

Implizite Integration

- Bisherige Schemata sind nur conditionally stable
 - D.h.: Nur stabil für Δt in einem bestimmten Bereich
 - Dieser Bereich hängt von der Steifigkeit der Federn ab
- Ziel: unconditionally stable
- Eine Möglichkeit: implizite Euler-Integration

explizit implizit
$$\mathbf{x}_i^{t+1} = \mathbf{x}_i^t + \Delta t \mathbf{v}_i^t \qquad \mathbf{x}_i^{t+1} = \mathbf{x}_i^t + \Delta t \mathbf{v}_i^{t+1}$$

$$\mathbf{v}_i^{t+1} = \mathbf{v}_i^t + \Delta t \frac{1}{m_i} \mathbf{f}(\mathbf{x}^t) \qquad \mathbf{v}_i^{t+1} = \mathbf{v}_i^t + \Delta t \frac{1}{m_i} \mathbf{f}(\mathbf{x}^{t+1})$$

• Wir haben jetzt ein System von nicht-linearen, algebraischen Gleichungen, mit \mathbf{x}^{t+1} und \mathbf{v}^{t+1} als Unbekannte auf beiden Seiten \rightarrow implizite Integration

Lösungsmethode

Schreibe das gesamte Feder-Masse-System mit Vektoren:

$$\mathbf{x} = \begin{pmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \\ \vdots \\ \mathbf{x}_n \end{pmatrix} = \begin{pmatrix} x_{11} \\ x_{12} \\ x_{13} \\ x_{21} \\ x_{22} \\ \vdots \\ x_{n3} \end{pmatrix} \quad \mathbf{v} = \begin{pmatrix} \mathbf{v}_1 \\ \mathbf{v}_2 \\ \vdots \\ \mathbf{v}_n \end{pmatrix} = \begin{pmatrix} v_{11} \\ v_{12} \\ v_{13} \\ v_{21} \\ v_{22} \\ \vdots \\ v_{n3} \end{pmatrix} \quad \mathbf{f}(\mathbf{x}) = \begin{pmatrix} \mathbf{f}_1(\mathbf{x}) \\ \vdots \\ \mathbf{f}_n(\mathbf{x}) \end{pmatrix}$$

$$\mathbf{f}_i = egin{pmatrix} f_{i1}(\mathbf{x}) \\ f_{i2}(\mathbf{x}) \\ f_{i3}(\mathbf{x}) \end{pmatrix} \quad M_{3n \times 3n} = egin{pmatrix} m_1 \\ & m_2 \\ & & m_2 \\ & & & \ddots \\ & & & m_n \\ & & & & m_n \\ & & & & & m_n \end{pmatrix}$$

 Schreibe die vielen impliziten Gleichungen als ein großes Gleichungssystem um :

$$M\mathbf{v}^{t+1} = M\mathbf{v}^t + \Delta t \mathbf{f}(\mathbf{x}^{t+1})$$
 (1)

$$\mathbf{x}^{t+1} = \mathbf{x}^t + \Delta t \, \mathbf{v}^{t+1} \tag{2}$$

Einsetzen von (2) in (1) ergibt:

$$M\mathbf{v}^{t+1} = M\mathbf{v}^t + \Delta t \, \mathbf{f} (\, \mathbf{x}^t + \Delta t \mathbf{v}^{t+1} \,)$$

Die Taylor-Reihe für f ist:

$$\mathbf{f}(\mathbf{x}^t + \Delta t \mathbf{v}^{t+1}) = \mathbf{f}(\mathbf{x}^t) + \frac{\partial}{\partial \mathbf{x}} \mathbf{f}(\mathbf{x}^t) \cdot (\Delta t \mathbf{v}^{t+1}) + O((\Delta t \mathbf{v}^{t+1})^2)$$

