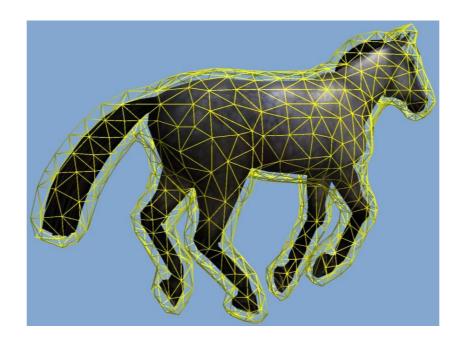
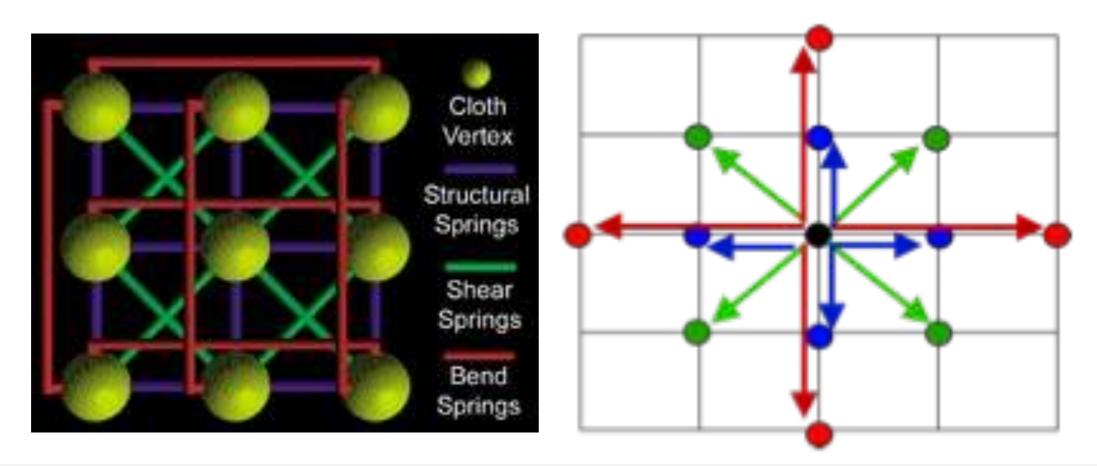


Virtual Reality & Physically-Based Simulation Mass-Spring-Systems



G. Zachmann University of Bremen, Germany cgvr.cs.uni-bremen.de

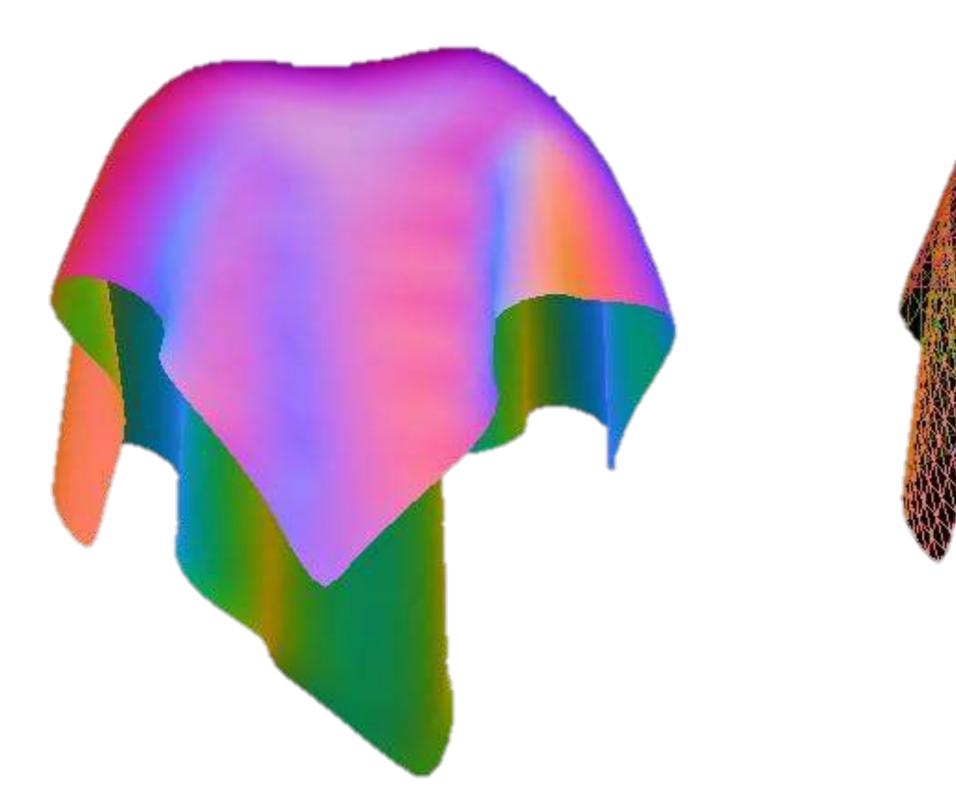
- A mass-spring system is a particle system consisting of:
 - **1.** A set of point masses m_i with positions \mathbf{x}_i and velocities \mathbf{v}_i , $\mathbf{i} = 1...n$;
 - **2.** A set of springs $s_{ij} = (i, j, k_s, k_d)$, where s_{ij} connects masses *i* and *j*, with rest length l_0 , spring constant k_s (= stiffness) and the damping coefficient k_d
- Typical spring topology:

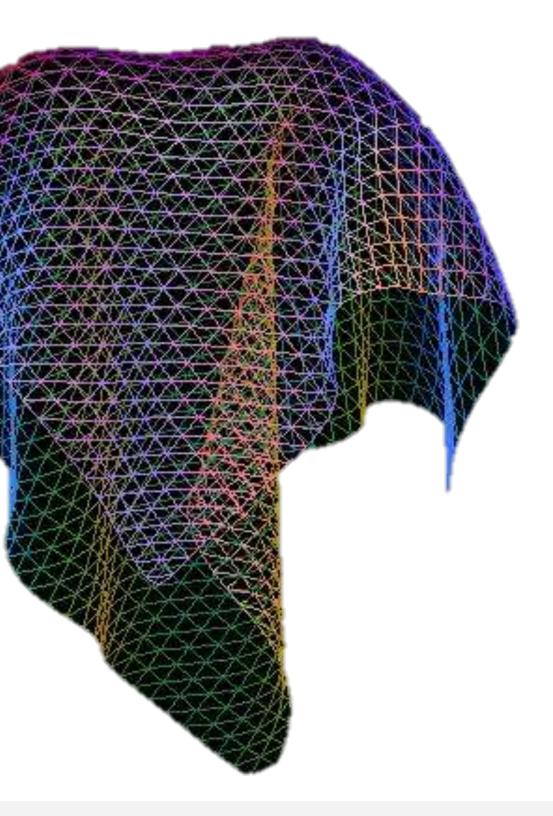


Some Properties

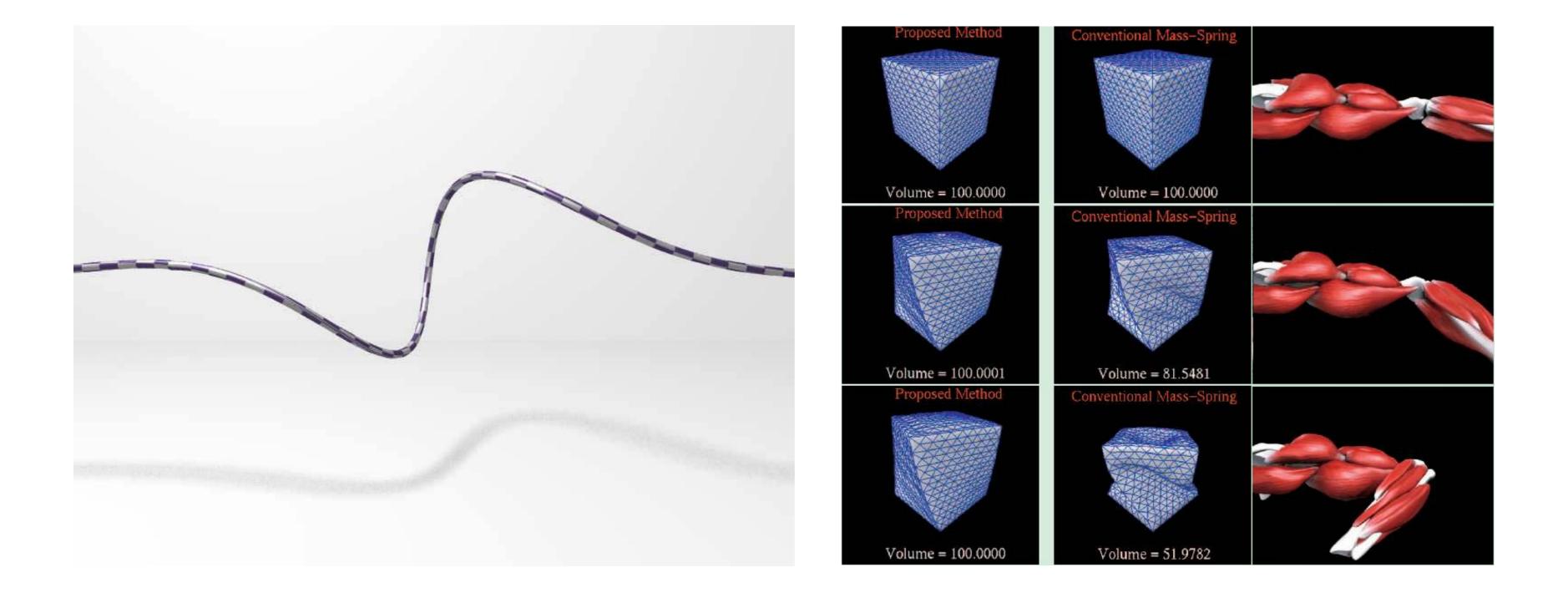
- Advantages:
 - Very easy to program
 - Ideally suited to study different kinds of solving methods
 - Ubiquitous in games (cloths, capes, sometimes also for deformable objects)
- Disadvantages:
 - Some parameters (in particular the spring constants) are not obvious, i.e., difficult to derive
 - No built-in volumetric effects (e.g., preservation of volume)

