Bremen

Y

Virtual Reality &

Physically-Based Simulation
Collision Detection

G. Zachmann
University of Bremen, Germany
http://cgvr.cs.uni-bremen.de/




Bremen

U Examples of Applications

Virtual Assembly Simulation

Virtual Ergonomics Investigation
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Bremen ‘J -
W Other Uses of Collision Detection g,,.sgg

Rendering of force feedback Robotics: path planning Medical training simulators
(piano mover's problem)
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Y How Would You Approach the Problem of Coll.Det.? "

G. Zachmann



Bremen

Y

Del nitions

¥ Given P, Q C R3

¥ The detection problem :
OP and Q collideO+
PNQ +# 92 <
Ix €3 xe PAxeEQ

¥ The construction problem :
compute R:=PNAQ

¥ For polygonal objects we de ! ne collisions as follows: P and Q collide iff
there is (at least) one face of P and one of Q that intersect each other

¥ The games community often has a different de! nition of "collision"
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Bremen

Y Classes of Objects

¥ Convex

¥ Closed and simple Convex
(no self-penetrations)

¥ Polygon soups

¥ Not necessarily closed
Simple & closed

¥ Duplicate polygons
¥ Coplanar polygons

¥ Self-penetrations

¥ Degenerate cardigans \ Polygon soup
¥ Holes

¥ Deformable
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Bremen

Y Importance of the Performance of Collision Detection St

Clever algorithm (use bbox hierarchy) Naeve algorithm (test all pairs of polygons)

Conclusion: the performance of the algorithm for collision detection
determines (often) the overall performance of the simulation!

In many simulations, the coll.det. part takes 60-90 % of the overall time
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Bremen

Y Why is Collision Detection so Hard? g

1. All-pairs weakness:

2. Discrete time steps:

3. Ef cient computation
of proximity / penetration:
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Requirements on Collision Detection

¥ Handle a large class of objects
¥ Lots of moving objects (1000s in some cases)

¥ Very high performance, so that a physically-based simulation can do many
iterations per frame (at least 2x 100,000 polygons in <1 millisec)

¥ Return a contact point (" witness") in case of collision
¥ Optionally: return all intersection points

¥ Auxiliary data structures should not be too large (<2x memory usage of
original data)

¥ Preprocessing for these auxiliary data structures should not take too long, so that
it can be done at startup time (< 5sec / object)
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Another Problem Related to Collision Detection

¥ Physics consistency(or inconsistency):. small changes in the starting
conditions can result in big changes in the outcomes

2nd time, the ball has
been moved slightly
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Explanation by Way of Example

Run 1

Framet+0 Framet+1 Framet+2 Framet+3 \

Run 2 (ball has been moved slightly)
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One Way of Alleviation: Faster Coll.Det.! Faster Frame Rate

Same experiment: 2nd time, the ball has been moved slightly, but frame rate is much higher now
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Collision Detection Within Simulations

¥ Main loop:
Move objects
Check collisions

Handle collisions (e.g., compute penalty forces)

¥ Collisions pose two different problems:
1. Collision detection

2. Collision handling (e.g., physically-based simulation, or visualization)

¥ In this chapter: only collision detection
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Achieving a Fixed Framerate for Renderingand Simulation

t = accumulator = O; 't =0.001;
oldTime = currentHighresTimer()
repeat

render scene with current state
check collisions with current positions
I new forces

/I calc delta-t since last frame
newTime = currentHighresTimer()
frameTime = newTime P oldTime
oldTime = newTime
/[ advance physics sim. in small steps to current
accumulator += frameTime

while accumulator >= It

integrate( state, t, I't)
accumulator -= It t+= It
until  quit

G. Zachmann Virtual Reality and Physically-Based Simulation

/l time In seconds

/[ try to use LOD's etc.
/I large time variability

time
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Terminology: Continuous / Discrete Collision Detection

¥ Discrete coll.det.: compute penetration measure (or just yes/no) for "static"
objects at the current point in time

¥ Continuous coll.det .: ! nd exact point in time where ! rst contact occurs

¥ Usually, this assumes that objects between frames move/rotate linearly
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16



The Dif! culties of Continuous Coll.Det.

¥ Finding the exact, ! rst contact of polygons
moving in space amounts to checking several
cases

¥ Each case needs to consider 4 points

\

vertex/face edge/edge

¥ Each of those points is a linear function in t

¥ Necessary condition for hit: all 4 points lie in a
plane at some point in time

¥ Amounts to solving a polynomial of degree 5!

