
Virtual Reality &
Physically-Based Simulation
Scenegraphs & Game Engines

G. Zachmann
University of Bremen, Germany

cgvr.cs.uni-bremen.de

http://cgvr.cs.uni-bremen.de

G. Zachmann Scenegraphs, VRML, game enginesVirtual Reality and Physically Based Simulation November 2024WS

Overall VR System Architecture (Example)

2

Rendering API (e.g. OpenGL)Sound Library
Force-Feedback

Library

Scene Graph
(3D geometry manager & database)

Sound Renderer
(sound propagation)

Physically-based
simulation

Game Logic & AI

G. Zachmann Scenegraphs, VRML, game enginesVirtual Reality and Physically Based Simulation WS November 2024

Motivation

• Immediate mode vs. retained mode:

• Immediate mode = OpenGL / Direc3D = Application sends polygons / state

change commands to the GPU → flexibler

• Retained mode = scenegraph = applications builds pre-defined data structures

that store polygons and state changes → easier and (probably) more efficient

rendering

• Flat vs. Hierarchical

scene descriptions:

• Code re-use and knowledge re-use!

• Descriptive vs. imperative (cv. Prolog vs. C)

• Thinking objects … not rendering processes

3

G. Zachmann Scenegraphs, VRML, game enginesVirtual Reality and Physically Based Simulation WS November 2024

Structure of a Scene Graph

• Directed, acyclic graph (DAG)

• Often even a proper tree

• Consists of heterogeneous nodes

• Example:

• Most frequent operation on scene graph: rendering

• Amounts to depth-first traversal

• Operation per node depends on kind of node
4

Car

Wheels Body

Transformations

Wheel geo

Light

Root

G. Zachmann Scenegraphs, VRML, game enginesVirtual Reality and Physically Based Simulation WS November 2024

Semantics of the Elements of a Scenegraph

• Semantics of a node:

• Root ="universe"

• Leaves = "content" (geometry, sound, …)

• Inner nodes = forming groups, store state (changes), and other non-geom.
functionality, e.g., transforms

• Grouping: criteria for grouping is left to the application, e.g., by

• Geometric proximity ⟶ scenegraph induces a nice BVH

• Material ⟶ good, because state changes cost performance!

• Meaning of nodes, e.g., all electrical objs in the car under one node → good for
quickly switching off/on all electrical parts in the car

• Semantics of edges = inheritance of states

• Transformation

• Material

• Light sources (?)

5

G. Zachmann Scenegraphs, VRML, game enginesVirtual Reality and Physically Based Simulation WS November 2024

Kinds of Nodes

• There are 2 hierarchies: scenegraph hierarchy + class hierarchy

• The flexibility and the expressiveness of a scenegraph depends heavily on

the kinds and number of node classes!

7

Nodes

Inner nodes Leaves

Geometry

Transform

GroupLOD Sound

Particle system

Non-nodes

Material Texture

Light source?

G. Zachmann Scenegraphs, VRML, game enginesVirtual Reality and Physically Based Simulation WS November 2024

Special Elements of a Scene

• Light sources:

• Usually part of the scenegraph

• Problem with naïve semantics: what if light source

should move/turn, but not the scene it shines on?

• Solution: beacons

• Light source node lights its sub-scene underneath

• Position/orientation is taken from the beacon

• Camera: to be, or not to be a node in the

scenegraph?

• Both ways have dis-/advantages

• If not a node: use beacon principle

8

Pos/Ori Beacon

Beacon

Light source

Part of scene that
is lighted by
lightsource

G. Zachmann Scenegraphs, VRML, game enginesVirtual Reality and Physically Based Simulation WS November 2024

Material

• Material =

• Color, texture, lighting parameters (see Phong)

• Is a property of a node (not a node in the scenography, usually)

• Semantics of materials stored with inner nodes: top-down inheritance

• Path from leaf to root should have at least one material

• Consequence:

• Each leaf gets rendered with a unique, unambiguously defined material

• It's easy to determine it

• Bad idea (Inventor): inheritance of material from left to right!

9

G. Zachmann Scenegraphs, VRML, game enginesVirtual Reality and Physically Based Simulation WS November 2024

Sharing of Geometry / Instancing

• Problem: large scenes with lots of identical
geometry

• Idea: use a DAG (instead of tree)

• Problem: pointers/names of nodes are no longer
unique/unambiguous!

• Solution: separate structure from content

• The tree proper now only consists of one kind of nodes

• Nodes acquire specific properties/content by
attachments / properties

• Advantages

• Everything can be shared now

• Many scenegraphs can be defined over the same content

• All nodes can acquire lots of different properties/content

10

Root

Transforms

Geometry

Root

Trafos

Geom

G. Zachmann Scenegraphs, VRML, game enginesVirtual Reality and Physically Based Simulation WS November 2024

Thread-Safe Scenegraphs for Multi-Threading

• Idea: several copies of the scenegraph

• Problem: memory usage & sync!

