
Virtual Reality &
Physically-Based Simulation

Techniques for Real-time Rendering

G. Zachmann
University of Bremen, Germany

cgvr.cs.uni-bremen.de

http://cgvr.cs.uni-bremen.de

G. Zachmann Real-time RenderingVirtual Reality and Physically-Based Simulation WS November 2024

Your Guess: What is the Latency Humans Can Notice?

2

Please,
don't spoil by
"look-ahead"!

https://www.menti.com/smvndia2ss

G. Zachmann Real-time RenderingVirtual Reality and Physically-Based Simulation WS November 2024 3

• Definition: Latency = duration from a user's action (e.g., head motion) until

display shows a change caused by the user's action ("from motion to

photons")

• Some human factors (here for visual displays):

Latency (Lag, Delay)

Latency

(msec)
Effect on the user

> 5 Noticeable

> 30 User performance decreases

> 500 Presence vanishes (and simulation fidelity)

Note: a user's head can rotate by as much as 1000 degrees/sec !

G. Zachmann Real-time RenderingVirtual Reality and Physically-Based Simulation WS November 2024

The Latency Pipeline

• Types/causes of lag:

• Internal to devices

• Transportation of data over communication channel (e.g., Ethernet)

• Software (time for processing the data)

• Synchronization delay

4

Tracking-
System

Filter

Application

Comm. Renderer
Video

hardware
main

U
S

B

E
th

e
rn

et

60-240 Hz 30 Hz 90 Hz 60/90 Hz

~5
…

5 2 ? 0-11 16 msec

G. Zachmann Real-time RenderingVirtual Reality and Physically-Based Simulation WS November 2024

General Strategies for Solutions

1. Device-server-app communication:

• Put device and server into continuous

mode

• Send "keep alive" messages from client

to server

2. Do time-critical computing:

• Each and every module of the app

receives a specific time budget

• Module tries to compute a usable(!)

partial solution as good as possible

within the time budget

• Stop when time is up

3. Try to predict user/tracker position in x

msec's time
5

App.Server BufferBufferdevice

App. Server Device

One
main
loop

G. Zachmann Real-time RenderingVirtual Reality and Physically-Based Simulation WS November 2024

Sources of Latency During Rendering

• The classical

graphics pipeline,

at least parts of it,

visualized as a

loop:

• Latency:

6

render

h
e
a
d

sw
a
p

display

Scene graph
traversal

Transform

Culling

Clipping
Viewport
mapping

B
a
ck

 b
u

ff
e
r

Fr
o

n
t

b
u

ff
e
r

Pixel scan

DAC RGB

Head
pos & ori

Refresh
loop

Main
loop

G. Zachmann Real-time RenderingVirtual Reality and Physically-Based Simulation WS November 2024

Viewport-Independent Rendering

• Conceptual idea:

• Render the scene onto a sphere around the viewer ⟶ spherical viewport

• If viewpoint rotates: just determine new cutout of the spherical viewport

• Practical implementation:

• Use a cube as a viewport around user,

instead of sphere

• Remark: this was also one of the

motivations to build Cave's

7

G. Zachmann Real-time RenderingVirtual Reality and Physically-Based Simulation WS November 2024

• New pipeline:

• Latency:

8

Scene graph
traversal

Transform

Classification Clipping

Fr
o

n
t

b
u

ff
e
r

B
a
ck

 b
u

ff
e
r

Pixel scan

DAC RGB

Viewport
mapping

Head
orientation

Locate
pixel

Anti-Aliasing

render

h
e
a
d

sw
a
p

display

Head
position

Main
loop

Main
loop

G. Zachmann Real-time RenderingVirtual Reality and Physically-Based Simulation WS November 2024

"Asynchronous Timewarp" (Oculus)

• Render a bigger-than-visible viewport (not the whole cube)

• Shift image using current orientation of head

• Do this only in case the renderer is not finished in time:

• Requires GPU preemption (i.e., stop GPU's pipeline, including shaders,

immediately)

9

L1 R1 L2 R2 L3 R3

VSYNC VSYNC VSYNC VSYNC

AT
W

AT
W

AT
W

Render thread

ATW thread

Head tracking
(rot. only)

G. Zachmann Real-time RenderingVirtual Reality and Physically-Based Simulation WS November 2024

Limitations

• Judder of animated objects

• Incorrect positions of highlights and

specular lighting

• Head rotation also changes position

of the viewpoint, but the image is

shifted only according to rotation of

viewing direction ⟶ judder for near

objects (even static objects)

10

G. Zachmann Real-time RenderingVirtual Reality and Physically-Based Simulation WS November 2024

Multi-Threaded Rendering and Image Composition

• Conceptual idea:

• Each thread renders only its "own"

object in its own framebuffer

• Video hardware reads framebuffer

including Z-buffer

• Image compositor combines individual

images by comparing the Z values of

corresponding pixels

• In practice:

• Partition set of objects

• Render each subset on one PC

11

G. Zachmann Real-time RenderingVirtual Reality and Physically-Based Simulation WS November 2024

Another Technique: Prioritized Rendering

• Observation: images of objects far away from viewpoint (or slow relative to
viewpoint) change slowly

• Idea: render onto several cuboid viewport "shells" around user

• Fastest objects on innermost shell, slowest/distant objects on outer shell

• Re-render innermost shell very often, outermost very rarely

• How many shells must be re-rendered depends on:

• Framerate required by application

• Complexity of scene

• Speed of viewpoint

• Speed of objects (relative to viewpoint)

• Human factors have influence on priority, too:

• Head cannot turn by 180° in one frame → update objects "behind" only rarely

• Objects being manipulated must have highest priority

• Objects in peripheral field of vision can be updated less often
12

G. Zachmann Real-time RenderingVirtual Reality and Physically-Based Simulation WS November 2024

What Are Some Good Software-Engineering Practices?

13

https://www.menti.com/smvndia2ss

G. Zachmann Real-time RenderingVirtual Reality and Physically-Based Simulation WS November 2024

Efficient Memory-Layout for Fast Rendering

• Frequent problem: the elegant way to structure data (from the perspective

of software engineering) is inefficient for fast rendering

• Example for illustration: visualization of molecules

• Following good SE practice, we should design classes like this

14

 class Atom

 {

 public:

 Atom(uint atom_number, Vec3 position, ...);

 private:

 Vec3 position_;

 uint atom_number_;

 Atom * bonds_[max_num_bonds];

 ...

};

G. Zachmann Real-time RenderingVirtual Reality and Physically-Based Simulation WS November 2024

• And the class for a molecule:

• Memory layout of a molecule is now an array of structs (AoS):

15

 class Molecule

 {

 public:

 Molecule(const std::vector<Atom> & atoms);

 private:

 std::vector<Atom> atoms_;

 ...

};

pos num bonds pos num pos numbonds bonds

G. Zachmann Real-time RenderingVirtual Reality and Physically-Based Simulation WS November 2024

• Problem with that: memory transfer becomes slow

• Alternative: Struct of Arrays (SoA)

• Terminology: "Array of Structs (AoS)" vs. "Struct of Arrays (SoA)"

16

 class Molecule

 {

 private:

 std::vector<Vec3> position;

 std::vector<uint> atom_number;

 ...

};

pos[0] pos[1] pos[2] . . . atom_number[0] . . .

G. Zachmann Real-time RenderingVirtual Reality and Physically-Based Simulation WS November 2024

Constant Framerate by "Omitting Stuff"

• Reasons for the need of a constant framerate:

• Prediction in predictive filtering of tracking data of head/hands works only, if all

subsequent stages in the pipeline run at a known (constant) rate

• Jumps in framerate (e.g., from 90 to 45 Hz) are very noticeable (stutter/judder)

• Consider rendering as "time-critical computing":

• Rendering gets a certain time budget (e.g., 11 msec)

• Rendering algorithm has to produce an image "as good as possible"

• Techniques for "omitting" stuff:

• Levels-of-Detail (LODs)

• Omit invisible geometry (Culling)

• Image-based rendering

• Reduce the lighting model, reduce amount of textures,

17

G. Zachmann Real-time RenderingVirtual Reality and Physically-Based Simulation WS November 2024

Which Things Could the Renderer Omit in Case of Overrunning the Time Budget?

18

https://www.menti.com/smvndia2ss

G. Zachmann Real-time RenderingVirtual Reality and Physically-Based Simulation WS November 2024

• Example:

do you

see a

difference?

• Idea: render a reduced version of the object, where the amount of reduction is

chosen such that users cannot see the difference from the full-resolution version

The Level-of-Detail (LoD) Technique

19

G. Zachmann Real-time RenderingVirtual Reality and Physically-Based Simulation WS November 2024

• Definition:

	A level-of-detail (LOD) of an object is a simplified version,

	i.e., a model that has less polygons.