Example Mass-Spring System: Cloth





Occasionally also Used for 1D and 3D Objects



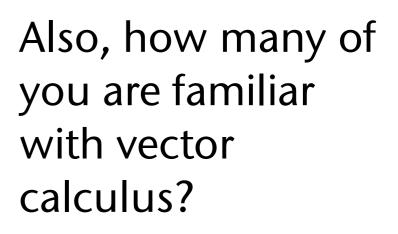
Did You Learn About Springs in Your Physics Class in School ?

https://www.menti.com/1io1dqhgtv

G. Zachmann

Bremen

Virtual Reality and Physically-Based Simulation



Forces Exerted by a Single Spring (Plus Damper)

• Given: masses m_i and m_j with positions \mathbf{x}_i , \mathbf{x}_j

• Let
$$\mathbf{r}_{ij} = \frac{\mathbf{x}_j - \mathbf{x}_i}{\|\mathbf{x}_j - \mathbf{x}_i\|}$$

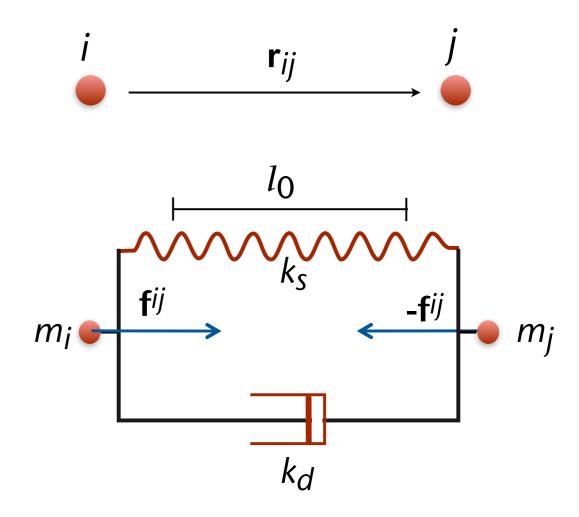
- The force between particles *i* and *j* :
 - 1. Force exerted by the spring (Hooke's law):

$$\mathbf{f}_{s}^{ij} = k_{s}\mathbf{r}_{ij}(\|\mathbf{x}_{j} - \mathbf{x}_{i}\| - l_{0})$$

acts on particle *i* in the direction of *j*

- **2.** Force exerted on *i* by damper: $\mathbf{f}_d^{ij} = -k_d((\mathbf{v}_i \mathbf{v}_i) \cdot \mathbf{r}_{ii})\mathbf{r}_{ii}$ $\mathbf{f}^{ij} = \mathbf{f}^{ij}_{s} + \mathbf{f}^{ij}_{d}$ 3. Total force on *i* :
- 4. Force on m_i :

$$\mathbf{f}^{ji} = -\mathbf{f}^{ij}$$



• A spring-damper element in reality:

- Notice: from (4) it follows that the total momentum is conserved
 - Momentum $\mathbf{p} = \mathbf{v} \cdot m$
 - Fundamental physical law (follows from Newton's laws)
- Note on terminology:
 - English "momentum" = German "Impuls" = velocity × mass
 - English "Impulse" = German "Kraftstoß" = force × time

Simulation of a Single Spring

- From Newton's law, we have: $\ddot{\mathbf{x}} = \frac{1}{m}\mathbf{f}$
- Convert this differential equation (ODE) of order 2 into ODE of order 1:

$$\dot{\mathbf{x}}(t) = \mathbf{v}(t)$$

 $\dot{\mathbf{v}}(t) = \frac{1}{m}\mathbf{f}(t)$

- Initial values (boundary values): $\mathbf{v}(t_0) = \mathbf{v}_0$, $\mathbf{x}(t_0) = \mathbf{x}_0$
- By Taylor expansion we get: $\mathbf{x}(t + \Delta t) = \mathbf{x}(t) + \Delta t \, \dot{\mathbf{x}}(t) + O(\Delta t^2)$
- Analogously: $\mathbf{v}(t + \Delta t) = \mathbf{v}(t) + \Delta t \, \dot{\mathbf{v}}(t)$
- This integration scheme is called explicit Euler integration
- "Simulation" = "Integration of ODE's over time"

Bremen The Main Loop for a Mass-Spring System

forall particles i :

initialize \mathbf{x}_i , \mathbf{v}_i , m_i

loop forever:

forall particles i :

$$\mathbf{f}_i \leftarrow \mathbf{f}^g + \mathbf{f}_i^{coll} + \sum_{j, (i,j) \in S} \mathbf{f}(\mathbf{x}_i, \mathbf{v}_i, \mathbf{x}_j, \mathbf{v}_j)$$

forall particles i :

$$\mathbf{v}_i += \Delta t \cdot \frac{\mathbf{f}_i}{m_i}$$

 $\mathbf{x}_i += \Delta t \cdot \mathbf{v}_i$

render the system every *n*-th time

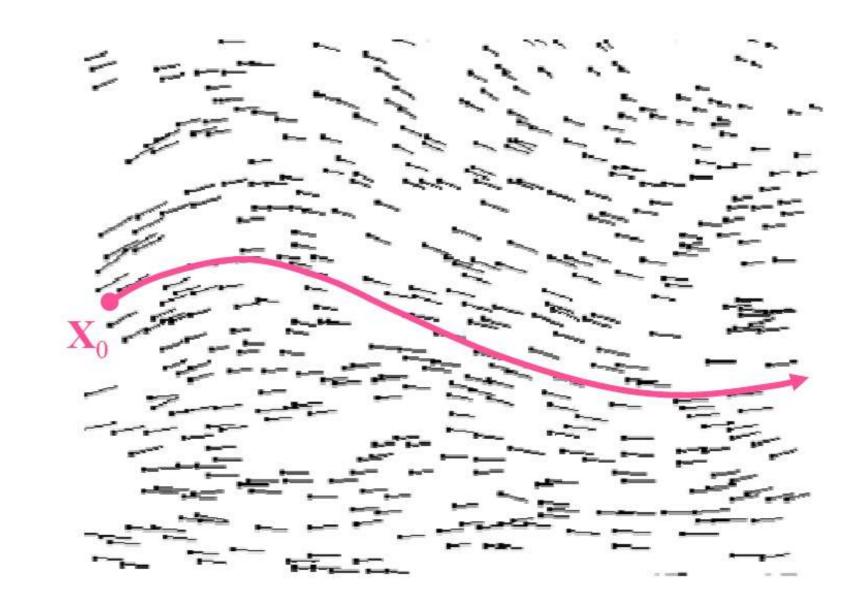
 \mathbf{f}^{g} = gravitational force **f**^{coll} = penalty force exerted by collision (e.g., from obstacles)

Visualization of Differential Equations

• The general form of an ODE (ordinary differential equation):

$$\dot{\mathbf{x}}(t) = \mathbf{f}(\mathbf{x}(t), t)$$

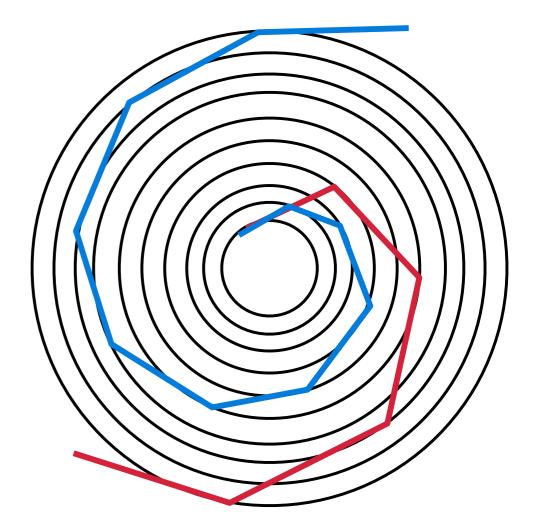
- Visualization of **f** as a vector field:
 - Notice: this vector field can vary over time!
- Solution of a boundary value problem = path through this field



Visualization of Error Accumulation

• Consider this ODE: $\dot{\mathbf{x}}(t) = \begin{pmatrix} -x_2 \\ x_1 \end{pmatrix}$

- Exact solution: $\mathbf{x}(t) = \begin{pmatrix} r \cos(t + \phi) \\ r \sin(t + \phi) \end{pmatrix}$
- The solution by Euler integration moves in spirals outward, no matter how small Δt !
- Conclusion: Euler integration accumulates errors, no matter how small Δt !



