
Virtual Reality &
Physically-Based Simulation
Scenegraphs
& Game Engines

G. Zachmann
University of Bremen, Germany
cgvr.cs.uni-bremen.de

G. Zachmann 4ScenegraphsVirtual Reality & Simulation 26 October 2017WS

Overall System Architecture

OpenGLSound Library Force-Feedback
Library

Scene Graph
(3D geometry manager & database)

Sound Renderer
(sound propagation)

Physically-based
simulation

Game Logic & AI

G. Zachmann 5ScenegraphsVirtual Reality & Simulation 26 October 2017WS

Motivation

§ Immediate mode vs. retained mode:

§ Immediate mode = OpenGL / Direc3D = Application sends polygons /
state change commands to the GPU → flexibler

§ Retained mode = scenegraph = applications builds pre-defined data
structures that store polygons and state changes → easier and
(probably) more efficient rendering

§ Flat vs. Hierarchical scene descriptions:

§ Code re-use and knowledge re-use!

§ Descriptive vs. imperative (cv. Prolog vs. C)

§ Thinking objects … not rendering processes

G. Zachmann 6ScenegraphsVirtual Reality & Simulation 26 October 2017WS

Structure of a Scene Graph

§ Directed, acyclic graph (DAG)

§ Often even a proper tree

§ Consists of heterogeneous nodes

§ Example:

§ Most frequent operation on scene graph: rendering

§ Amounts to depth-first traversal

§ Operation per node depends on kind of node

Car

Wheels Body

Transformations

Wheel geo

Light

Root

G. Zachmann 7ScenegraphsVirtual Reality & Simulation 26 October 2017WS

Semantics

§ Semantics of a node:
§ Root = "universe"

§ Leaves = "content" (geometry, sound, …)

§ Inner nodes = forming groups, store state (changes), and
other non-geom. functionality, e.g., transforms

§ Grouping: criteria for grouping is left to the application, e.g., by

§ Geometric proximity → scenegraph induces a nice BVH

§ Material → good, because state changes cost performance!

§ Meaning of nodes, e.g., all electrical objs in the car under one node →
good for quickly switching off/on all electrical parts in the car

§ Semantics of edges = inheritance of states

§ Transformation

§ Material

§ Light sources (?)

G. Zachmann 8ScenegraphsVirtual Reality & Simulation 26 October 2017WS

Kinds of Nodes

§ There are 2 hierarchies: scenegraph hierarchy + class hierarchy

§ The flexibility and the expressiveness of a scenegraph depends

heavily on the kinds and number of node classes!

§ Some classes (or, rather, their instances) will not be part of the

scenegraph, but still be in the overall scene

Nodes

Inner nodes Leaves

Geometry

Transform

GroupLOD Sound

Particle system

Non-nodes

Material Texture

Light source?

G. Zachmann 9ScenegraphsVirtual Reality & Simulation 26 October 2017WS

Issues

§ Light sources:

§ Usually part of the scenegraph

§ Problem with naïve semantics: what if
light source should move/turn, but
not the scene it shines on?

§ Solution: beacons

- Lightsource node lights its sub-scene underneath

- Position/orientation is taken from the beacon

§ Camera: to be, or not to be a node
in the scenegraph?

§ Both ways have dis-/advantages

§ If not a node: use beacon principle
Pos/Ori

Beacon

Beacon

Light source

Part of scene that
is lighted by
lightsource

G. Zachmann 10ScenegraphsVirtual Reality & Simulation 26 October 2017WS

Material

§ Material =

§ Color, texture, lighting parameters (see Phong)

§ Property of a node

§ Semantics of materials stored with inner nodes: top-down inheritance

§ Path from leaf to root should have at least one material

§ Consequence:

- Each leaf gets rendered with a unique, unambiguously defined material

- It's easy to determine it

§ Bad idea (Inventor): inheritance of material from left to right!

G. Zachmann 11ScenegraphsVirtual Reality & Simulation 26 October 2017WS

Sharing of Geometry / Instancing

§ Problem: large scenes with lots of identical geometry

§ Idea: use a DAG (instead of tree)

§ Problem: pointers/names of nodes are no
longer unique/unambiguous!