• The technique consists of two tasks:

1. Preprocessing: for each object in the scene, generate k LODs

• For instance, we generate LODs at 100%, 80%, 60%, ..., of the number

of polygons of the original model

2. Runtime: select "right" LOD, make switches between LODs unnoticeable

20

G. Zachmann Real-time RenderingVirtual Reality and Physically-Based Simulation WS November 2024

Selection of the LOD

• Balance visual quality against "temporal quality"

• Static selection algorithm:

• Level i for a distance range

• Optimal distance ranges depend on FoV

• Problem: size of objects is not considered

21

LOD

100% 50% 30%

G. Zachmann Real-time RenderingVirtual Reality and Physically-Based Simulation WS November 2024

Typical Use Case: Terrain Rendering

22

G. Zachmann Real-time RenderingVirtual Reality and Physically-Based Simulation WS November 2024

Improved Static Selection

• Estimate size of object on the screen

• Advantage: independent from screen resolution,

FoV, size of objects

• LOD depends on distance automatically

23

G. Zachmann Real-time RenderingVirtual Reality and Physically-Based Simulation WS November 2024

Estimation of the Size of an Object on the Screen

• Naïve method:

• Compute bounding box (bbox) of object in 3D (probably already known by

scenegraph for occlusion culling)

• Project bbox onto 2D → 8x 2D points

• Compute 2D bbox (axis aligned) around 8 points

• Better method:

• Compute true area of projected 3D bbox on screen

24

G. Zachmann Real-time RenderingVirtual Reality and Physically-Based Simulation WS November 2024

Idea of the Algorithm

• Determine number of sides

of 3D bbox that are visible:

• Project only points on the

silhouette (4 or 6) onto 2D:

• Compute area of this

(convex!) polygon

25

G. Zachmann Real-time RenderingVirtual Reality and Physically-Based Simulation WS November 2024

Implementation

• For each pair of (parallel) box sides (i.e., each slab):

classify viewpoint with respect to this pair into "below", "above", or

"between"

• Yields 3x3x3 = 27 possibilities

• In other words: the sides of a cube partition space into 27 subsets

• Utilize bit-codes (à la out-codes from clipping) and a lookup-table

• Yields LUT with 26 entries (conceptually)

• Each of the 27-1 entries of the LUT lists the 4 or 6 vertices of the silhouette

• Then, project, triangulate (determined by each case in LUT), and

accumulate areas

26

FYI

G. Zachmann Real-time RenderingVirtual Reality and Physically-Based Simulation WS November 2024

Psychophysiological LOD Selection

• Idea: exploit human factors with respect to visual acuity

• Central / peripheral vision:

• Motion of obj (relative to viewpoint):

• Depth of obj (relative to horopter):

27

b1
θ

t0

t1

Δϕ

ϕ0

ϕ1

G. Zachmann Real-time RenderingVirtual Reality and Physically-Based Simulation WS November 2024

• Determination of LODs:

1.

2. (or similar transfer function)

3. Select level l such that , where Pl is the set of

polygons of level l of an object, and r(p) = radius of polygon p

• Do we need eye tracking for this to work?

• Maybe …

• Psychophysiology: eyes usually never deviate > 15° from head direction

• So, assume eye direction = head direction, and choose b1= 15°

28

G. Zachmann Real-time RenderingVirtual Reality and Physically-Based Simulation WS November 2024

Example Scenario

29

G. Zachmann Real-time RenderingVirtual Reality and Physically-Based Simulation WS November 2024

Problems of Static LoD Selection

30

a) No LoD's b) Static LoD selection

G. Zachmann Real-time RenderingVirtual Reality and Physically-Based Simulation WS November 2024

Reactive vs. Predictive LOD Selection

• Reactive LOD selection:

• Keep history of rendering durations

• Based on the history, estimate duration Tr for next frame,

• Let Tb = time budget that can be spent for next frame

• Usually constant, e.g., 11 msec for 90 Hz framerate

• If Tr > Tb : decrease LODs (use coarser levels)

• If Tr < Tb: increase LODs (finer levels)

• Then, render frame and record actual rendering time in history

• Reactive LOD selection can produce severe outliers

31

G. Zachmann Real-time RenderingVirtual Reality and Physically-Based Simulation WS November 2024

Predictive LOD Selection

• Definition object tuple (O,L,R):

	 O = object, L = level,

	 R = rendering quality (#textures, #light sources, …)

• Evaluation functions on object tuples:

	 cost(O,L,R) = time needed for rendering

	 benefit(O,L,R) = "contribution to image"

• Optimization task: find

 under the condition
 where S = { all possible object tuples in the scene }

32

G. Zachmann Real-time RenderingVirtual Reality and Physically-Based Simulation WS November 2024

What Kind of Optimization Problem is This?

33

https://www.menti.com/smvndia2ss

G. Zachmann Real-time RenderingVirtual Reality and Physically-Based Simulation WS November 2024

• Cost function depends on:

• Number of vertices (≈ # coord. transforms + lighting calcs + clipping)

• Setup time per polygon

• Number of pixels (scanline conversions, alpha blending, texture fetching, anti-

aliasing, Phong shading)

• Theoretical cost model:

• Better determine the cost function by experiments:

Render a number of different objects

with all different parameter settings

possible

34

polygons

t

G. Zachmann Real-time RenderingVirtual Reality and Physically-Based Simulation WS November 2024

• Benefit function: "contribution" to image is affected by

• Size of object

• Shading method:

• Distance from center (periphery, depth)

• Velocity (similar to psychophysiological LOD factors)

• Semantic "importance" (e.g., grasped objects are very important)

• Hysteresis for penalizing LOD switches:

• Together:

35

Hysteresis(O, L,R) =
c1

1 + |L− L0|
+

c2

1 + |R − R 0|
<latexit sha1_base64="i13KH2HGyUDiOtPojWL0JLExqbk=">AAAC43icZVHLbhMxFHWGV5kCTWHJxqJCLSKJZsKrLJAq2GQRiRKRplInCh7PndSqxzPyAxo58wXsgC2fwg/wAUis2cI/4Jm0EaFXsn10z/G17z1xwZnSQfCz4V26fOXqtbXr/vqNm7c2mpu3D1RuJIUhzXkuD2OigDMBQ800h8NCAsliDqP45FXFj96DVCwXb/WsgHFGpoKljBLtUpPmKNJwqm1vpjRIUEyVeOd1C/dbePAAv8A4SiWhFtNJiEuLQ/wQz/u4jfvb89LhJdtdsoP2YHuOy0lzK+gEdeCLIDwDW3svf3x/t+593p9sNnSU5NRkIDTlRKmjsFvosSVSM8qh9COjoCD0hEzB1n2X+L5LJTjNpVtC4zq7ostmGdHHTlgd6l/qyOh0d2yZKIwGQRe1UsOxznE1J5wwCVTzGSaUui8Zot1T9Ji4ht2kVmpZRYRaPBSdQz+SIOADzbOMiMRGKckYnyWQEsN1aSOVnuPVSswIpk9d0lkB2hS2ANnO8gScGdWwK9cc6y47w+uGbcyJKa2cxqUNOuGTVr2F/4kkJEvNrpMEbnVL3699el7F06UrF8FBtxM+6jx+4wzroUWsobvoHtpBIXqG9lAP7aMhougb+oV+oz8eeB+9T96XhdRrnN25g1bC+/oXcPjn8g==</latexit>

Benefit(O, L,R) =Size(O)·Rendering(O, L,R) ·Importance(O)

·OffCenter(O) ·Vel(O)·Hysteresis(O, L,R)
<latexit sha1_base64="Sn8N8owdd+DGXj2jDBmG5E6lYpU=">AAADhXicdZLdb9MwEMCdBdgIXx088mJRgTapq5JSxtCEmNhLkSZtDNpNWqrKcS6dNceObAcoUR55hb+PP4U3nDQbtIOTnJzufvdh30UZZ9r4/k9nxb1x89bq2m3vzt179x+01h+OtMwVhSGVXKrTiGjgTMDQMMPhNFNA0ojDSXSxX/lPPoHSTIqPZpbBOCVTwRJGibGmSetXKDNQxEglSArFWxCQMFNuHHbwQQcfb+LX+BleZD6wr2CBTRzSWJol5zGIGBQT0xLbHAcdmyHcbUhviX2XZlIZImiTLqxK1eQSeJgk+yAMqDm3+8/KI+D/7Wow0zYaNNN/bjZptf2uXwu+rgSN0kaNHE3WHRPGkuapbYVyovVZ0MvMuCDKMMqh9MJcQ0boBZlCUU+mxE+tKcaJVPYIg2vrApfOUmLOLVj99N+us9wkO+OCiSw3IOg8V5JzbCSuJoljpoAaPsOEUttSTowtRc+JItRediFXoYnQ80LhpeqFyg77M5VpSkRchAlJGZ/FkJCcm7IIdXKpL2ZiuWDmizXa1wSTZ4V96K1UxmBXJalq272yXhtsV7K+cBFxkpeFmkZl4XeDF536EyxBCuIrZscivj290vPqOb2qZPtqKteVUa8bPO/23/fbe4NmYmvoMXqCNlCAXqI9NEBHaIioM3G+Od+dH+6qu+X23e05uuI0MY/QgrhvfgOZ8CBx</latexit>

