top1 makes all the objs on the table top 
move, but not the table

Grouping node

Transform node

Geom nodes
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§ Very convenient for articulated objects

§ E.g., robots, skeletons, ..

§ Remark: 2D drawing programs 
(Photoshop et al.) create a similar 
hierarchy when you group objects

Figure 1: Illustration of the part-finding process: (A),(a) a template mesh is registered to all other meshes by CC
algorithm. (B) the mesh is divided into parts by clustering the estimated local transformations for each template point,
different parts are color-coded. (b) the mesh is randomly divided into small patches of approximately equal areas,
different parts are color-coded. (C),(c) results in (B),(b) are used to initialize the EM algorithm which solves for the part
assignments and the transformation for each part. (D),(d) the joints linking the rigid parts are estimated.

are not appropriate for recovering an articulated ob-
ject skeleton: the notion of a joint between parts is
not well-defined when each part consists of several
disconnected regions. In order to model the object
articulation correctly, we impose another kind of con-
straint, which we call hard contiguity constraint. The
constraint specifies that a part can consist of no more
than one connected component in the template mesh.

4.3 Model Summary

Ignoring the hard contiguity constraints, the frame-
work described in Sec. 4 defines a Markov network over
the part labels α. A Markov network encodes the joint
distribution over a set of variables as a product of po-
tentials:

P (α) =
1
Z

∏

j

φ(αj)
∏

j,k

φ(αj , αk) (3)

where Z is a normalization constant.
The singleton potentials φ(αj) correspond to the

probabilities that a template point xj generates its
corresponding points z1,j , . . . , zN,j, as follows:

φ(αj = p) =
N∏

i=1

P (zi,j | αj = p, Ti,p) (4)

The potential values depend on the transformations
Ti,p. Thus, the joint distribution depends on T , the
set of rigid part transformations. The pairwise po-
tentials in the Markov network correspond to the soft
contiguity constraints, and are defined in Eq. (2).

5 Optimization

We start with a template mesh X and instance meshes
Z1, . . . , ZN , and we need to solve for the set of part
transformations T , as well as for the part labels α.

We want to find a joint assignment to the part
labels and the transformations which maximizes the
log-likelihood of the model:

argmax
α,T

log P (α, T ) = argmax
α,T

{
∑

(j,k)∈E(X)

log φ(αj , αk)−

− 1
2σ2

n∑

i=1

J∑

j=1

∥zi,j − Ti,αj (xj)∥2} (5)

where J is the number of points in meshes
X, Z1, . . . , ZN . Note that our objective is defined as
optimizing both the part assignment and transforma-
tions simultaneously, rather than marginalizing over
the (hidden) part assignment variables. A hard as-
signment of points into parts is very appropriate for
our application, and it also allows the use of efficient
global optimization steps, as we discuss below. Note
that the hard contiguity constraints are not accounted
for in the above equation, and have to be enforced
separately.

The objective in Eq. (5) is non-convex in the set of
variables α, T . We optimize it using hard Expectation-
Minimization (EM) to find a good assignment for α, T
in an iterative fashion. EM iterates between two steps:
the E-step calculates a hard assignment for all part
labels α given an estimate of the transformations T .
The M-step improves the estimate for the parameters
T using the labels α obtained in the E-step.

5.1 E-Step

Our goal in the E-step is to find the MAP assignment
to the part labels maximizing Eq. (5) for a given set of
transformations T . It turns out that this is an instance
of the Uniform Labeling problem [17], which can be
expressed as an integer program. Following Kleinberg
and Tardos [17], we introduce indicator variables αjp
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Specialized Transform Nodes

§ Billboard:

§ Automatically computes a rotation, such that it's local z axis always 
points towards the viewpoint

§ Applies this transformation to the subtree underneath

§ Usage: fake complex geometry by
textured rendered on a single polygon
(or a few)