• Solution:

• Copy-on-Write of the attachments ⟶ "Aspects"

• Each thread "sees" their own aspect

• Problem: easy access via pointers, like

 node->geom->vertex[0]
does not work any more

• Solution (leveraging C++):

• "Smart Pointers"

• Needs one "pointer class" per node. Ex.:

 geomptr = Geometry::create(…);

 geomptr->vertex[0] ...

11

Node Attachments

Aspect 1

Aspect 2

Aspect 3

User Input

Collision
Detection

Rendering

Culling

Physics
Simulation

Haptic
Rendering

G. Zachmann Scenegraphs, VRML, game enginesVirtual Reality and Physically Based Simulation WS November 2024

Distributed Scenegraphs

• Synchronisation by changelists

• Make scene graph consistent

at one specific point during

each cycle of each thread

⟶ barrier synchronization

• Distributed rendering:

• Goal: distributed rendering on a cluster or multiple users

• Problem: changes in the scenegraph need to be propagated

• Solution: simply communicate the changelists

• Items in the changelist = IDs of nodes/attachments to be changed + new data

12

A B

Node with 2 attachments

A, B A

Changelist
At barrier, sync

between threads

Thread 1

Thread 2

Changelist

G. Zachmann Scenegraphs, VRML, game enginesVirtual Reality and Physically Based Simulation WS November 2024

• One simple (?) method to reduce network traffic: make the physics

completely deterministic

• Example: video game Rocket League

13

G. Zachmann Scenegraphs, VRML, game enginesVirtual Reality and Physically Based Simulation WS November 2024

Criteria When to Use Scenegraphs

• When is a hierarchical organization of the VE effective:

• Complex scenes: many hierarchies of transformations, lots of different materials,

large environment with lots of geometry of which usually only a part can be

seen (culling)

• Mostly static geometry (opportunities for rendering optimization, e.g., LoD's)

• Specific features of the scenegraph, e.g., particles, clustering, …

• When not to use a hierarchical organization / scenegraph:

• Simple scenes (e.g., one object at the center, e.g., in molecular visualization)

• Visualization of scientific data (e.g., CT/MRI, or FEM)

• Highly dynamic geometry (e.g., all objects are deformable)

14

G. Zachmann Scenegraphs, VRML, game enginesVirtual Reality and Physically Based Simulation WS November 2024

Fields & Routes Concept by Way of X3D/VRML

• What is X3D/VRML:

• Specification of nodes, each of which has a specific functionality

• Scene-graph definition & file format, plus …

• Multimedia-Support

• Hyperlinks

• Behavior and animation

• "VRML" = "Virtual Reality Modeling Language"

• X3D = successor & superset of VRML

• Based on XML

• VRML = different encoding, but same specification

• Encoding = "way to write nodes (and routes) in a file"

16

G. Zachmann Scenegraphs, VRML, game enginesVirtual Reality and Physically Based Simulation WS November 2024

Hello World

• In X3D (strictly speaking: "XML encoding"):

• In VRML:

17

 <?xml version="1.0" encoding="UTF-8"?>
 <X3D profile='Immersive'>
 <Scene>
 <Shape>
 <Text string="Hello" "world!" />
 </Shape>
 </Scene>
 </X3D>

 #X3D V3.1 utf8
 Shape {
 geometry Text {
 string ["Hello" "world!"]
 }
 }

Tip: Use an
ASCII editor
wich identifies
matching brackets
as a text unit,
and can jump to
the other
matching bracket

Like the <html> tag in
HTML

Definition
of nodes

Root node

No explicit root
node in VRML

G. Zachmann Scenegraphs, VRML, game enginesVirtual Reality and Physically Based Simulation WS November 2024

Nodes and Fields (aka. Entities and Components)

• Nodes are used for describing …

• … the scenengraph: Geometry, Transform, Group, Lights, LODs, … (the usual

suspects)

• … the behavior graph, which implements all response to user input (later)

• Node := set of fields

• "Single-valued fields" and "multiple-valued fields"

• Each field of a node has a unique identifier

• These are predefined by the X3D/VRML specification

• Field types:

• field = actual data in the external file

• eventIn, eventOut = used only for connecting nodes, data that won’t be saved in

a file

18

G. Zachmann Scenegraphs, VRML, game enginesVirtual Reality and Physically Based Simulation WS November 2024

Types of Fields

• All field types exist as "single valued" (SF…) and as "multiple valued" kind (MF…)