Bremen

Other Explicit Integrators

- Runge-Kutta of order 2:
 - Idea: approximate f(x(t), t) by using the derivative at positions x(t) and x(t + $\frac{1}{2}\Delta t$)
 - The integrator (w/o proof):

$$egin{aligned} \mathbf{a}_1 &= \mathbf{v}^t & \mathbf{a}_2 &= rac{1}{m} \mathbf{f}(\mathbf{x}^t, \mathbf{x}^t) \ \mathbf{b}_1 &= \mathbf{v}^t + rac{1}{2} \Delta t \mathbf{a}_2 & \mathbf{b}_2 &= rac{1}{m} \mathbf{f}(\mathbf{x}^t, \mathbf{x}^t) \ \mathbf{x}^{t+1} &= \mathbf{x}^t + \Delta t \mathbf{b}_1 & \mathbf{v}^{t+1} &= \mathbf{v}^t + \Delta t \mathbf{b}_1 \end{aligned}$$

- Runge-Kutta of order 4:
 - The standard integrator among the explicit integration schemata
 - Needs 4 function evaluations (i.e., force computations) per time step
 - Order of convergence is: $e(\Delta t) = O(\Delta t^4)$

G. Zachmann

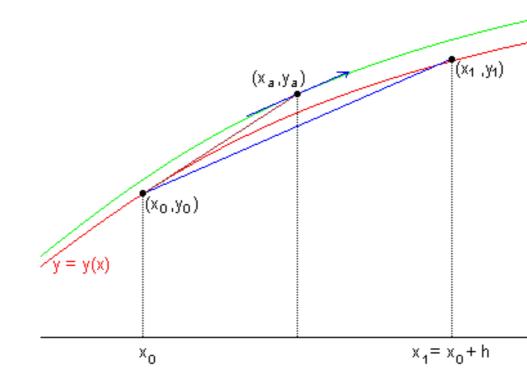
Virtual Reality and Physically-Based Simulation

WS December 2024

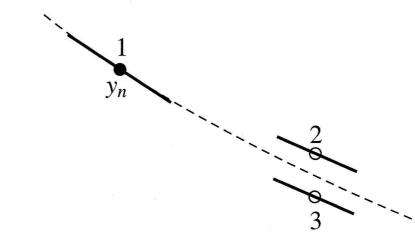
$, \mathbf{v}^{t})$ $+rac{1}{2}\Delta t\mathbf{a}_1, \mathbf{v}^t+rac{1}{2}\Delta t\mathbf{a}_2 ight)$ $\Delta t \mathbf{b}_2$

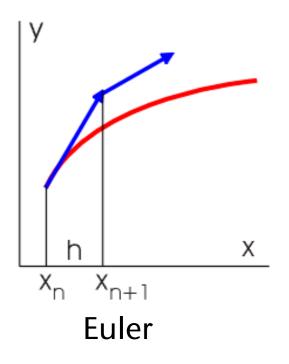
Visualization

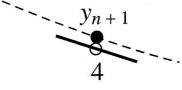
• Runge-Kutta of order 2:

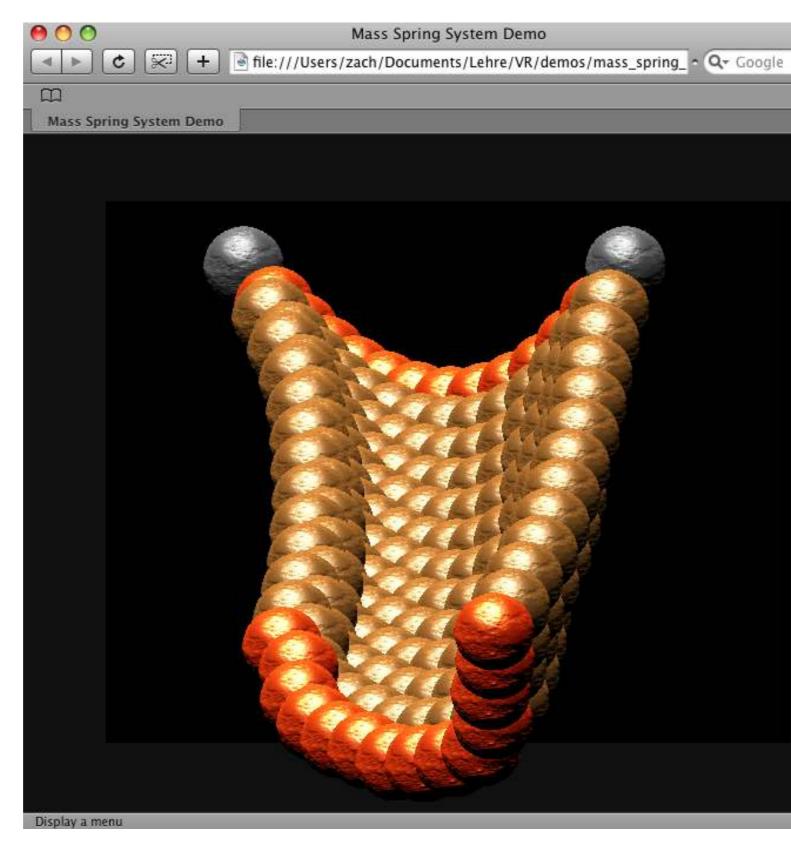


• Runge-Kutta of order 4:









http://www.dhteumeuleu.com/dhtml/v-grid.html

Virtual Reality and Physically-Based Simulation

WS December 2024

How Does the Energy of a Mass-Spring System Change Over Time?

https://www.menti.com/1io1dqhgtv

G. Zachmann

Virtual Reality and Physically-Based Simulation

Verlet Integration

- A general, alternative idea to increase the order of convergence: utilize values from the past
- Verlet integration = utilize $\mathbf{x}(t \Delta t)$
- **Derivation**:
 - Develop the Taylor series in both time directions:

$$\mathbf{x}(t + \Delta t) = \mathbf{x}(t) + \Delta t \dot{\mathbf{x}}(t) + rac{1}{2} \Delta t^2 \ddot{\mathbf{x}}(t) + rac{1}{6} \Delta t$$
 $\mathbf{x}(t - \Delta t) = \mathbf{x}(t) - \Delta t \dot{\mathbf{x}}(t) + rac{1}{2} \Delta t^2 \ddot{\mathbf{x}}(t) - rac{1}{6} \Delta t$

$\Delta t^3 \ddot{\mathbf{x}}(t) + O(\Delta t^4)$

$\Delta t^3 \ddot{\mathbf{x}}(t) + O(\Delta t^4)$

• Add both: $\mathbf{x}(t + \Delta t) + \mathbf{x}(t - \Delta t) = 2\mathbf{x}(t) + \Delta t^2 \, \ddot{\mathbf{x}}(t) + O(\Delta t^4)$ $\mathbf{x}(t + \Delta t) = 2\mathbf{x}(t) - \mathbf{x}(t - \Delta t) + \Delta t^2 \ddot{\mathbf{x}}(t) + O(\Delta t^4)$

Initialization:

$$\mathbf{x}(\Delta t) = \mathbf{x}(0) + \Delta t \mathbf{v}(0) + rac{1}{2} \Delta t^2 (rac{1}{m} \mathbf{f}(\mathbf{x}))$$

Remark: the velocity does not occur any more! (at least, not explicitly)

x(0), v(0))

- Big advantage of Verlet over Euler & Runge-Kutta: makes it very easy to handle constraints on positions
- Definition: constraint = a condition on the position of one or more mass points
- Examples:
 - 1. A point must not penetrate an obstacle
 - 2. The distance between two points must be constant, or distance must be \leq some maximal distance

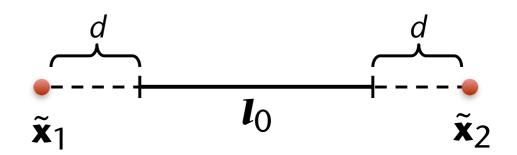
- Example: consider the constraint $\|\mathbf{x}_1 \mathbf{x}_2\| \stackrel{!}{=} l_0$
- 1. Perform one Verlet integration step $\rightarrow \tilde{\mathbf{x}}^{t+1}$ (tentative new positions)
- 2. Enforce the constraint:

$$d = \frac{1}{2}(||\mathbf{\tilde{x}}_{2}^{t+1} - \mathbf{\tilde{x}}_{1}^{t+1}|| - l_{0})$$

$$\mathbf{x}_{1}^{t+1} = \mathbf{\tilde{x}}_{1}^{t+1} + d\mathbf{r}_{12}$$

$$\mathbf{x}_{2}^{t+1} = \mathbf{\tilde{x}}_{2}^{t+1} - d\mathbf{r}_{12}$$

• Problem: if several constraints are to constrain the same mass point, we need to employ constraint satisfaction algorithms