§ Geometry has to be far away



G. Zachmann 46ScenegraphsVirtual Reality & Simulation 26 October 2017WS

The Behavior Graph

§ Animations and simulation eventually cause changes in the scene 
graph; e.g.:

§ Changes of transformations, i.e. the position of objects, e.g. of a robot arm

§ Modification of the materials, e.g. color or texture of an object

§ Deformation of an object, i.e. changes in the vertex coords

§ All these changes are equivalent to the change of a field of a node at 
runtime
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Events and Routes

§ The mechanism for changing the X3D/VRML scene graph:

§ Fields are connected to each other by so-called routes

§ A change of a field produces a so-called event

§ When an event occurs, the content of the field from the route-start is 

copied to the field of the route-end ("the event is propagated")

§ Other terminology: data flow paradigm / data flow graph

§ Used in most game engines today, 

and in scientific visualization tools for a long time

§ Syntax of routes:

ROUTE Node1Name.outputFieldName TO Node2Name.inputFieldName
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A simple example

DEF timer TimeSensor {
loop TRUE
cycleInterval 5

}

DEF pi PositionInterpolator {
key [ 0       0.5    1      ]
keyValue [ 0 -1 0, 0 1 0, 0 -1 0 ]

}

DEF trf Transform {
translation 0 0 0
children [
Shape { geometry Box { } }

]
}

ROUTE timer.fraction_changed TO pi.set_fraction
ROUTE pi.value_changed TO trf.set_translation

example_route_bounce.wrl

Timer
node

Inter-
polator

Xform
node
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§ Routes connect nodes ⟶ behavior graph:

§ Is given by the set of all routes

§ A.k.a. route graph, or event graph (blueprint in Unreal engine)

§ Is a second graph, superimposed on the scenengraph
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Example from Unreal

A* path finding behavior graph
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Digression: The AEO-concept

§ In X3D/VRML:

§ Actions & objects are all nodes in the same scene graph

§ Events are volatile and have no "tangible" representation

User

Actions Events

Objects
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New Concepts for Data Flow in VR/Game Engines

§ Modern systems usually consist of many different components

§ Classic approach: fields-and-routes-based data flow

§ Problem: many-to-many connectivity

Procedural Content

Particle System AI

Input Devices Scene Graph

Physics
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§ Quickly becomes inviable

Dynamic Player Movement (CryEninge 3)



G. Zachmann 56ScenegraphsVirtual Reality & Simulation 26 October 2017WS

Our Novel Approach: the Key-Value Pool

§ Assign a unique key to each route (link, connection)

§ Producer stores value with key in KV pool ⟶ KV pair
§ Corresponds to generating an event in the data flow paradigm

§ Consumer reads value from KV pair every time in its loop

§ Set of all KV pairs ⟶ KV pool

Procedural Content

Particle System AI

Input Devices Scene Graph

Physics
Key-value

pool
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Advantages of the Approach

§ KV pool holds complete state of the virtual environment

§ Can save/load state, or unwind to earlier state

§ One-to-many connections are trivial
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Classic Blocking Data Structures

§ One lock per KV pair, or one lock for the whole KV pool ⟶ both 
have disadvantages ⟶ in any case: lots of waiting

Procedural Content

Particle System AI

Input Devices Scene Graph

PhysicsKey-value
pool

Lock Access Unlock

Lock Access Unlock

Lock Access Unlock

Thread 1

Thread 2

Thread 3
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Performance: Read (50%) & Write (50%) Operations
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Number of threads accessing the key-value pool

Our Approach

Lock-Based Approach

Wait-Free Approach

Optimistic Approach

Filtered Approach

(KV Pool)
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Demos

Cultural heritage
(Quelle: www.aqrazavi.org)

Education
Bsp.: sphere eversion

Illustration of
complicated 
kinematics
(hier: Schmidt 
Offset Coupling )

Would somebody be interested in 
implementing them on Unreal or 
Javascript? (for Mac)    Credits, credits J
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Sphere Eversion (Video)

http://www.youtube.com/watch?v=BVVfs4zKrgk
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