Rendering(O, L,R) =











1− c

#pgons
, flat

1− c

#vert
, Gouraud

1− c

#vert
, per-pixel

<latexit sha1_base64="0KbUOFEjYQn45byyLfQN7Iw3f+U=">AAADcXicnVLbbtNAELUbLiVAm9InxMuqFVIRaWS3iuhLpSIeqAQSpaIXqVuV9Xqcrrpem90xJKz8Y/wJH8AX8ANMnBQlLU+MtPZo5pydy9mk1MphFP0MF1p37t67v/ig/fDR46XlzsqTY1dUVsKRLHRhTxPhQCsDR6hQw2lpQeSJhpPk6s04f/IVrFOF+YSjEs5zMTAqU1IghS46v3hRghVYWCNy8IdgUrDKDGq28aHL3nfZ4YtdnsBAGS+pjKvjTZ5ZIb2sPUcYoufr5aAwrq4Zv3SlkOC387zuskk20wIpw9k/eNQXztD6M7S3NJ+o0v9g0jSbpRqCrjnNMm36orMe9aLG2G0nnjrre69/nH5ezZYOLlZC5GkhqxwMSi2cO4u3Sjz3wqKSGuo2rxxQ7SsxAN+oULPnFEpZVlg6BlkTncPlo1zgJQHHPzebOqsw2zn3ypQVgpGTu7JKMyzYWDWWKgsS9YgJKamlSiCVkpeC9oKk7lwZJ4ybFOLXbptbMPBNFnkuaCk8E7nSoxQyUWmktbrs2p+/SVVG4ZCCTjnAqmy2mxcpsF021mT8hihLZHp+zcA+0aKqvR0ktY96cb/bfOIbIAvpX8wOQSI6W3W7TTrFN1W57Rxv9eLtXv8jCbYfTGwxeBasBRtBHLwK9oL94CA4CmT4LvwSfg/9wu/W0xZrrU2gC+GUsxrMWevlH+PzIkU=</latexit>

G. Zachmann Real-time RenderingVirtual Reality and Physically-Based Simulation WS November 2024

• Optimization problem = multiple-choice knapsack problem → NP-complete

• Idea: compute sub-optimal solution

• Reduce it to continuous knapsack problem (see algorithms class)

• Define

• Solve this greedily:

• Sort all object tuples by value(O,L,R)

• Choose the first k tuples until knapsack is full

• Additional constraint: no 2 object tuples must represent the same object!

36

G. Zachmann Real-time RenderingVirtual Reality and Physically-Based Simulation WS November 2024

• Incremental solution:

• Start with solution as of last frame

• If

then find object tuple ,

such that

and

• Proceed analog, if

37

G. Zachmann Real-time RenderingVirtual Reality and Physically-Based Simulation WS November 2024

Performance in the Example Scenes

38

c) Reactive LoD selection c) Predictive LoD selection

G. Zachmann Real-time RenderingVirtual Reality and Physically-Based Simulation WS November 2024

Problem with Discrete LODs

• "Popping" when switching to next higher/lower level

1. Simplest solution: temporal hysteresis (reduces frequency of pops,

especially filters out short back-and-forth pops)

2. Alpha blending of the two adjacent

LOD levels ("Alpha-LODs"):

• Instead of switching from level i to i+1, fade out

level i until gone, at the same time fade in level i+1

• "Man kommt vom Regen in die Traufe"

• Don't use them!

3. Continuous, view-dependent LODs

using progressive meshes

39

G. Zachmann Real-time RenderingVirtual Reality and Physically-Based Simulation WS November 2024

Progressive Meshes

• A.k.a. Geomorph-LODs

• Initial idea / goal:

• Given two LODs Mi and Mi+1 of the same object

• Construct mesh M' "in-between" Mi and Mi+1

• Definition: progressive mesh = representation of an object, starting with a

high-resolution mesh M0, with which one can continuously (up to the

vertex level) generate "in-between" meshes ranging from 1 polygon up to

M0 (and do that extremely fast).

40

G. Zachmann Real-time RenderingVirtual Reality and Physically-Based Simulation WS November 2024

Construction of Progressive Meshes

• Approach: successive simplification, until only 1 polygon left

• The fundamental operation: edge collapse

• Reverse operation = vertex split

• Not every edge can be chosen: beware of bad edge collapses

41

v
u

v

vu

edge crossing! 
polygon overlap!

v

G. Zachmann Real-time RenderingVirtual Reality and Physically-Based Simulation WS November 2024

• The direction of edge collapses is important, too:

• Introduce measure of edge collapses that evaluates "visual effect"

• Goal: first perform edge collapses that have the least visual effect

• Remark: after every edge collapse, all remaining edges need to be evaluated

again, because their "visual effect" (if collapsed) might be different now

42

u v v u

G. Zachmann Real-time RenderingVirtual Reality and Physically-Based Simulation WS November 2024

• Progressive mesh = sequence of edge collapses / vertex splits:

• Mi = i-th refinement = 1 vertex more than Mi-1

• Representation of progressive mesh =

list of ecol/vsplit operations

• Representation of an

edge collapse / vertex split:

• Edge (= pair of vertices) affected by the collapse/split

• Position of the "new" vertex

• Triangles that need to be deleted / inserted

43

ecol

vsplit

M = Mn M1 M0…
ecoln-1 ecol0ecol1

vsplitn-1 vsplit0vsplit1

G. Zachmann Real-time RenderingVirtual Reality and Physically-Based Simulation WS November 2024

• Evaluation function for edge collapses is not trivial and, more importantly,

perception-based!

• Factors influencing "visual effect":

• Curvature of edge / surface

• Lighting, texturing, viewpoint (highlights!)

• Semantics of the geometry (e.g., eyes & mouth are very important in faces)

• Examples of a progressive mesh:

44

G. Zachmann Real-time RenderingVirtual Reality and Physically-Based Simulation WS November 2024 45

• Motivation:

• Follow this heuristic:

• Delete small edges first; and,

• If surface incident to U has a smaller (discrete) curvature than surface around V,

then move vertex U onto vertex V

A Simple Edge Evaluation Function

Low visual
disturbance

High visual
disturbance

G. Zachmann Real-time RenderingVirtual Reality and Physically-Based Simulation WS November 2024 46

• A simple measure for the "costs" of an edge collapse from U onto V:

• What is the rationale for this

cost function?

• Note: the cost function is not

symmetric (which is good):

U
V

nU

nV
cost(U ,V) = kU � V k·curv(U)

<latexit sha1_base64="lX3x0Kpywzyxadx2KyDbCfgsTuE=">AAACz3icZVFLT9wwEPamL5o+WNpjL1ZXlUCCVbKlLT1UQuLCEaRmQSKrleNMFgvHjuwxdJWm6rU/pb+m1/Jv6mQX1IWRbH+a+cbz+LJKCotRdN0LHjx89PjJ2tPw2fMXL9f7G6/GVjvDIeFaanOaMQtSKEhQoITTygArMwkn2cVBGz+5BGOFVl9xXsGkZDMlCsEZete0f5DqCgxDbRQroebaYrOZbI+36BeafqcJ3aHjFqQ810jvkJ259OStaX8QDaPO6H0QL8GALO1outHDNNfclaCQS2btWTyqcFIzg4JLaMLUWagYv2CztiU/Q0PfeVdOC238UUg77wqvnJcMzz2xfez/oTOHxd6kFqpyCIov/iqcpKhpuxOaCwMc5Zwyzn1LjqEvxc+ZYRz97lbKWKbsolB6A8PUgIIrrsuSqbxOC1YKOc+hYE5iU6e2uMGrPwmnBH7zTissoKtqv9ydUufgd1+0tb1CPuqTvbjdwHUmmWtqM8uaOhrGH7a7K75DMpDfcvY8JfJn1IRhp9Pn1j7eqnIfjEfD+P1w93h3sH+4VGyNvCFvySaJySeyTw7JEUkIJ7/JH/KXXAfHwVXwI/i5oAa9Zc5rsmLBr3+gJeGz</latexit>