§ Solution: separate structure from content

§ The tree proper now only consists of
one kind of node

§ Nodes acquire specific properties/content
by attachments / properties

§ Advantages

- Everything can be shared now

- Many scenegraphs can be defined
over the same content

- All nodes can acquire lots of different
properties/content

Root

Trafos

Geom

Root

Trafos

Geom

G. Zachmann 12ScenegraphsVirtual Reality & Simulation 26 October 2017WS

Thread-Safe Scenegraphs for Multi-Threading

§ Idea: several copies of the scenegraph

§ Problem: memory usage & sync!

§ Solution:

§ Copy-on-Write of the attachments
→ "Aspects"

§ Each thread "sees" their own aspect

§ Problem: easy access via pointers
geom->vertex[0]

does not work any more

§ Solution (leveraging C++):

- "Smart Pointers"

ØNeeds one "pointer class" per node. Ex.:
geomptr = Geometry::create(…);

geomptr->vertex[0] ...

User Input

Collision
Detection

Rendering

Culling

Physics
Simulation

Haptic
Rendering

Node Attachments

Aspect 1

Aspect 2

Aspect 3

G. Zachmann 13ScenegraphsVirtual Reality & Simulation 26 October 2017WS

Distributed Scenegraphs

§ Synchronisation by changelists

§ Make scene graph consistent
at one specific point during
each cycle of each thread
⟶ barrier synchronization

§ Distributed rendering:

§ Goal: rendering on a cluster

§ Problem: changes in the scenegraph need to be propagated

§ Solution: simply communicate the changelists

- Items in the changelist = IDs of nodes/attachments to be changed + new data

A B

Node with 2 attachments

A, B B

Changelist
At barrier sync

between threads

Thread 1

Thread 2

Changelist

G. Zachmann 14ScenegraphsVirtual Reality & Simulation 26 October 2017WS

Issue: Memory-Layout for Fast Rendering

§ Frequent problem: the elegant way to structure data (from the
perspective of software engineering) is inefficient for fast rendering

§ Terminology: "Array of Structs (AoS)" vs. "Struct of Arrays (SoA)"

§ For illustration: example of visualization of molecules

§ Following good SE practice, we should design classes like this

class Atom
{
public:

Atom(uint atom_number, Vec3 position, ...);
private:

Vec3 position_;
uint atom_number_;
Atom * bonds_[max_num_bonds];
...

};

G. Zachmann 15ScenegraphsVirtual Reality & Simulation 26 October 2017WS

§ And the class for a molecule:

§ Memory layout of a molecule is now an AoS:

class Molecule
{
public:

Molecule(const std::vector<Atom> & atoms);
private:

std::vector<Atom> atoms_;
...

};

pos num bonds pos num bonds pos num bonds

G. Zachmann 16ScenegraphsVirtual Reality & Simulation 26 October 2017WS

§ Problem with that: memory transfer becomes slow

§ Alternative: Struct of Arrays

class Molecule
{
private:

std::vector<Vec3> position;
std::vector<uint> atom_number;
...

};

pos[0] pos[1] pos[2] . . . atom_number[0] . . .

G. Zachmann 18ScenegraphsVirtual Reality & Simulation 26 October 2017WS

Criteria for the Usage of Scenegraphs

§ When is a hierarchical organization of the VE effective:

§ Complex scenes: many hierarchies of transformations, lots of different
matierals, large environment with lots of geometry of which usually
only a part can be seen (culling)

§ Mostly static geometry (opportunities for rendering optimization, e.g.,
LoD's)

§ Specific features of the scenegraph, e.g., particles, clustering, …

§ When not to use a hierarchical organization / scenegraph:

§ Simple scenes (e.g., one object at the center, e.g., molecular vis)

§ Visualization of scientific data (e.g., CT/MRI, or FEM)

§ Highly dynamic geometry (e.g., all objects are deformable)

G. Zachmann 21ScenegraphsVirtual Reality & Simulation 26 October 2017WS

Fields & Routes Concept by Way of X3D/VRML

§ What is X3D/VRML:

§ Specification of nodes, each of which has a specific functionality

§ Scene-graph definition & file format, plus …

§ Multimedia-Support

§ Hyperlinks

§ Behavior and animation

§ "VRML" = "Virtual Reality Modeling Language"

§ X3D = successor & superset of VRML

§ Based on XML

§ VRML = different encoding, but same specification

§ Encoding = "way to write nodes (and routes) in a file"

G. Zachmann 22ScenegraphsVirtual Reality & Simulation 26 October 2017WS

Hello World

§ In X3D (strictly speaking: "XML encoding"):

§ In VRML:

<?xml version="1.0" encoding="UTF-8"?>
<X3D profile='Immersive'>
<Scene>
<Shape>
<Text string="Hello" "world!" />

</Shape>
</Scene>
</X3D>

#X3D V3.1 utf8
Shape {
geometry Text {
string ["Hello" "world!"]