• Example of an SF field:

• MF fields are practically the same as arrays

• Special notation for signifying an MF field and to separate elements

19

<Material diffuseColor="0.1 0.5 1" />

material Material {
 diffuseColor 0.1 0.5 1
}

X3D

VRML

FYI

G. Zachmann Scenegraphs, VRML, game enginesVirtual Reality and Physically Based Simulation WS November 2024

• Primitive data types:

the usual suspects

• Higher data types:

20

Field type X3D example VRML example

SFBool true / false TRUE / FALSE

SFInt32 12 -17

SFFloat 1.2 -1.7

SFDouble 3.1415926535

SFString "hello" "world"

Reminder:

for each

SF-field

there exists

an MF-field

Field type example

SFColor 0 0.5 1.0

SFColorRGBA 0 0.5 1.0 0.75

SFVec3f 1.2 3.4 5.6

SFMatrix3f 1 0 0 0 1 0 0 0 1

SFString "hello"

FYI

G. Zachmann Scenegraphs, VRML, game enginesVirtual Reality and Physically Based Simulation WS November 2024

• Special field types:

21

Field type X3D example VRML example

SFNode <Shape> ... </Shape> Shape { ... }

MFNode
<Shape>… , <Group>…

oder <Transform>…
Transform {
 children [...] }

SFRotation 0 1 0 3.1415

SFTime 0

FYI

G. Zachmann Scenegraphs, VRML, game enginesVirtual Reality and Physically Based Simulation WS November 2024

• General remarks on the design of X3D/VRML:

• The design is orthogonal in that there exists a MF-type for every SF-type

• The design is not orthogonal in that some types are generic (e.g. SFBool,

SFVec3f) while others have very specific semantics (e.g. SFColor, SFTime,

etc.)

• It is not clear whether this is good or bad …

22

FYI

G. Zachmann Scenegraphs, VRML, game enginesVirtual Reality and Physically Based Simulation WS November 2024

Types of Nodes to Describe the Scenegraph

• Most scenegraphs have a set of different kinds of nodes to define the tree:

1. Nodes for grouping / hierarchy building

2. Nodes for storing actual geometry

3. Nodes for storing appearance, i.e., material def's, textures, etc.

• In X3D/VRML, for instance:

1.Shape, Group, Transform , Switch , Billboard, LOD, ...

2.TriangleSet, IndexedTriangleSet, IndexedFaceSet,
IndexedTriangleStripSet, Box, Sphere, Cylinder,
NurbsPatchSurface, ElevationGrid ,

3.Appearance, Material , ImageTexture ,

23

G. Zachmann Scenegraphs, VRML, game enginesVirtual Reality and Physically Based Simulation November 2024WS

A Simple Example

24

 #X3D V3.1 utf8
 Shape {
 geometry Cone {
 bottomRadius 1
 height 2
 }
 appearance Appearance {
 material Material {
 ambientIntensity 0.256
 diffuseColor 0.029 0.026 0.027
 shininess 0.061
 specularColor 0.964 0.642 0.980
 }
 }
 }

Shape

a
p

p
e
a
ra

n
ce

g
e
o

m
etry

Cone

b
o

tto
m

R
a
d

iu
s

h
e
ig

h
t

Appear-
ance

material Material

d
iffu

se
C

o
lo

r

sh
in

in
e
ss

sp
e
cu

la
rC

o
lo

r

G. Zachmann Scenegraphs, VRML, game enginesVirtual Reality and Physically Based Simulation WS November 2024

Specifying the Material

• A standard model: Phong (somewhat dated)

kd = diffuse reflection coefficient

ks = specular reflection coefficient

p = shininess

26

l
r

e

n

𝛩

Iout

G. Zachmann Scenegraphs, VRML, game enginesVirtual Reality and Physically Based Simulation WS November 2024

• In VRML/X3D:

27

 Material {
 SFFloat ambientIntensity 0.2
 SFColor diffuseColor 0.8 0.8 0.8
 SFColor specularColor 0 0 0
 SFFloat shininess 0.2
 SFColor emissiveColor 0 0 0
 SFFloat transparency 0
 }

G. Zachmann Scenegraphs, VRML, game enginesVirtual Reality and Physically Based Simulation WS November 2024

The Material Model in Unreal

• Based on "Disney's Principled Lighting Model"

• More intuitive (for artists), while still allowing for real-time rendering

• Parameters (all can come from a texture, but could also be constant per obj):

• Base Color = single color (RGB value)

• Roughness, in [0,1]

• Metallic = yes/no (or [0,1])

• Anisotropic

• Many more ...