¥ Swept volumes (aka. space-time volumes) can
help to determine potentially colliding pairs

¥ But dif! cult to calculate

¥ Many false positives
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The Collision Detection

Set transform
in scene graph
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The Collision Interest Matrix

¥ Interest in collisions is speci c to different applications / objects:

¥ Not all modules in an application are interested in all possible collisions

¥ Some pairs of objects collide all the time, some can never collide

¥ Goal: prevent unnecessary collision tests
¥ Solution: Collision Interest Matrix
¥ Elements in this matrix comprise:

¥ Flag for collision detection

¥ Additional info that needs to be stored from
frame to frame for each pair for incremental
algorithms ( e.g., the separating plane)

¥ Callbacks to the simulation / coll. handling
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Methods for the Broad Phase

¥ Broad phase = one or more! ltering steps

¥ Goal: quickly ! Iter pairs of objects that cannot intersect because they are too far
away from each other

¥ Standard approach:
¥ Enclose each object within a bounding box (bbox)

¥ Compare the 2 bboxes for a given pair of objects
¥ Assumption: n objects are moving

| Brute-forcemethod needs to compare ! (n2) many pairs of bboxes

¥ Goal: determine neighbors more ef! ciently

G. Zachmann Virtual Reality and Physically-Based Simulation WS  January 2024 Collision Detection
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The 3D Grid

1. Partition the "universe" by a 3D grid
2. Objects are considered neighbors, if they occupy the same
cell
3. Determine cell occupancy by bbox
4. When objects move ! update grid
¥ Neighbor-! nding = ! nd all cells that contain more than one
obj
¥ Data structure here: hash table (!)
¥ Collision in hash table ! potentially colliding pair
¥ The trade-off:
¥ Fewer cells = larger cells! distant objects are still "neighbors

¥ More cells = smaller cells! objects occupy more cells, effort
for updating increases

¥ Rule of thumb: cell size " avg obj diameter
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The Plane Sweep Technique (aka Sweep and Prune)

¥ The idea: sweep a plane through space,
perpendicular to the X axis

¥ Solve the problem on that plane

¥ The algorithm:

sort the x coordinates of all boxes
start with the leftmost box

keep a list of active boxes
loop over x-coords (= left/right box borders):
if current box border is the left side (= "opening"):
check this box against all boxes in the active list
add this box to the list of active boxes
else (="closing"):
remove this box from the list of active boxes
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Temporal Coherence

¥ Observation:

Two consecutive images in a sequence differ only by very little (usually)
¥ Terminology: temporal coherence (a.k.a. frame-to-frame coherence)

¥ Algorithms based on frame-to-frame coherence are called Oncremental O,
sometimes Qlynamic O or @nline O (albeit the latter is the wrong term)

¥ Examples:
¥ Motion of a camera
¥ Motion of objects in a ! Im / animation
¥ Applications:
¥ Computer Vision (e.g. tracking of markers)
¥ Video compression
¥ Collision detection
¥ Ray-tracing of animations (e.g. using kinetic data structures)
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Do You Know Examples/Applications of Frame-to-Frame Coherence?

https://www.menti.com/f1b5t74e21
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Collision Detection for Convex Objects

¥ De! nition of Oconvex polyhedronQ

P c R® convex <
Vx,y e P:xy C P&

P = H; , H; = half-spaces
¥ A condition for "non-collision";

P and Q are "linearly separable" :<{
| half-spaceH : P " H #Q" H" <

lh" R* #p" P,q" Q: (p,1)eh>09% (g, 1)eh< C Separating plane H
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The "Separating Planes" Algorithm

¥ The idea: utilize temporal coherence !
If & was a separating plane between Pand Q at time t, then the new
separating plane H:.1 Is probably not very "far" from H; (perhaps it is even
the same)

Ht+1 \

G. Zachmann Virtual Reality and Physically-Based Simulation WS  January 2024 Collision Detection
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load Ht = separating plane between P & Q at time t .
H = Ht
repeat max ntimes

if exists v € ventitles(tck side of H:

rot./transl. H such that v is now on the fr ont side of H
if exists v € vemiths(f)gnt side of H:

rot./transl. H such that v is now on the ba ck side of H
if there are no vertices on the "wrong" side of H, re sp.:

return  "no collision”
if there are still vertices on the "wrong" side of H:
return “collision" {could be wrong}

save Ht+1 :=H for the next frame
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How to Find a Vertex on the "Wrong" Side Quickly

