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Your Guess: What is the Latency Humans Can Notice?
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Please, 
don't spoil by 
"look-ahead"!
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• Definition: Latency = duration from a user's action (e.g., head motion) until 

display shows a change caused by the user's action ("from motion to 

photons") 

• Some human factors (here for visual displays):

Latency (Lag, Delay)

Latency 

(msec)
Effect on the user

> 5 Noticeable

> 30 User performance decreases

> 500 Presence vanishes (and simulation fidelity)

Note: a user's head can rotate by as much as 1000 degrees/sec !
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The Latency Pipeline

• Types/causes of lag: 

• Internal to devices 

• Transportation of data over communication channel (e.g., Ethernet) 

• Software (time for processing the data) 

• Synchronization delay
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General Strategies for Solutions

1. Device-server-app communication: 

• Put device and server into continuous 

mode 

• Send "keep alive" messages from client 

to server 

2. Do time-critical computing: 

• Each and every module of the app  

receives a specific time budget  

• Module tries to compute a usable(!)  

partial solution as good as possible  

within the time budget 

• Stop when time is up 

3. Try to predict user/tracker position in x 

msec's time
5
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Sources of Latency During Rendering

• The classical 

graphics pipeline, 

at least parts of it, 

visualized as a 

loop: 

• Latency:
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Viewport-Independent Rendering

• Conceptual idea: 

• Render the scene onto a sphere around the viewer ⟶ spherical viewport 

• If viewpoint rotates: just determine new cutout of the spherical viewport 

• Practical implementation:  

• Use a cube as a viewport around user,  

instead of sphere 

• Remark: this was also one of the  

motivations to build Cave's

7
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• New pipeline: 

• Latency:
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"Asynchronous Timewarp" (Oculus)

• Render a bigger-than-visible viewport (not the whole cube) 

• Shift image using current orientation of head 

• Do this only in case the renderer is not finished in time: 

• Requires GPU preemption (i.e., stop GPU's pipeline, including shaders, 

immediately)
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Limitations

• Judder of animated objects 

• Incorrect positions of highlights and 

specular lighting  

• Head rotation also changes position 

of the viewpoint, but the image is 

shifted only according to rotation of 

viewing direction ⟶ judder for near 

objects (even static objects)

10
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Multi-Threaded Rendering and Image Composition

• Conceptual idea: 

• Each thread renders only its "own" 

object in its own framebuffer 

• Video hardware reads framebuffer 

including Z-buffer 

• Image compositor combines individual 

images by comparing the Z values of 

corresponding pixels 

• In practice:  

• Partition set of objects 

• Render each subset on one PC

11
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Another Technique: Prioritized Rendering

• Observation: images of objects far away from viewpoint (or slow relative to 
viewpoint) change slowly 

• Idea: render onto several cuboid viewport "shells" around user 

• Fastest objects on innermost shell, slowest/distant objects on outer shell 

• Re-render innermost shell very often, outermost very rarely 

• How many shells must be re-rendered depends on: 

• Framerate required by application 

• Complexity of scene 

• Speed of viewpoint  

• Speed of objects (relative to viewpoint) 

• Human factors have influence on priority, too: 

• Head cannot turn by 180° in one frame → update objects "behind" only rarely 

• Objects being manipulated must have highest priority 

• Objects in peripheral field of vision can be updated less often
12
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What Are Some Good Software-Engineering Practices?
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Efficient Memory-Layout for Fast Rendering

• Frequent problem: the elegant way to structure data (from the perspective 

of software engineering) is inefficient for fast rendering  

• Example for illustration: visualization of molecules 

• Following good SE practice, we should design classes like this

14

 class Atom 

 { 

 public: 

    Atom( uint atom_number, Vec3 position, ... ); 

 private: 

    Vec3   position_; 

    uint   atom_number_; 

    Atom * bonds_[max_num_bonds]; 

    ... 

};
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• And the class for a molecule: 

• Memory layout of a molecule is now an array of structs (AoS):

15

 class Molecule 

 { 

 public: 

    Molecule( const std::vector<Atom> & atoms ); 

 private: 

    std::vector<Atom> atoms_; 

    ... 

};

pos num bonds pos num pos numbonds bonds
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• Problem with that: memory transfer becomes slow 

• Alternative: Struct of Arrays (SoA) 

• Terminology: "Array of Structs (AoS)" vs. "Struct of Arrays (SoA)"

16

 class Molecule 

 { 

 private: 

    std::vector<Vec3>  position; 

    std::vector<uint>  atom_number; 

   ... 

};

pos[0] pos[1] pos[2] . . . atom_number[0] . . .
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Constant Framerate by "Omitting Stuff"

• Reasons for the need of a constant framerate: 

• Prediction in predictive filtering of tracking data of head/hands works only, if all 

subsequent stages in the pipeline run at a known (constant) rate 

• Jumps in framerate (e.g., from 90 to 45 Hz) are very noticeable (stutter/judder) 

• Consider rendering as "time-critical computing":  

• Rendering gets a certain time budget (e.g., 11 msec) 

• Rendering algorithm has to produce an image "as good as possible" 

• Techniques for "omitting" stuff: 

• Levels-of-Detail (LODs) 

• Omit invisible geometry (Culling) 

• Image-based rendering 

• Reduce the lighting model, reduce amount of textures,

17
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Which Things Could the Renderer Omit in Case of Overrunning the Time Budget?

18
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• Example:  

do you  

see a  

difference? 

• Idea: render a reduced version of the object, where the amount of reduction is 

chosen such that users cannot see the difference from the full-resolution version

The Level-of-Detail (LoD) Technique

19
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• Definition: 

	A level-of-detail (LOD) of an object is a simplified version,  

	i.e., a model that has less polygons. 