28

anisotropic

sheen

sheenTint

clearcoat

clearcoatGloss

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

subsurface

metallic

specular

roughness

specularTint

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

subsurface

metallic

specular

roughness

specularTint

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

G. Zachmann Scenegraphs, VRML, game enginesVirtual Reality and Physically Based Simulation WS November 2024

A Bit of Mathematical Background

• Uses half-vector

• Nice property:

• The BRDF:

• Function 𝝆 describes reflectance =

• Based on Cook-Torrance's microfacet model

with D = normal distribution fct, G = specular attenuation based on roughness,

F = Fresnel term

29

hn

r

e

l

<latexit sha1_base64="PomddjcXCPHTEz+cygbgEfVvzJQ=">AAADIXicbVJNb9NAEN2YrxK+UuDGZaEgFSlEdhDQC1IlDvTAoUikrVRH1Xo9TlZdr63dcduw8k/hxJ3/wQ31hjjxLzgydhPUtIy01tObmTe7b5yUWjkMw5+d4MrVa9dvrNzs3rp95+693ur9HVdU VsJIFrqwe4lwoJWBESrUsFdaEHmiYTc5fNfkd4/AOlWYTzgrYZyLiVGZkgKJOujpWJiJhnUeH0lvah4jnKDnwqS8brlpzZ/ztzzkcT/u8/gDZGjVZIrC2uJ4Tp6TgP9I2IXEQW8tHIRt8MsgmoO1zaeff7//9tBvH6x2vsRpIascDEotnNuPhiWOvbCopIa6G1cOSiEP xQR8a0bNnxGV8qywdAzylj1ft19htjH2ypQVgpHUwCmZVZpjwRuLeKosSNQzLqSkwZVAEpRTYYVEsnJpaD7LBU4bkZJShRGaN4SjuXlOFrg+14VIeQJ0I+BOGNfkHy+JLFiyawG7sQUDx3MVH2ciV3qWQiYqjbWPXbbAy0qqMgpPiHTKAValp2u9yIsUaAFZ8wDaOmWp mX6Y1hufaFHV3k6S2oeD6FW//UQXiiyk/2o2qCSkM6xpodHF9V0GO8NB9Hrw8iNtdoudxQp7xJ6wdRaxN2yTbbFtNmKSnbI/nU4nCL4G34MfwelZadCZ9zxgSxH8+gtEAAD7</latexit>

∠(n and h) = 0 ⇔ ∠(e and r) = 0

Outgoing "intensity" in direction e

Incoming "intensity" from direction l

<latexit sha1_base64="Q1CVp/NvjZJkCX9bwANL/q7b5Tc=">AAADPnicZVJNb9NAEF2br5LykYI4IcFAhZRIIbLDVy9IFSDooYcikbZSHYX1epysut61vOtCZPkHcObMf+HMD0DiD3BDvXJkbScVSUfa1dN7b2ZWMxumgmvjeb8c98LFS5evrF1trV+7fuNme+PW vlZ5xnDIlFDZYUg1Ci5xaLgReJhmSJNQ4EF4/LrSD04w01zJD2aW4iihE8ljzqix1Lj9JcimqgPBCYNgdxd6NULowksI4oyyAt406rQLbxuEjWlqTe8aRvRWhbKAp9CIEgIWKXPWogudVbrqV47bm17fqwPOA38ONrdf/fzxcd39ujfecL4FkWJ5gtIwQbU+8gepGRU0 M5wJLFtBrjGl7JhOsKgnVcIjS0UQq8weaaBm//cd5SbeGhVcprlByWwCWDHOBRgF1fwg4hkyI2ZAGbONc2psQTaldlbGznmpaTJLqJlWRVIrKUkFVIS2fZOEykj3QCgaQYj2RQiaSl3pD5aKLNgSggVsBRlK/DSvUgQxTbiYRRjTXJiyCHS8wMuVeC65+WxJzTWaPC3s sx4nKkK77WrZ1Zewqk22v6meTREKmpdFNgnLwuv7z3r15a+YMozOPFvW4tkzqBbqr67vPNgf9P3n/Sfv7WZ3SBNr5C55SDrEJy/INtkhe2RIGDl17jj3nPvud/e3+8c9bayuM8+5TZbC/fsPZIAD2w==</latexit>

ρ(l , e) =
D(h)F (e, h)G (l , e, h)

4(n·l)(n·e)

G. Zachmann Scenegraphs, VRML, game enginesVirtual Reality and Physically Based Simulation WS November 2024

Layered Materials

• Several materials can be applied to the same

object using linear interpolation (blending)

•

30

G. Zachmann Scenegraphs, VRML, game enginesVirtual Reality and Physically Based Simulation WS November 2024

Common Data Structures to Store Geometry

• Most scene graphs / game engines have internal
data structures to store geometry in memory-
efficient ways