¥ The brute-force method:
test all vertices v whether f(v) = (v—p)-n>0

¥ Observation:
1. fis linear in vy, vy, Vs,

2. P is convex" f(x) has (usually) exactly one minimum
over all points x on the surface of P, consequently ..

3.3 1 f(v*) = min

¥ The algorithm (steepest descent on the surface wrt. f):

¥ Start with an arbitrary vertex v
¥ Walk to that neighbor vO ofv for which f(v') = min. (among all neighbors)
¥ Stop if there is no neighbor vO ofv for which f(v') < f(v)
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Updating the Candidate Plane, H

¥ In the following, represent all vertices p as (, 1), i.e., use homogeneous coords
¥ Wewant h, suchthat 'p" P:hg€>0 and!q" P:hag<

¥ Let P! P be the "offending" points for a given plane h,ie.!p"” P:h§{p < O
¥ Delneacostfunction c=c(hy="!  5hd

¥ Change h so as to drive c down towards 0

. . . o d
¥ Gradient descent: change h by negative gradient of ¢, i.e. ' = h! d—hC(h)
. : d ~ _ :
¥ Costfctcislinearinh, so 5-C = ! o P
¥ Therefore, ' = h+ | o p P, with! ="learning speed” (usually ! " 1)
¥ In practice, one decelerates, i.e., | ' = 0.97! after each iteration, prevents cycling

¥ (For object Q, some signs need to be changed)
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¥ Perceptron Learning Rule (has been known in machine learning for a long time)
wheneverwe !'nd p! P with hgp< O , updateh using ' = h+ I'p
(Analog for Q, with some signs reversed.)

¥ Theorem:
If P, Q are linearly separable, then repeated application of the perceptron
learning rule will terminate after a ! nite number of steps.

¥ Corollary:
If P, Q are linearly separable, then the algorithm will ! nd a separating plane
In a ! nite number of steps.

(When algo terminates, none of P, Q's vertices are on the wrong side. l.e.,
each step brings H closer to the solution.)

G. Zachmann Virtual Reality and Physically-Based Simulation WS  January 2024 Collision Detection
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Proof of the Theorem

¥ Leth* be a separating plane, w.l.og. 'h'l =1
¥ Thereisad,suchthat 'p" P:h&g# d>0, 'q" Q:h&a$%d< O
¥ Such a valued is called the "margin" of h*

¥ Assume further h* is optimal w.r.t. the margin d (i.e., has the largest margin)

¥LetV=P! {"qg|lg# Q}

¥ Thus, P, Qis linearly separable <{
lp" P:hp>0#1g" Q:hg<C !" v#V  :hasr> (
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¥ Let V! V Dbe an "offending” vertex in k-th iteration

¥ After kiterations, h = hK' 1+ lyv=h' 2+ 1y +1y= ..

where ky = #iterations in which v was the offending vertex

¥ Consider h*h k:

11

hak=na! kv =! kha! !d
V'V V'V V'V
¥ Now, we use a trick to ! nd a lower bound on | h¥| :

Ih12=1h124h12"1 0 &2 =12d%k?

G. Zachmann Virtual Reality and Physically-Based Simulation WS  January 2024
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¥ Now, ! nd an upper bound
¥Let D=max{'V}

vi 'V
¥ Consider one iteration:

A e e A A 1 e
= Th" 112+ 200 v+ (Ty)2 1 e 2

< 0+ 1°D?
¥ Taking this over k iterations:

| hK12 < kI 2D?+ 1012

G. Zachmann Virtual Reality and Physically-Based Simulation WS  January 2024 Collision Detection



¥ Putting lower and upper bound together gives:

¥ Solving for k:
D2
k! g2

¥ In other words, the factor 3_22 gives a hint at how dif ! cult the problem is
(except, we don't know d or D in advance)

¥ To some extent, d is measures the "dif culty" of the problem

D

G. Zachmann Virtual Reality and Physically-Based Simulation WS  January 2024 Collision Detection
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Properties of this Algorithm

# EXxpected running time is in O(1)!
The algo exploits frame-to-frame coherence
If the objects move only very little, then the algo just checks whether the old
separating plane is still a separating plane;
If the separating plane has to be moved, then the algo is often ! nished after
a few iterations.

# Works even for deformable objects, so long as they stay convex
P Works only for convex objects

P Could return the wrong answer if P and Q are extremely close but not
Intersecting (bias)

¥ Research gquestion: can you! nd an un-biased (deterministic) variant?