Einsetzen:

$$M \mathbf{v}^{t+1} = M \mathbf{v}^{t} + \Delta t \left(\mathbf{f}(\mathbf{x}^{t}) + \underbrace{\frac{\partial}{\partial x} \mathbf{f}(x^{t}) \cdot (\Delta t \mathbf{v}^{t+1})}_{K} \right)$$

$$= M \mathbf{v}^{t} + \Delta t \mathbf{f}(\mathbf{x}^{t}) + \Delta t^{2} K \mathbf{v}^{t+1}$$

K ist die Jacobi-Matrix (= Ableitung):

$$K = \begin{pmatrix} \frac{\partial}{\partial x_{11}} & f_{11} & \frac{\partial}{\partial x_{12}} & f_{11} & \dots & \frac{\partial}{\partial x_{n3}} & f_{11} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial}{\partial x_{11}} & f_{n3} & \dots & \frac{\partial}{\partial x_{n3}} & f_{n3} \end{pmatrix}$$

- Heißt tangent stiffness matrix
 - (Die normale Steifigkeitsmatrix wird im Gleichgewichtszustand ausgewertet; hier aber an einer beliebigen, aktuellen Position des Systems; daher der Name "tangent ...")

December 2012

Terme umordnen:

$$(M - \Delta t^2 K) \mathbf{v}^{t+1} = M \mathbf{v}^t + \Delta t \mathbf{f}(\mathbf{x}^t)$$

Das ist von der Form:

$$A \mathbf{v}^{t+1} = \mathbf{b}$$
 mit $A \in \mathbb{R}^{3n \times 3n}$, $b \in \mathbb{R}^{3n}$

- Löse dieses LGS mittels einer iterativen Methode
 - Denn: A ändert sich in jedem Frame

Berechnung der Steifigkeitsmatrix

- Die Anatomie der Matrix *K* :
 - Eine Feder (i, j) addiert folgende vier 3x3 Untermatrizen zu K:

$$3i \rightarrow \begin{pmatrix}
K_{ii} & K_{ij} \\
K_{ji} & K_{jj}
\end{pmatrix}$$

$$\uparrow & \uparrow \\
3i & 3i$$

• Die Matrix K_{ii} entsteht durch die Ableitung von $\mathbf{f}_i = (f_{i1}, f_{i2}, f_{i3})$ nach

$$\mathbf{x}_{j} = (x_{j1}, x_{j2}, x_{j3}):$$

$$K_{ij} = \begin{pmatrix} \frac{\partial}{\partial x_{j1}} f_{i1} & \frac{\partial}{\partial x_{j2}} f_{i1} & \frac{\partial}{\partial x_{j3}} f_{i1} \\ \vdots & \vdots \\ \frac{\partial}{\partial x_{j1}} f_{i3} & \cdots & \frac{\partial}{\partial x_{j3}} f_{i3} \end{pmatrix}$$

Betrachte im folgenden nur f^s (Federkraft)

Zunächst K_{ii}:

$$K_{ii} = \frac{\partial}{\partial \mathbf{x}_{i}} f_{i}(\mathbf{x}_{i}, \mathbf{x}_{j})$$

$$= k_{s} \frac{\partial}{\partial \mathbf{x}_{i}} \left((\mathbf{x}_{j} - \mathbf{x}_{i}) - l_{0} \frac{\mathbf{x}_{j} - \mathbf{x}_{i}}{\|\mathbf{x}_{j} - \mathbf{x}_{i}\|} \right)$$

$$= k_{s} \left(-I - l_{0} \frac{-I \cdot \|\mathbf{x}_{j} - \mathbf{x}_{i}\| - (\mathbf{x}_{j} - \mathbf{x}_{i}) \cdot 2 \frac{(\mathbf{x}_{j} - \mathbf{x}_{i})^{T}}{\|\mathbf{x}_{j} - \mathbf{x}_{i}\|^{2}} \right)$$

$$= k_{s} \left(-I + l_{0} \frac{1}{\|\mathbf{x}_{i} - \mathbf{x}_{i}\|} I + \frac{2l_{0}}{\|\mathbf{x}_{j} - \mathbf{x}_{i}\|^{3}} (\mathbf{x}_{j} - \mathbf{x}_{i}) (\mathbf{x}_{j} - \mathbf{x}_{i})^{T} \right)$$