• Prominent data structure: IndexedFaceSet

31

IndexedFaceSet {
 SFNode coord NULL
 MFInt32 coordIndex []
 SFBool ccw TRUE
 SFBool normalPerVertex TRUE
 SFBool solid TRUE
 SFFloat creaseAngle 0.0
 }

 Coordinate {
 MFVec3f point []
 }

Coordinate

point

Indexed-
FaceSet

coord
Index

coord

-1

-1

"Sentinel"

G. Zachmann Scenegraphs, VRML, game enginesVirtual Reality and Physically Based Simulation WS November 2024

• Example:

• Geometry stored this way is called a mesh

32

 Shape {
 geometry IndexedFaceSet {
 coord Coordinate {
 point [-2 0 3, -0 1 1, -1 3 0,
 0 2 0, 2 3 1, -2 3 1,
 3 5 -2, 4 4 2]
 }
 coordIndex [0 1 2 -1 3 4 5 -1 6 4 7 -1]
 solid FALSE
 ccw TRUE
 }
 appearance Appearance { … }
 }

example_indexedtriangleset.wrl

G. Zachmann Scenegraphs, VRML, game enginesVirtual Reality and Physically Based Simulation WS November 2024

Specification of Additional Attributes per Vertex

• In meshes, you can always specify

additional vertex attributes, eg., normals

or texture coordinates per vertex

• Texture coords are stored in an indexed

face set as follows:

33

Indexed-
FaceSet

cIn-
dex

coord Coord.

point

-1

-1

tIn-
dex

-1

-1

texCoord

Texture-
Coord.

point

IndexedFaceSet {
 SFNode coord
 MFInt32 coordIndex
 SFNode texCoord
 MFInt32 texCoordIndex
 SFBool ccw
 SFBool normalPerVertex
 SFBool solid
}

G. Zachmann Scenegraphs, VRML, game enginesVirtual Reality and Physically Based Simulation WS November 2024

The OBJ File Format

• Only geometry and textures

• Usually only used for polygonal geometry

• Can store NURBS, too

• Only in ASCII (very good)

• Very easy to read and parse as a human

• Extremely easy to write a loader (takes just an afternoon)

• Line-based, i.e., one line = one piece of information (e.g., vertex, polygon)

• No hierarchy

34

G. Zachmann Scenegraphs, VRML, game enginesVirtual Reality and Physically Based Simulation November 2024WS

Example

35

A cube
mtllib cube.mtl
v 1.000000 -1.000000 -1.000000
v 1.000000 -1.000000 1.000000
v -1.000000 -1.000000 1.000000
v -1.000000 -1.000000 -1.000000
v 1.000000 1.000000 -1.000000
v 0.999999 1.000000 1.000001
v -1.000000 1.000000 1.000000
v -1.000000 1.000000 -1.000000
vt 0.748573 0.750412
vt 0.749279 0.501284
vt 0.999110 0.501077
vt 0.999455 0.750380
vt 0.250471 0.500702
vt 0.249682 0.749677
vt 0.001085 0.750380
vt 0.001517 0.499994
vt 0.499422 0.500239
vt 0.500149 0.750166
vt 0.748355 0.998230
vt 0.500193 0.998728
vt 0.498993 0.250415
vt 0.748953 0.250920

vn 0.000000 0.000000 -1.000000
vn -1.000000 -0.000000 -0.000000
vn -0.000000 -0.000000 1.000000
vn -0.000001 0.000000 1.000000
vn 1.000000 -0.000000 0.000000
vn 1.000000 0.000000 0.000001
vn 0.000000 1.000000 -0.000000
vn -0.000000 -1.000000 0.000000
usemtl Material_ray.png
f 5/1/1 1/2/1 4/3/1
f 5/1/1 4/3/1 8/4/1
f 3/5/2 7/6/2 8/7/2
f 3/5/2 8/7/2 4/8/2
f 2/9/3 6/10/3 3/5/3
f 6/10/4 7/6/4 3/5/4
f 1/2/5 5/1/5 2/9/5
f 5/1/6 6/10/6 2/9/6
f 5/1/7 8/11/7 6/10/7
f 8/11/7 7/12/7 6/10/7
f 1/2/8 2/9/8 3/13/8
f 1/2/8 3/13/8 4/14/8

Letter(s) at beginning

of the line tells what

information the line

contains:

v = vertex,

vt = texture coords,

vn = vertex normal,

f = face

Indices defining one vertex of a face
(ID's for v/vt/vn)

G. Zachmann Scenegraphs, VRML, game enginesVirtual Reality and Physically Based Simulation WS November 2024

The FBX File Format (Only a Very Short Intro)

