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U Definition

* A mass-spring system is a particle system consisting of:

1. A set of point masses m; with positions x; and velocitiesv;,i=1...n;

2. Aset of springs s;; = (I, J, ks, kq) , where s; connects masses i and j, with rest
length lo , spring constant ks (= stiffness) and the damping coefficient kg4

* Typical spring topology:
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Bremen

Y Some Properties

* Advantages:

* Very easy to program

* |deally suited to study different kinds of solving methods

* Ubiquitous in games (cloths, capes, sometimes also for deformable objects)
* Disadvantages:

* Some parameters (in particular the spring constants) are not obvious, i.e.,
difficult to derive

* No built-in volumetric effects (e.g., preservation of volume)
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Y Occasionally also Used for 1D and 3D Objects
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Y Did You Learn About Springs in Your Physics Class in School ?
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Also, how many of
you are familiar
with vector
calculus?

https://www.menti.com/TioTldghgtv
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Y Forces Exerted by a Single Spring (Plus Damper) o

e Given: masses m; and m; with positions Xx; , x;

1% = xi| v v
* The force between particlesiandj : lo
1. Force exerted by the spring (Hooke's law): ) ks
ol all .
£ = kerii([x; — xill — o) il I
—
acts on particle i in the direction of j ky

2. Force exerted on i by damper: f] = —kq((v; — v;)-r;j)r;
3. Total forceon i : fi = £ + fJ
4. Force on mj : fii— _fi

G. Zachmann Virtual Reality and Physically-Based Simulation WS December 2024 Mass-Spring Systems 7



Bremen

Y Remarks

* A spring-damper element in reality: ’é»m
!

 Alternative spring force: f7 = k.r;;

% = xill — o

lo

 Notice: from (4) it follows that the total momentum is conserved

* Momentum p=v-m

* Fundamental physical law (follows from Newton's laws)

* Note on terminology:

* Eng
* Eng

G. Zachmann
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IS

N "momentum" = German "Impuls" = velocity x mass

n "Impulse” = German "Kraftstol}" = force x time
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Y Simulation of a Single Spring

* From Newton’s law, we have: X = L1f

* Convert this differential equation (ODE) of order 2 into ODE of order 1:
x(t) = v(t)
v(t) = ()

e Initial values (boundary values): v(ty) = v, x(ty) = X

* By Taylor expansion we get: x(t + At) = x(t) + At x(t) + O(At?)

e Analogously: v(t + At) = v (t) + At v (t)

* This integration scheme is called explicit Euler integration

e "Simulation" = "Integration of ODE's over time"
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Y The Main Loop for a Mass-Spring System

v
¥ <§N"
LR

forall particles 1

initialize Xi, V;, Im;

loop forever:

forall particles 1

i P8+ > f(xi,vi X))

J.(ij)es
forall particles 1
f.
V, += At —
m;j
X; = Al“V,'

render the system every n-th time

ff = gravitational force

<! = penalty force exerted by collision (e.g., from obstacles)
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U Visualization of Differential Equations

* The general form of an ODE (ordinary differential equation):
x(t) = f(x(t),t,

 Visualization of f as a vector field:

* Notice: this vector field
can vary over time!

* Solution of a
boundary value problem
= path through this field

G. Zachmann Virtual Reality and Physically-Based Simulation WS December 2024 Mass-Spring Systems
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W Visualization of Error Accumulation

e Consider this ODE: x(t) = (_;2>
1

e Exact solution: X(t) = (:Zﬁféfig}

* The solution by Euler integration moves in
spirals outward, no matter how small At!

* Conclusion: Euler integration accumulates

errors, no matter how small At!
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U Other Explicit Integrators g

* Runge-Kutta of order 2:

* |dea: approximate f( x(t), t) by using the derivative at positions x(t) and x( t+ Y2At )

* The integrator (w/o proof):

a; =V’ a, = if(xt, v')
m
b, =vi+ 1Ataz b, = lf(x‘t + 1Atal, v+ 1Ataz)
2 m 2 2
xItt = xt + Atb, vitt = vt + Atb,

* Runge-Kutta of order 4:
* The standard integrator among the explicit integration schemata
* Needs 4 function evaluations (i.e., force computations) per time step

* Order of convergence is: e(At) = O(At4]
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@ Visualization a2

* Runge-Kutta of order 2:

(X:.;S Y

0 4= Xgth Euler

N

e Runge-Kutta of order 4: I
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LT

CG =
VR .=



Bremen

Y Demo

G. Zachmann

Mass Spring System Demo

Display a menu

http://www.dhteumeuleu.com/dhtml/v-grid.html
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http://www.dhteumeuleu.com/dhtml/v-grid.html

Y How Does the Energy of a Mass-Spring System Change Over Time?

