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Definition

• A mass-spring system is a particle system consisting of: 

1. A set of point masses  mi  with positions  xi  and velocities vi , i = 1…n ; 

2. A set of springs                                   , where  sij  connects masses i and j, with rest 

length l0 , spring constant ks (= stiffness)  and the damping coefficient  kd  

• Typical spring topology:
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Some Properties

• Advantages: 

• Very easy to program 

• Ideally suited to study different kinds of solving methods 

• Ubiquitous in games (cloths, capes, sometimes also for deformable objects) 

• Disadvantages: 

• Some parameters (in particular the spring constants) are not obvious, i.e., 

difficult to derive 

• No built-in volumetric effects (e.g., preservation of volume)
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Example Mass-Spring System: Cloth 
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Occasionally also Used for 1D and 3D Objects
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Did You Learn About Springs in Your Physics Class in School ?
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https://www.menti.com/1io1dqhgtv

Also, how many of 

you are familiar 

with vector 

calculus?
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Forces Exerted by a Single Spring (Plus Damper)

• Given: masses  mi  and mj  with positions  xi  , xj 

• Let 

• The force between particles i and j : 

1. Force exerted by the spring (Hooke's law): 

 

 

acts on particle i in the direction of j 

2. Force exerted on i by damper: 

3. Total force on i : 

4. Force on mj :
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• A spring-damper element in reality: 

• Alternative spring force: 

• Notice: from (4) it follows that the total momentum is conserved 

• Momentum   p =  v . m  

• Fundamental physical law (follows from Newton's laws) 

• Note on terminology:  

• English "momentum" = German "Impuls"     = velocity × mass       

• English "Impulse"        = German "Kraftstoß" = force × time

Remarks
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Simulation of a Single Spring

• From Newton’s law, we have: 

• Convert this differential equation (ODE) of order 2 into ODE of order 1: 

• Initial values (boundary values): 

• By Taylor expansion we get: 

• Analogously: 

• This integration scheme is called explicit Euler integration 

• "Simulation" = "Integration of ODE's over time"
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The Main Loop for a Mass-Spring System 
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forall particles i : 

	 initialize xi, vi, mi 

loop forever: 

	 forall particles i : 

	  

	 forall particles i : 

	 render the system every n-th time

fg     = gravitational force 

fcoll = penalty force exerted by collision (e.g., from obstacles)
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Visualization of Differential Equations

• The general form of an ODE (ordinary differential equation): 

• Visualization of f as a vector field: 

• Notice: this vector field  

can vary over time! 

• Solution of a  

boundary value problem 

= path through this field
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Visualization of Error Accumulation

• Consider this ODE: 

• Exact solution: 

• The solution by Euler integration moves in 

spirals outward, no matter how small Δt! 

• Conclusion: Euler integration accumulates 

errors, no matter how small Δt!
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Other Explicit Integrators

• Runge-Kutta of order 2: 

• Idea: approximate  f( x(t), t )  by using the derivative at positions  x(t) and x( t+ ½Δt ) 

• The integrator (w/o proof): 

• Runge-Kutta of order 4: 

• The standard integrator among the explicit integration schemata 

• Needs 4 function evaluations (i.e., force computations) per time step 

• Order of convergence is: 
13
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Visualization

• Runge-Kutta of order 2: 

• Runge-Kutta of order 4:
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Demo
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http://www.dhteumeuleu.com/dhtml/v-grid.html 

http://www.dhteumeuleu.com/dhtml/v-grid.html


G. Zachmann Mass-Spring Systems Virtual Reality and Physically-Based Simulation WS December 2024

How Does the Energy of a Mass-Spring System Change Over Time?
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Verlet Integration

• A general, alternative idea to increase the order of convergence: utilize 

values from the past 

• Verlet integration = utilize  x(  t  -  Δt  )  

• Derivation: 

• Develop the Taylor series in both time directions:
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• Add both: 

	  

• Initialization: 

• Remark: the velocity does not occur any more!  (at least, not explicitly)
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Constraints