• Geometry and textures

• Can store hierarchies

• Animations

• Instancing

• ASCII (pretty well readable by

humans), and binary

• Proprietary (Autodesk),

but a de-facto standard

• Still changes over time

36

node_name: possible_properties {
 Node_Property_1: value
 Node_Property_2: value
 Subnode1 : {
 Subnode_Property_1: value
 [...]
 }
 Node_Property_3: value
 [...]
}

beginning
of node

beginning of
sub-node

end of node

end of node

G. Zachmann Scenegraphs, VRML, game enginesVirtual Reality and Physically Based Simulation November 2024WS

Storing Geometry

37

Objects: {
 Model: "model name", "Mesh" {
 [...]
 Vertices: *n {
 a: [...]
 }
 PolygonVertexIndex : *m {
 a: [...]
 }
 LayerElementNormal: 0 {
 Normals: *k {
 a: [...]
 }
 }
 LayerElementUV: 0 {
 UV: *n {
 a: [...]
 }
 }
 }
}

Node Objects contains
the geometry

Beginning of one of the objects

Vertex coords, n floats follow, 3 values = 1 vertex

Vertex indices, m integers follow,
negative index = last one of the face (*)

*) How to convert negative indices i : i' = -i – 1
(in C: posIndex = ~negIndex;)

Sub-node of Model

Property containing k normals, 3 values = 1 normal
Mapping to vertices is determined by

MappingInformationType:
ByPolygonVertex = one normal per polygon vertex

ByVertex = one normal per vertex in Vertices

Dito for uv-coordinates

G. Zachmann Scenegraphs, VRML, game enginesVirtual Reality and Physically Based Simulation November 2024WS

Example

38

; a
Objects: {
 Geometry: "Geometry::", "Mesh" {
 Vertices: *24 {
 a: -1,-1,1,1,-1,1,-1,1,1,1,1,1,-1,1,-1,1,1,-1,-1,-1,-1,1,-1,-1
 }
 PolygonVertexIndex: *24 {
 a: 0,1,3,-3,2,3,5,-5,4,5,7,-7,6,7,1,-1,1,7,5,-4,6,0,2,-5
 }
 Edges: *12 {
 a: 0,2,6,10,3,1,7,5,11,9,15,13
 }
 LayerElementNormal: 0 {
 Normals: *72 {
 a: 0,0,1,0,0,1,0,0,1,0,0,1,0,1,0,0,1,0,0,1,0,0,1,0,0,0,-1,0,0,-1,0,0,-1,
 0,0,-1,0,-1,0,0,-1,0,0,-1,0,0,-1,0,1,0,0,1,0,0,1,0,0,1,0,0,-1,0,0,
 -1,0,0,-1,0,0,-1,0,0
 }
 }
 LayerElementUV: 0 {
 UV: *28 {
 a: 0.375,0,0.625,0,0.375,0.25,0.625,0.25,0.375,0.5,0.625,0.5,0.375,0.75,
 0.625,0.75,0.375,1,0.625,1,0.875,0,0.875,0.25,0.125,0,0.125,0.25
 }
 UVIndex: *24 {
 a: 0,1,3,2,2,3,5,4,4,5,7,6,6,7,9,8,1,10,11,3,12,0,2,13
 }
 }
 }
}

Indices into PolygonVertexIndex array;
edge = that vertex and next one

14 pairs of (u,v) coordinates

Indices into the UV array; one index per vertex in PolygonVertexIndex

cube

G. Zachmann Scenegraphs, VRML, game enginesVirtual Reality and Physically Based Simulation WS November 2024

Specification of Transformations

• Transformations are stored in a specific type of nodes, or by

properties / attachments to nodes

• All children in subtree will get transformed by it

• Warning: FBX (3ds Max) allows you to specify inherited and non-

inherited transformations!

• There are three ways how to store transformations in a

scenegraph in principle:

1. A transform node stores just one kind of elementary

transformation, e.g., rotation

2. A transform node stores one transform of each kind (only the

common ones), in a pre-defined order

3. A transform node stores a single 4x4 matrix

• It is up to the application programmer to convert elementary

transformations (e.g., rotation + translation) to 4x4 matrix

39

Root

Transform
node

Trans-
formed
subtree

G. Zachmann Scenegraphs, VRML, game enginesVirtual Reality and Physically Based Simulation WS November 2024

Example for the Second Way: Transform Nodes in VRML

• The transformation node in VRML:

• Meaning:

with the usage/assumptions

40

 Transform {
 MFNode children []
 SFVec3f center 0 0 0
 SFRotation scaleOrientation 0 0 1 0
 SFVec3f scale 1 1 1
 SFRotation rotation 0 0 1 0
 SFVec3f translation 0 0 0
 }