• The technique consists of two tasks: 

1. Preprocessing: for each object in the scene, generate k LODs 

• For instance, we generate LODs at 100%, 80%, 60%, ..., of the number 

of polygons of the original model 

2. Runtime: select "right" LOD, make switches between LODs unnoticeable

20
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Selection of the LOD

• Balance visual quality against "temporal quality" 

• Static selection algorithm: 

• Level i  for a distance range  

• Optimal distance ranges depend on FoV 

• Problem: size of objects is not considered

21

LOD

100% 50% 30%
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Typical Use Case: Terrain Rendering

22
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Improved Static Selection

• Estimate size of object on the screen 

• Advantage: independent from screen resolution, 

FoV, size of objects 

• LOD depends on distance automatically

23



G. Zachmann Real-time RenderingVirtual Reality and Physically-Based Simulation WS November 2024

Estimation of the Size of an Object on the Screen

• Naïve method: 

• Compute bounding box (bbox) of object in 3D (probably already known by 

scenegraph for occlusion culling) 

• Project bbox onto 2D → 8x 2D points 

• Compute 2D bbox (axis aligned) around 8 points 

• Better method: 

• Compute true area of projected 3D bbox on screen

24
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Idea of the Algorithm

• Determine number of sides 

of 3D bbox that are visible: 

• Project only points on the 

silhouette (4 or 6) onto 2D: 

• Compute area of this 

(convex!) polygon

25
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Implementation

• For each pair of (parallel) box sides (i.e., each slab): 

classify viewpoint with respect to this pair into "below", "above", or 

"between" 

• Yields 3x3x3 = 27 possibilities 

• In other words: the sides of a cube partition space into 27 subsets 

• Utilize bit-codes (à la out-codes from clipping) and a lookup-table 

• Yields LUT with 26 entries (conceptually) 

• Each of the 27-1 entries of the LUT lists the 4 or 6 vertices of the silhouette 

• Then, project, triangulate (determined by each case in LUT), and 

accumulate areas

26
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Psychophysiological LOD Selection

• Idea: exploit human factors with respect to visual acuity 

• Central / peripheral vision: 

• Motion of obj (relative to viewpoint):   

• Depth of obj (relative to horopter):

27
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• Determination of LODs: 

1.    

2.                               (or similar transfer function) 

3. Select level l  such that     , where Pl is the set of 

polygons of level l  of an object, and r(p) = radius of polygon p 

• Do we need eye tracking for this to work? 

• Maybe … 

• Psychophysiology: eyes usually never deviate > 15° from head direction 

• So, assume eye direction = head direction, and choose  b1= 15° 

28
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Example Scenario

29
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Problems of Static LoD Selection

30

a) No LoD's b) Static LoD selection
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Reactive vs. Predictive LOD Selection

• Reactive LOD selection: 

• Keep history of rendering durations 

• Based on the history, estimate duration Tr for next frame, 

• Let Tb = time budget that can be spent for next frame 

• Usually constant, e.g., 11 msec for 90 Hz framerate 

• If Tr > Tb : decrease LODs (use coarser levels) 

• If Tr < Tb: increase LODs (finer levels) 

• Then, render frame and record actual rendering time in history 

• Reactive LOD selection can produce severe outliers

31
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Predictive LOD Selection

• Definition object tuple (O,L,R): 

	  O = object,   L = level, 

	  R  = rendering quality (#textures, #light sources, …) 

• Evaluation functions on object tuples: 

	  cost(O,L,R)         =  time needed for rendering 

	  benefit(O,L,R)    = "contribution to image" 

• Optimization task:   find  

           under the condition  
          where S = { all possible object tuples in the scene }

32
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What Kind of Optimization Problem is This?

33
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• Cost function depends on: 

• Number of vertices (≈ # coord. transforms + lighting calcs + clipping) 

• Setup time per polygon 

• Number of pixels (scanline conversions, alpha blending, texture fetching, anti-

aliasing, Phong shading) 

• Theoretical cost model: 

• Better determine the cost function by experiments: 

Render a number of different objects  

with all different parameter settings  

possible

34
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• Benefit function: "contribution" to image is affected by 

• Size of object 

• Shading method: 

• Distance from center (periphery, depth) 

• Velocity (similar to psychophysiological LOD factors) 

• Semantic "importance" (e.g., grasped objects are very important) 

• Hysteresis for penalizing LOD switches: 

• Together:

35

Hysteresis(O, L,R) =
c1

1 + |L− L0|
+

c2

1 + |R − R 0|
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Benefit(O, L,R) =Size(O)·Rendering(O, L,R) ·Importance(O)

·OffCenter(O) ·Vel(O)·Hysteresis(O, L,R)
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• Optimization problem = multiple-choice knapsack problem → NP-complete 

• Idea: compute sub-optimal solution 

• Reduce it to continuous knapsack problem (see algorithms class)  

• Define 

• Solve this greedily: 

• Sort all object tuples by value(O,L,R)  

• Choose the first k tuples until knapsack is full 

• Additional constraint: no 2 object tuples must represent the same object!

36
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• Incremental solution: 

• Start with solution   as of last frame 

• If 

 

then find object tuple  ,  

such that 

 

and 

• Proceed analog, if

37
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Performance in the Example Scenes

38

c) Reactive LoD selection c) Predictive LoD selection
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Problem with Discrete LODs

• "Popping" when switching to next higher/lower level 

1. Simplest solution: temporal hysteresis (reduces frequency of pops, 

especially filters out short back-and-forth pops) 

2. Alpha blending of the two adjacent  

LOD levels ("Alpha-LODs"): 

• Instead of switching from level i to i+1, fade out  

level i until gone, at the same time fade in level i+1 

• "Man kommt vom Regen in die Traufe"  

• Don't use them! 