<latexit sha1_base64="SDuDKzZutpx3oyDfx2nq3OGfYr8=">AAAC7XicbVFNb9NAEN2YrxK+UuDGZaEgtVKI7EiIXCpV4kCPRcJppTqKxutxuup619pdA8Hyz+AGvXLjV3CFO0f+CeM0QaRlpFk9vZl5M7OTlko6H4a/OsGVq9eu39i42b11+87de73N+2NnKiswFkYZe5SCQyU1xl56hUelRShShYfp6as2fvgOrZNGv/XzEicFzLTMpQBP1LQ3SkyJFryxGgqshXG+2Y774x2eaON3+f/C4z6Pd6a9rXAQLoxfBtESbO09/fj79beH9cF0s/MlyYyoCtReKHDuOBqWflKD9VIobLpJ5bAEcQqzthEN3vBnRGU8N5Zce75g/807rnw+mtRSl5VHLaiAUzCvFPeGt+vyTFoUXs05CEGNK/AkKE7AgvD0LWtNi3kB/qQVoZ2d0aB4SzjqWxSgM9fnykDGU6SJkDvQro0/XhNZsQ1PVrCbWNT4fqlSJzkUUs0zzKFSvqkTl6/wupKstPQfiHTSoa/KmsZ6XpgM+S7P2wXoghSlYjr+4m/qVEHV1HaWNnU4iF70F090Icli9jdnRCkh+bChg0YXz3cZjIekOAjf0GX32bltsEfsCdtmEXvJ9tg+O2AxE+yMfWc/2M/ABJ+Cz8HZeWrQWdY8YGsWfP0D02LxgQ==</latexit>

cost(U ,V) 6= cost(V ,U)

G. Zachmann Real-time RenderingVirtual Reality and Physically-Based Simulation WS November 2024

Simple Method to Calculate a Rough Estimate of the Discrete Curvature

1. Calculate "curvature" along each edge ei = (U,Vi):

2. Calculate estimate of "curvature" at U as

geometric mean of incident edges:

• Alternative to step 2:

• Find the two edges e1 and e2 with minimal and

maximal curvature, k1 and k2, resp.

• Set curv(U) = 1

2
(k1 + k2)

<latexit sha1_base64="xrhDgIBSiXHuMBMJgZE/nLreNV4=">AAACuXicZVHbbtNAEN2YWzG3BB544GVFhJSKNrLNrRVCitSXPhaJtJXqKBqvx8mS9a61l0Jk+Sv4DX6AVxAfwd+wTtqK0JFm92jmzD2rBDc2iv50ghs3b92+s3U3vHf/wcNH3d7jY6OcZjhmSih9moFBwSWOLbcCTyuNUGYCT7LFQes/OUdtuJKf7LLCSQkzyQvOwHrTtLubqgo1WKUllFgzp8+bwXibfqBpoYHFCR0spjF9SRfTZDucdvvRMFoJvQ7iC9Af7fT2D55+/3007XVsmivmSpSWCTDmLE4qO6lBW84ENmHqDFbAFjDzxdtuG/rCm3JaKO1VWrqybvDKZQl27ontZ/51nTlb7E1qLitnUbJ1rsIJahVtp6c518isWFJgzLfkwPpSbA5+VOu3tFHGgDTrQuklDFONEr8wVZYg8zotoORimWMBTtimTk1xiTczcSe5/eqNhhu0rqr9zndLlaPfc7vm9hbe64P9GVcD15kA19R6ljV1NIzf7Kye+D+SxvyKs+cpkdekCdd32m/l7dVVroPjZBi/Gr7+GPdHh2QtW+QZeU4GJCbvyIgckiMyJox8Iz/IT/IreB9AMA8+r6lB5yLmCdmQwPwFiKLZ/Q==</latexit>

47

curv(U) =
⇣

n
Y

i=1

curv(ei)
⌘

1

n

<latexit sha1_base64="3lRmW/agC1vHUI0no6EKDnbFvHY=">AAAC43icbVFNb9QwEPWGrxK+tvTIxaJC2pVglSy0lEOlCi7lViS2W6nZrhxnsrXq2JE9Lqyi/AJuiCsS/6InfghnrvAfcLJtxVJGsv008+zxvJeWUliMoh+d4Nr1GzdvrdwO79y9d/9Bd/XhvtXOcBhxLbU5SJkFKRSMUKCEg9IAK1IJ4/TkTVMfn4KxQqv3OC9hUrCZErngDH1q2h0nugTDUBvFCqi4M6d1b9Sn2zR5LWayR5PS6Gxaie24PlL0f2yYin7LNv2jKskN47Gqp931aBC1Qa+C+Bys77w9+5aGZ2t709UOJpnmrgCFXDJrD+NhiZOKGRRcQh0mzkLJ+Amb+cbNXDV94lMZzbXxSyFts0u8Yl4wPPbE5rB/lw4d5luTSqjSISi+eCt3kqKmjU40EwY4yjllnPsvOYa+FT9mfjz0ei61sUzZRaPkAoaJAQUfuC4KpjIvCyuEnGeQMyexrhKbX+Dll4RTAj/6pBUW0JWV1/tZoTPwjjTSNq75qr/sDW8HrlLJXF2ZWVpX0SDeeNpu8T8kA9klZ8tTIr+GdRi2Pr1qYvPSlatgfziInw9evPOG7ZJFrJBH5DHpkZi8JDtkl+yREeHkO/lJfpHfAQSfgs/BlwU16JzfWSNLEXz9A0ee7f8=</latexit>

curv(ei) =
(nVi

− nU)·(Vi − U)

|Vi − U |2
<latexit sha1_base64="ZYb1yZb6zJGHask2IyL9ssseHz4=">AAAC53icZVHLbhMxFHWGV5nySGHJxqJCSiQazYRXWSBVsOmySExaKRMGj+dOatVjj/wIRO58AwskxJZPYcsHIPEFbOEP8CRpReiVbB+fe+xr35PXnGkTRT87waXLV65e27gebt64eet2d+vOSEurKCRUcqmOcqKBMwGJYYbDUa2AVDmHw/zkVZs/nIHSTIo3Zl7DpCJTwUpGifFU1h2nsgZFjFSCVOCoVbOmBxnr4xc4LRWhDvfSGcUic6OMNXgHL3cJ7uOUFtLgnuc9nfRx4/DpanP6doibrLsdDaJF4IsgXoHtvZc/vr/bDD4dZFsdkxaS2gqEoZxoPY6HtZk4ogyjHJowtRpqQk/I1D+1/VuDH3iqwKVUfgiDF+yarppXxBx7Ybvof1Nja8rdiWOitgYEXd5VWo6NxG2vcMEUUMPnmFDqn2SJ8aXoMfFtMb6na2U0EXpZKD2DYapAwHsqq4qIwqUlqRifF1ASy03jUl2e4fWbmBXMfPCkZhqMrZ13aKeSBXhPWkta53zWH/amLz7sck5s49Q0b1w0iJ88XEzxfyIFxblm10siP4ZNGC58et7G03NXLoLRcBA/Gjx+7Q3bR8vYQPfQfdRDMXqG9tA+OkAJougb+oV+oz8BCz4Gn4MvS2nQWZ25i9Yi+PoXIXDr3Q==</latexit>

nU

V1 V2
Vn

nV1

Vertex normals must have unit length!

U

G. Zachmann Real-time RenderingVirtual Reality and Physically-Based Simulation WS November 2024

Reasoning Behind the Curvature Formula

• Consider a cross-section through U, one of the

V's and the edge e=(U,V)

• Assume a circle through U, V with radius r and

center C , and assume the normals are

perpendicular to the circle; then

• Make it more "robust" in 3D by first projecting

 onto the edge:(nV − nU)
<latexit sha1_base64="BMq2p0vV/IjLdeGpVO8mZAJlaF8=">AAACoHicZVFLb9QwEPaGVwmPbqE3LlYLUpHoKllaKAekShzYG63Ebiua1cpxJlurjhPZ48LWyn/hCgf+D0f+CU7SViwdaexPM9+800oKg1H0uxfcun3n7r2V++GDh48er/bXnkxMaTWHMS9lqY9TZkAKBWMUKOG40sCKVMJRevah8R+dgzaiVJ9xUcG0YHMlcsEZetOsv76VnHOqZhO6TTs0pi9n/c1oELVCb4L4EmzuP7/48/HXujuYrfUwyUpuC1DIJTPmJB5WOHVMo+AS6jCxBirGz9gcXNt0TV94U0bzUntVSFvrEq9YFAxPPbH5zL+uE4v53tQJVVkExbtcuZUUS9oMSTOhgaNcUMa5b8ky9KX4KdOMo1/GUhnDlOkKJVcwTDQo+MrLomAqc0nOCiEXGeTMSqxdYvIrvJxJWCXwmzcaYQBt5SrQ20WZAX1P86a2X7n3+mB/rXZgl0pma6fnae2iQbz7qn3i/0gasmvOnqdEXod1GLZ3etfIm+ur3AST4SB+Pdg59AcbkU5WyDOyQbZITN6SfTIiB2RMOLkg38kP8jPYCEbBp+Cwowa9y5inZEmCL38Bcd/RFQ==</latexit>