Aus einigen Symmetrien folgt:

•
$$K_{ij} = \frac{\partial}{\partial \mathbf{x}_j} f_i(\mathbf{x}_i, \mathbf{x}_j) = -K_{ii}$$

$$K_{jj} = \frac{\partial}{\partial x_j} f_j(\mathbf{x}_i, \mathbf{x}_j) = \frac{\partial}{\partial \mathbf{x}_j} (-\mathbf{f}_i(\mathbf{x}_i, \mathbf{x}_j)) = K_{ii}$$

$$K_{ji} = K_{ij}$$

Zur Erinnerung:

$$\left(\frac{f}{g}\right)' = \frac{f'g - fg'}{g^2}$$

$$\frac{\partial}{\partial \mathbf{x}} \|\mathbf{x}\| = \frac{\partial}{\partial \mathbf{x}} \left(\sqrt{x_1^2 + x_2^2 + x_3^2} \right) = 2 \frac{\mathbf{x}^T}{\|\mathbf{x}\|}$$

Lösungsverfahren

- Setze K = 0
- Für jede Feder (i,j) berechne K_{ii} , K_{ij} , K_{ji} , K_{jj} und akkumuliere zu K an den richtigen Stellen
- Berechne $\mathbf{b} = M \mathbf{v}^t + \Delta t f(\mathbf{x}^t)$
- Löse das LGS \rightarrow \mathbf{v}^{t+1}
- lacksquare Berechne lacksquare lacksquare lacksquare lacksquare lacksquare lacksquare lacksquare lacksquare lacksquare