Bremen

Time-Corrected Verlet Integration

- Big assumption in basic Verlet: time-delta's are constant!
- Solution for non-constant Δt 's:
 - Time steps are: $t_i = t_{i-1} + \Delta t_{i-1}$ and $t_{i+1} = t_i + \Delta t_i$
 - Expand Taylor series in both directions:

$$\mathbf{x}(t_i + \Delta t_i)$$
 and $\mathbf{x}(t_i - \Delta t_{i-1})$

- Divide the expansions by Δt_i and Δt_{i-1} , respectively, then add both, like in the derivation of the basic Verlet
- Rearranging and omitting higher-order terms yields:

$$\mathbf{x}(t_i + \Delta t_i) = \mathbf{x}(t_i) + \frac{\Delta t_i}{\Delta t_{i-1}} (\mathbf{x}(t_i) - \mathbf{x}(t_i - \Delta t_{i-1})) + \ddot{\mathbf{x}}(t_i) \frac{\Delta t_i + \Delta t_{i-1}}{2} \cdot \Delta t_i$$

• Note: basic Verlet is a special case of time-corrected Verlet

Bremen The Instability of Explicit Euler Integration

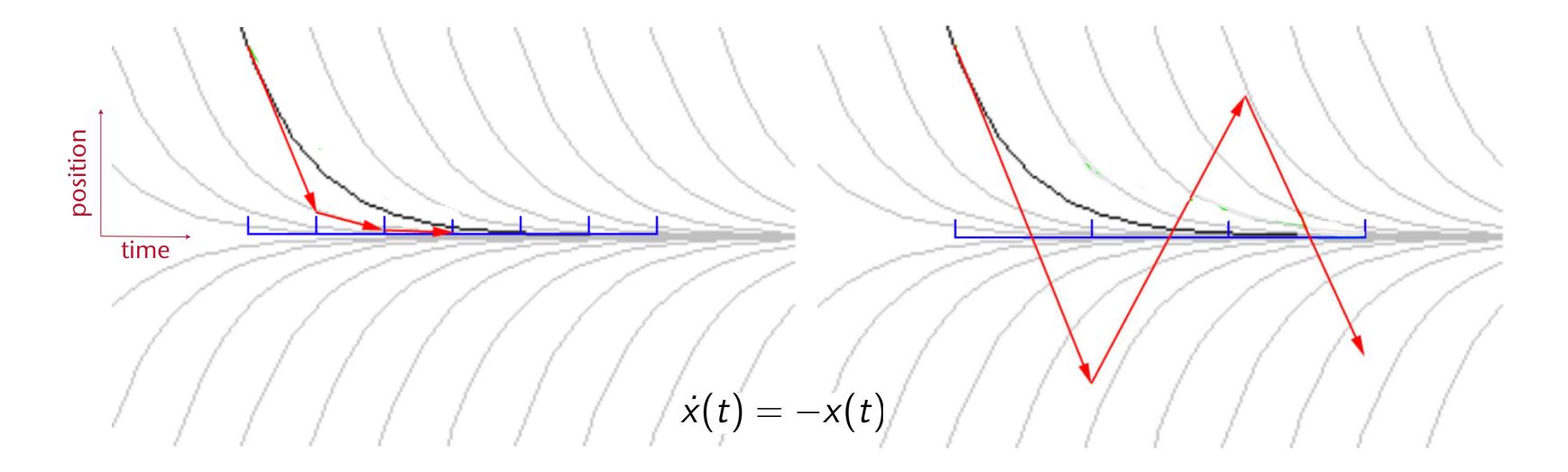
- Consider the differential equation $\dot{x}(t) = -kx(t)$
- The exact solution: $x(t) = x_0 e^{-\kappa t}$
- Euler integration does this: $x^{t+1} = x^t + \Delta t(-kx^t)$

• Case
$$\Delta t > \frac{1}{k}$$
 : $x^{t+1} = x^t \underbrace{\left(1 - k\Delta t\right)}_{<0}$

 $\Rightarrow x^t$ oscillates about 0, but approaches 0 (hopefully)

• Case
$$\Delta t > \frac{2}{k}$$
: $\Rightarrow x^t \rightarrow \infty$!

Visualization of a Simple Example



- Terminology: if k is large \rightarrow the ODE is called "stiff"
 - The stiffer the ODE, the smaller Δt has to be!

Properties of Explicit Euler Integration

- Advantages:
 - Can be implemented very easily
 - Fast execution per time step
 - Is "trivial" to parallelize on the GPU (\rightarrow "Massively Parallel Algorithms")
- Disadvantages:
 - Stable only for very small time steps
 - Typically $\Delta t \approx 10^{-4} \dots 10^{-3}$ sec!
 - With large time steps, additional energy is generated "out of thin air", until the system explodes ③
 - Example: overshooting even when simulating a single spring
 - Errors accumulate quickly

Implicit Integration (a.k.a. Backwards Euler)

- All explicit integration schemes are only *conditionally stable*
 - I.e.: they are only stable for a specific range for Δt
 - This range depends on the stiffness of the springs
- Goal: unconditionally stability
- One option: implicit Euler integration

explicit

$$\mathbf{x}_{i}^{t+1} = \mathbf{x}_{i}^{t} + \Delta t \mathbf{v}_{i}^{t}$$

$$\mathbf{x}_{i}^{t+1} = \mathbf{x}_{i}^{t} + \Delta t \mathbf{v}_{i}^{t+1}$$

$$\mathbf{x}_{i}^{t+1} = \mathbf{x}_{i}^{t} + \Delta t \mathbf{v}_{i}^{t+1}$$

$$\mathbf{v}_{i}^{t+1} = \mathbf{v}_{i}^{t} + \Delta t \frac{1}{m_{i}} \mathbf{f}(\mathbf{x}^{t})$$

$$\mathbf{v}_{i}^{t+1} = \mathbf{v}_{i}^{t} + \Delta t \frac{1}{m_{i}} \mathbf{f}(\mathbf{x}^{t+1})$$

Now we've got a system of non-linear, algebraic equations, with \mathbf{x}^{t+1} and \mathbf{v}^{t+1} as unknowns on both sides \rightarrow implicit integration

Solution Method

• Write the whole spring-mass system with vectors (*n* = #mass points):

$$\mathbf{x} = \begin{pmatrix} \mathbf{x}_{0} \\ \mathbf{x}_{1} \\ \vdots \\ \mathbf{x}_{n-1} \end{pmatrix} = \begin{pmatrix} x_{0} \\ x_{1} \\ x_{2} \\ x_{3} \\ \vdots \\ x_{3n-1} \end{pmatrix}, \quad \mathbf{v} = \begin{pmatrix} \mathbf{v}_{0} \\ \mathbf{v}_{1} \\ \vdots \\ \mathbf{v}_{n-1} \end{pmatrix} = \begin{pmatrix} v_{0} \\ v_{1} \\ v_{2} \\ v_{3} \\ \vdots \\ v_{3n-1} \end{pmatrix}$$
$$\mathbf{f}_{i} = \begin{pmatrix} f_{3i+0}(\mathbf{x}) \\ f_{3i+1}(\mathbf{x}) \\ f_{3i+2}(\mathbf{x}) \end{pmatrix}, \quad M_{3n \times 3n} = \begin{pmatrix} m_{0} \\ m_{0} \\ m_{1} \\ m_{1} \end{pmatrix}$$

$$\mathbf{f}(\mathbf{x}) = egin{pmatrix} \mathbf{f}_0(\mathbf{x}) \ dots \ \mathbf{f}_{n-1}(\mathbf{x}) \end{pmatrix}$$

,

$$m_{n-1}$$

••,

$$m_{n-1}$$
 m_{n-1}

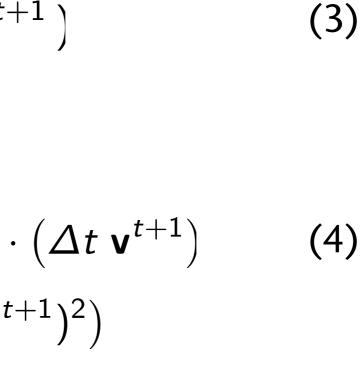
• Write all the implicit equations as one big system of equations :

$$egin{array}{rcl} M \mathbf{v}^{t+1} &=& M \mathbf{v}^t + \Delta t \mathbf{f}(\mathbf{x}^{t+1}) \ \mathbf{x}^{t+1} &=& \mathbf{x}^t + \Delta t \, \mathbf{v}^{t+1} \end{array}$$