48

nU

U

nV

V

C

V = C + rnV U = C + rnU
<latexit sha1_base64="p7o96mdS0suNh/sPypr2HMi952c=">AAAC0XicZVFLaxRBEO4dX3F8bfQieGkMgYi6zKyveBACQQh4iehsApllqOmp2TTp6R77sboMA+LVn+LNfyLkov4O7/bsJsE1Bd39UfVV1+PLa8GNjaKfveDCxUuXr6xcDa9dv3HzVn/19sgopxkmTAml93MwKLjExHIrcL/WCFUucC8/2u7ie1PUhiv53s5qHFcwkbzkDKx3Zf3X66mqUYNVWkKFDXN62m5gxh+EI/qKbtOHVKdTRmU2ojT94KCglCbLkYRm/bVoEM2NngfxCVjbuvvn+/Fx8GY3W+3ZtFDMVSgtE2DMQTys7bgBbTkT2IapM1gDO4KJ76mboqXr3lXQUml/pKVz7xKvmlVgDz2xe8y/oQNny81xw2XtLEq2+Kt0glpFu63QgmtkVswoMOZbcmB9KXYIGpj121sqY0CaRaH0FIapRokfmaoqkEWTllBxMSuwBCds26SmPMXLP3Enuf3knYYbtK5uvBSPK1WgX3DZ1fYa+ahP9vLOB25yAa5t9CRvm2gQP3s0v+L/SBqLM86mp0T+DNswnOv0srPnZ6qcB6PhIH4yePrWC7ZDFrZC7pH7ZIPE5AXZIjtklySEkW/kB/lFfgfvglnwOfiyoAa9k5w7ZMmCr38Bje3jTA==</latexit>

V − U = r(nV − nU)
<latexit sha1_base64="tRbm6tw4pg6FJ/EYAbJBAd9UgIU=">AAACwnicZVHNbhMxEHaWv7L8NAVuXCxKpVQi0W6AUg5IlUCixyKRtFI3irze2dTUay/2OBCWfROegYfgCi/AkTfBm20rQkca+9PMN57xfGkphcUo+t0Jrly9dv3G2s3w1u07d9e7G/fGVjvDYcS11OYoZRakUDBCgRKOSgOsSCUcpqevm/zhHIwVWr3HRQmTgs2UyAVn6EPT7s5WokswDLVRrICKOzOvezAV2+G4P6KvqKG9ZM6pmo5pn7ZoRLen3c1oEC2NXgbxGdjce/zlz9vvD6qD6UYHk0xzV4BCLpm1x/GwxEnFDAouoQ4TZ6Fk/JTN/BDN2DXd8qGM5tp4V0iX0RVesSgYnnhic9l/U8cO891JJVTpEBRv38qdpKhpswaaCQMc5YIyzv1IjqFvxU+YYRz9ulbaWKZs2yg5h2FiQMEnrouCqaxKclYIucggZ05iXSU2P8erLwmnBH72QSssoCsrv/t+oTPwm86b3l4Un/XFXs/lh6tUMldXZpbWVTSInz9ZHvF/JAPZBWfXUyLvwzoMlzq9bGznQpXLYDwcxE8Hz955wfZJa2vkIXlEeiQmL8ge2ScHZEQ4+UZ+kJ/kV/Am+BB8DGxLDTpnNffJigVf/wJvsN4e</latexit>

curv(e) =
1

r
=

knV � nUk

kV � Uk
<latexit sha1_base64="52N7vyo3Gas+xp5EPwu95p3AhzU=">AAAC3HicZVHLbhMxFHWGV0l5pLBkY1EhFYlEM4GWskCqYNNlkEhaqROCx3MnteqxR/Z1IBpmxw6xQuJT+Ag+AAmJLXwHnklSEXol28fnHvva9ySFFBbD8GcruHT5ytVrG9fbmzdu3rrd2bozstoZDkOupTbHCbMghYIhCpRwXBhgeSLhKDl7WeePZmCs0Oo1zgsY52yqRCY4Q09NOoNYF2AYaqNYDiV3ZlbtwEP6nMaZYTwyK1TS+AONZ5yqyYh2l2hYk1WTGnUXm0lnO+yFTdCLIFqC7YMXP76/3Qy+DCZbLYxTzV0OCrlk1p5E/QLHJTMouISqHTsLBeNnbOrfV3+oog88ldJMGz8U0oZd0+XznOGpF9aL/Td14jDbH5dCFQ5B8cVdmZMUNa0bRFNhgKOcU8a5f5Jj6EvxU+Z7gL6Ra2UsU3ZRKF7BdmxAwTuu85yptIwzlgs5TyFjTmJVxjZb4fWbhFMC33vSCgvoitLb0s11Ct6Auv+1XT7rD3unmw+XiWSuKs00qcqwF+0+aqboP5GB9Fyz7yWhH/2q3W58elbH3rkrF8Go34se95688oYdkkVskHvkPtkhEXlKDsghGZAh4eQb+UV+kz/Bm+Bj8Cn4vJAGreWZu2Qtgq9/AbNS6Gc=</latexit>

e

curv =
(nV � nU)·(V � U)0

kV � Uk

=
(nV � nU)·

V�U

kV�Uk

kV � Uk

=
(nV � nU)·(V � U)

kV � Uk2
<latexit sha1_base64="L7wPqmXfcy5Rmqo6bFldSCbPwv4=">AAADfHicpVJLb9NAEF43PIp5pXDkMiKAUkEiO5RSDkiVuPRYJJJWyqbRer1OV13vWvsIjRwf4T/yL/gFiHWcVoRekBhpPbMz38ys55ukENzYKPoRbLVu3b5zd/teeP/Bw0eP2ztPRkY5TdmQKqH0aUIME1yyoeVWsNNCM5Ingp0kF5/q+MmcacOV/GIXBZvkZCZ5ximx3jVt/8SqYJpYpSXJWUmdnlfwCj4CzjShJXTxnIKcjqAHjTWEXcA0VRa6o95w9yyCqgS8BH+pVQUYj2N2OQkB/rFOg/D5VYmXXuFlBf9ddPW4zTJnA18onLY7UT9aCdw04rXRQWs5nu4EFqeKupxJSwUxZhwPCjspibacClaF2BlWEHpBZn5+9cAreOldKWRK+yMtrLwbuHyRE3vugbUyf4bGzmYHk5LLwlkmaVMrcwKsgppASLlm1IoFEEr9kxyxvhU9J34i1hO90cYQaZpG+MoMsWaSfaUqz4lMS5yRnItFyjLihPUMmOzK3qzEneT20jsNN8y6ovRr08tVyjwdNRv1OvmoT/abuPrhMhHEVaWeJVUZ9eN3b1af+C+QZuk15sBDIn8GVdjw9KGW/WtWbhqjQT9+29/7vNc5PFozto2eoeeoi2L0Hh2iI3SMhogGo2AZfAu+b/1qvWi9bvUa6FawznmKNqS1/xstJxHd</latexit>

G. Zachmann Real-time RenderingVirtual Reality and Physically-Based Simulation WS November 2024

Demo

49

How can the Funkhouser-Sequin algorithms be combined with
progressive meshes? And implemented on the GPU?

Master Thesis …

G. Zachmann Real-time RenderingVirtual Reality and Physically-Based Simulation WS November 2024

Alternative Demo

50

G. Zachmann Real-time RenderingVirtual Reality and Physically-Based Simulation WS November 2024

View-Dependent LOD's

• Select different resolution within the same object, depending on the view

point, i.e., different parts of one object are rendered at different resolutions

• Define a metric measuring screen space error (measured in pixels)

• Example: terrain – choose resolution according to projected area

51

View from eye point Birds-eye view

G. Zachmann Real-time RenderingVirtual Reality and Physically-Based Simulation WS November 2024

• Additional factor: visual importance

• Example: render closed objects with higher

resolution near silhouette border

• Maximal screen space error

is modulated by (v.n)

• Other potential criteria:

• Specular highlights

• Salient features, e.g., feature points in faces

• Overall criteria:

• Triangle budget

• Time budget (remember time critical

computing)

52

n

v

G. Zachmann Real-time RenderingVirtual Reality and Physically-Based Simulation WS November 2024

Pros and Cons

• Advantages of Dynamic LODs (e.g., progressive meshes):

• No popping artefacts

• Can be turned into view-dependent LOD

• Better rendering fidelity for given polygon count

• Advantages of Static LODs:

• Extremely simple for the renderer

• Simple for the programmer, too, i.e., easy to implement

• No CPU overhead during rendering

• Can upload LODs to GPU as vertex buffer objects (VBO)

53

Master's Thesis

topic: is it possible to

implement progressive meshes (or

other kind of dynamic LOD) in

the GPU's vertex

buffers?