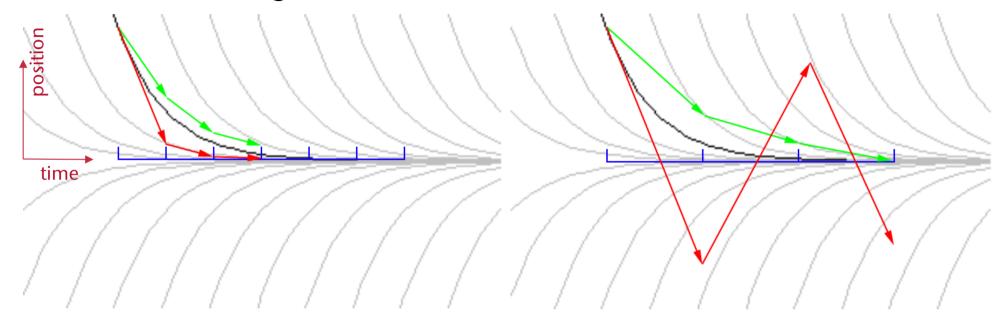
December 2012

Mass-Spring-Systems

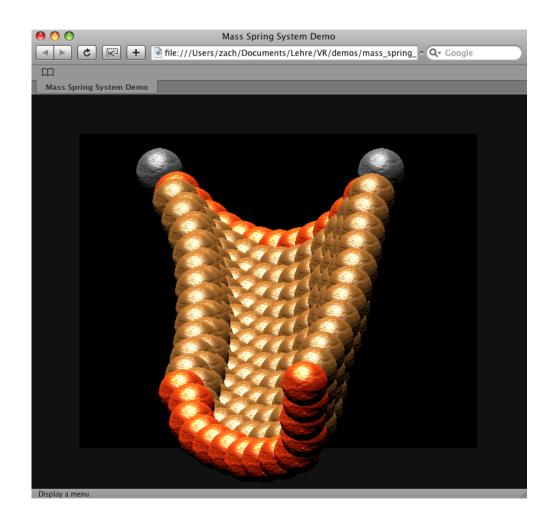
Vor- und Nachteile

- Explizite Integration:
 - + Sehr einfach zu programmieren
 - kleine Schrittweite nötig
 - Steife Federn funktionieren nicht gut
 - Kräfte werden nur um eine Feder pro Schritt propagiert
- Implizite Integration:
 - + Unconditionally stable
 - + Steife Federn werden besser handhabbar
 - + Globaler Solver → Kräfte werden schon bei einem Simulationsschritt durch das ganze System propagiert
 - Große Schrittweiten nötig, da ein Schritt sehr teuer (und in Wahrheit schon aus vielen Einzelschritten besteht)
 - Unerwünschte Dämpfung durch das Integrationsverfahren

• Visualisierung: $\dot{x}(t) = -x(t)$



- Umgangssprachliche Beschreibung:
 - Explizit springt blind vorwärts, basierend auf der aktuellen Information
 - Implizit springt "rückwärts" und sucht dabei eine "nächste" Position genau so, daß der Rückwärtssprung bei der aktuellen Position landet

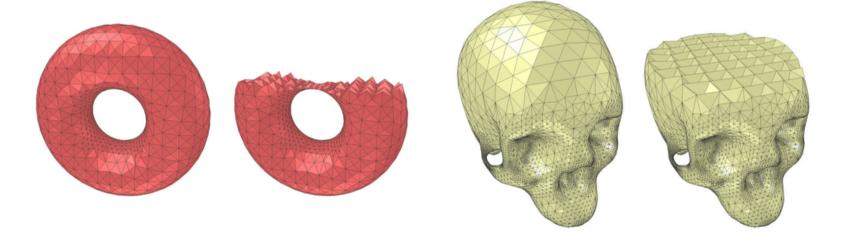


http://www.dhteumeuleu.com/dhtml/v-grid.html

Mesh-Erzeugung für Objekte mit Volumen

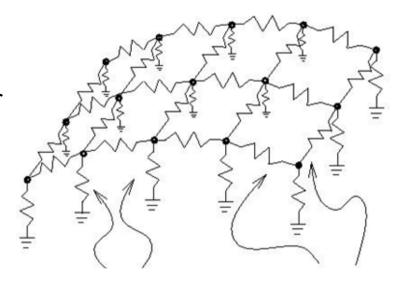
- Wie erzeugt man ein Feder-Masse-System aus einem 3D-Modell?
- Direkt 3D-Geometrie in Masse-Feder-System übersetzen liefert keine guten Resultate:
 - Geometrie oft zu hoch aufgelöst
 - Degenerierte Polygone
- Bessere (sehr einfache) Idee:
 - Erzeuge ein Tetraeder-Mesh (irgendwie) aus der Geometrie
 - Jeder Vertex wird ein Massepunkt, jede Kante eine Feder
 - Verteile die Masse der Tetraeder (= Dichte × Volumen) gleichmäßig auf die Massepunkte

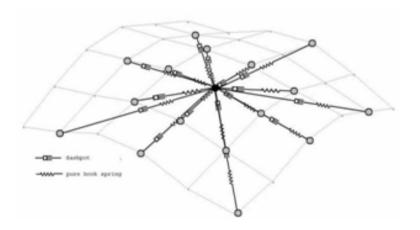
- Erzeugung des Tetraeder-Meshes (einfache Methode):
 - Verteile eine Menge von Punkten gleichmäßig (evtl. zufällig) im Inneren der Geometrie (sog. "Steiner-Punkte")
 - Dito in einer Schicht über der Oberfläche



- Verankerung des Oberflächen-Meshes im Tetraeder-Mesh:
 - Stelle jeden Vertex des Oberflächen-Meshes als baryzentrische Kombination der Tetraeder-Vertices dar, in dem er enthalten ist