}
}

Tip: Use an
ASCII editor

wich identifies
matching brackets

as a text unit

Like the <html> tag
in HTML

Definition
of nodes

Root node

No explicit
root node in

VRML

G. Zachmann 23ScenegraphsVirtual Reality & Simulation 26 October 2017WS

Nodes and Fields (aka. Entities and Components)

§ Nodes are used for describing …

§ … the scenengraph (the usual suspects):

- Geometry, Transform, Group, Lights, LODs, …

§ … the behavior graph, which implements all response to user input (later)

§ Node := set of fields

§ "Single-valued fields" and "multiple-valued fields"

§ Each field of a node has a unique identifier

§ These are predefined by the X3D/VRML specification

§ Field types:

§ field = actual data in the external file

§ eventIn, eventOut = used only for connecting nodes, data that won’t be
saved in a file

§ exposedField = combination of these (xxx, set_xxx, xxx_changed)

G. Zachmann 24ScenegraphsVirtual Reality & Simulation 26 October 2017WS

Types of Fields

§ All field types exist as "single valued" (SF…) and as "multiple
valued" kind (MF…)

§ Example of an SF field:

§ MF fields are practically the same as arrays

§ Special notation for signifying an MF field and to separate elements

<Material diffuseColor="0.1 0.5 1" />

material Material {
diffuseColor 0.1 0.5 1

}

X3D

VRML

G. Zachmann 25ScenegraphsVirtual Reality & Simulation 26 October 2017WS

§ Primitive data types: the usual suspects

§ Higher data types:

Field type X3D example VRML example

SFBool true / false TRUE / FALSE

SFInt32 12 -17

SFFloat 1.2 -1.7

SFDouble 3.1415926535

SFString "hello" "world"

Reminder:
for each
SF-field
there exists
an MF-field

Field type example

SFColor 0 0.5 1.0

SFColorRGBA 0 0.5 1.0 0.75

SFVec3f 1.2 3.4 5.6

SFMatrix3f 1 0 0 0 1 0 0 0 1

SFString "hello"

G. Zachmann 26ScenegraphsVirtual Reality & Simulation 26 October 2017WS

§ Special field types:

Field type X3D example VRML example

SFNode <Shape> ... </Shape> Shape { ... }

MFNode <Shape>… , <Group>…

oder <Transform>…

Transform {

children [...] }

SFRotation 0 1 0 3.1415

SFTime 0

G. Zachmann 27ScenegraphsVirtual Reality & Simulation 26 October 2017WS

§ General remarks on the design of X3D/VRML:

§ The design is orthogonal in that there exists a MF-type for every SF-type

§ The design is not orthogonal in that some types are generic (e.g.
SFBool, SFVec3f) while others have very specific semantics (e.g.
SFColor, SFTime, etc.)

- It is not clear whether this is good or bad …

G. Zachmann 28ScenegraphsVirtual Reality & Simulation 26 October 2017WS

Types of Nodes to Describe the Scenengraph

§ All scenegraphs have a set of different kinds of nodes to define
the tree:

1. Nodes for grouping / hierarchy building

2. Nodes for storing actual geometry

3. Nodes for storing appearance, i.e., material def's, textures, etc.

§ In X3D/VRML, for instance:

1. Shape, Group, Transform , Switch , Billboard, LOD, ...

2. TriangleSet, IndexedTriangleSet, IndexedFaceSet,

IndexedTriangleStripSet, Box, Sphere, Cylinder,

NurbsPatchSurface, ElevationGrid ,

3. Appearance, Material , ImageTexture ,

G. Zachmann 29ScenegraphsVirtual Reality & Simulation 26 October 2017WS

A Simple Example

#X3D V3.1 utf8
Shape {
geometry Cone {
bottomRadius 1
height 2

}
appearance Appearance {
material Material {
ambientIntensity 0.256
diffuseColor 0.029 0.026 0.027
shininess 0.061
specularColor 0.964 0.642 0.980