• Plug (2) into (1) :

$$M\mathbf{v}^{t+1} = M\mathbf{v}^t + \Delta t \, \mathbf{f} (\, \mathbf{x}^t + \Delta t \mathbf{v}^t)$$

• Expand **f** as Taylor series: $\mathbf{f}(\mathbf{x}^{t} + \Delta t \ \mathbf{v}^{t+1}) = \mathbf{f}(\mathbf{x}^{t}) + \frac{\partial}{\partial \mathbf{x}} \mathbf{f}(\mathbf{x}^{t}) \cdot (\Delta t \ \mathbf{v}^{t+1})$ + $O((\Delta t \mathbf{v}^{t+1})^2)$



(1)

(2)

- Plug (4) into (3): $M\mathbf{v}^{t+1} = M\mathbf{v}^t + \Delta t \Big(\mathbf{f}(\mathbf{x}^t) + \underbrace{\frac{\partial}{\partial \mathbf{x}} \mathbf{f}(\mathbf{x}^t)}_{t'} \cdot (\Delta t \mathbf{v}^{t+1}) \Big)$ $= M\mathbf{v}^{t} + \Delta t \mathbf{f}(\mathbf{x}^{t}) + \Delta t^{2} K \mathbf{v}^{t+1}$
- K is the Jacobi-Matrix, i.e., the derivative of f wrt. x:

$$K = \begin{pmatrix} \frac{\partial}{\partial x_0} f_0 & \frac{\partial}{\partial x_1} f_0 \\ \vdots & \vdots \\ \frac{\partial}{\partial x_0} f_{3n-1} & \dots \end{pmatrix}$$

- K is called the tangent stiffness matrix
- (The normal stiffness matrix is evaluated at the equilibrium of the system; here, the matrix is evaluated at an arbitrary "position" of the system in phase space, hence the name)

 $\begin{array}{ccc} & & \frac{\partial}{\partial x_{3n-1}} f_0 \\ & & \vdots \\ & & \vdots \\ & & \frac{\partial}{\partial x_{3n-1}} f_{3n-1} \end{array} \right)$

• Now reorder terms :

$$\left(M - \Delta t^{2} K\right) \mathbf{v}^{t+1} = M \mathbf{v}^{t} +$$

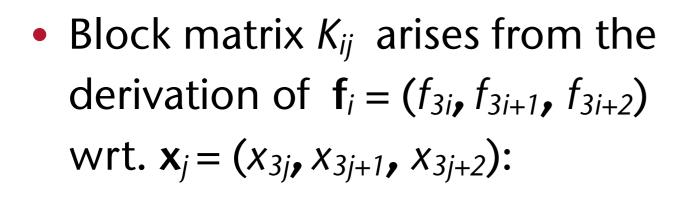
- Now, this has the form: $A \mathbf{v}^{t+1} = \mathbf{b}$
- Solve this system of linear equations with any of the standard iterative solvers
- Don't use a non-iterative solver, because
 - A changes with every simulation step
 - We can "warm start" the iterative solver with the solution as of last frame
 - Incremental computation

$+ \Delta t \mathbf{f}(\mathbf{x}^{t})$

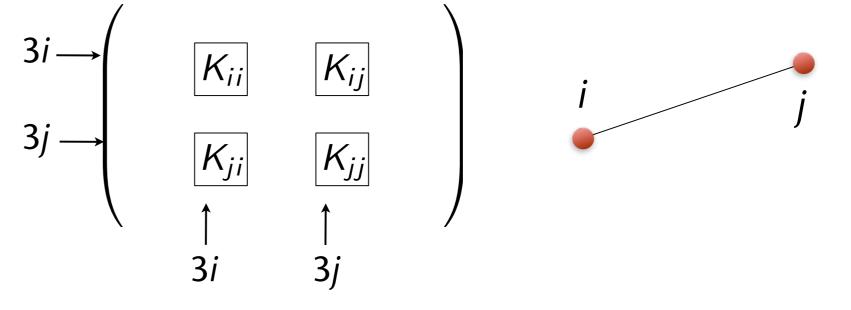
mit $A \in \mathbb{R}^{3n \times 3n}$, $b \in \mathbb{R}^{3n}$

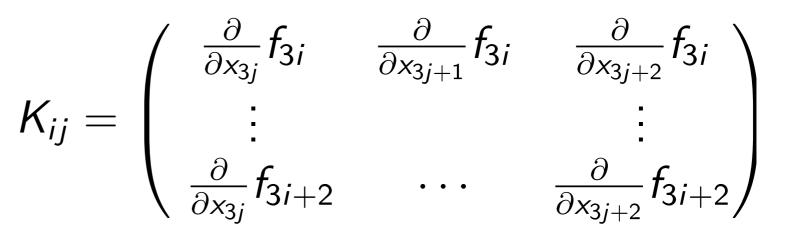
Computation of the Stiffness Matrix

- First of all, understand the anatomy of matrix *K* :
 - A spring (*i*,*j*) adds the following four 3x3 block matrices to *K* :



 In the following, consider only f^s (spring force)





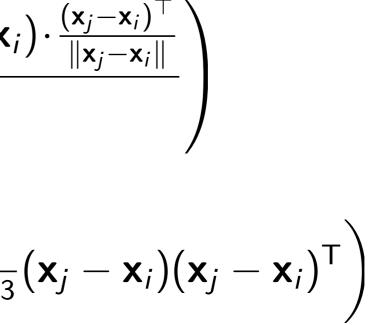
• First of all, compute K_{ii}:

$$K_{ii} = \frac{\partial}{\partial \mathbf{x}_i} f_i(\mathbf{x}_i, \mathbf{x}_j)$$

$$=k_{s}\frac{\partial}{\partial \mathbf{x}_{i}}\left(\left(\mathbf{x}_{j}-\mathbf{x}_{i}\right)-l_{0}\frac{\mathbf{x}_{j}-\mathbf{x}_{i}}{\left\|\mathbf{x}_{j}-\mathbf{x}_{i}\right\|}\right)$$

$$=k_{s}\left(-I-l_{0}\frac{-I\cdot\|\mathbf{x}_{j}-\mathbf{x}_{i}\|-(\mathbf{x}_{j}-\mathbf{x}_{j})}{\|\mathbf{x}_{j}-\mathbf{x}_{i}\|^{2}}\right)$$

$$=k_{s}\left(-I+l_{0}\frac{1}{\|\mathbf{x}_{j}-\mathbf{x}_{i}\|}I+\frac{l_{0}}{\|\mathbf{x}_{j}-\mathbf{x}_{i}\|^{3}}\right)$$



• Reminder:

•
$$\left(\frac{f}{g}\right)' = \frac{f'g - fg'}{g^2}$$

•
$$\frac{\partial}{\partial \mathbf{x}} \|\mathbf{x}\| = \frac{\partial}{\partial \mathbf{x}} \left(\sqrt{x_1^2 + x_2^2 + x_3^2} \right) = \frac{\mathbf{x}^{\mathsf{T}}}{\|\mathbf{x}\|}$$

• Using some symmetries, we can analogously derive:

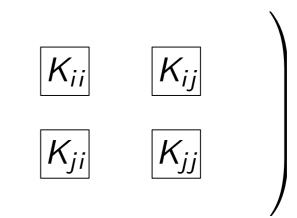
•
$$K_{ij} = \frac{\partial}{\partial \mathbf{x}_j} f_i(\mathbf{x}_i, \mathbf{x}_j) = -K_{ii}$$

•
$$K_{jj} = \frac{\partial}{\partial x_j} f_j(\mathbf{x}_i, \mathbf{x}_j) = \frac{\partial}{\partial \mathbf{x}_j} (-\mathbf{f}_i(\mathbf{x}_i, \mathbf{x}_j)) = K_{ii}$$