G. Zachmann Virtual Reality and Physically-Based Simulation WS  January 2024 Collision Detection
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Closest Feature Tracking Optional

¥ ldea:
¥ Maintain the minimal distance between a pair of objects
¥ Which is realized by one point on the surface of each object

¥ If the objects move continuously, then those points move continuously on the
surface of their objects

¥ The algorithm is based on the following methods:

¥ Voronoi diagrams

¥ The Oclosest featuresO lemma

G. Zachmann Virtual Reality and Physically-Based Simulation WS  January 2024 Collision Detection
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Voronol Diagrams for Point Sets Optional

¥ Given a set of points 5 = j@alledsites (or generators)

¥ Del nition of a VVoronoi region/cell :

V(p):={peR*|Vj#i:|lp—pill <|lp- pill}

¥ Del nition of Voronoi diagrams:
The Voronoi diagram VD(S)
over a set of points Sis
the union of all Voronoi regions

over the points in S
VD(S)
¥ iInduces a partition of the

plane into Voronoi edges,
Voronol nodes, and Voronoi regions

G. Zachmann Virtual Reality and Physically-Based Simulation
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D Optional .
Voronoi Diagrams over Sets of Points, Edges, Polygons

¥ Voronoi diagrams can be de! ned analogously in 3D (and higher
dimensions)

¥ What if the generators are not points but edges / polygons?

¥ Del nition of a Voronoi cell is still the same:

The Voronoi region of an edge/polygon := all points in space that are closer
to "their" generator than to any other

Voronoi region

¥ Example In 2D: induced by an edge

Voronoi region
induced by
a vertex

Voronoi generators

G. Zachmann Virtual Reality and Physically-Based Simulation WS  January 2024 Collision Detection 39



_ _ Qptional
Outer Voronol Regions Generated by a Polyhedron

The external )
Voronoi regions of E

a) faces

(b) edges

c) asingle edge
d) vertices

Outer Voronoi
regions for convex
polyhedra can be
constructed very
easily!

(We won't need inner
Voronoi regions.)
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Closest Features Optional

¥ De! nition FeaturefP:= a vertex, edge, polygon of polyhedron P.

¥ Del nition " Closest Featuré'"
Let fP and fQ be two features on polyhedra Pand Q, resp., and let p, g be
points on fPand fQ, resp., that realize the minimal distance between P and
Q, i.e.
d(P,Q)=d(f", f?) =llp—aql
Then fP and fQ are called "closest features'.

¥ The "closest feature" lemma: fq\
Let () denote the Voronoi region
generated by feature f; let p and q be
points on the surface of Pand Q realizing

- e

G. Zachmann Virtual Reality and Physically-Based Simulation WS  January 2024 Collision Detection
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Example Optional
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Optional
The Algorithm (Another Klnd of a Steepest Descent)

Start with two arbitrary features f P, fQ on P and Q, resp.
while (fP, fQ ) are not (yet) closest features and dist(f, fQ) >0

if (fP,fQ) has been considered already:
return OcollisionO (b/c we've hit a cycle)

compute p and q that realize the distance between fP and fQ
if p# V(Q) und g# V(p):
return Ono collisionO, (?,fQ) are the closest features

if p lies on the "wrong" side of V( Q) :
fP .= the feature on that "other side" of V( q)

Notice: In case of collision, some features are

do the same for q, if $ V(p) inside the other object, but we did not
_ _ 5 compute Voronoi regions inside objects!
If d|5t(f J fQ ) >0: I hence the chance for cycles
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Animation of the Algorithm
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Some Remarks Optional

¥ A little question to make you think: actually, we don't really need the
Voronoi diagram! (but with a Voronoi diagram, the algorithm is faster)

¥ The running time (in each frame) depends on the "degree" of temporal
coherence

¥ Better initialization by using a lookup table:
¥ Partition a surrounding sphere by a grid

¥ Put each feature in each grid cell that it
covers when projected onto the sphere

¥ Connect the two centers of a pair of objets
by a line segment

¥ Initialize the algorithm by the features hit by that line
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The Minkowski Sum

¥ Hermann Minkowski (1864 b 1909), German mathematician

¥ Del nition ( Minkowski Sum):
Let Aand B be subsets of a vector space;
the Minkowski sum of Aand Bis de! ned as

AdB={a+blacA beB}

¥ Analogously, we de! ne the Minkowski difference:
AcB={a—blacA becB}

¥ Clearly, the connection between Minkowski sum and difference:
AcB=A® (—-B)

¥ Applications: computer graphics, computer vision, linear optimization, path
planning in robaotics, ...