}
}

}

Shape
ap

p
earance

geom
etry

Cone

bottom
Radius

height

Appear-
ance

material

Material

diffuseC
olor

shininess

sp
ecularC

olor

G. Zachmann 30ScenegraphsVirtual Reality & Simulation 26 October 2017WS

Specifying the Material

§ Usually, the Phong model is assumed:

kd = diffuse reflection coefficient
ks = specular reflection coefficient
p = shininess

l
r

v

n

I
out

= I
amb

+ I
di↵

+ I
spec

= kdIa +
nX

j=1

(kd(nl) + ks(rv)
p)·Ij

Idi↵ = kdIin cos�

Ispec = ksIin(cos ✓)
p

I
out

= kd ·Ia +
nX

j=1

(kd cos�j + ks cos
p ✓j)·Ij

G. Zachmann 31ScenegraphsVirtual Reality & Simulation 26 October 2017WS

§ In VRML/X3D:

Material {
SFFloat ambientIntensity 0.2
SFColor diffuseColor 0.8 0.8 0.8
SFColor specularColor 0 0 0
SFFloat shininess 0.2
SFColor emissiveColor 0 0 0
SFFloat transparency 0

}

G. Zachmann 32ScenegraphsVirtual Reality & Simulation 26 October 2017WS

Common Data Structures to Specify Geometry

§ Most scene graphs and game engines
have internal data structures to store
geometry in memory-efficient ways

§ One very prominent data structure is
the IndexedFaceSet (here in VRML):

Indexed-
FaceSet

coord
Index

coord Coordinate

point

-1

-1

IndexedFaceSet {
SFNode coord NULL
MFInt32 coordIndex []
SFBool ccw TRUE
SFBool normalPerVertex TRUE
SFBool solid TRUE
SFFloat creaseAngle 0.0

}

Coordinate {
MFVec3f point []

}

"Sentinel"

G. Zachmann 33ScenegraphsVirtual Reality & Simulation 26 October 2017WS

§ Example:

§ Geometry stored this way is called a mesh

§ Although this example rather looks like a "polygon soup"

Shape {
geometry IndexedFaceSet {
coord Coordinate {
point [-2 0 3, -0 1 1, -1 3 0,

0 2 0, 2 3 1, -2 3 1,
3 5 -2, 4 4 2]

}
coordIndex [0 1 2 -1 3 4 5 -1 6 4 7 -1]
solid FALSE
ccw TRUE

}
appearance Appearance { … }

}

example_indexedtriangleset.wrl

G. Zachmann 34ScenegraphsVirtual Reality & Simulation 26 October 2017WS

Specification of Further Attributes per Vertex

§ In meshes, you can always
specify additional vertex
attributes , eg., normals or
texture coordinates per vertex

§ Texture coords are stored as
follows:

Indexed-
FaceSet

cIn-
dex

coord
Coordinate

point

-1

-1

texCoord

tIn-
dex

-1

-1

Texture-
Coordinate

point

IndexedFaceSet {
SFNode coord
MFInt32 coordIndex
SFNode texCoord
MFInt32 texCoordIndex
SFBool ccw
SFBool normalPerVertex
SFBool solid

}

G. Zachmann 35ScenegraphsVirtual Reality & Simulation 26 October 2017WS

The OBJ File Format

§ Only geometry and textures

§ Usually only used for polygonal geometry

§ Can store NURBS, too

§ Only in ASCII

§ Very easy to read and parse as a human

§ Extremely easy to write a loader (takes just an afternoon)

§ No hierarchy

G. Zachmann 36ScenegraphsVirtual Reality & Simulation 26 October 2017WS

Example

A cube
mtllib cube.mtl
v 1.000000 -1.000000 -1.000000
v 1.000000 -1.000000 1.000000
v -1.000000 -1.000000 1.000000
v -1.000000 -1.000000 -1.000000
v 1.000000 1.000000 -1.000000
v 0.999999 1.000000 1.000001
v -1.000000 1.000000 1.000000
v -1.000000 1.000000 -1.000000
vt 0.748573 0.750412
vt 0.749279 0.501284
vt 0.999110 0.501077
vt 0.999455 0.750380
vt 0.250471 0.500702
vt 0.249682 0.749677
vt 0.001085 0.750380
vt 0.001517 0.499994
vt 0.499422 0.500239
vt 0.500149 0.750166
vt 0.748355 0.998230
vt 0.500193 0.998728
vt 0.498993 0.250415
vt 0.748953 0.250920