•
$$K_{ji} = K_{ij}$$

Overall Algorithm for Solving Implicit Euler Integration

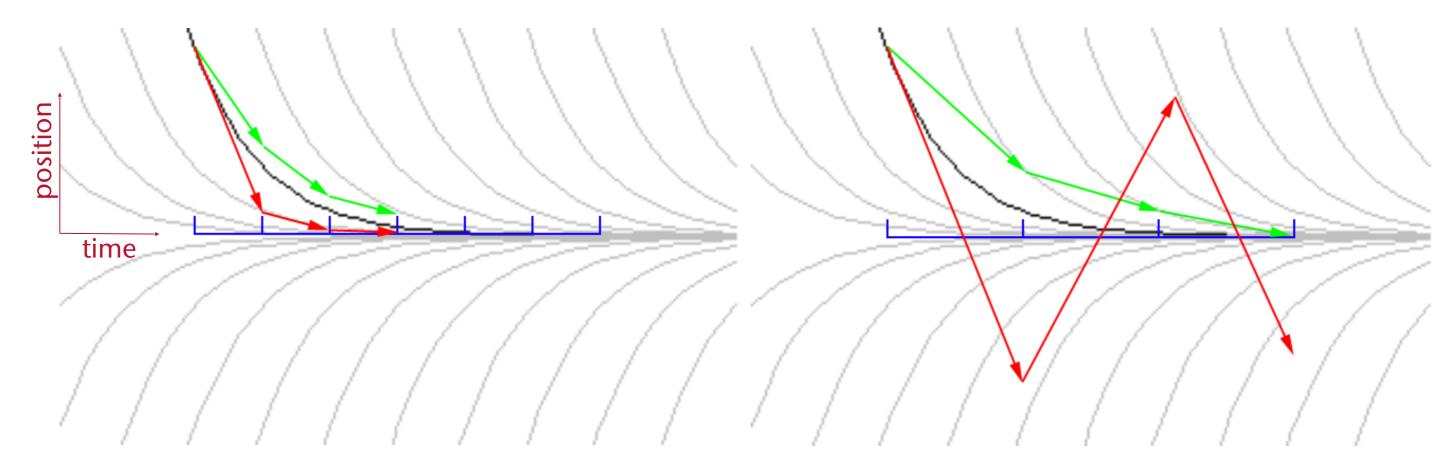
- Initialize K = 0
- For each spring (i, j) compute $K_{ii}, K_{ij}, K_{ji}, K_{jj}$ $\begin{bmatrix} K_{ii} & K_{ij} \\ K_{ji} & K_{jj} \end{bmatrix}$ and accumulate it into K at the right places
- Compute $\mathbf{b} = M\mathbf{v}^t + \Delta t \mathbf{f}(\mathbf{x}^t)$
- Solve the linear equation system $A\mathbf{v}^{t+1} = \mathbf{b} \rightarrow \mathbf{v}^{t+1}$
- Compute $\mathbf{x}^{t+1} = \mathbf{x}^t + \Delta t \mathbf{v}^{t+1}$



Advantages and Disadvantages

- Explicit integration:
 - ✓ Very easy to implement
 - Small step sizes needed
 - Stiff springs don't work very well
 - Forces are propagated only by one spring per time step
- Implicit Integration:
 - ✓ Unconditionally stable
 - Stiff springs work better
 - \checkmark Global solver \rightarrow forces are being propagated throughout the whole spring-mass system within one time step
 - Large time steps needed, b/c one step is much more expensive (if real-time is needed) -
 - The integration scheme introduces damping by itself (might be unwanted) -

• Visualization of: $\dot{x}(t) = -x(t)$



- Informal Description:
 - Explicit jumps forward blindly, based on current information
 - Implicit tries to find a future position and a backwards jump such that the backwards jump arrives exactly at the current point (in phase space)

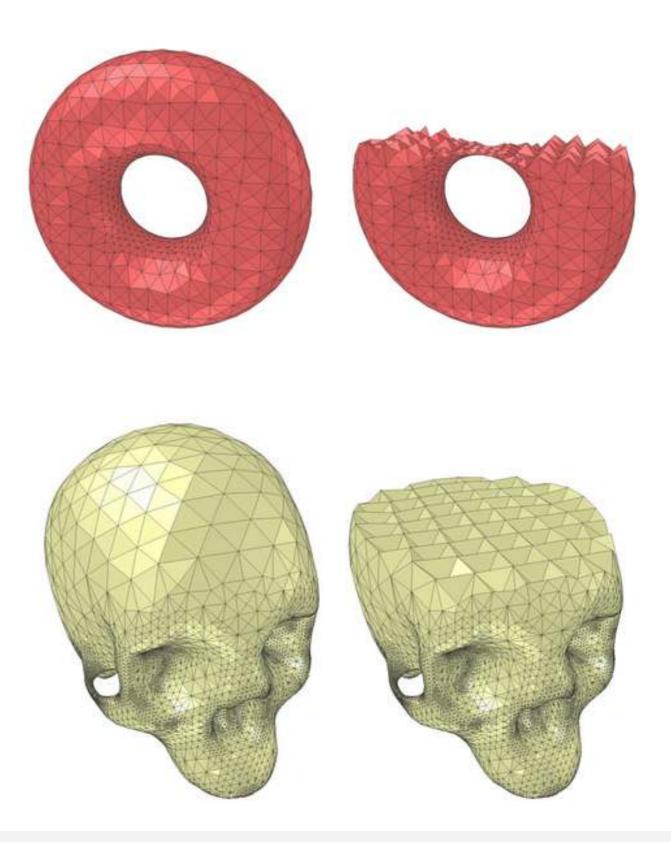
Simulating Volumetric Objects

- How to create a mass-spring system for a volumetric model?
 - Challenge: volume preservation!
- Approach 1: introduce additional, volume-preserving constraints
 - Springs to preserve distances between mass points
 - Springs to prevent shearing
 - Springs to prevent bending
- No change in model & solver required
- You could also introduce "angle-preserving springs" that exert a torque on an edge

- Approach 2 (and still simple): model the inside volume explicitly
 - Create a tetrahedron mesh out of the geometry
 - Each vertex (node) of the tetrahedron mesh becomes a mass point, each edge a spring
 - Distribute the masses of the tetrahedra (= density × volume) equally among the mass points

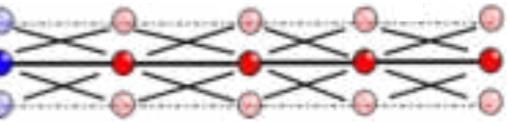
Details on Approach 2

- Generation of the tetrahedron mesh (simple method):
 - Distribute a number of points uniformly (perhaps randomly) in the interior of the geometry (so called "Steiner points")
 - Dito for a sheet/band outside the surface
 - Connect the points by Delaunay triangulation (see my course "Computational Geometry")
- Variation: create Steiner points outside, too, then anchor the surface mesh within the tetrahedron mesh:
 - Represent each vertex of the surface mesh by the barycentric combination of its surrounding tetrahedron vertices



- Approach 3: kind of an "in-between" between approaches 1 & 2
 - Create a "virtual shell" around the twomanifold (surface) mesh
 - Connect the shell with the "real" mesh by diagonal springs

- Video:
 - 1. no virtual shells,
 - 2. one virtual shell,
 - 3. several virtual shells



Add additional shells for greater structural rigidity

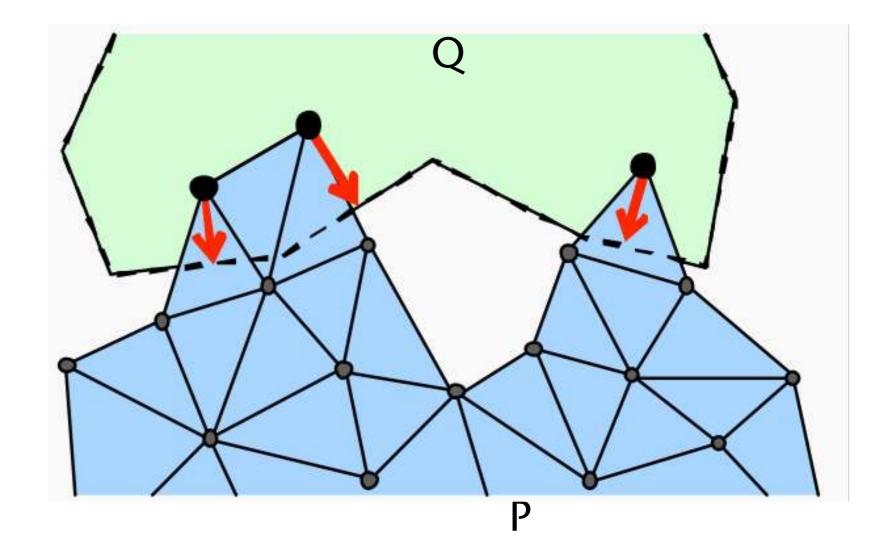
Mass-Spring Systems

Collision Detection for Mass-Spring Systems

- Put all tetrahedra in a 3D grid (use a hash table!)
- In case of a collision in the hash table:
 - Compute exact intersection between the 2 involved tetrahedra