G. Zachmann Real-time RenderingVirtual Reality and Physically-Based Simulation WS November 2024

Other Kinds of LODs

• Idea: apply LOD technique to other, non-geometric content

• E.g. "behavioral LOD":

• If in focus, simulate the behavior of an object exactly, otherwise simulate it only

"approximately"

54

G. Zachmann Real-time RenderingVirtual Reality and Physically-Based Simulation WS November 2024

Portal Culling (Culling in Buildings)

• Observation: many rooms

within the viewing frustum

are not visible

• Idea:

• Partition the VE into "cells"

• Precompute cell-to-cell-visibility

⟶ visibility graph

55

G. Zachmann Real-time RenderingVirtual Reality and Physically-Based Simulation WS November 2024

• During runtime, filter cells from visibility graph by viewpoint and viewing

frustum

56

G. Zachmann Real-time RenderingVirtual Reality and Physically-Based Simulation WS November 2024

Test Your Knowledge of the Human Visual System

57

Please,
don't spoil by
"look-ahead"!

https://www.menti.com/smvndia2ss

G. Zachmann Real-time RenderingVirtual Reality and Physically-Based Simulation WS November 2024

Foveated Rendering

• Recap of some factors of our human

visual system (HVS):

• Critical flicker frequ. in periphery ≈ 85 Hz

• Fovea = area of high visual acuity ≈ 5°

• Resolution in fovea ≈ 1 arcmin !

• At 20° eccentricity, spatial res. ≈ 7.5 arcmin

• Midget (ganglion) cells collect and

process cones' signals, then forward to

brain ⟶ their density influences our visual

acuity

• Fovea covers ≈ 4% pixels of HMD

• Most pixels in HMD's are wasted!

58

Text
Shapes

Colors

Motion

60°4
0

° M
otion

G. Zachmann Real-time RenderingVirtual Reality and Physically-Based Simulation WS November 2024

Foveated Rendering Technique

• Prerequisite: eye gaze tracking

• Goal: reduce image resolution towards

periphery (subsampling)

• Approach:

• Render 3 overlapping, nested "eccentricity

layers" (render targets)

• Each layer has its own image resolution (and

LOD levels) ⟶ different sampling spacing!

• Interpolate outer layers to final display

resolution, then blend together

• Optionally: update outer layers with lower

frame rate

59

G. Zachmann Real-time RenderingVirtual Reality and Physically-Based Simulation WS November 2024

Blending the Layers

• Overlay on top of each other

• Calculate blend weights, depending on radius of pixel from center (i.e.,

gaze direction)

• Visualization

of blending

weights:

60

G. Zachmann Real-time RenderingVirtual Reality and Physically-Based Simulation WS November 2024

Challenges

• Latency: time elapsed between capturing the eye gaze direction and

displaying the corresponding foveated image

• Experience shows:

• 60 Hz monitor, 50 Hz eye tracker, 35 ms latency ⟶ obvious "pop" in image

resolution

• 120 Hz monitor, 300 Hz eye tracker, 10 ms latency ⟶ no visible "pop"

• Aliasing:

• Outer layers have wide "pixel" stride ⟶ aggravates aliasing artifacts

• Periphery is very sensitive to temporal changes ⟶ moving aliasing artifacts are

extremely distracting / annoying

61

G. Zachmann Real-time RenderingVirtual Reality and Physically-Based Simulation WS November 2024

Anti-Aliasing Methods

• MSAA (Multi-Sample Anti-Aliasing): standard in GPU's, sample each pixel

multiple times (e.g., by grid, or other pattern, within each pixel)

• Whole frame jitter sampling plus temporal reprojection:

62

G. Zachmann Real-time RenderingVirtual Reality and Physically-Based Simulation WS November 2024

Blending and Anti-Aliasing at Work

63

G. Zachmann Real-time RenderingVirtual Reality and Physically-Based Simulation WS November 2024

• Definition:

• Imagine a grating of black and white lines next to each other

• Minimum angle of resolution (MAR) ω = smallest angle of a cycle of white-black

lines still visible

•

• Units:

• MAR = degrees (°) = degrees per cycle

• Acuity = frequency (Hz) = cycles per degree

• Standard model for MAR:

with e = eccentricity, ω0 = MAR at fovea

More on the Human Visual System

64

<latexit sha1_base64="w5ADSyES8V6TXf7JI+3TscoCPbs=">AAADCXicZVLNbtNAEN6YvxL+UjgipIWoEocS2UGIXpAicemxSE1aqY7Cej1OV91dW/sDDSs/Ac/AE3DihnrlKbhx4QBPwdhNUNOutNbom2++mZ3PWSWFdXH8sxNdu37j5q2N2907d+/df9DbfDixpTccxryUpTnMmAUpNIydcBIOKwNMZRIOspO3Tf7gAxgrSr3vFhVMFZtrUQjOHEKz3n5IW5GQSeZrmjo4dWEirGeSMu6FW9Q1fUPTwjAekjosGUpoobyiTM8l0LKgBmwpfaNZ03rW68eDuD30apAsg/7o5af3v59sfd2bbXa+pHnJvQLtuGTWHiXDyk0DM05wCXU39RYqxk/YHEI7b023EMppURq82tEWvcg78q7YmQahK+9AcyygmCy8pK6kzSpoLgxwJxf4UI6NPXMoyI8ZPtXhytaaqoVi7rgRqTBValxPA1jsqxTTud2msmQ5zQAnAmqZtk3+6ZrICsU9r8JuakDDx6VKSAumhFzkUDAvXR1SW6zidSXhtXCnCFphwfkq4FgvVJkDmtV41TrRTbEYf4wLDgczz+oQD5JX2+0nuUQykP/n7CAlxjtsDE0u23c1mAxRcRC/S/qjXXJ+Nshj8ow8Jwl5TUZkl+yRMeHkjPwif8jf6HP0LfoenZ1To86y5hFZO9GPf8EL/o4=</latexit>

Visual acuity = 1
minimum angle of resolution

Zone of
aliasing

Details are clearly
detectable without
aliasing

Details become invisible,
without aliasing

<latexit sha1_base64="1U8nEXgAGQja3ysq4+0z4xkk4Yg=">AAACy3icZVFLb9NAEN6YVwkF0iJx4bIQISFRIjsSai9Ikbj0glQk0laqQ7Rej9NV92HtgxJcHzly5cYFjvAr+Bf8G8ZOgkg70q5mv/nmm5mdrJTC+Tj+04muXb9x89bG7e6dzbv37ve2tg+dCZbDmBtp7HHGHEihYeyFl3BcWmAqk3CUnb1u4kcfwDph9Ds/L2Gi2EyLQnDmEZr2HqZGwYzRV1QBfU4Xr/fxtNePB3Fr9KqTLJ3+aPNr/8uP39sH063OtzQ3PCjQnkvm3EkyLP2kYtYLLqHupsFByfgZm0HVtl3TpwjltDAWj/a0Rf/nnQRf7E0qocvgQXNMoBgsgqTe0GYYmgsL3Ms5ZZxj4cA8CvJTZhn3OPRaUTVXzJ82IiWGjGaSNoDDukoxnbsdKg3LaQbYEVDHtGvij9dEVmhN05XbTS1oOF+qVGnBlJDzHAoWpK+r1BUrf11JBC38RwSdcOBDWWFbL5TJAXdRNAPgfjCKybja9m+qTLJQV3aW1VU8SF7utFdyiWQh/8fZQ0qMZ1jjQpPL67vqHA5RcRC/TfqjfbKwDfKIPCHPSEJ2yYjskwMyJpxckO/kJ/kVvYlc9Cm6WFCjzjLnAVmz6PNfex/iOA==</latexit>

ω = me + ω
0

G. Zachmann Real-time RenderingVirtual Reality and Physically-Based Simulation WS November 2024

Connection Between Model and Rendering Speed

• Task: given a specific slope in the MAR model, m, and the number of eccentricity

layers, choose the radii of the layers

• Radii e1, e2 determine the total

number of pixels to be rendered

• Determine by optimization

• E.g.: brute force, choose e1, e2,

with 0 < e1 < e2 < e*,

then count the number of pixels

• Question: what is the

best parameter m?

• Smaller m ⟶ larger radii,

more pixels to be rendered,

less savings

65

G. Zachmann Real-time RenderingVirtual Reality and Physically-Based Simulation WS November 2024

User Study to Determine Parameters

• Slider test:

• Present participants the non-

foveated animation sequence first

• Then start with low degree of

foveation (high rendering quality)

• Let users increase level of foveation

(decrease rendering quality) until

just noticeable artifacts appear

• Conditions: different animation

speeds

• Results:

66

Foveation level that users still found acceptable
C

o
u

n
t

o
f

u
se

rs

Animation
speeds

G. Zachmann Real-time RenderingVirtual Reality and Physically-Based Simulation WS November 2024

Video of User Study

67

G. Zachmann Real-time RenderingVirtual Reality and Physically-Based Simulation WS November 2024

Speedup, Overall Results

68

Number of pixels on display
over
number of pixels rendered

Rendering time of foveated version
over
rendering time of un-foveated version

⟵ Determined by experiments

G. Zachmann Real-time RenderingVirtual Reality and Physically-Based Simulation WS November 2024 69

Layer
1 = inner,
2 = middle,
3 = outer.
S = sum

~ inner radii of layers 2 and 3

G. Zachmann Real-time RenderingVirtual Reality and Physically-Based Simulation WS November 2024

Further Improvements

• In order to reconstruct the whole

image, use GANs (generator

adversarial networks), instead of

layered rendering, followed by

anti-aliasing and blending

• Idea:

• Generate mask with high density

at fovea, low density in periphery

• Render image at mask points

• Fill in other pixels using GAN

• Train GAN on large number of

frames from video games and

natural scene

70

["DeepFovea ...", 2019]

G. Zachmann Real-time RenderingVirtual Reality and Physically-Based Simulation WS November 2024

Comparison with Ground Truth

71

Runtime performance: 9 ms, using 4x NVIDIA Tesla V100 GPUs (2019)

G. Zachmann Real-time RenderingVirtual Reality and Physically-Based Simulation WS November 2024

Get Creative: Are You Aware of Any Other Human Factors of the HVS
that Might, Perhaps, be Utilized to Improve Rendering Performance?