vn 0.000000 0.000000 -1.000000
vn -1.000000 -0.000000 -0.000000
vn -0.000000 -0.000000 1.000000
vn -0.000001 0.000000 1.000000
vn 1.000000 -0.000000 0.000000
vn 1.000000 0.000000 0.000001
vn 0.000000 1.000000 -0.000000
vn -0.000000 -1.000000 0.000000
usemtl Material_ray.png
f 5/1/1 1/2/1 4/3/1
f 5/1/1 4/3/1 8/4/1
f 3/5/2 7/6/2 8/7/2
f 3/5/2 8/7/2 4/8/2
f 2/9/3 6/10/3 3/5/3
f 6/10/4 7/6/4 3/5/4
f 1/2/5 5/1/5 2/9/5
f 5/1/6 6/10/6 2/9/6
f 5/1/7 8/11/7 6/10/7
f 8/11/7 7/12/7 6/10/7
f 1/2/8 2/9/8 3/13/8
f 1/2/8 3/13/8 4/14/8

Keyword tells what the information the line contains
(v = vertex, vt = texture coords, vn = vertex normal, f = face)

Indices defining one
vertex of a face
(v-ID/vt-ID/vn-ID)

G. Zachmann 37ScenegraphsVirtual Reality & Simulation 26 October 2017WS

The FBX File Format

§ Geometry and textures

§ Scene graphs (geometry hierarchies)

§ Animations

§ ASCII (pretty well human readable) and binary

G. Zachmann 38ScenegraphsVirtual Reality & Simulation 26 October 2017WS

Transformations

§ Transformations are stored by special kinds of nodes

§ All children underneath will get transformed by it

§ There are three ways how to store transforms in a
scenegraph

§ A single transform node can store just one transform,
e.g., rotation

§ A single transform node can store one xform per kind
(only the common ones), in a pre-defined order

§ A single transform node can store a 4x4 matrix

- It is up to the application programmer to convert standard xforms
(e.g., rotation + translation) to 4x4 matrix

Root

Transform
node

Trans-
formed
subtree

G. Zachmann 39ScenegraphsVirtual Reality & Simulation 26 October 2017WS

§ The transformation node:

§ Meaning:

with

Transform {
MFNode children []
SFVec3f center 0 0 0
SFRotation scaleOrientation 0 0 1 0
SFVec3f scale 1 1 1
SFRotation rotation 0 0 1 0
SFVec3f translation 0 0 0

}

C
R1

R2

S

T

M = T ·C ·R2 ·R1 ·S ·R�1
1 ·C�1

p
world

= M ·p
model

translation
rotation
scaling
rotation
translation

G. Zachmann 40ScenegraphsVirtual Reality & Simulation 26 October 2017WS

Hierarchical Transformations

§ One of the core concepts of scenegraphs

§ Transformation node º
new local coordinate system (frame)

§ Always specified as a transformation
relative to its parent coord frame

§ In OpenGL 2:
pushMatrix();

multMatrix(M);

traverse sub-tree
popMatrix();

G. Zachmann 41ScenegraphsVirtual Reality & Simulation 26 October 2017WS

Another Example

§ Advantage:

§ Transform in node Table1 makes table + objs on top of it move

§ Change of transformation in Top1 makes all the objs on the table top
move, but not the table

Grouping node

Transform node

Geom nodes

G. Zachmann 44ScenegraphsVirtual Reality & Simulation 26 October 2017WS

§ Very convenient for articulated objects

§ E.g., robots, skeletons, ..

§ Remark: 2D drawing programs
(Photoshop et al.) create a similar
hierarchy when you group objects

Figure 1: Illustration of the part-finding process: (A),(a) a template mesh is registered to all other meshes by CC
algorithm. (B) the mesh is divided into parts by clustering the estimated local transformations for each template point,
different parts are color-coded. (b) the mesh is randomly divided into small patches of approximately equal areas,
different parts are color-coded. (C),(c) results in (B),(b) are used to initialize the EM algorithm which solves for the part
assignments and the transformation for each part. (D),(d) the joints linking the rigid parts are estimated.

are not appropriate for recovering an articulated ob-
ject skeleton: the notion of a joint between parts is
not well-defined when each part consists of several
disconnected regions. In order to model the object
articulation correctly, we impose another kind of con-
straint, which we call hard contiguity constraint. The
constraint specifies that a part can consist of no more
than one connected component in the template mesh.