Bremen **Collision Response**

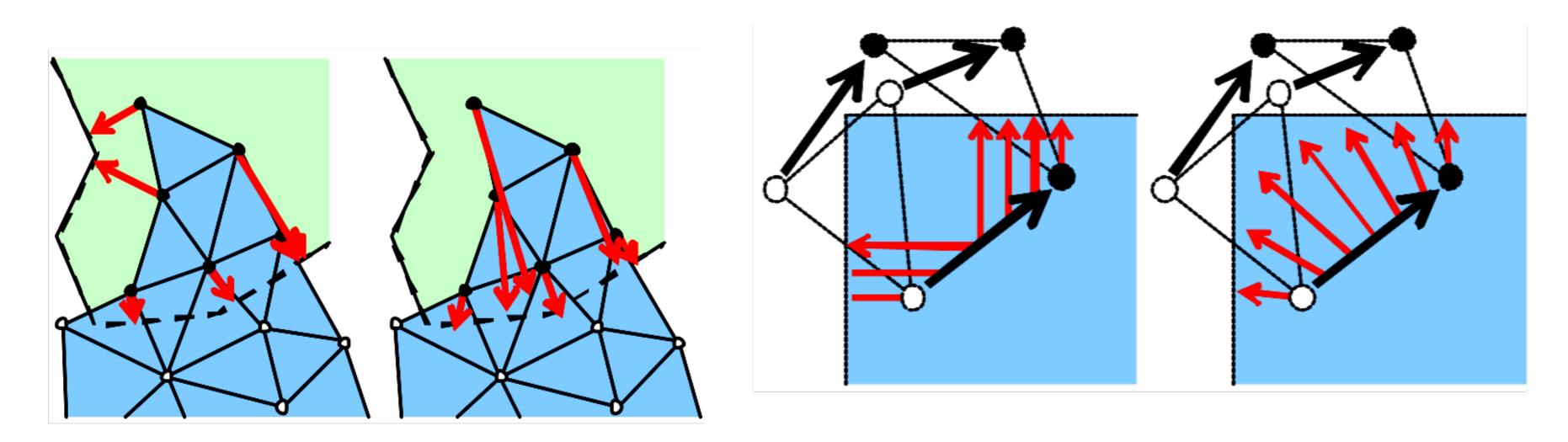
- Given: objects P and Q (= tetrahedral meshes) that collide
- Task: compute a penalty force
- Naïve approach:
 - For each mass point of P that has penetrated, compute its closest distance from the surface of $Q \rightarrow$ force = amount + direction
- **Problem:**
 - Implausible forces
 - "Tunneling" (s. a. the chapter on force-feedback)



inconsistent

consistent

inconsistent

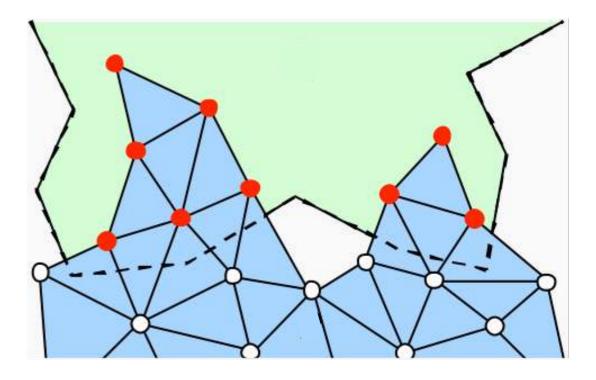


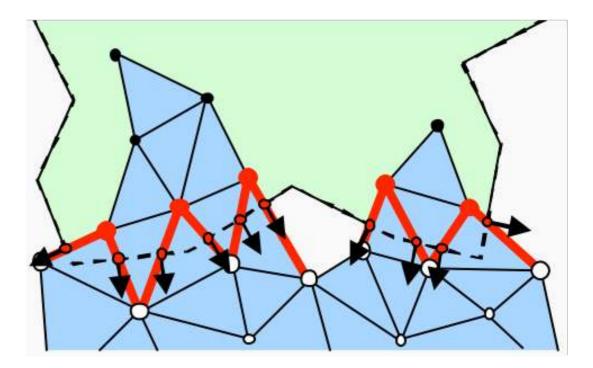
consistent

Consistent Penalty Forces

1. Phase: identify all points of P that penetrate Q

- 2. Phase: determine all edges of P that intersect the surface of Q
 - For each such edge, compute the exact intersection point **x**_i
 - For each intersection point, compute a normal **n**_i
 - E.g., by barycentric interpolation of the vertex normals of Q





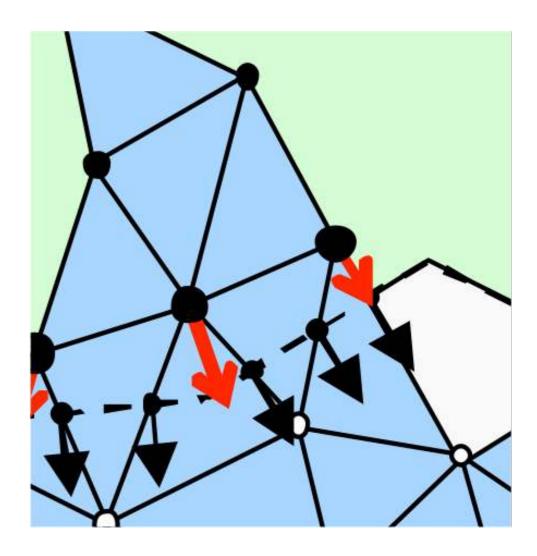
3. Phase: compute the approximate force for border points

- Border point = a point **p** that penetrates Q and is incident to an intersecting edge
- Note: a border point can be incident to several intersecting edges
- Approximate the penetration depth for point **p** by

$$d(\mathbf{p}) = \frac{\sum_{i=1}^{k} \omega(\mathbf{x}_i, \mathbf{p}) (\mathbf{x}_i - \mathbf{p}) \cdot \mathbf{n}_i}{\sum_{i=1}^{k} \omega(\mathbf{x}_i, \mathbf{p})}$$

where $\mathbf{x}_i = \text{point of the intersection}$ of an edge incident to \mathbf{p} with surface \mathbf{Q} , $\mathbf{n}_i = \text{normal to surface of } \mathbf{Q}$ at point \mathbf{x}_i , and $\omega(\mathbf{x}_i, \mathbf{p}) = \frac{1}{\|\mathbf{x}_i - \mathbf{p}\|}$

r points ncident to an intersecting edge rsecting edges



• Set the direction of the penalty force on border points:

$$\mathbf{r}(\mathbf{p}) = \frac{\sum_{i=1}^{k} \omega(\mathbf{x}_i, \mathbf{p}) \mathbf{n}_i}{\sum_{i=1}^{k} \omega(\mathbf{x}_i, \mathbf{p})}$$

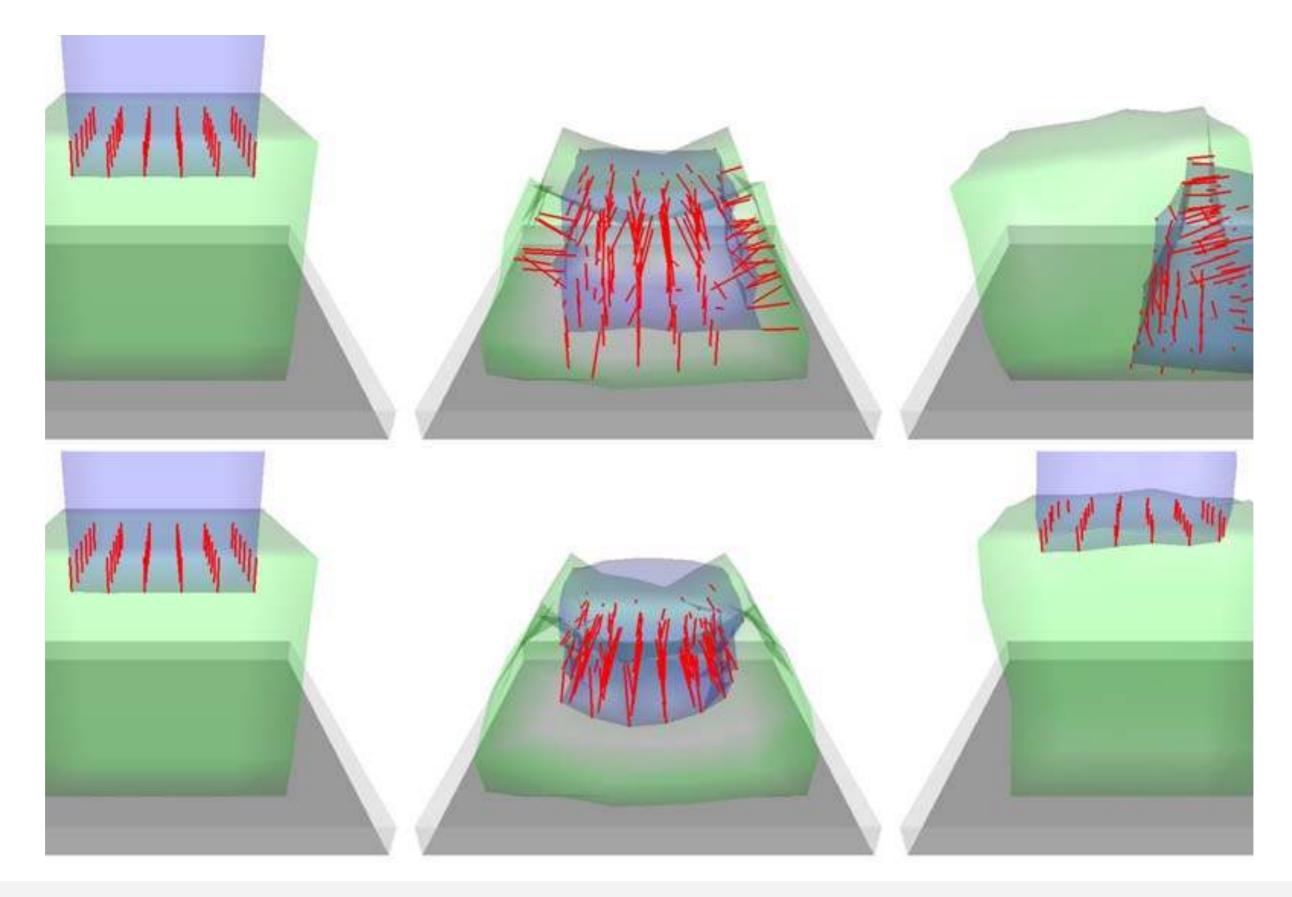
4. Phase: propagate forces by way of breadth-first traversal through the tetrahedron mesh

$$d(\mathbf{p}) = \frac{\sum_{i=1}^{k} \omega(\mathbf{p}_i, \mathbf{p}) ((\mathbf{p}_i - \mathbf{p}) \cdot \mathbf{r}_i + \sum_{i=1}^{k} \omega(\mathbf{x}_i, \mathbf{p})}{\sum_{i=1}^{k} \omega(\mathbf{x}_i, \mathbf{p})}$$

where $\mathbf{p}_i = \mathbf{p}_i$ of P that have been visited already, $\mathbf{p} = \mathbf{p}_i$ of P that have been visited already, $\mathbf{p} = \mathbf{p}_i$ visited, \mathbf{r}_i = direction of the estimated penalty force in point \mathbf{p}_i .