G. Zachmann Virtual Reality and Physically-Based Simulation WS  January 2024 Collision Detection

a7



Some Simple Properties

¥ Commutative: ADPB=BpA

¥ Associative: A (Ba(O)=(AeB)s C

¥ Distributive w.r.t. setunion: A& (BUC)=(A@B)U(As ()

¥ Invariant against translation: T(A)¢ B = T(A® B)

G. Zachmann Virtual Reality and Physically-Based Simulation WS  January 2024
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¥ Intuitive "computation” of the
Minkowski sum/difference:

Warning: the yellow polygon in the
animation shows the Minkowsi sum
modulo (!) possible translations!

¥ Analogous construction of
Minkowski difference:

G. Zachmann Virtual Reality and Physically-Based Simulation WS

January 2024
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What Objects Were the Original Constituents of this Minkowski Sum?

Don't spoll it by |
"look-ahead" in
the slides!

_J

https://www.menti.com/f1b5t74e21
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Visualizations of Simple Examples

Minkowski sum of a ball and a cube

G. Zachmann Virtual Reality and Physically-Based Simulation WS
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Minkowski sum of cube and
cone, only the cone is

rotating

Minkowski sum of cube and
cone, both are translating
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The Complexity of the Minkowski Sum (in 2D, without proofs)

¥ Let Aand B be polygons with n and m vertices, resp.:
¥ If both Aand B are convex, then A& B is convex, too, and has complexity O(m + n)
¥ If only Bis convex, then A@® B has complexity
¥ If neither is convex, then A @ B has complexity
¥ Algorithmic complexity of the computation of A® B.
¥ If Aand B are convex, then A@ B can be computed in time

¥ If only Bis convex, then A@® B can be computed in
randomized time

¥ If neither is convex, then A® B can be computed in time
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An Intersection Test for Two Convex Objects using Minkowski Sums

¥ Compute the Minkowski difference

¥ AandBintersect<{ 0 € A& B

¥ Example where an intersection
OCCuUrs:

Used in several algorithms, such as
Gilbert-Johnson-Keerthi (GJK)
[see video on the course homepage]
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Hierarchical Collision Detection

¥ Thestandard approach for "polygon soups"

¥ Algorithmic technique:
divide & conquer
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The Bounding Volume Hierarchy (BVH)

¥ Constructive de! nition of a bounding volume hierarchy :

1. Enclose all polygons, P, in a bounding volume BV(P)

B
2. Partition Pinto subsets Py, ..., P, / \\

3. Recursively construct a BVH for eachh B, B, B,
and put them as children of Pin the tree a /N
Bu Bz Bis B::  Ba
¥ Typical arity = 2 or 4
B;
¥ Nodes store BV
and pointer
to children

B:
B B,
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Visualizations of Different Levels of Some BVHs
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The General Hierarchical Collision Detection Algo

A 1
Simultaneous traversal of two BVHs B C 2 3
traverse( node X, node Y ). /
if X,Y do not overlap: D [E El Gl [4] [5 6l [7
return

if XY are leaves:
check polygons
else
for all children pairs:
traverse( X i, Y j)

Resulting, conceptual(!) Bounding Volume Test Tree (BVTT)
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A Simple Running Time Estimation

Path through the

- . Bounding Volume
¥ Best-case: O (Iog n) Test Tree (BVTT)

¥ Extremely simple average-casesstimation:
¥ Let PK] = probability that exactly k children pairs overlap, k # [0,E,4]

PIK] = (:)/16, IOl =

¥ Assumption: all events are equally likely, each subtree has# of the polygons

¥ Expected running time:
T(n) =550+ T(3) +5:2T(5) + §:3T(3) + £-47(3)
T(n)=2T(3) € O(n

¥ In practice: running time is better/worse depending on degree of overlap
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Relationship Between the Type of BV and Running Time

¥ In case of rigid collision detection (BVH construction can be neglected):

T =NyCy + NpCp

Ny = number of BV overlap tests

Cv = cost of one BV overlap test

Np = number of intersection tests of primitives (e.g., triangles)
Cr = cost of one intersection test of two primitives

¥ In case of deformable objects (BVH must be updated):
T =NyCy+ NpCp + NyCy

Ny / Cy = number/cost of a BV update
¥ As the type of BV gets tighter, Ny (and, to some degree, Np) decreases, but
Cv and (usually) G, increases

G. Zachmann Virtual Reality and Physically-Based Simulation WS  January 2024 Collision Detection
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Requirements on BV's (for Collision Detection)

¥ Very fast overlap test! "simple BVs", even if BV's have been translated/
rotated!