- Il
T
E:lﬂ:

https://www.menti.com/TioTldghgtv
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U Verlet Integration

* A general, alternative idea to increase the order of convergence: utilize
values from the past

* Verlet integration = utilize x(t-At)

e Derivation:

* Develop the Taylor series in both time directions:

x(t + At) = x(t) + Atx(t) + %Atzi(t) — %At3'>'<'(t) + 0 (At*)
x(t — At) = x(t) — Atx(t) + %Atzii(t) - %At3')'('(t) + O(At?)

G. Zachmann Virtual Reality and Physically-Based Simulation WS December 2024 Mass-Spring Systems
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Y

e Add both:
x(t + At) + x(t — At) = 2x(t) + At* x(t) + O(At?)

x(t + At) = 2x(t) — x(t — At) + At* x(t) + O(At*)

e |nitialization:

X(At) = x(0) + Atv(0) + , AP (—F(x(0),v(0))

m

* Remark: the velocity does not occur any more! (at least, not explicitly)

G. Zachmann Virtual Reality and Physically-Based Simulation WS December 2024 Mass-Spring Systems
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U Constraints

* Big advantage of Verlet over Euler & Runge-Kutta: makes it very easy to handle
constraints on positions

* Detfinition: constraint = a condition on the position of one or more mass points

* Examples:
1. A point must not penetrate an obstacle

2. The distance between two points must be constant,
or distance must be < some maximal distance

G. Zachmann Virtual Reality and Physically-Based Simulation WS December 2024 Mass-Spring Systems 19
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e Example: consider the constraint ||x; — x2| = I,

~t+1

1. Perform one Verlet integration step = x (tentative new positions)

2. Enforce the constraint:

]' ~ ~ | |
d = S(II&" &~ 1o oo
X1 X2

t+1 _ ot+1
X1 X1 + dr12

XS—H )?E—H — drlg

* Problem: it several constraints are to constrain the same mass point, we
need to employ constraint satisfaction algorithms
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U Time-Corrected Verlet Integration

* Big assumption in basic Verlet: time-delta's are constant!

e Solution for non-constant At's:
e Timestepsare: t;=t_1+ At;_;y and t 1 =t + At

* Expand Taylor series in both directions:

X(t,' + At,') and X(t,' — At,'_l)

* Divide the expansions by At; and At;_;, respectively, then add both, like in
the derivation of the basic Verlet

* Rearranging and omitting higher-order terms yields:

{6+ At) = x(8) + o (x() — x(6 — A1) +K(5)

* Note: basic Verlet is a special case of time-corrected Verlet

At + At 4
2

At;

G. Zachmann Virtual Reality and Physically-Based Simulation WS December 2024 Mass-Spring Systems
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U The Instability of Explicit Euler Integration

e Consider the differential equation x(t) = —kx(t)

* The exact solution: X(t) — Xp e Kt

* Euler integration does this: x'™" = x* + At(—kx")

» Case At>; : x"'=x"(1-kAt)
0
<

= xt oscillates about O, but approaches 0 (hopefully)

* Case At>72(: = xt — oo |

G. Zachmann Virtual Reality and Physically-Based Simulation WS December 2024 Mass-Spring Systems
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Visualization of a Simple Example

position

time

x(t) = —x(t)

* Terminology: if k is large = the ODE is called "stiff "
* The stiffer the ODE, the smaller At has to be!
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Y Properties of Explicit Euler Integration

* Advantages:
* Can be implemented very easily
* Fast execution per time step
* |s "trivial" to parallelize on the GPU (— "Massively Parallel Algorithms")
* Disadvantages:
» Stable only for very small time steps
* Typically At = 104 ... 10-3 sec!
* With large time steps, additional energy is generated "out of thin air", until the
system explodes ©

* Example: overshooting even when simulating a single spring

* Errors accumulate quickly

G. Zachmann Virtual Reality and Physically-Based Simulation WS December 2024 Mass-Spring Systems 24
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Y Implicit Integration (a.k.a. Backwards Euler)

* All explicit integration schemes are only conditionally stable

* l.e.: they are only stable for a specific range for At
* This range depends on the stiffness of the springs

* Goal: unconditionally stability

* One option: implicit Euler integration

explicit implicit
X = x + Atv! X =xi + Atv ™
t+1 t ]' t t+1 t ]' t+1
viT =v; + At—fF(x") vitt =v; + At—Ff(x")
mi m;