72

https://www.menti.com/smvndia2ss

G. Zachmann Real-time RenderingVirtual Reality and Physically-Based Simulation WS November 2024 73

• A state in OpenGL rendering =

• Combination of all attributes

• Examples for attributes: color, material, lighting parameters, textures being used,
shader program, render target, etc.

• At any time, each attribute has exactly 1 value out of a set of possible attributes

(e.g., color∈{ (0,0,0), …, (255,255,255) }

• State changes are a serious performance killer!

State Sorting

G. Zachmann Real-time RenderingVirtual Reality and Physically-Based Simulation WS November 2024

Costs of state changes in modern OpenGL [2014]

• Goal: render complete scene graph with minimal number of state changes

74

Render target

Shader

ROP

Texture binding

Vertex format

Uniform buffer

Vertex binding

Uniform updates

Not to scale!

G. Zachmann Real-time RenderingVirtual Reality and Physically-Based Simulation WS November 2024

Solution: Sorting by State

• Problem: optimal solution is NP-complete

• Proof:

• Each leaf of the scene graph can be

regarded as a node in a

complete graph

• Costs of an edge = costs of the corresponding

state change (different state changes cost

differently, e.g., changing the transform is

cheap)

• Wanted: shortest path through graph

‣ Traveling Salesman Problem

• Further problem: precomputation doesn't

work with dynamic scenes and occlusion

culling
75

One object
(= leaf of
the scene-
graph)

G. Zachmann Real-time RenderingVirtual Reality and Physically-Based Simulation WS November 2024

Introducing the Sorting Buffer

• For the sake of argument: consider only one kind of attribute ("color")

• Introduce a buffer between application and graphics card

• (Could be integrated into

the driver, since an OpenGL

command buffer already exists)

• Buffer contains k elements

• Perform one of 3 operations with each draw call (= app sends a "colored

element" to the hardware/buffer):

1. Pass element directly on to graphics hardware; or,

2. Store element in buffer; or,

3. Extract subset of elements from buffer and send them to graphics hardware

76

Graphics hardwareSequence of objs Buffer for state sorting

G. Zachmann Real-time RenderingVirtual Reality and Physically-Based Simulation WS November 2024

Interlude: Online Algorithms

• There are 2 categories of algorithms:

• "Online" algorithms: the algorithm does not know which elements will be received

in the future!

• "Offline" algorithms: algo does know elements that will be received in the future

(for a fair comparison, it still has to implement a buffer, but it can utilize its

knowledge of the future to decide whether to store elements)

• In the following, we consider only "lazy" online strategies:

• Extract elements from the buffer only in case of buffer overflow

• This is wlog., because every non-lazy online strategy can be converted into a lazy

one with the same complexity (= costs)

• Question (in our case): which elements should be extracted from the buffer

(in case of buffer overflow), so that we achieve the minimal number of color

changes?
77

G. Zachmann Real-time RenderingVirtual Reality and Physically-Based Simulation WS November 2024

Interlude: Competitive Analysis

• Definition c-competitive :

	 Let = costs of optimal offline strategy,

 	 let = costs of some online strategy,

	 "cost" = number of color changes, k = buffer size.

Then, the online strategy is called "c-competitive", iff

where a must not depend on k (c may depend on k).

The ratio is called the competitive-ratio.

• Wanted: an online strategy with c = c(k) as small as possible

(i.e., c(k) should be in a low complexity class)

78

G. Zachmann Real-time RenderingVirtual Reality and Physically-Based Simulation WS November 2024

Example: LRU strategy (Least-Recently Used)

• The strategy:

• Maintain a timestamp per color (not per element!)

• When element gets stored in buffer → timestamp of its color is set to current time

• Notice: this way, timestamps of other elements in buffer can change, too

• Buffer overflow → extract elements, whose color has oldest timestamp

• The lower bound on the competitive-ratio:

• Proof by example:

• Set , wlog. m is even

• Choose the input

• Costs of the online LRU strategy: color changes

• Costs of the offline strategy: color changes,

because its output is

79

�

c1 · · · cmx
k
c1 · · · cmy

k
�

m

2

<latexit sha1_base64="slsTnA20JUq+lQzzrMSm8SdpxLk=">AAACynicZVHNbhMxEHaWvxL+UjhysYiQilSi3aCKXkCRuPTAoUikrdRNIq93NrVie1f2uO3K2huPwmMgHoATElx4G7xJi0g60tifvvnG45nJKiksxvGfTnTr9p2797budx88fPT4SW/76ZEtneEw5qUszUnGLEihYYwCJZxUBpjKJBxniw9t/PgcjBWl/ox1BRPF5loUgjMM1Kz3Ps3EXO5QPktoyvMSbYDqcrrYYOrpolWaV1OfFoZxrxo/bJpZrx8P4qXRmyC5Av3RriffvrOfh7PtDqZ5yZ0CjVwya0+TYYUTzwwKLqHpps5CxfiCzcEv22voy0DltChNcI10ya7pVK0YngVhe9n/Q6cOi/2JF7pyCJqv3iqcpFjSdhw0FwY4ypoyzsOXHMNQip+x0CKGsa2VsUzbVaH0GnZTAxoueKkU03kYDVNC1jkUzElsfGqLa7z+knBa4GUgrbCArvIVmNeqzIG+o+142+WEaEgOe1027DPJXOPNPGt8PEj2dpdHsiEykP/T7AdJHHzYdLthT8nmVm6Co+EgeTPY+5T0RwdkZVvkOXlBdkhC3pIROSCHZEw4+Up+kF/kd/QxMlEd+ZU06lzlPCNrFn35C8H746w=</latexit>

G. Zachmann Real-time RenderingVirtual Reality and Physically-Based Simulation WS November 2024

The Bounded Waste & the Random Choice Strategy

• Idea:

• Count the number of all elements in the buffer that have the same color

• Extract those elements whose color is most prevalent in the buffer

• Introduce waste counter W(c) :

• With new element on input side: increment W(c), c = color of new element

• Bounded waste strategy:

• With buffer overflow, extract all elements of color c', whose W(c') = max

• Competitive ratio (w/o proof):

• Random choice strategy:

• Randomized version of bounded waste strategy

• Choose uniformly a random element in buffer, extract all elements with same
color (note: most prevalent color in buffer has highest probability)

• Consequence: more prevalent color gets chosen more often, over time each
color gets chosen W(c) times

80

G. Zachmann Real-time RenderingVirtual Reality and Physically-Based Simulation WS November 2024

The Round Robin Strategy

• Problem: generation of good random numbers is fairly costly

• Round robin strategy = variant of random choice strategy:

• Don't choose a random slot in the buffer

• Instead, every time choose the next slot (hence, "round robin")

• Maintain pointer to current slot, move pointer to next slot every time a slot is

chosen

81

G. Zachmann Real-time RenderingVirtual Reality and Physically-Based Simulation WS November 2024

Comparison

• Take-home message:

• Round-robin yields very good results (although/and it is very simple)

• Worst case doesn't say too much about performance in real-world applications

82

Buffer size Buffer size
R

e
n

d
e
ri

n
g

 t
im

e
 /

 m
se

c

S
ta

te
 c

h
a
n

g
e
s

G. Zachmann Real-time RenderingVirtual Reality and Physically-Based Simulation WS November 2024 83

• Oculus display refreshes at 90 Hz; if application can render only at

45 Hz, ASW produces frames "in between" by prediction:

• Some details about the method (speculative):

• Extra thread kicks in, if app has not finished rendering in time; stops rendering

and graphics pipeline (GPU preemption)

• Take previous two images, try to predict 2D motion of image parts

• Optical flow algorithms? use GPU video encoding hardware?

• Fill holes by stretching neighborhood (image inpainting)

"Asynchronous Spacewarp" (Oculus)

Rendered by app.