¥ Little overlap among BVs on the same level in a BVH (i.e., if you want to
cover the whole space with the BVs, there should be as little overlap as
possible) ! "tight BV<S'
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Which Types of BV's Come to Your Mind?

Don't spoll it by |
"look-ahead" in
the slides!

_J

https://www.menti.com/f1b5t74e21
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Different Types of Bounding Volumes

%

Cylinder AABB (Axis-aligned bounding box) Convex hull
[Weghorst et al., 1985] (R*-trees)[Beckmann, Kriegel, et al., 1990] [Lin et. al., 2001]

N

Prism Sphere : :
[Barequet, et al., 1996] [Hubbard, 1996] OBB[(C?(;,:E gﬁiﬁ( Stoallmilygg] b0x)
............. |
Spherical shell k-DOP / Slabs Intersection of
[Manocha, 1997] [Zachmann, 1998] several BVs
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The Wheel of Re-Invention

¥ OBB-Trees: have been proposed already in 1981 by Dana Ballard for
bounding 2D curves, except they called it "strip trees"

¥ AABB hierarchies: have been invented (re-invented?) in the 80's in the spatial
data bases community, except they call them "R-tree", or "R*-tree", or "X-
tree”, etc.
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Digression: the Wheel of Fortune (Rad der Fortuna)

Boccaccio: De Casibus Virorum

_ _ Codex Buranus
llustrium, Paris 1467
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The Intersection Test for Oriented Bounding Boxes (OBB)

¥ The"separating plane" lemma (aka. "separating axis" lemma):
Two convex polyhedra Aand B do not overlap %
there is an axis (line) in space so that the projections of Aand B
onto that axis do not overlap.
This axis is called theseparating axis.

¥ Lemma "Separating Axis Test" (SAT):
Let Aand B be two convex 3D polyhedra.
If there is a separating plane, then there is also a separating
plane that is either parallel to one side of A, or parallel to one
side of B, or parallel to one edge of Aand one edge of B
simultaneously.
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Proof of the SAT Lemma

1.
2.
3.

© N o 0 b

Assumption: Aand B are disjoint
Consider the Minkowski sum C = A& B

All faces of C are either parallel to one face of A, or to

one face of B, or to one edge of Aand one of B (the
latter cannot be seen in 2D)

Cis convex

Therefore: C= 7 H'

We know: ANB=0<0¢C

B/c of assumption, !i: 0"#H" (i.e., O is outsideH;)
That H; de! nes the separating plane; the line
perpendicular to H; is the separating axis
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Computing the SAT for OBBs

¥ Compute everything in the coordinate frame of OBB A (wlog.)
¥ Ais del ned by: center c, axes A, A2, A3, and extents at, a2, a3, resp.

¥ B's position relative to A
Is de! ned by rot. Rand transl. T

¥ In the coord. frame of A
B are the columns of matrix R

¥ LetL be aline in space;
then A and B overlap,
if |T-L|<r,+r.

¥ Reminder: L = normal to the separating plane

¥ SAT lemma! we need to check only a few special lines (15 in case of OBB's)
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FYI (not relevant for exam)

¥ Example: [ = Al x B?
¥ We need to compute: r, =) a|A"-L (and similarlyrg)

¥ For instance, the 2nd term of the sum is:

aA® - (A'XxB?)
= 2,B° - (A°xAY)

2
=B - A’ Since we compute everything
= axR3 in A's coord. frame
& A3 is 3d unit vector, and

B is 2ns column of R

¥ In general, we have one test of the following form for each of the 15 axes:
‘T . L| < 32|R32| —+ 33|R22| —+ b1|R13‘ —+ b3|R11
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Discretely Oriented Polytopes (k-DOPSs)

¥ Del nition of k-DOPs
Choosek ! xed vectors b; € R3 , withk even,
and bi =-bjw2 .
We call these vectorsgenerating vectors
(or just generators).