3. Continuous, view-dependent LODs  

using progressive meshes

39
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Progressive Meshes

• A.k.a. Geomorph-LODs 

• Initial idea / goal: 

• Given two LODs Mi  and Mi+1 of the same object 

• Construct mesh M'  "in-between"  Mi and Mi+1  

• Definition: progressive mesh = representation of an object, starting with a 

high-resolution mesh M0, with which one can continuously (up to the 

vertex level) generate "in-between" meshes ranging from 1 polygon up to 

M0 (and do that extremely fast).

40
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Construction of Progressive Meshes

• Approach: successive simplification, until only 1 polygon left 

• The fundamental operation: edge collapse 

• Reverse operation = vertex split 

• Not every edge can be chosen: beware of bad edge collapses

41
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• The direction of edge collapses is important, too:  

• Introduce measure of edge collapses that evaluates "visual effect" 

• Goal: first perform edge collapses that have the least visual effect 

• Remark: after every edge collapse, all remaining edges need to be evaluated 

again, because their "visual effect" (if collapsed) might be different now

42
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• Progressive mesh = sequence of edge collapses / vertex splits: 

• Mi = i-th refinement = 1 vertex more than Mi-1  

• Representation of progressive mesh =  

list of ecol/vsplit operations 

• Representation of an 

edge collapse / vertex split: 

• Edge (= pair of vertices) affected by the collapse/split 

• Position of the "new" vertex 

• Triangles that need to be deleted / inserted

43
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• Evaluation function for edge collapses is not trivial and, more importantly, 

perception-based! 

• Factors influencing "visual effect": 

• Curvature of edge / surface 

• Lighting, texturing, viewpoint (highlights!) 

• Semantics of the geometry (e.g., eyes & mouth are very important in faces) 

• Examples of a progressive mesh:

44
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• Motivation: 

• Follow this heuristic: 

• Delete small edges first; and, 

• If surface incident to U has a smaller (discrete) curvature than surface around V, 

then move vertex U onto vertex V

A Simple Edge Evaluation Function

Low visual 
disturbance

High visual 
disturbance
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• A simple measure for the "costs" of an edge collapse from U onto V: 

• What is the rationale for this 

cost function? 

• Note: the cost function is not 

symmetric (which is good):

U
V

nU

nV
cost(U ,V ) = kU � V k·curv(U)
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<latexit sha1_base64="SDuDKzZutpx3oyDfx2nq3OGfYr8=">AAAC7XicbVFNb9NAEN2YrxK+UuDGZaEgtVKI7EiIXCpV4kCPRcJppTqKxutxuup619pdA8Hyz+AGvXLjV3CFO0f+CeM0QaRlpFk9vZl5M7OTlko6H4a/OsGVq9eu39i42b11+87de73N+2NnKiswFkYZe5SCQyU1xl56hUelRShShYfp6as2fvgOrZNGv/XzEicFzLTMpQBP1LQ3SkyJFryxGgqshXG+2Y774x2eaON3+f/C4z6Pd6a9rXAQLoxfBtESbO09/fj79beH9cF0s/MlyYyoCtReKHDuOBqWflKD9VIobLpJ5bAEcQqzthEN3vBnRGU8N5Zce75g/807rnw+mtRSl5VHLaiAUzCvFPeGt+vyTFoUXs05CEGNK/AkKE7AgvD0LWtNi3kB/qQVoZ2d0aB4SzjqWxSgM9fnykDGU6SJkDvQro0/XhNZsQ1PVrCbWNT4fqlSJzkUUs0zzKFSvqkTl6/wupKstPQfiHTSoa/KmsZ6XpgM+S7P2wXoghSlYjr+4m/qVEHV1HaWNnU4iF70F090Icli9jdnRCkh+bChg0YXz3cZjIekOAjf0GX32bltsEfsCdtmEXvJ9tg+O2AxE+yMfWc/2M/ABJ+Cz8HZeWrQWdY8YGsWfP0D02LxgQ==</latexit>

cost(U ,V ) 6= cost(V ,U)
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Simple Method to Calculate a Rough Estimate of the Discrete Curvature

1. Calculate "curvature" along each edge ei = (U,Vi): 

2. Calculate estimate of "curvature" at U as 

geometric mean of incident edges: 

• Alternative to step 2: 

• Find the two edges e1 and e2 with minimal and 

maximal curvature, k1 and k2, resp. 

• Set  curv(U) = 1

2
(k1 + k2)

<latexit sha1_base64="xrhDgIBSiXHuMBMJgZE/nLreNV4=">AAACuXicZVHbbtNAEN2YWzG3BB544GVFhJSKNrLNrRVCitSXPhaJtJXqKBqvx8mS9a61l0Jk+Sv4DX6AVxAfwd+wTtqK0JFm92jmzD2rBDc2iv50ghs3b92+s3U3vHf/wcNH3d7jY6OcZjhmSih9moFBwSWOLbcCTyuNUGYCT7LFQes/OUdtuJKf7LLCSQkzyQvOwHrTtLubqgo1WKUllFgzp8+bwXibfqBpoYHFCR0spjF9SRfTZDucdvvRMFoJvQ7iC9Af7fT2D55+/3007XVsmivmSpSWCTDmLE4qO6lBW84ENmHqDFbAFjDzxdtuG/rCm3JaKO1VWrqybvDKZQl27ontZ/51nTlb7E1qLitnUbJ1rsIJahVtp6c518isWFJgzLfkwPpSbA5+VOu3tFHGgDTrQuklDFONEr8wVZYg8zotoORimWMBTtimTk1xiTczcSe5/eqNhhu0rqr9zndLlaPfc7vm9hbe64P9GVcD15kA19R6ljV1NIzf7Kye+D+SxvyKs+cpkdekCdd32m/l7dVVroPjZBi/Gr7+GPdHh2QtW+QZeU4GJCbvyIgckiMyJox8Iz/IT/IreB9AMA8+r6lB5yLmCdmQwPwFiKLZ/Q==</latexit>
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curv(U) =
⇣