- Bei 2-mannigfaltigen Feder-Masse-Systemen:
 - Verankere evtl. die Federn an einer Ruhelage
 - Führe evtl. "Querverstrebungen" ein





Kollisionserkennung

- Sortiere die Tetraeder in ein 3D Gitter (Hash-Tabelle!) ein
- Bei Kollision in der Hash-Tabelle:
 - Führe exakten Schnitttest zwischen 2 Tetraedern durch

December 2012

Kollisionsantwort (collision response)

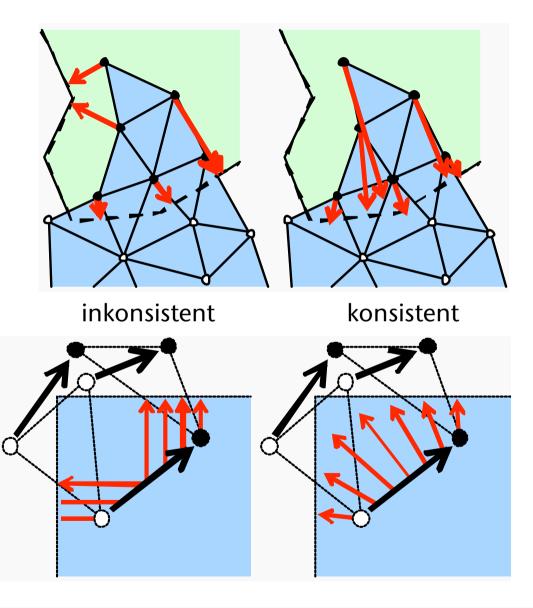
• Aufgabenstellung: gegeben zwei kollidierende Objekte P und Q (Tetraeder-Meshes) — welches ist die Rückstellkraft (penalty force)?

Naiver Ansatz:

- Berechne für jeden eingedrungenen Massepunkt von P die kleinste Distanz zur Oberfläche von Q
 → Kraft (Betrag + Richtung)

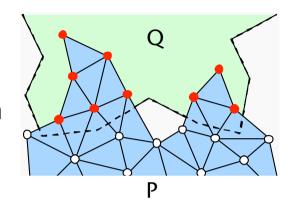
- Problem:
 - unplausible Kräfte (implausibel?)
 - "Durchtunneln" (s. a. Force-Feedback-Kapitel)

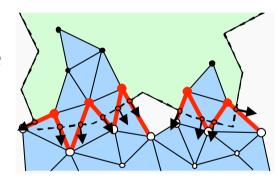
Beispiele:



Konsistente Penalty Forces

- 1. Phase: identifiziere alle eindringenden Punkte von P
- 2. Phase: bestimme alle schneidenden Kanten von P
 - Berechne zu jeder solchen Schnittkante den exakten Schnittpunkt \mathbf{x}_i
 - Berechne zu jedem Schnittpunkt eine Normale
 n_i
 - Z.B. mittels baryzentrischer Interpolation der Vertexnormalen von Q



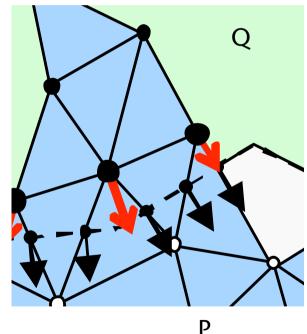


December 2012

- 3. Phase: berechne ungefähre Kraft für "Randpunkte"
 - Randpunkt = eingedrungener Punkt p inzident zu einer Schnittkante
 - Beobachtung: ein Randpunkt kann zu mehreren Schnittkanten inzident sein
 - Eindringtiefe = gewichtete Summe

$$d(\mathbf{p}) = \frac{\sum_{i=1}^{k} \omega(\mathbf{x}_i, \mathbf{p}) (\mathbf{x}_i - \mathbf{p}) \cdot \mathbf{n}_i}{\sum_{i=1}^{k} \omega(\mathbf{x}_i, \mathbf{p})}$$

wobei $d(\mathbf{p})$ = approx. Eindringtiefe von Massepunkt \mathbf{p} , \mathbf{x}_i = Schnittpunkt der Schnittkante inzident zu \mathbf{p} , \mathbf{n}_i = Normale zur Oberfläche von Q im Schnittpunkt \mathbf{x}_i , und $\omega(\mathbf{x}_i, \mathbf{p}) = \frac{1}{\|\mathbf{x}_i - \mathbf{p}\|}$



