
Prof. G. Zachmann
T. Hudcovic (hudo@uni-bremen.de)

R. Fischer (r.fischer@uni-bremen.de)

University of Bremen
School of Computer Science

CGVR Group
December 12, 2024

Winter Semester 2024/25

Assignment on Virtual Reality and Physically-Based-Simulation -
Sheet 4

Due Date January 13, 2024

In this assignment we will look at different aspects of interaction in virtual environments. As a
specific example, we will deal with the interaction with interlocking blocks (a well-known brand of
such interlocking blocks is Lego).

On our website you will find an Unreal project that works with Unreal version 5.3 (possibly also 5.4).
Many functions like merging multiple interlocking blocks to one actor are already implemented.

Exercise 1 (Analysis, 4 Credits)

Figure 1: An example of assembled blocks in the given Unreal project.

Start the project in VR mode and walk to the table on which the interlocking blocks are lying. Try
to interact with these blocks and put them together so that you get the presented example (see
Fig.1).

(a) Identify the interaction metaphor and the interaction task for interaction with these blocks.

(b) Describe the current implementation of the interaction metaphor. Pay attention to details, e.g.
when the terminal blocks are merged (bullet points are sufficient).

(c) What are the advantages and disadvantages of the present implementation in your opinion? De-
scribe them shortly (bullet points are sufficient).

1



(d) What other interaction metaphors might be considered for this interaction task (or a subtask)?
Name at least two more and describe each in no more than three sentences.

Exercise 2 (Plan a new interaction metaphor, 5 Credits)
This assignment is about considering the possibilities of interaction metaphors in order to put to-
gether interlocking blocks and finally develop a concrete, new interaction metaphor on paper. In a
certain part, the interaction metaphor may be similar to the current one, however, there should be
significant differences. Also note that the interaction metaphor should be as simple and precise to
use as possible.

(a) Draw a nearly complete taxonomy (or decomposition) for the interaction task.

(b) Describe the interaction metaphor you plan to implement and list in bullet points the advantages
and disadvantages of your planned interaction metaphor.

(c) Basically, it makes sense to let the user know which object is selected or how objects are changed
before performing an action. Consider at which step of your designed interaction you want to
use object highlighting. Highlighting should be used at at least one stage of your interaction
metaphor. Briefly describe when you want to highlight which components

Exercise 3 (Implement the new interaction metaphor, 15 Credits)
Implement the planned interaction metaphor and the highlighting of components.

Some general hints:

The framework essentially consists of the C++ classes BlockBaseActor and BlockBaseComponent
which represents the interlocking blocks (can be found in C++Classes/Blocks/Base). There are
currently the differ- ent types of blocks which inherits from the BlockBaseActor and are called
Block1x4Actor, Block20x20Actor and Block2x2Actor (can be found in C++Classes/Blocks/Blocks)
- if you want to add some more blocks into the level, use them!

An instance of a BlockBaseComponent describes a single interlocking block in the world and inherits
from the UStaticMeshComponent. Such a UStaticMeshComponent inherits also from the known
USceneComponent - this means that such a block can be positioned, rotated and scaled relative to
the actor. A BlockBaseCom- ponent needs to be attached to a BlockBaseActor to be visible in the
level.

The BlockBaseActor is a movable and tangible actor, which can have several merged BlockBaseC-
omponent. This actor implements the following methods:

1. the mergeTo function, which requires another BlockBaseActor and is meant to merge this actor
to the given one. Internally, it copies all BlockBaseComponent’s to the given actor and deletes
itself. Before merging, it checks, whether the interlocking bricks can be merged based on their
location and orientation. In case that no merging is possible, the function returns false. (for your
own safety, better don’t modify this method, only use it).

2. the overwritten OnOverlapBegin and OnOverlapEnd functions, which are called as soon as a
component of the actor roughly overlaps with another component (you can change this method).

3. the overwritten PickupImplementation and DropImplementation functions that are called when
the user reaches for a BlockBaseActor (you can change this method).

Exercise 4 (Bonus, max 5 Credits)
Consider and implement a possibility to detach terminal blocks again (if you don’t use git, better
keep a working copy of your solution of the previous exercises before you start this exercise)

2