n
Y

i=1

curv(ei)
⌘

1

n

<latexit sha1_base64="3lRmW/agC1vHUI0no6EKDnbFvHY=">AAAC43icbVFNb9QwEPWGrxK+tvTIxaJC2pVglSy0lEOlCi7lViS2W6nZrhxnsrXq2JE9Lqyi/AJuiCsS/6InfghnrvAfcLJtxVJGsv008+zxvJeWUliMoh+d4Nr1GzdvrdwO79y9d/9Bd/XhvtXOcBhxLbU5SJkFKRSMUKCEg9IAK1IJ4/TkTVMfn4KxQqv3OC9hUrCZErngDH1q2h0nugTDUBvFCqi4M6d1b9Sn2zR5LWayR5PS6Gxaie24PlL0f2yYin7LNv2jKskN47Gqp931aBC1Qa+C+Bys77w9+5aGZ2t709UOJpnmrgCFXDJrD+NhiZOKGRRcQh0mzkLJ+Amb+cbNXDV94lMZzbXxSyFts0u8Yl4wPPbE5rB/lw4d5luTSqjSISi+eCt3kqKmjU40EwY4yjllnPsvOYa+FT9mfjz0ei61sUzZRaPkAoaJAQUfuC4KpjIvCyuEnGeQMyexrhKbX+Dll4RTAj/6pBUW0JWV1/tZoTPwjjTSNq75qr/sDW8HrlLJXF2ZWVpX0SDeeNpu8T8kA9klZ8tTIr+GdRi2Pr1qYvPSlatgfziInw9evPOG7ZJFrJBH5DHpkZi8JDtkl+yREeHkO/lJfpHfAQSfgs/BlwU16JzfWSNLEXz9A0ee7f8=</latexit>

curv(ei) =
(nVi

− nU)·(Vi − U)

|Vi − U |2
<latexit sha1_base64="ZYb1yZb6zJGHask2IyL9ssseHz4=">AAAC53icZVHLbhMxFHWGV5nySGHJxqJCSiQazYRXWSBVsOmySExaKRMGj+dOatVjj/wIRO58AwskxJZPYcsHIPEFbOEP8CRpReiVbB+fe+xr35PXnGkTRT87waXLV65e27gebt64eet2d+vOSEurKCRUcqmOcqKBMwGJYYbDUa2AVDmHw/zkVZs/nIHSTIo3Zl7DpCJTwUpGifFU1h2nsgZFjFSCVOCoVbOmBxnr4xc4LRWhDvfSGcUic6OMNXgHL3cJ7uOUFtLgnuc9nfRx4/DpanP6doibrLsdDaJF4IsgXoHtvZc/vr/bDD4dZFsdkxaS2gqEoZxoPY6HtZk4ogyjHJowtRpqQk/I1D+1/VuDH3iqwKVUfgiDF+yarppXxBx7Ybvof1Nja8rdiWOitgYEXd5VWo6NxG2vcMEUUMPnmFDqn2SJ8aXoMfFtMb6na2U0EXpZKD2DYapAwHsqq4qIwqUlqRifF1ASy03jUl2e4fWbmBXMfPCkZhqMrZ13aKeSBXhPWkta53zWH/amLz7sck5s49Q0b1w0iJ88XEzxfyIFxblm10siP4ZNGC58et7G03NXLoLRcBA/Gjx+7Q3bR8vYQPfQfdRDMXqG9tA+OkAJougb+oV+oz8BCz4Gn4MvS2nQWZ25i9Yi+PoXIXDr3Q==</latexit>

nU

V1 V2
Vn

nV1

Vertex normals must have unit length!

U
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Reasoning Behind the Curvature Formula

• Consider a cross-section through U, one of the 

V's and the edge e=(U,V) 

• Assume a circle through U, V  with radius r and 

center C , and assume the normals are 

perpendicular to the circle; then 

• Make it more "robust" in 3D by first projecting 

 onto the edge:(nV − nU)
<latexit sha1_base64="BMq2p0vV/IjLdeGpVO8mZAJlaF8=">AAACoHicZVFLb9QwEPaGVwmPbqE3LlYLUpHoKllaKAekShzYG63Ebiua1cpxJlurjhPZ48LWyn/hCgf+D0f+CU7SViwdaexPM9+800oKg1H0uxfcun3n7r2V++GDh48er/bXnkxMaTWHMS9lqY9TZkAKBWMUKOG40sCKVMJRevah8R+dgzaiVJ9xUcG0YHMlcsEZetOsv76VnHOqZhO6TTs0pi9n/c1oELVCb4L4EmzuP7/48/HXujuYrfUwyUpuC1DIJTPmJB5WOHVMo+AS6jCxBirGz9gcXNt0TV94U0bzUntVSFvrEq9YFAxPPbH5zL+uE4v53tQJVVkExbtcuZUUS9oMSTOhgaNcUMa5b8ky9KX4KdOMo1/GUhnDlOkKJVcwTDQo+MrLomAqc0nOCiEXGeTMSqxdYvIrvJxJWCXwmzcaYQBt5SrQ20WZAX1P86a2X7n3+mB/rXZgl0pma6fnae2iQbz7qn3i/0gasmvOnqdEXod1GLZ3etfIm+ur3AST4SB+Pdg59AcbkU5WyDOyQbZITN6SfTIiB2RMOLkg38kP8jPYCEbBp+Cwowa9y5inZEmCL38Bcd/RFQ==</latexit>
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nU