* Now we've got a system of non-linear, algebraic equations, with x*+1 and

vi+l as unknowns on both sides = implicit integration

G. Zachmann Virtual Reality and Physically-Based Simulation WS December 2024 Mass-Spring Systems
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U Solution Method

* Write the whole spring-mass system with vectors (n = #mass points):

[ %0 ) [ w0 )
() | AN [ £(x) )

\Xng_l ) 5 | \Vn'_l ) 5 | \fn_i(x) )

m,_

\ 1 mn—l)

G. Zachmann Virtual Reality and Physically-Based Simulation WS December 2024 Mass-Spring Systems
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* Write all the implicit equations as one big system of equations :

MviTt = Mt 4 Atf(x") (1)
x'T = x'+ Atvit! (2)

* Plug (2)into (1):
MviTt = Myt + At f(x! + Atv'™ (3)

 Expand f as Taylor series:
f(x! + At vit) = f(x') + % f(x')- (At v (4)

4+ O((At Vt—|—1)2)

G. Zachmann Virtual Reality and Physically-Based Simulation WS December 2024 Mass-Spring Systems
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* Plug(4)into (3): Myt

Mv* + At(f(xt) | gxf(xt)-(Atth) )
——

K
= Mv' + Atf(x") + At°Kv' !

e K is the Jacobi-Matrix, i.e., the derivative of f wrt. x:

o 0 0
a_XOfb 3—X1f6 S 0x3n—1 fb
K= _ ' E
0 0
3_X0f3n—1 Oxan_1 f3n—1

* Kis called the tangent stiffness matrix

e (The normal stiffness matrix is evaluated at the equilibrium of the system; here, the matrix is
evaluated at an arbitrary "position" of the system in phase space, hence the name)

G. Zachmann Virtual Reality and Physically-Based Simulation WS December 2024 Mass-Spring Systems 28
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e Now reorder terms :
(M — At * K) vttt = Myt + At f(x')

 Now, this has the form: Avitl —p

mit Ac R3"%3"  pc R

* Solve this system of linear equations with any of the standard iterative solvers

e Don't use a non-iterative solver, because

* A changes with every simulation step

e We can "warm start" the iterative solver with the solution as of last frame

* Incremental computation

G. Zachmann Virtual Reality and Physically-Based Simulation WS December 2024 Mass-Spring Systems
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Y Computation of the Stiffness Matrix

e First of all, understand the
anatomy of matrix K :

* Aspring (i,/) adds the following
four 3x3 block matrices to K :

* Block matrix Kj; arises from the
derivation of f,' = (fg,', f3,'+1, f3,'+2)
wrt. X/ (X3/r X3/+7; X3/+2)

* In the following, consider only £
(spring force)

G. Zachmann Virtual Reality and Physically-Based Simulation

3— Kii Kij .
/7
3 — ) .

0 £
373J.f531

aX3J+1 fai 8X31+2 fai \
K,‘j — '

0 £ .. 0 .
3X3j 7%/—|—2 3X3j+2 f231—|—2/
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 First of all, compute Kj:

7‘
..
L

0
_(9x,-

Kii fi(Xi, ;)

aii ((XJ—X;) I Xj — X; )

— k.
Ix; — x|

C(xi=xi) "

[|x;—x;|]

—1-|[%; — x| — (x; — x;)

— k| —1 -1

1% = xil|?

1 z
_ks(—]+l0 = >

|
X = x|l %= x|

(= %)~ %)")
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e Reminder:
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* Using some symmetries, we can analogously derive:

0
- Kij = 8—)9 i(xi, xj) = —Ki

0 0
Kij = Ox; i(xi,x;) = 6’xj( fi(xi, x;)) = Ki

o
.
L
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Y Overall Algorithm for Solving Implicit Euler Integration

e |nitialize K=0

* Foreach spring (i,j) compute Kj, Kj;, Kj;, K;; / Kil | Ki \
and accumulate it into K at the right places \ Kil  |Kjj )

e Compute b= Mv" + Atf(x")

* Solve the linear equation system Avitl =p _, yit!

» Compute x'™ =x" 4+ Atv'™!

G. Zachmann Virtual Reality and Physically-Based Simulation WS December 2024 Mass-Spring Systems
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U Advantages and Disadvantages §

* Explicit integration:
v Very easy to implement
- Small step sizes needed
- Stiff springs don't work very well
- Forces are propagated only by one spring per time step
* Implicit Integration:
v Unconditionally stable
v Stiff springs work better
v Global solver = forces are being propagated throughout the whole spring-mass
system within one time step
- Large time steps needed, b/c one step is much more expensive (if real-time is needed)
- The integration scheme introduces damping by itself (might be unwanted)
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 Visualization of: x(t) = —x(t)

position

time

* Informal Description:

* Explicit jumps forward blindly, based on current information

* Implicit tries to find a future position and a backwards jump such that the
backwards jump arrives exactly at the current point (in phase space)

G. Zachmann Virtual Reality and Physically-Based Simulation WS December 2024 Mass-Spring Systems 36



Bremen

Y Simulating Volumetric Objects £,

e

* How to create a mass-spring system for a volumetric model?
* Challenge: volume preservation!