A k-DOP is a volume dé€ ned by

the intersection of k half-spaces:

D:ﬂH, , H,'Zb,"X—d,'SO
i=1..k

¥ Ak-DOP is completely described by d=(d,...,d) ! R*
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¥ The overlap test for two (axis-aligned) k-DOPs:
D'ND? =g <
k

Bi=1 5 dhdl 0 d 2| =0

"Slab"

l.e., it is just k/2 interval tests

¥ Note: this is just a generalization of the simple
AABB overlap test
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¥ Computation of a k-DOP, given a polygon soup with vertices V.
¥ VZ{Vo,...,Vn}
¥ D= (di...dy) € R¥ b,

¥ For eachi =1, .., k, compute d =maxj=, n{V;ei} \/
bs b
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Some Properties of k-DOPs

¥ AABBs are special 6-DOPs
¥ The overlap test takes time € O(k) |k = number of orientations

¥ With growing k, the convex hull can be approximated arbitrarily precise
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The Overlap Test for Rotated k-DOPsFY| (not relevant for exam)

¥ The idea: enclose an "oriented" DOP by a new axis-aligned one:
¥ The object's orientation is given by rotation R& translation T
¥ The axis-aligned DOP D' = @', E, d'y) can be computed as follows (w/o proof):

: Cii ) dj;
d,-/ —|b; Cji G'Jé —I-,
N/ )\ <
di
with ¢; = b;R™*

¥ The correspondence ji is identical for all DOPs in the same hierarchy (thus, it can
be precomputed, and the red terms, too0)

¥ Complexity: O(k) [Compare this to a SAT-based overlap test]
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Restricted Boxtrees (a Variant of kd-Trees)

splitting planes

¥ Restricted Boxtreesare a combination of kd-
trees and AABB trees:

I hild hild
¥ For de! ning the children of a node B: OWEr Barer ch
for the left child, split off a portion of the B
"right" part of the box B ! "lower child"; —

for the right child of B, split off a portion of
the left partof B! "upper child"

¥ Memory usage: 1 $oat, 1 axis ID, 1 pointer
(= 9 bytes), can !t into 8 bytes

¥ Other names for the same thing:

¥ Bounding Interval Hierarchy (BIH)
¥ Spatial kd-tree (SKD-Tree)

[Zachmann, 2002]
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Just FY

¥ Overlap tests by "re-alignment" (i.e., enclosing the non-axis-aligned box in
an axis-aligned one, exploiting the special structure of restricted boxtrees):

12 FLOPs (8.5 with a little trick)

¥ Compare this to
¥ SAT. 82 FLOPs
¥ SAT lite: 24 FLOPs
¥ Sphere test: 29 FLOPs
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Performance
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Master's Thesis Topics

¥ Investigate the BVH presented in Bauszat et al., "The Minimal Bounding
Volume Hierarchy" (2 bits per node!):

¥ Can it be used for coll.det.?
¥ Would it be faster than my "Minimal Hierarchical Collision Detection" (2002)?
¥ How many polygons an the BVH represent and still !t into the L1/L2 cache?

¥ Can the BVH be stored such that proximal parts of the obj are contiguous in
memory (and thus can be loaded in the cache)?

¥ Can it be combined with the SSE/AVX instruction set?
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The Construction of BV Hierarchies

¥ Obviously: if the BVH is bad! collision detection has a bad performance
¥ The general algorithm for BVH construction: top-down

1. Compute the BV enclosing the set of polygons

2. Partition the set of polygons

3. Recursively compute a BVH for each subset
¥ The essential question: the splitting criterion?

¥ Guiding principle: the expected cost for collision detection incurred by a
particular split is

C(X,Y)=c+  P(X,Y;)C(X,Y;) ! ¢ P(Xy, Y1)+ aad P(Xp, Ya)
ij=1,2
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¥ Given: parent boxes X, Y (intersecting)

X
¥ Goal: estimation of P(X,Yj)
¥ Our tool: the Minkowski sum X1
¥ Reminder: XiNY; =0 & 0<€ X0,
¥ Therefore, the probability is: X oY,
_ Vol( OgoodO case
P(Xi, Y1) = Vol(all possible case XSV

_ VO|(X|| Yj) _ VO|(X|| YJ) | VO|(X|)+VO|(YJ)
C Vol(X! Y)  Vol(X! Y) ~ Vol(X)+Vol(Y)

¥ Conclusion: for a good BVH (in the sense of fast coll.det.), minimize the total
volume of the children of each node
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The Algorithm for Constructing a BVH

1. Find good orientation for a "good" . .
splitting plane using PCA . T .

2. Find the minimum of the total volume by a

¥ Complexity of that plane-sweepalgorithm:
T(n)=nlogn+ T(an)+ T((1 —a)n) € O(nlog® n)

¥ Assumption: splits are not too uneven, i.e., a fraction of " and (1-") polygons
goes into the left/right subtree, resp., and is " not "too small"
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What Could be a Good Measure of Penetration of Virtual Objects?