U

nV

V

C

V = C + rnV U = C + rnU
<latexit sha1_base64="p7o96mdS0suNh/sPypr2HMi952c=">AAAC0XicZVFLaxRBEO4dX3F8bfQieGkMgYi6zKyveBACQQh4iehsApllqOmp2TTp6R77sboMA+LVn+LNfyLkov4O7/bsJsE1Bd39UfVV1+PLa8GNjaKfveDCxUuXr6xcDa9dv3HzVn/19sgopxkmTAml93MwKLjExHIrcL/WCFUucC8/2u7ie1PUhiv53s5qHFcwkbzkDKx3Zf3X66mqUYNVWkKFDXN62m5gxh+EI/qKbtOHVKdTRmU2ojT94KCglCbLkYRm/bVoEM2NngfxCVjbuvvn+/Fx8GY3W+3ZtFDMVSgtE2DMQTys7bgBbTkT2IapM1gDO4KJ76mboqXr3lXQUml/pKVz7xKvmlVgDz2xe8y/oQNny81xw2XtLEq2+Kt0glpFu63QgmtkVswoMOZbcmB9KXYIGpj121sqY0CaRaH0FIapRokfmaoqkEWTllBxMSuwBCds26SmPMXLP3Enuf3knYYbtK5uvBSPK1WgX3DZ1fYa+ahP9vLOB25yAa5t9CRvm2gQP3s0v+L/SBqLM86mp0T+DNswnOv0srPnZ6qcB6PhIH4yePrWC7ZDFrZC7pH7ZIPE5AXZIjtklySEkW/kB/lFfgfvglnwOfiyoAa9k5w7ZMmCr38Bje3jTA==</latexit>

V − U = r(nV − nU)
<latexit sha1_base64="tRbm6tw4pg6FJ/EYAbJBAd9UgIU=">AAACwnicZVHNbhMxEHaWv7L8NAVuXCxKpVQi0W6AUg5IlUCixyKRtFI3irze2dTUay/2OBCWfROegYfgCi/AkTfBm20rQkca+9PMN57xfGkphcUo+t0Jrly9dv3G2s3w1u07d9e7G/fGVjvDYcS11OYoZRakUDBCgRKOSgOsSCUcpqevm/zhHIwVWr3HRQmTgs2UyAVn6EPT7s5WokswDLVRrICKOzOvezAV2+G4P6KvqKG9ZM6pmo5pn7ZoRLen3c1oEC2NXgbxGdjce/zlz9vvD6qD6UYHk0xzV4BCLpm1x/GwxEnFDAouoQ4TZ6Fk/JTN/BDN2DXd8qGM5tp4V0iX0RVesSgYnnhic9l/U8cO891JJVTpEBRv38qdpKhpswaaCQMc5YIyzv1IjqFvxU+YYRz9ulbaWKZs2yg5h2FiQMEnrouCqaxKclYIucggZ05iXSU2P8erLwmnBH72QSssoCsrv/t+oTPwm86b3l4Un/XFXs/lh6tUMldXZpbWVTSInz9ZHvF/JAPZBWfXUyLvwzoMlzq9bGznQpXLYDwcxE8Hz955wfZJa2vkIXlEeiQmL8ge2ScHZEQ4+UZ+kJ/kV/Am+BB8DGxLDTpnNffJigVf/wJvsN4e</latexit>

curv(e) =
1

r
=

knV � nUk

kV � Uk
<latexit sha1_base64="52N7vyo3Gas+xp5EPwu95p3AhzU=">AAAC3HicZVHLbhMxFHWGV0l5pLBkY1EhFYlEM4GWskCqYNNlkEhaqROCx3MnteqxR/Z1IBpmxw6xQuJT+Ag+AAmJLXwHnklSEXol28fnHvva9ySFFBbD8GcruHT5ytVrG9fbmzdu3rrd2bozstoZDkOupTbHCbMghYIhCpRwXBhgeSLhKDl7WeePZmCs0Oo1zgsY52yqRCY4Q09NOoNYF2AYaqNYDiV3ZlbtwEP6nMaZYTwyK1TS+AONZ5yqyYh2l2hYk1WTGnUXm0lnO+yFTdCLIFqC7YMXP76/3Qy+DCZbLYxTzV0OCrlk1p5E/QLHJTMouISqHTsLBeNnbOrfV3+oog88ldJMGz8U0oZd0+XznOGpF9aL/Td14jDbH5dCFQ5B8cVdmZMUNa0bRFNhgKOcU8a5f5Jj6EvxU+Z7gL6Ra2UsU3ZRKF7BdmxAwTuu85yptIwzlgs5TyFjTmJVxjZb4fWbhFMC33vSCgvoitLb0s11Ct6Auv+1XT7rD3unmw+XiWSuKs00qcqwF+0+aqboP5GB9Fyz7yWhH/2q3W58elbH3rkrF8Go34se95688oYdkkVskHvkPtkhEXlKDsghGZAh4eQb+UV+kz/Bm+Bj8Cn4vJAGreWZu2Qtgq9/AbNS6Gc=</latexit>

e

curv =
(nV � nU)·(V � U)0

kV � Uk

=
(nV � nU)·

V�U

kV�Uk

kV � Uk

=
(nV � nU)·(V � U)

kV � Uk2
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Demo

49

How can the Funkhouser-Sequin algorithms be combined with 
progressive meshes? And implemented on the GPU?