* Approach 1: introduce additional, volume-preserving constraints
* Springs to preserve distances between mass points
e Springs to prevent shearing
e Springs to prevent bending

* No change in model & solver required
* You could also introduce
"angle-preserving springs" that
exert a torqgue on an edge

G. Zachmann Virtual Reality and Physically-Based Simulation WS December 2024 Mass-Spring Systems 37
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* Approach 2 (and still simple): model the inside volume explicitly
e Create a tetrahedron mesh out of the geometry

* Each vertex (node) of the tetrahedron mesh becomes a mass point, each edge a
spring

* Distribute the masses of the tetrahedra (= density x volume) equally among the
mass points

G. Zachmann Virtual Reality and Physically-Based Simulation WS December 2024 Mass-Spring Systems 38
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@ Details on Approach 2

* Generation of the tetrahedron mesh (simple
method):

* Distribute a number of points uniformly
(perhaps randomly) in the interior of the
geometry (so called "Steiner points")

* Dito for a sheet/band outside the surface

e Connect the points by Delaunay triangulation
(see my course "Computational Geometry")

e Variation: create Steiner points outside, too,
then anchor the surface mesh within the
tetrahedron mesh:

* Represent each vertex of the surface mesh by

the barycentric combination of its surrounding
tetrahedron vertices

G. Zachmann Virtual Reality and Physically-Based Simulation WS December 2024 Mass-Spring Systems 39
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* Approach 3: kind of an "in-between"
between approaches 1 & 2

e Create a "virtual shell" around the two-
manifold (surface) mesh

e Connect the shell with the "real" mesh
by diagonal springs

* Video:

1. no virtual shells,

2. one virtual shell,

3. several virtual shells

G. Zachmann
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U Collision Detection for Mass-Spring Systems

e Put all tetrahedra in a 3D grid (use a hash table!)

* |n case of a collision in the hash table:

 Compute exact intersection between the 2 involved tetrahedra

G. Zachmann Virtual Reality and Physically-Based Simulation WS December 2024 Mass-Spring Systems
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U Collision Response

* Given: objects P and Q (= tetrahedral meshes) that collide
e Task: compute a penalty force

* Naive approach:

* For each mass point of P that
has penetrated, compute its
closest distance from the surface

X R
ol e -amount e "A l‘

* Implausible forces

* "Tunneling" (s. a. the chapter on force-feedback)

G. Zachmann Virtual Reality and Physically-Based Simulation WS December 2024
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U Consistent Penalty Forces

1. Phase: identity all points of P that penetrate Q

2. Phase: determine all edges of P that intersect
the surface of Q

e For each suc

N edge, compute the exact

Intersection point x;

e For each intersection point, compute a normal n;

* E.g., by barycentric interpolation of the vertex
normals of Q

G. Zachmann Virtual Rea
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Y
3. Phase: compute the approximate force for border points

* Border point = a point p that penetrates Q and is incident to an intersecting edge

* Note: a border point can be incident to several intersecting edges

g

\ A X

* Approximate the penetration depth for point p by

S w(xi, p) (xi — p)-n;
fo:1 w(x;, p)

where x; = point of the intersection

d(p) =

of an edge incident to p with surface Q,
n; = normal to surface of Q at point x;,
and w(x;,p) = —

~|Ixi—pl|

G. Zachmann Virtual Reality and Physically-Based Simulation WS December 2024 Mass-Spring Systems
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* Set the direction of the penalty force on border points:

Zi{=1 w(x;, p) n;
Zf'(:1 w(x;, p)

r(p) =

4. Phase: propagate forces by way of breadth-first traversal through the
tetrahedron mesh

fozl w(pi, P)((Pi —p)ri+ d(Pi))
Zf'(:1 w(x;, p)

where p; = points of P that have been visited already, p = point not yet
visited, r;= direction of the estimated penalty force in point p; .

d(p) =

G. Zachmann Virtual Reality and Physically-Based Simulation WS December 2024 Mass-Spring Systems
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WY Visualization
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U Video

http://cg.informatik.uni-freiburg.de
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Y  Art(?) with Mass-Spring Systems
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