Don't spoll it by |
"look-ahead" in
the slides!

_J

https://www.menti.com/f1b5t74e21

G. Zachmann Virtual Reality and Physically-Based Simulation WS  January 2024 Collision Detection



Penetration Measures

¥ Penetration distance
¥ Various forms
¥ Suitable for penalty forces generated by
ad-hoc "virtual" springs
¥ Penetration volume

. In the con! guration on the left, the penetration should
¥ Intuitive be "higher" than in the con ! guration on the right

¥ Physically motivated: buoyancy force of
$oating objects = vol. of displaced water

¥ Continuous

¥ Related to deformation energy of
colliding objects

¥ Requires representation of inner volume
of objects
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Inner Sphere Trees: the Basic ldea

¥ Challenge: compute proximity, i.e., distance or
measure of penetration

¥ Approach: don't approximate an object from
the outside; instead, approximate it

¥ from the inside,

¥ with non-overlapping spheres, and

¥ with as little empty volume as possible
| Sphere packing

¥ Build sphere hierarchy on top of inner spheres

Conceptual
image only!
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The Long History of Sphere Packings

Johannes Kepler
(15719 1630)

Kepler's Conjecture — 1 ! " 0
(1611) vV = | 8 4%
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Mathematical proof in
1998 by Thomas Hales
and Samuel Ferguson
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¥ Our requirements / variety of sphere packings:
¥ Non-overlapping
¥ Arbitrary radii
¥ Must work for any kind of container (not just boxes)

¥ Optimization according to some criteria, e.g. number of spheres

¥ Our approach:

¥ Find inner Voronoi nodes of container object
¥ (See course "Computational Geometry for CG")
¥ In our case, use approximation by iterative algorithm

¥ Place spheres

¥ Compute new Voronoi nodes of object plus spheres
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Visualization of Our Algorithm

Candidate
Voronoi node

G. Zachmann Virtual Reality and Physically-Based Simulation
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January 2024

Collision Detection

87



Results

0 100 200 300 400 50(C
Nr of spheres / 1000
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The Algorithm can be Parallelized for the GPU
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Performance of Construction of Sphere Packing

0 20 40 60 80 1
Nr of spheres / 1000 Nvidia Geforce GTX 480
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Construction of Hierarchy Over Sphere Packing

¥ IST = sphere tree over sphere packing

¥ Constructions is based on a clustering
method known from machine learning
(batch neural gasclustering)

¥ Bears some resemblance to k-means, but
more robust against outliers and starting
con! guration

¥ We can assign "importance" to spheres
¥ Parallelizable on the GPU

¥ Naturally generalizes to higher tree
degrees (out-degree of 4-8 seems optimal)
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¥ BNG hierarchy construction on CPU has complexity of O(nlog n)

¥ Parallelization of BNG reduces complexity to O(log” n)

Construction time in seconds

CPU
30

20

10
GPU

Geforce GTX 780
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Examples

Clustering underneath root

G. Zachmann Virtual Reality and Physically-Based Simulation

Clustering underneath level 1 nodes

WS  January 2024 Collision Detection
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Proximity / Penetration Query Using ISTs

¥ Works by the standard simultaneous
traversal of BVHSs

¥ First algo that can compute both minimal
distanceor intersection volumewith one
uni! ed algorithm

¥ Can compute forces and torques

¥ Which can be proven to be continuous
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Computation Timings for the Intersection Volume

Running time (avg / max)

Millisec
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Parallel Computation Times for Intersection on GPU

Time / millisec
Max. time / millisec

Simulation Frame Number Number of spheres / 1000
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Penalty Forces for Simulation/Force-Feedback

¥ Accumulate sphere-sphere
Interaction forces:

¥ Linear force:

blue __ red blue blue
f" = Vol(s;* N s7¢)-n;

fblue _ Z fl_tj_lue

7__b_|ue = (Pij — Cm) X fij

/

¥ Torque:

7_blue _ 7_ib_lue

¥ Forces/torgues an be proven to be
continuous
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Application: Multi-User Haptic Workspace

12 moving objects ; 3.5M triangles ; 1 kHz simulation rate ; intersection volume " 1-3 msec
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Application: Bin Packing

[Mei8enhelter et al. 2019]
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Master / Bachelor Thesis Topics

¥ Perform collision detection using machine learning

¥ Use deep learning?, or GLVQ?, something else?
¥ Can it be done in 1 milliseconds ?!

¥ For rigid objects ! rst, then deformable, or continuous collision detection
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