Master Thesis …



G. Zachmann Real-time RenderingVirtual Reality and Physically-Based Simulation WS November 2024

Alternative Demo

50
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View-Dependent LOD's

• Select different resolution within the same object, depending on the view 

point, i.e., different parts of one object are rendered at different resolutions 

• Define a metric measuring screen space error (measured in pixels) 

• Example: terrain – choose resolution according to projected area

51

View from eye point Birds-eye view
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• Additional factor: visual importance 

• Example: render closed objects with higher 

resolution near silhouette border 

• Maximal screen space error  

is modulated by  (v.n) 

• Other potential criteria: 

• Specular highlights 

• Salient features, e.g., feature points in faces 

• Overall criteria: 

• Triangle budget 

• Time budget (remember time critical 

computing)

52
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Pros and Cons

• Advantages of Dynamic LODs (e.g., progressive meshes): 

• No popping artefacts 

• Can be turned into view-dependent LOD 

• Better rendering fidelity for given polygon count 

• Advantages of Static LODs: 

• Extremely simple for the renderer 

• Simple for the programmer, too, i.e., easy to implement 

• No CPU overhead during rendering 

• Can upload LODs to GPU as vertex buffer objects (VBO)

53

Master's Thesis 

topic: is it possible to 

implement progressive meshes (or 

other kind of dynamic LOD) in 

the GPU's vertex 

buffers?
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Other Kinds of LODs

• Idea: apply LOD technique to other, non-geometric content 

• E.g. "behavioral LOD": 

• If in focus, simulate the behavior of an object exactly, otherwise simulate it only 

"approximately"

54
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Portal Culling (Culling in Buildings)

• Observation: many rooms 

within the viewing frustum 

are not visible 

• Idea: 

• Partition the VE into "cells" 

• Precompute cell-to-cell-visibility  

⟶ visibility graph

55
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• During runtime, filter cells from visibility graph by viewpoint and viewing 

frustum

56
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Test Your Knowledge of the Human Visual System

57

Please, 
don't spoil by 
"look-ahead"!

https://www.menti.com/smvndia2ss
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Foveated Rendering

• Recap of some factors of our human 

visual system (HVS): 

• Critical flicker frequ. in periphery ≈ 85 Hz 

• Fovea = area of high visual acuity ≈ 5° 

• Resolution in fovea ≈ 1 arcmin ! 

• At 20° eccentricity, spatial res. ≈ 7.5 arcmin 

• Midget (ganglion) cells collect and 

process cones' signals, then forward to 

brain ⟶ their density influences our visual 

acuity 

• Fovea covers ≈ 4% pixels of HMD 

• Most pixels in HMD's are wasted!
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Foveated Rendering Technique

• Prerequisite: eye gaze tracking 

• Goal: reduce image resolution towards 

periphery (subsampling) 

• Approach: 

• Render 3 overlapping, nested "eccentricity 

layers" (render targets) 

• Each layer has its own image resolution (and 

LOD levels) ⟶ different sampling spacing! 

• Interpolate outer layers to final display 

resolution, then blend together 

• Optionally: update outer layers with lower 

frame rate 

59
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Blending the Layers

• Overlay on top of each other 

• Calculate blend weights, depending on radius of pixel from center (i.e., 

gaze direction) 

• Visualization 

of blending 

weights:
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Challenges

• Latency: time elapsed between capturing the eye gaze direction and 

displaying the corresponding foveated image 

• Experience shows: 

• 60 Hz monitor, 50 Hz eye tracker, 35 ms latency ⟶ obvious "pop" in image 

resolution 

• 120 Hz monitor, 300 Hz eye tracker, 10 ms latency ⟶ no visible "pop" 

• Aliasing:  

• Outer layers have wide "pixel" stride ⟶ aggravates aliasing artifacts 

• Periphery is very sensitive to temporal changes ⟶ moving aliasing artifacts are 

extremely distracting / annoying
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Anti-Aliasing Methods

• MSAA (Multi-Sample Anti-Aliasing): standard in GPU's, sample each pixel 

multiple times (e.g., by grid, or other pattern, within each pixel) 

• Whole frame jitter sampling plus temporal reprojection:
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Blending and Anti-Aliasing at Work
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• Definition:  

• Imagine a grating of black and white lines next to each other 

• Minimum angle of resolution (MAR) ω = smallest angle of a cycle of white-black 

lines still visible 

•   

• Units: 

• MAR = degrees (°) = degrees per cycle 

• Acuity = frequency (Hz) = cycles per degree  

• Standard model for MAR: 

 

with e = eccentricity, ω0 = MAR at fovea

More on the Human Visual System
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Visual acuity = 1
minimum angle of resolution

Zone of 
aliasing

Details are clearly 
detectable without 
aliasing

Details become invisible, 
without aliasing
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ω = me + ω
0
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Connection Between Model and Rendering Speed

• Task: given a specific slope in the MAR model, m, and the number of eccentricity 

layers, choose the radii of the layers 

• Radii e1, e2 determine the total 

number of pixels to be rendered 

• Determine by optimization  

• E.g.: brute force, choose e1, e2, 

with 0 < e1 < e2 < e*,  

then count the number of pixels 

• Question: what is the 

best parameter m? 