• Big advantage of Verlet over Euler & Runge-Kutta: makes it very easy to handle 

constraints on positions 

• Definition: constraint = a condition on the position of one or more mass points 

• Examples: 

1. A point must not penetrate an obstacle 

2. The distance between two points must be constant,  

or distance must be  ≤ some maximal distance
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• Example: consider the constraint 

1. Perform one Verlet integration step →            (tentative new positions) 

2. Enforce the constraint:  

• Problem: if several constraints are to constrain the same mass point, we 

need to employ constraint satisfaction algorithms

20
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Time-Corrected Verlet Integration

• Big assumption in basic Verlet: time-delta's are constant! 

• Solution for non-constant 𝛥t's: 

• Time steps are:                                 and   

• Expand Taylor series in both directions: 

                  and 

• Divide the expansions by          and            , respectively,  then add both, like in 

the derivation of the basic Verlet 

• Rearranging and omitting higher-order terms yields: 

• Note: basic Verlet is a special case of time-corrected Verlet  
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The Instability of Explicit Euler Integration

• Consider the differential equation 

• The exact solution: 

• Euler integration does this: 

• Case                  : 
 

 

⇒  xt oscillates about 0,  but approaches 0 (hopefully) 

• Case                :   ⇒  xt → ∞ !
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• Terminology: if k is large → the ODE is called "stiff " 

• The stiffer the ODE, the smaller 𝛥t  has to be!

Visualization of a Simple Example
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Properties of Explicit Euler Integration

• Advantages:  

• Can be implemented very easily 

• Fast execution per time step 

• Is "trivial" to parallelize on the GPU (⟶ "Massively Parallel Algorithms") 

• Disadvantages:  

• Stable only for very small time steps 

• Typically 𝛥t ≈ 10-4 … 10-3 sec! 

• With large time steps, additional energy is generated "out of thin air", until the 

system explodes ☺ 

• Example: overshooting even when simulating a single spring 

• Errors accumulate quickly
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Implicit Integration (a.k.a. Backwards Euler)

• All explicit integration schemes are only conditionally stable 

• I.e.: they are only stable for a specific range for Δt 

• This range depends on the stiffness of the springs 

• Goal: unconditionally stability 

• One option:  implicit Euler integration 

• Now we've got a system of non-linear, algebraic equations, with xt+1  and  

vt+1  as unknowns on both sides →  implicit integration 

25
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Solution Method 

• Write the whole spring-mass system with vectors (n = #mass points):
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• Write all the implicit equations as one big system of equations : 

• Plug (2) into (1) : 

• Expand f as Taylor series:

27
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• Plug (4) into (3): 

• K  is the Jacobi-Matrix, i.e., the derivative of f wrt. x: 

• K is called the tangent stiffness matrix 

• (The normal stiffness matrix is evaluated at the equilibrium of the system; here, the matrix is 

evaluated at an arbitrary "position" of the system in phase space, hence the name)
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• Now reorder terms : 

• Now, this has the form: 

• Solve this system of linear equations with any of the standard  iterative solvers 

• Don't use a non-iterative solver, because 

• A changes with every simulation step 

• We can "warm start" the iterative solver with the solution as of last frame 

• Incremental computation

29
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Computation of the Stiffness Matrix

• First of all, understand the 

anatomy of matrix K : 

• A spring ( i , j )  adds the following 

four 3x3 block matrices to K : 

• Block matrix Kij  arises from the 

derivation of  fi = (f3i, f3i+1, f3i+2)   

wrt. xj = (x3j, x3j+1, x3j+2): 

• In the following, consider only  fs 

(spring force)
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• First of all, compute  Kii:
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• Reminder: 

•   

•  
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• Using some symmetries, we can analogously derive: 

•   

•   

•  
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Overall Algorithm for Solving Implicit Euler Integration

• Initialize K = 0 

• For each spring  ( i , j)   compute  Kii, Kij, Kji, Kjj   

and accumulate it into K at the right places 

• Compute 

• Solve the linear equation system                      ⟶  

• Compute
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Advantages and Disadvantages