Predicted by ASW from
previous 2 app. frames

1/90 s

G. Zachmann Real-time RenderingVirtual Reality and Physically-Based Simulation WS November 2024

Example Frames (Can You Spot the Artefacts?)

84

Disocclusion
trail

Change in
lighting

G. Zachmann Real-time RenderingVirtual Reality and Physically-Based Simulation WS November 2024

Stereoscopic Image Warping (Stereo Without 2x Rendering)

• Observation: left & right image differ not very much

• Idea: render once for right image, then move pixels to corresponding

positions in left image → image warping

• Algoritm: consider all pixels on

each scanline from right to left,

draw each pixel k at the

new x-coordinate

where 𝛥 = pixel width

• Problems:

• Up-vector must be vertical

• Holes!

• Ambiguities & aliasing

• Reflections and specular highlights are at wrong position
85

e

?

z0

zk

G. Zachmann Real-time RenderingVirtual Reality and Physically-Based Simulation WS November 2024

Reducing Latency by 3D Image Warping

• A simple VR system:

• Latency in this system (stereo with 60 Hz ⟶ display refresh = 120 Hz):

86

Tracking
system

T0 T4

Appl.

T1

Renderer
T2

Display
(e.g. HMD)

T3

User

L R L R
Display

16.6 ms

System

T0
Tracker

10 ms

T1
Application (Simul) Renderer

T2

30 ms

T3

swaplock

50 ms 8 ms

T4

New appl.
frame

G. Zachmann Real-time RenderingVirtual Reality and Physically-Based Simulation WS November 2024

Issues & Observations

• The appl. framerate (incl. rendering) could be much slower than the display

refresh rate

• The tracking data, which led to a specific image, were valid some time in the

past

• The tracker could deliver data more often

• Consecutive frames differ from each other (most of the time) only relatively

little (→ temporal coherence)

87

G. Zachmann Real-time RenderingVirtual Reality and Physically-Based Simulation WS November 2024

Idea: Decouple Simulation/Animation, Rendering, and Tracker Polling

88

Object transform.,
camera position

Input devices
(tracker)

Simulation / Animation

Shared
scene graph

Appl. renderer
(client)

GPU 1 shared memory

20 Hz

Framebuffer
object (FBO) DisplayGPU 2

Warping
renderer
(server)Only

object
transf.

60 Hz

Transform
10242 GL_POINTs
(or use CUDA)

Camera
position

Texture

G. Zachmann Real-time RenderingVirtual Reality and Physically-Based Simulation WS November 2024

An Application Frame (Client)

• At time t1, the application renderer generates a normal frame

• Color buffer and Z-buffer

• Henceforth called "application frame"

• … but also saves additional information:

1. With each pixel, save ID of object visible at that pixel (e.g., into separate frame

buffer object)

2. Save camera transformations at time t1 :

3. With each object i , save its transformation

Tt1,cam←img and Tt1,wld←cam
<latexit sha1_base64="r8RBXPSJ7ozmpAM7wBDMPwxRPy0=">AAAC2XicZVFLaxsxEJa3r9R9xEmPvYia0h5Ss+sSGggBQy+5FFKIk4DXNVrtrCMiaRdpVMeIPfRWeu0fKfSH9Jxr+z9K5VeJk4GRPs18M6OZySopLMbxVSO6c/fe/QcbD5uPHj95utna2j6xpTMc+ryUpTnLmAUpNPRRoISzygBTmYTT7OL9zH/6GYwVpT7GaQVDxcZaFIIzDKZR68PxyOMo2aGcKZpKKJAZU06oUGNa03Q/3acpwiV6pvPlexUxkfn1iJCgHrXacSeeC70NkiVo9159Yr/+/nBHo60GpnnJnQKNXDJrB0m3wqFnBgWXUDdTZ6Fi/IKNwc+7renLYMppUZqgGuncusZTU8XwPBBnl73uGjgs9oZe6MohaL7IVThJsaSz6dBcGOAop5RxHr7kGIZS/JwZxjFMca2MZdouCqUr2EwNaJjwUqkwL58WTAk5zaFgTmLtU1us8Hom4bTAy2C0wgK6yldg3qgyB3pAi1ntsKvgDcFhzfOGfSaZq70ZZ7WPO8nuzvxIbpAM5P85e4ESB+3WzWbYU3JzK7fBSbeTvO3sfkzavUOykA3ynLwgr0lC3pEeOSRHpE84+UmuyG/yJxpEX6Kv0bcFNWosY56RNYm+/wPmh+kv</latexit>

89

G. Zachmann Real-time RenderingVirtual Reality and Physically-Based Simulation WS November 2024

Warping of a Frame (Server)

• At a later time, t2 , the server generates an image from an application frame

by 3D warping

• Transformations known at this time:

• A pixel in the application frame will be "warped" (transformed)

to its correct position in the (new) server frame:

• This transformation matrix can be precomputed

for each object and each new server frame
90

t1

t2

Appl. frame →

← Server frame

PS =Tt2,img←cam ·Tt2,cam←wld ·T
i
t2,wld←obj ·

T
i
t1,obj←wld ·Tt1,wld←cam ·Tt1,cam←img ·PA

<latexit sha1_base64="V3yairgjJFtF6MTQDuRQ7TWSKp4=">AAADcHicZZLfb9MwEMedlR+j/OrgBYkHDBUIoVIlhYm9IA3xMvFUxLpNmkvkOE5n5sSRfaaUKH8o7/wF/AU4aVq16UlOTncf3531vSiXwoDv//H2Ojdu3rq9f6d79979Bw97B4/OjLKa8QlTUumLiBouRcYnIEDyi1xzmkaSn0fXn6v8+U+ujVDZKSxyPk3pLBOJYBRcKOz9HYff8EeMX+HTsIBwNMAinWEieQJUazXHjKYlJixWsCZcaJOYy7hNuNAmoaIf5XeByaDBCGnaBYMq1y5WoTW3hlr12jMFOzO5R6yIcfgp7PX9oV8b3nWCxumjxsbhgQckVsymPAMmqTGXwSiHaUE1CCZ52SXW8JyyazrjRS1CiV+6UIwTpd3JANfRLS5dpBSuHFj9zGbq0kJyNC1EllvgGVvWSqzEoHAlGo6F5gzkAlPG3EiWgmvFrqimDJy4W20MzcyyEVm5XaJ5xudMpSnN4oIkNBVyEfOEWgllQUyy8rcrCZsJ+OWCRhgONi9yrt+mKuZuY5Kqt1shl3WX3fbVDy4iSW1Z6FlUFv4wOBzUn6AFaR6vmSOH+O6Mym7X6RS0Vdl1zkbD4N3w8Ov7/vFJo9g+eopeoNcoQB/QMTpBYzRBzPvi5d7C+733r/Ok86zzfInuec2dx2jLOm/+A4ZbFz0=</latexit>

G. Zachmann Real-time RenderingVirtual Reality and Physically-Based Simulation WS November 2024 91

x

Object A

y

z

P

Pi

Pixel in
appl frame
at time t1

Pi

Pixel in
appl frame
at time t1

-z
Camera (t1)

y

x

-z
Camera (t1)

y

x

x
World (t1)

y

z

x
World (t1)

y

z

x

Object i

y

z

P

x
World (t2)

y

z

P

x
World (t2)

y

z

P

-z
Camera (t2)

y

x

P

-z
Camera (t2)

y

x

P

Pi
Warped
Server-Frame
(t2) Pi'

Pi

Warped
Server Frame
(t2) Pi'

G. Zachmann Real-time RenderingVirtual Reality and Physically-Based Simulation WS November 2024

Remarks

• Implementation of the warping:

• Could be done in the vertex shader

• Doesn't work in the fragment shader, because the output (= pixel) position is fixed in

fragment shaders!

• Better do the warping in CUDA, one thread per pixel in the appl frame

• Note: the server (warping) renderer does use current (t2) positions of

animated/simulated objects!

• Advantages:

• The frames (visible to the user) are now "more current", because of more current

camera and object positions (i.e., animated objects)

• Server framerate is independent of number of polygons

• With additional tricks, re-lighting is possible (to some extent)

92

G. Zachmann Real-time RenderingVirtual Reality and Physically-Based Simulation WS November 2024

Problems

• Holes in server frame

• Need to fill them, e.g., by ray casting

• Server frames are fuzzy
(because of point splats)

• How large should the point splats be?

• The application renderer (full image
renderer) can be only so slow
(if it's too slow, then server frames
contain too many holes)

• Unfilled parts along the border of the server frames

• Potential remedy: make the viewing frustum for the appl. frames larger

• Performance gain:

• 12M polygons, 800 x 600 frame size

• Factor ~20 faster
93

t1

t2

Hole!

G. Zachmann Real-time RenderingVirtual Reality and Physically-Based Simulation WS November 2024

Videos

94

G. Zachmann Real-time RenderingVirtual Reality and Physically-Based Simulation WS November 2024 95