• Smaller m ⟶ larger radii,  

more pixels to be rendered,  

less savings
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User Study to Determine Parameters

• Slider test: 

• Present participants the non-

foveated animation sequence first 

• Then start with low degree of 

foveation (high rendering quality) 

• Let users increase level of foveation 

(decrease rendering quality) until 

just noticeable artifacts appear 

•  Conditions: different animation 

speeds 

• Results:
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Video of User Study
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Speedup, Overall Results 
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Number of pixels on display 
over 
number of pixels rendered

Rendering time of foveated version 
over 
rendering time of un-foveated version

⟵ Determined by experiments
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Layer 
1 = inner, 
2 = middle, 
3 = outer. 
S = sum

~ inner radii of layers 2 and 3



G. Zachmann Real-time RenderingVirtual Reality and Physically-Based Simulation WS November 2024

Further Improvements

• In order to reconstruct the whole 

image, use GANs (generator 

adversarial networks), instead of 

layered rendering, followed by 

anti-aliasing and blending 

• Idea: 

• Generate mask with high density 

at fovea, low density in periphery 

• Render image at mask points 

• Fill in other pixels using GAN 

• Train GAN on large number of 

frames from video games and 

natural scene
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["DeepFovea ...", 2019]
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Comparison with Ground Truth
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Runtime performance: 9 ms, using 4x NVIDIA Tesla V100 GPUs (2019)
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Get Creative: Are You Aware of Any Other Human Factors of the HVS 
that Might, Perhaps, be Utilized to Improve Rendering Performance?

72

https://www.menti.com/smvndia2ss
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• A state in OpenGL rendering = 

• Combination of all attributes 

• Examples for attributes: color, material, lighting parameters, textures being used, 
shader program, render target, etc. 

• At any time, each attribute has exactly 1 value out of a set of possible attributes 

(e.g., color∈{ (0,0,0), …, (255,255,255) } 

• State changes are a serious performance killer!

State Sorting



G. Zachmann Real-time RenderingVirtual Reality and Physically-Based Simulation WS November 2024

Costs of state changes in modern OpenGL [2014]

• Goal: render complete scene graph with minimal number of state changes
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Render target 

Shader 

ROP 

Texture binding 

Vertex format 

Uniform buffer 

Vertex binding 

Uniform updates

Not to scale!
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Solution: Sorting by State

• Problem: optimal solution is NP-complete 

• Proof: 

• Each leaf of the scene graph can be  

regarded as a node in a  

complete graph 

• Costs of an edge = costs of the corresponding 

state change (different state changes cost  

differently, e.g., changing the transform is 

cheap)  

• Wanted: shortest path through graph 

‣ Traveling Salesman Problem 

• Further problem: precomputation doesn't 

work with dynamic scenes and occlusion 

culling
75

One object 
(= leaf of 
the scene-
graph)
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Introducing the Sorting Buffer

• For the sake of argument: consider only one kind of attribute ("color") 

• Introduce a buffer between application and graphics card 

• (Could be integrated into  

the driver, since an OpenGL  

command buffer already exists) 

• Buffer contains k elements 

• Perform one of 3 operations with each draw call (= app sends a "colored 

element" to the hardware/buffer): 

1. Pass element directly on to graphics hardware; or, 

2. Store element in buffer; or, 

3. Extract subset of elements from buffer and send them to graphics hardware
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Graphics hardwareSequence of objs Buffer for state sorting



G. Zachmann Real-time RenderingVirtual Reality and Physically-Based Simulation WS November 2024

Interlude: Online Algorithms

• There are 2 categories of algorithms: 

• "Online" algorithms: the algorithm does not know which elements will be received 

in the future! 

• "Offline" algorithms: algo does know elements that will be received in the future 

(for a fair comparison, it still has to implement a buffer, but it can utilize its 

knowledge of the future to decide whether to store elements) 

• In the following, we consider only "lazy" online strategies: 

• Extract elements from the buffer only in case of buffer overflow 

• This is wlog., because every non-lazy online strategy can be converted into a lazy 

one with the same complexity (= costs) 

• Question (in our case): which elements should be extracted from the buffer 

(in case of buffer overflow), so that we achieve the minimal number of color 

changes?
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Interlude: Competitive Analysis

• Definition c-competitive : 

	  Let  = costs of optimal offline strategy,  

 	  let   = costs of some online strategy, 

	  "cost" = number of color changes,  k = buffer size.  

Then, the online strategy is called "c-competitive", iff 

  

where a must not depend on k  (c may depend on k). 

The ratio                   is called the competitive-ratio. 

• Wanted: an online strategy with c = c(k) as small as possible 

(i.e., c(k) should be in a low complexity class)
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Example: LRU strategy (Least-Recently Used)

• The strategy: 

• Maintain a timestamp per color (not per element!) 

• When element gets stored in buffer → timestamp of its color is set to current time 

• Notice: this way, timestamps of other elements in buffer can change, too 

• Buffer overflow → extract elements, whose color has oldest timestamp 

• The lower bound on the competitive-ratio:   

• Proof by example: 

• Set , wlog.  m  is even 

• Choose the input   

• Costs of the online LRU strategy:     color changes 

• Costs of the offline strategy:    color changes, 

because its output is  
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The Bounded Waste & the Random Choice Strategy

• Idea:  

• Count the number of all elements in the buffer that have the same color 

• Extract those elements whose color is most prevalent in the buffer 

• Introduce waste counter W(c) : 

• With new element on input side: increment W(c), c = color of new element 

• Bounded waste strategy: 

• With buffer overflow, extract all elements of color c', whose W(c') = max 

• Competitive ratio (w/o proof):    

• Random choice strategy: 

• Randomized version of bounded waste strategy 

• Choose uniformly a random element in buffer, extract all elements with same 
color (note: most prevalent color in buffer has highest probability) 

• Consequence: more prevalent color gets chosen more often, over time each 
color gets chosen W(c) times
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The Round Robin Strategy

• Problem: generation of good random numbers is fairly costly 

• Round robin strategy = variant of random choice strategy: 

• Don't choose a random slot in the buffer  

• Instead, every time choose the next slot (hence, "round robin") 

• Maintain pointer to current slot, move pointer to next slot every time a slot is 

chosen
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Comparison

• Take-home message: 

• Round-robin yields very good results (although/and it is very simple) 

• Worst case doesn't say too much about performance in real-world applications
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• Oculus display refreshes at 90 Hz; if application can render only at  

45 Hz, ASW produces frames "in between" by prediction: 

• Some details about the method (speculative): 

• Extra thread kicks in, if app has not finished rendering in time; stops rendering 

and graphics pipeline (GPU preemption) 

• Take previous two images, try to predict 2D motion of image parts 

• Optical flow algorithms? use GPU video encoding hardware? 