Richtung der Kraft für Randpunkte:

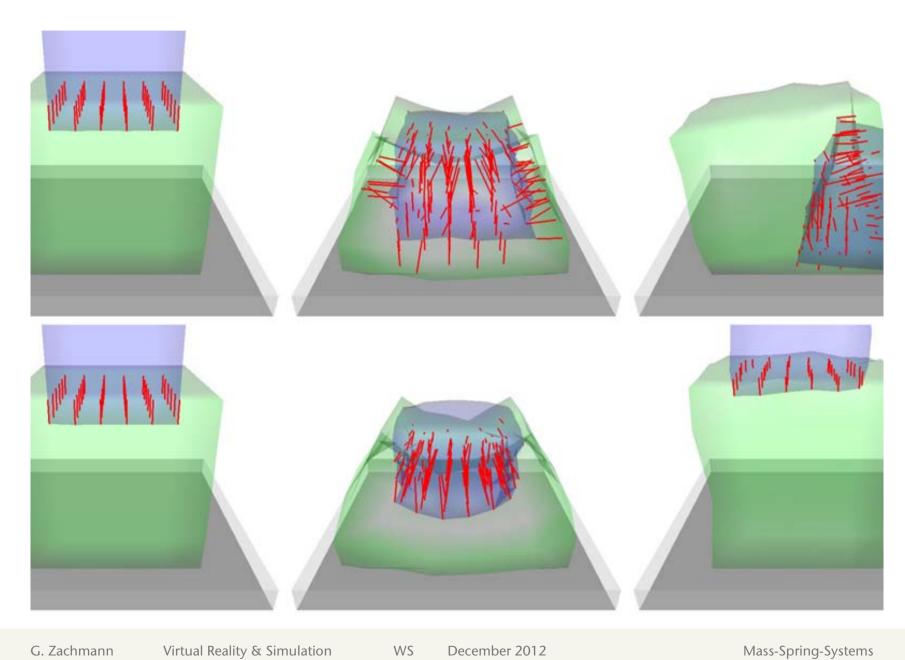
$$\mathbf{\hat{r}}(\mathbf{p}) = \frac{\sum_{i=1}^{k} \omega(\mathbf{x}_i, \mathbf{p}) \, \mathbf{n}_i}{\sum_{i=1}^{k} \omega(\mathbf{x}_i, \mathbf{p})} \qquad \mathbf{r}(\mathbf{p}) = \mathbf{\hat{r}}(\mathbf{p})^0$$

4. Phase: Propagation mittels breadth-first traversal durch das Tetraeder-Mesh

$$d(\mathbf{p}) = \frac{\sum_{i=1}^{k} \omega(\mathbf{p}_i, \mathbf{p}) ((\mathbf{p}_i - \mathbf{p}) \cdot \mathbf{r}_i + d(\mathbf{p}_i))}{\sum_{i=1}^{k} \omega(\mathbf{x}_i, \mathbf{p})}$$

wobei \mathbf{p}_i = schon besuchter eindringender Punkt von P, \mathbf{p} = noch nicht besuchter Punkt, \mathbf{r}_i = Richtung der geschätzten penalty force in Punkt \mathbf{p}_i .

Viualisierung



Consistent Penetration Depth Estimation for Deformable Collision Response

http://cg.informatik.uni-freiburg.de

December 2012