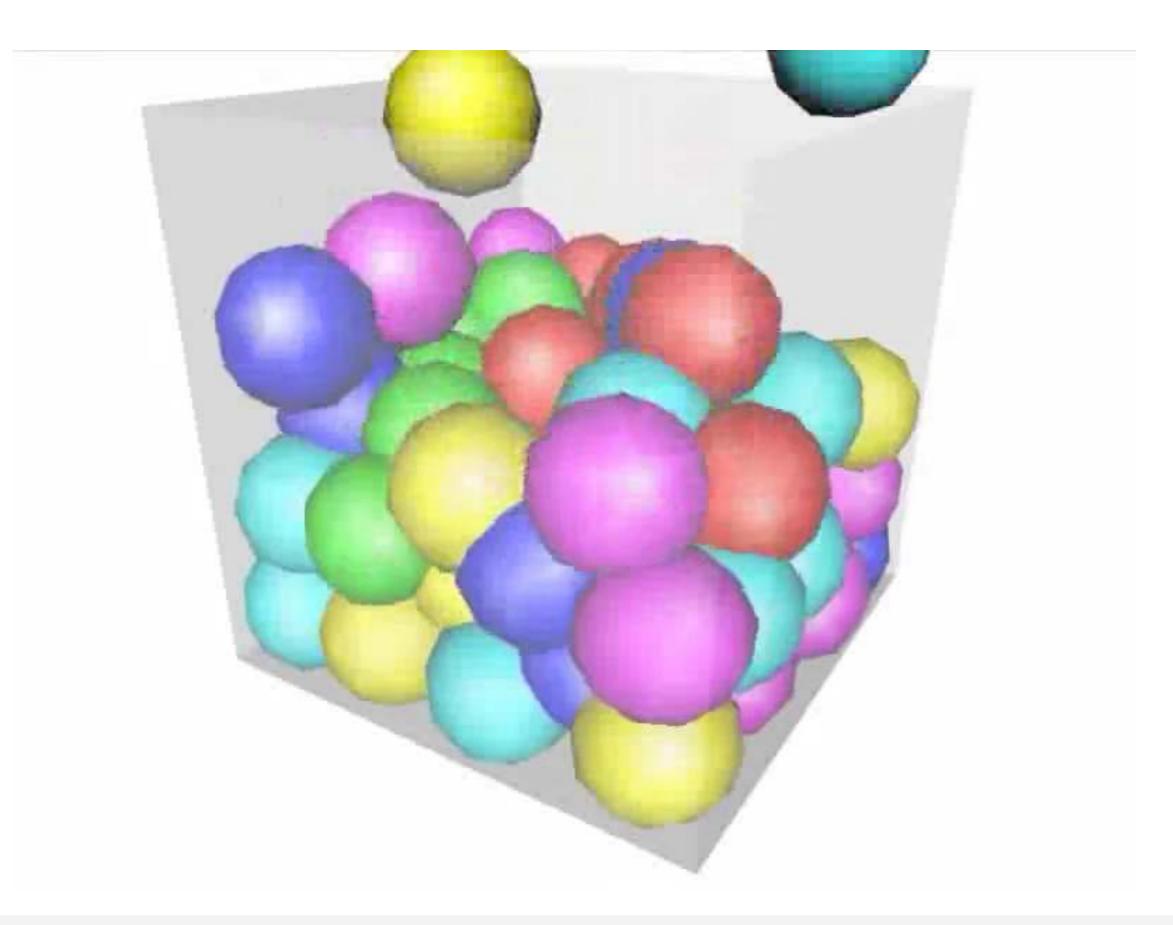
 $d(\mathbf{p}_i)$

Visualization



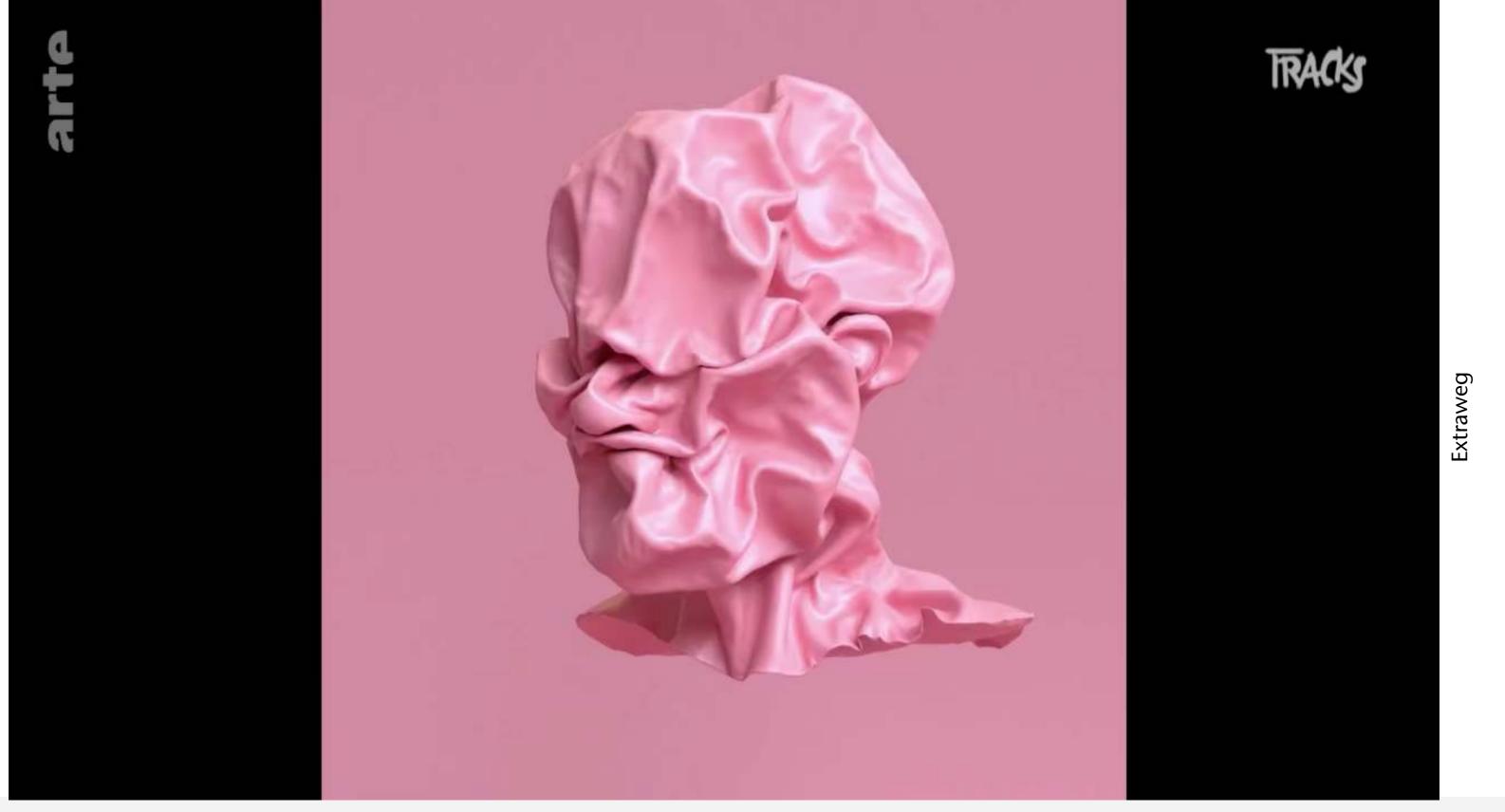
Virtual Reality and Physically-Based Simulation

Mass-Spring Systems



http://cg.informatik.uni-freiburg.de

Art(?) with Mass-Spring Systems



Virtual Reality and Physically-Based Simulation

WS December 2024