• Fill holes by stretching neighborhood (image inpainting)

"Asynchronous Spacewarp" (Oculus)

Rendered by app.

Predicted by ASW from 
previous 2 app. frames

1/90 s
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Example Frames (Can You Spot the Artefacts?)

84

Disocclusion 
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Change in 
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Stereoscopic Image Warping (Stereo Without 2x Rendering)

• Observation: left & right image differ not very much 

• Idea: render once for right image, then move pixels to corresponding 

positions in left image → image warping 

• Algoritm: consider all pixels on  

each scanline from right to left, 

draw each pixel k at the  

new x-coordinate  
 

where 𝛥 = pixel width 

• Problems:  

• Up-vector must be vertical 

• Holes! 

• Ambiguities & aliasing 

• Reflections and specular highlights are at wrong position
85
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Reducing Latency by 3D Image Warping

• A simple VR system: 

• Latency in this system (stereo with 60 Hz ⟶ display refresh = 120 Hz):
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Issues & Observations

• The appl. framerate (incl. rendering) could be much slower than the display 

refresh rate 

• The tracking data, which led to a specific image, were valid some time in the  

past 

• The tracker could deliver data more often 

• Consecutive frames differ from each other (most of the time) only relatively 

little (→ temporal coherence)
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Idea: Decouple Simulation/Animation, Rendering, and Tracker Polling
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Object transform., 
camera position

Input devices 
(tracker)

Simulation / Animation

Shared 
scene graph

Appl. renderer 
(client)
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renderer 
(server)Only 
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transf.
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Transform 
10242 GL_POINTs 
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Camera 
position
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An Application Frame (Client)

• At time t1, the application renderer generates a normal frame 

• Color buffer and Z-buffer 

• Henceforth called "application frame" 

• … but also saves additional information: 

1. With each pixel, save ID of object visible at that pixel (e.g., into separate frame 

buffer object) 

2. Save camera transformations at time t1 :   

3. With each object  i , save its transformation  

Tt1,cam←img and Tt1,wld←cam
<latexit sha1_base64="r8RBXPSJ7ozmpAM7wBDMPwxRPy0=">AAAC2XicZVFLaxsxEJa3r9R9xEmPvYia0h5Ss+sSGggBQy+5FFKIk4DXNVrtrCMiaRdpVMeIPfRWeu0fKfSH9Jxr+z9K5VeJk4GRPs18M6OZySopLMbxVSO6c/fe/QcbD5uPHj95utna2j6xpTMc+ryUpTnLmAUpNPRRoISzygBTmYTT7OL9zH/6GYwVpT7GaQVDxcZaFIIzDKZR68PxyOMo2aGcKZpKKJAZU06oUGNa03Q/3acpwiV6pvPlexUxkfn1iJCgHrXacSeeC70NkiVo9159Yr/+/nBHo60GpnnJnQKNXDJrB0m3wqFnBgWXUDdTZ6Fi/IKNwc+7renLYMppUZqgGuncusZTU8XwPBBnl73uGjgs9oZe6MohaL7IVThJsaSz6dBcGOAop5RxHr7kGIZS/JwZxjFMca2MZdouCqUr2EwNaJjwUqkwL58WTAk5zaFgTmLtU1us8Hom4bTAy2C0wgK6yldg3qgyB3pAi1ntsKvgDcFhzfOGfSaZq70ZZ7WPO8nuzvxIbpAM5P85e4ESB+3WzWbYU3JzK7fBSbeTvO3sfkzavUOykA3ynLwgr0lC3pEeOSRHpE84+UmuyG/yJxpEX6Kv0bcFNWosY56RNYm+/wPmh+kv</latexit>
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Warping of a Frame (Server)

• At a later time, t2 , the server generates an image from an application frame 

by 3D warping 

• Transformations known at this time: 

• A pixel   in the application frame will be "warped" (transformed) 

to its correct position in the (new) server frame: 

• This transformation matrix can be precomputed  

for each object and each new server frame
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t1

t2

Appl. frame →

← Server frame

PS =Tt2,img←cam ·Tt2,cam←wld ·T
i
t2,wld←obj ·

T
i
t1,obj←wld ·Tt1,wld←cam ·Tt1,cam←img ·PA
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Remarks

• Implementation of the warping: 

• Could be done in the vertex shader 

• Doesn't work in the fragment shader, because the output (= pixel) position is fixed in 

fragment shaders! 

• Better do the warping in CUDA, one thread per pixel in the appl frame 

• Note: the server (warping) renderer does use current (t2) positions of 

animated/simulated objects! 

• Advantages: 

• The frames (visible to the user) are now "more current", because of more current 

camera and object positions (i.e., animated objects) 

• Server framerate is independent of number of polygons 

• With additional tricks, re-lighting is possible (to some extent)
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Problems

• Holes in server frame 

• Need to fill them, e.g., by ray casting 

• Server frames are fuzzy  
(because of point splats) 

• How large should the point splats be?  

• The application renderer (full image 
renderer) can be only so slow 
(if it's too slow, then server frames 
contain too many holes) 

• Unfilled parts along the border of the server frames  

• Potential remedy: make the viewing frustum for the appl. frames larger 

• Performance gain: 

• 12M polygons, 800 x 600 frame size 

• Factor ~20 faster
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Videos
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