4.3 Model Summary

Ignoring the hard contiguity constraints, the frame-
work described in Sec. 4 defines a Markov network over
the part labels α. A Markov network encodes the joint
distribution over a set of variables as a product of po-
tentials:

P (α) =
1
Z

∏

j

φ(αj)
∏

j,k

φ(αj , αk) (3)

where Z is a normalization constant.
The singleton potentials φ(αj) correspond to the

probabilities that a template point xj generates its
corresponding points z1,j , . . . , zN,j, as follows:

φ(αj = p) =
N∏

i=1

P (zi,j | αj = p, Ti,p) (4)

The potential values depend on the transformations
Ti,p. Thus, the joint distribution depends on T , the
set of rigid part transformations. The pairwise po-
tentials in the Markov network correspond to the soft
contiguity constraints, and are defined in Eq. (2).

5 Optimization

We start with a template mesh X and instance meshes
Z1, . . . , ZN , and we need to solve for the set of part
transformations T , as well as for the part labels α.

We want to find a joint assignment to the part
labels and the transformations which maximizes the
log-likelihood of the model:

argmax
α,T

log P (α, T) = argmax
α,T

{
∑

(j,k)∈E(X)

log φ(αj , αk)−

− 1
2σ2

n∑

i=1

J∑

j=1

∥zi,j − Ti,αj (xj)∥2} (5)

where J is the number of points in meshes
X, Z1, . . . , ZN . Note that our objective is defined as
optimizing both the part assignment and transforma-
tions simultaneously, rather than marginalizing over
the (hidden) part assignment variables. A hard as-
signment of points into parts is very appropriate for
our application, and it also allows the use of efficient
global optimization steps, as we discuss below. Note
that the hard contiguity constraints are not accounted
for in the above equation, and have to be enforced
separately.

The objective in Eq. (5) is non-convex in the set of
variables α, T . We optimize it using hard Expectation-
Minimization (EM) to find a good assignment for α, T
in an iterative fashion. EM iterates between two steps:
the E-step calculates a hard assignment for all part
labels α given an estimate of the transformations T .
The M-step improves the estimate for the parameters
T using the labels α obtained in the E-step.

5.1 E-Step

Our goal in the E-step is to find the MAP assignment
to the part labels maximizing Eq. (5) for a given set of
transformations T . It turns out that this is an instance
of the Uniform Labeling problem [17], which can be
expressed as an integer program. Following Kleinberg
and Tardos [17], we introduce indicator variables αjp

G. Zachmann 45ScenegraphsVirtual Reality & Simulation 26 October 2017WS

Specialized Transform Nodes

§ Billboard:

§ Automatically computes a rotation, such that it's local z axis always
points towards the viewpoint

§ Applies this transformation to the subtree underneath

§ Usage: fake complex geometry by
textured rendered on a single polygon
(or a few)

§ Geometry has to be far away

G. Zachmann 46ScenegraphsVirtual Reality & Simulation 26 October 2017WS

The Behavior Graph

§ Animations and simulation eventually cause changes in the scene
graph; e.g.:

§ Changes of transformations, i.e. the position of objects, e.g. of a robot arm

§ Modification of the materials, e.g. color or texture of an object

§ Deformation of an object, i.e. changes in the vertex coords

§ All these changes are equivalent to the change of a field of a node at
runtime

G. Zachmann 47ScenegraphsVirtual Reality & Simulation 26 October 2017WS

Events and Routes

§ The mechanism for changing the X3D/VRML scene graph:

§ Fields are connected to each other by so-called routes

§ A change of a field produces a so-called event

§ When an event occurs, the content of the field from the route-start is

copied to the field of the route-end ("the event is propagated")

§ Other terminology: data flow paradigm / data flow graph

§ Used in most game engines today,

and in scientific visualization tools for a long time

§ Syntax of routes:

ROUTE Node1Name.outputFieldName TO Node2Name.inputFieldName

G. Zachmann 48ScenegraphsVirtual Reality & Simulation 26 October 2017WS

A simple example

DEF timer TimeSensor {
loop TRUE
cycleInterval 5

}

DEF pi PositionInterpolator {
key [0 0.5 1]
keyValue [0 -1 0, 0 1 0, 0 -1 0]

}

DEF trf Transform {
translation 0 0 0
children [
Shape { geometry Box { } }

]
}

ROUTE timer.fraction_changed TO pi.set_fraction
ROUTE pi.value_changed TO trf.set_translation

example_route_bounce.wrl

Timer
node

Inter-
polator

Xform
node

G. Zachmann 49ScenegraphsVirtual Reality & Simulation 26 October 2017WS

§ Routes connect nodes ⟶ behavior graph:

§ Is given by the set of all routes

§ A.k.a. route graph, or event graph (blueprint in Unreal engine)

§ Is a second graph, superimposed on the scenengraph

G. Zachmann 50ScenegraphsVirtual Reality & Simulation 26 October 2017WS

Example from Unreal

A* path finding behavior graph

G. Zachmann 51ScenegraphsVirtual Reality & Simulation 26 October 2017WS

Digression: The AEO-concept

§ In X3D/VRML:

§ Actions & objects are all nodes in the same scene graph

§ Events are volatile and have no "tangible" representation

User

Actions Events

Objects

G. Zachmann 54ScenegraphsVirtual Reality & Simulation 26 October 2017WS

New Concepts for Data Flow in VR/Game Engines

§ Modern systems usually consist of many different components

§ Classic approach: fields-and-routes-based data flow

§ Problem: many-to-many connectivity

Procedural Content

Particle System AI

Input Devices Scene Graph

Physics

G. Zachmann 55ScenegraphsVirtual Reality & Simulation 26 October 2017WS

§ Quickly becomes inviable

Dynamic Player Movement (CryEninge 3)

G. Zachmann 56ScenegraphsVirtual Reality & Simulation 26 October 2017WS

Our Novel Approach: the Key-Value Pool

§ Assign a unique key to each route (link, connection)

§ Producer stores value with key in KV pool ⟶ KV pair
§ Corresponds to generating an event in the data flow paradigm

§ Consumer reads value from KV pair every time in its loop

§ Set of all KV pairs ⟶ KV pool

Procedural Content

Particle System AI

Input Devices Scene Graph

Physics
Key-value

pool

G. Zachmann 57ScenegraphsVirtual Reality & Simulation 26 October 2017WS

Advantages of the Approach

§ KV pool holds complete state of the virtual environment

§ Can save/load state, or unwind to earlier state

§ One-to-many connections are trivial

G. Zachmann 58ScenegraphsVirtual Reality & Simulation 26 October 2017WS

Classic Blocking Data Structures

§ One lock per KV pair, or one lock for the whole KV pool ⟶ both
have disadvantages ⟶ in any case: lots of waiting

Procedural Content

Particle System AI

Input Devices Scene Graph

PhysicsKey-value
pool

Lock Access Unlock

Lock Access Unlock

Lock Access Unlock

Thread 1

Thread 2

Thread 3

G. Zachmann 59ScenegraphsVirtual Reality & Simulation 26 October 2017WS

Performance: Read (50%) & Write (50%) Operations

0

20

40

60

80

100

120

140

160

4 20 36 52 80 144 256 512

A
cc

es
s

tim
e

in
 m

s

Number of threads accessing the key-value pool

Our Approach

Lock-Based Approach

Wait-Free Approach

Optimistic Approach

Filtered Approach

(KV Pool)

G. Zachmann 60ScenegraphsVirtual Reality & Simulation 26 October 2017WS

Demos

Cultural heritage
(Quelle: www.aqrazavi.org)

Education
Bsp.: sphere eversion

Illustration of
complicated
kinematics
(hier: Schmidt
Offset Coupling)

Would somebody be interested in
implementing them on Unreal or
Javascript? (for Mac) Credits, credits J

G. Zachmann 61ScenegraphsVirtual Reality & Simulation 26 October 2017WS

Sphere Eversion (Video)

http://www.youtube.com/watch?v=BVVfs4zKrgk

G. Zachmann 62ScenegraphsVirtual Reality & Simulation 26 October 2017WS