• Explicit integration: 

✓ Very easy to implement 

- Small step sizes needed 

- Stiff springs don't work very well 

- Forces are propagated only by one spring per time step 

• Implicit Integration: 

✓ Unconditionally stable 

✓ Stiff springs work better 

✓ Global solver → forces are being propagated throughout the whole spring-mass 

system within one time step 

- Large time steps needed, b/c one step is much more expensive (if real-time is needed) 

- The integration scheme introduces damping by itself (might be unwanted)
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• Visualization of: 

• Informal Description: 

• Explicit jumps forward blindly, based on current information 

• Implicit tries to find a future position and a backwards jump such that the 

backwards jump arrives exactly at the current point (in phase space)
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Simulating Volumetric Objects

• How to create a mass-spring system for a volumetric model? 

• Challenge: volume preservation! 

• Approach 1: introduce additional, volume-preserving constraints 

• Springs to preserve distances between mass points 

• Springs to prevent shearing 

• Springs to prevent bending 

• No change in model & solver required 

• You could also introduce 

"angle-preserving springs" that 

exert a torque on an edge 
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• Approach 2 (and still simple): model the inside volume explicitly 

• Create a tetrahedron mesh out of the geometry 

• Each vertex (node) of the tetrahedron mesh becomes a mass point, each edge a 

spring 

• Distribute the masses of the tetrahedra (= density × volume) equally among the 

mass points
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Details on Approach 2

• Generation of the tetrahedron mesh (simple 

method): 

• Distribute a number of points uniformly 

(perhaps randomly) in the interior of the 

geometry (so called "Steiner points") 

• Dito for a sheet/band outside the surface 

• Connect the points by Delaunay triangulation 

(see my course  "Computational Geometry") 

• Variation: create Steiner points outside, too, 

then anchor the surface mesh within the 

tetrahedron mesh: 

• Represent each vertex of the surface mesh by 

the barycentric combination of its surrounding 

tetrahedron vertices
39
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• Approach 3: kind of an "in-between" 

between approaches 1 & 2 

• Create a "virtual shell" around the two-

manifold (surface) mesh 

• Connect the shell with the "real" mesh 

by diagonal springs 

• Video:  

1. no virtual shells,  

2. one virtual shell,  

3. several virtual shells

40



G. Zachmann Mass-Spring Systems Virtual Reality and Physically-Based Simulation WS December 2024

Collision Detection for Mass-Spring Systems

• Put all tetrahedra in a 3D grid (use a hash table!) 

• In case of a collision in the hash table: 

• Compute exact intersection between the 2 involved tetrahedra

41
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Collision Response

• Given: objects P and Q (= tetrahedral meshes) that collide 

• Task: compute a penalty force 

• Naïve approach: 

• For each mass point of P that 

has penetrated, compute its 

closest distance from the surface 

of Q  ⟶  force = amount + direction 

•  Problem:  

• Implausible forces  

• "Tunneling" (s. a. the chapter on force-feedback)

42
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Examples

43
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Consistent Penalty Forces

1. Phase: identify all points of P that penetrate Q 

2. Phase: determine all edges of P that intersect 

the surface of Q 

• For each such edge, compute the exact 

intersection point xi 

• For each intersection point, compute a normal ni 

• E.g., by barycentric interpolation of the vertex 

normals of Q
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3. Phase: compute the approximate force for border points 

• Border point = a point p that penetrates Q and is incident to an intersecting edge 

• Note: a border point can be incident to several intersecting edges 

• Approximate the penetration depth for point p by 

 

 

 

where  xi = point of the intersection  

of an edge incident to p with surface Q,   

ni = normal to surface of Q at point xi ,  

and   
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• Set the direction of the penalty force on border points: 

4. Phase: propagate forces by way of breadth-first traversal through the 

tetrahedron mesh 

 

 

 

where pi = points of P that have been visited already,   p = point not yet 

visited, ri = direction of the estimated penalty force in point pi .
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Visualization
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Video
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Art(?) with Mass-Spring Systems
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