C

R1

R2

S

T

translation

rotation

scaling

rotation

translation

G. Zachmann Scenegraphs, VRML, game enginesVirtual Reality and Physically Based Simulation WS November 2024

Hierarchical Transformations

• One of the core concepts provided by scenegraphs

• Transformation node ⟶ new local coordinate
system (reference frame)

• Consequence: transformations are always specified

relative to the parent coord frame

• Job of the renderer during scenegraph traversal:

maintain a stack of transformation matrices

41

T

traverse(node N):
 if N has transform T:
 let M = top of matrix stack
 M' = M * T
 push(M')
 traverse sub-trees
 pop() // restores M

G. Zachmann Scenegraphs, VRML, game enginesVirtual Reality and Physically Based Simulation WS November 2024

Another Example

• Transform in node Table1 makes table + objs on top of it move

• Change of transformation in Top1 makes all the objs on the table top move,

but not the table
42

Grouping
node

Transform
node

Geom.
nodes

G. Zachmann Scenegraphs, VRML, game enginesVirtual Reality and Physically Based Simulation WS November 2024

• Very convenient for articulated objects

• E.g., robots, skeletons, ..

• Remark: 2D drawing programs

(Photoshop et al.) create a similar

hierarchy when you group objects

43

G. Zachmann Scenegraphs, VRML, game enginesVirtual Reality and Physically Based Simulation WS November 2024

The Behavior Graph

• Animations, simulations, and interactions eventually cause changes in the

scene graph; e.g.:

• Changes of transformations, i.e. the position of objects, e.g. of a robot arm

• Modification of the materials, e.g. color or texture of an object

• Deformation of an object, i.e. changes in the vertex coords

• All these changes are equivalent to the change of a field of a node at

runtime

44

G. Zachmann Scenegraphs, VRML, game enginesVirtual Reality and Physically Based Simulation WS November 2024

Events and Routes

• The mechanism for changing the X3D/VRML scene graph:

• Fields are connected to each other by routes

• A change of a field produces an event

• When an event occurs, the content of the field from the route-source is copied to

the field of the route-destination ("the event is propagated")

• Other terminology: data flow paradigm / data flow graph

• Used in most game engines today (and in scientific visualization tools for a long

time)

• Syntax of routes in VRML:

45

ROUTE Node1Name.outputFieldName TO Node2Name.inputFieldName

G. Zachmann Scenegraphs, VRML, game enginesVirtual Reality and Physically Based Simulation November 2024WS

A Simple Example

46

 DEF timer TimeSensor {
 loop TRUE
 cycleInterval 5
 fraction 0.0 // out
 }

example_route_bounce.wrl

Timer
node

Inter-
polator

Xform
node

t

fraction

 ROUTE timer.fraction_changed TO pi.set_fraction
 ROUTE pi.value_changed TO trf.set_translation

 DEF pi PositionInterpolator {
 fraction 0.0 // in
 key [0 0.5 1]
 keyValue [0 -1 0, 0 1 0, 0 -1 0]
 value 0.0 // out
 }

 DEF trf Transform {
 translation 0 0 0
 children [
 Shape { geometry Box { } }
]
 }

G. Zachmann Scenegraphs, VRML, game enginesVirtual Reality and Physically Based Simulation WS November 2024

• Routes connect nodes ⟶ behavior graph:

• Is given by the set of all routes

• A.k.a. route graph, or event graph (blueprint in Unreal engine)

• Is a second graph, superimposed on the scenengraph

47

G. Zachmann Scenegraphs, VRML, game enginesVirtual Reality and Physically Based Simulation November 2024WS

Example from Unreal

48

A* path finding behavior graph

G. Zachmann Scenegraphs, VRML, game enginesVirtual Reality and Physically Based Simulation WS November 2024

The AEO Concept

• In X3D/VRML:

• Actions & objects are all nodes in the same scene graph

• Events are volatile and have no "tangible" representation

49

User

Actions Events

Objects

G. Zachmann Scenegraphs, VRML, game enginesVirtual Reality and Physically Based Simulation WS November 2024

The Execution Model

• The Event Cascade:

• Event := change of a field

• Initial event (of scripts, sensor, or timer)

• Propagate to all connected eventIn's

• Nodes (e.g. interpolator) can generate other events over eventOut's

• All of these events are part of the same cascade

• Propagating until the cascade is empty

• Several cascades can occur per frame (caused by various initial events)

50

Nodes

Sensor-
Nodes

Route-
Graph

Script-
Nodes

Execution-
Engine

eventIn

eventOut

initial
events

add / del
route

G. Zachmann Scenegraphs, VRML, game enginesVirtual Reality and Physically Based Simulation WS November 2024

• Routes induce dependence between nodes:

• Propagating in the "right" order

• Algorithm:

• Breadth-first traversal through graph

• Sort according to current dependencies

among the nodes in the "moving front"

• Cycles:

• Are allowed (in VRML!, sometimes even useful)

• Loop breaking rule:

Each field may "fire" only 1x per event-cascade;

i.e., every route is "served" only 1x per event-

cascade

51

G. Zachmann Scenegraphs, VRML, game enginesVirtual Reality and Physically Based Simulation WS November 2024

New Concepts for Data Flow in VR/Game Engines

• Modern systems usually consist of many different components

• Classic approach: fields-and-routes-based data flow

• Good for "visual programming" (up to some complexity)

• Problem:

many-to-many

connectivity

53

Procedural Content

Particle System AI

Input Devices Scene Graph

Physics

G. Zachmann Scenegraphs, VRML, game enginesVirtual Reality and Physically Based Simulation November 2024WS

This Becomes Unviable Pretty Quickly

54

G. Zachmann Scenegraphs, VRML, game enginesVirtual Reality and Physically Based Simulation WS November 2024

Our Proposed Approach: the Key-Value Pool

• Assign a unique key to each outgoing field

• Producer stores value with key in KV pool ⟶ KV pair

• Corresponds to generating an event in the data flow paradigm

• Consumer reads value from KV pair every time in its loop

• Set of all KV pairs
⟶ KV pool

55

Key-value
pool

Procedural Content

Particle System AI

Input Devices Scene Graph

Physics

G. Zachmann Scenegraphs, VRML, game enginesVirtual Reality and Physically Based Simulation WS November 2024

Advantages of the Approach

• The KV pool holds complete state of the virtual environment

• Can save/load state, or unwind to earlier state

• One-to-many connections are trivial

56

G. Zachmann Scenegraphs, VRML, game enginesVirtual Reality and Physically Based Simulation WS November 2024

Problem: Thread-Safety

• Naive apporach:

one lock per KV

pair, or one lock

for the whole KV

pool

• In any case: lots of

waiting

57

Procedural Content

Particle System AI

Input Devices Scene Graph

PhysicsKey-value
pool

Lock Access Unlock

Lock Access Unlock

Lock Access Unlock

Thread 1

Thread 2

Thread 3

G. Zachmann Scenegraphs, VRML, game enginesVirtual Reality and Physically Based Simulation November 2024WS

Our Wait-Free Hash-Map

58

A
c
c
e
s
s
 t

im
e
 i
n
 m

s

0

40

80

120

160

Number of threads accessing the key-value pool

4 20 36 52 80 144 256 512

Our Approach

Lock-Based Approach

Wait-Free Approach

Optimistic Approach

Filtered Approach

KV Pool

Performance for 50 % read and 50% write operations

25 50 100 150 250 500

G. Zachmann Scenegraphs, VRML, game enginesVirtual Reality and Physically Based Simulation WS November 2024

Distributed Scene Graphs (Again)

• For Massively Multiuser Virtual Environments (MMVEs)

• Two types of state manipulations:

• Transactional state operations (TSO):

• Modification of shared entities

• Examples: passing ownership (trading in games), creating/destroying objects

• Less frequent

• Require ACID properties: atomicity, consistency, isolation, and durability

• Self-state updates (SSU):

• Very frequent (5-30 Hz)

• Examples: updates of player's character, head and hand tracking, ...

• Only most recent updates are relevant, i.e., message loss is OK

• Common problem with peer-to-peer: O(n2) messages

59

G. Zachmann Scenegraphs, VRML, game enginesVirtual Reality and Physically Based Simulation WS November 2024

1. Approach: static space partitioning

• Partition the VE into (geographic) regions

• Each region is handled by a server

• Each client (player) can connect to only one server

• Sees / sends only the updates handled by that server

• Assumption: clients are distributed across the VE uniformly

2. Approach: distributed data base / distributed hash table

• Objects of the VE are identified by keys

• Keys can be mapped to a hash table slot locally by clients

• Hash table is partitioned among the servers

60

G. Zachmann Scenegraphs, VRML, game enginesVirtual Reality and Physically Based Simulation November 2024WS

Overview of System Architecture

61

Distrib. KV Pool

Space
partitioning
or
Distributed
hash table

G. Zachmann Scenegraphs, VRML, game enginesVirtual Reality and Physically Based Simulation November 2024WS

Some VRML Demos: Sphere Eversion Video

62

http://www.youtube.com/
watch?v=BVVfs4zKrgk

http://www.youtube.com/watch?v=BVVfs4zKrgk
http://www.youtube.com/watch?v=BVVfs4zKrgk

G. Zachmann Scenegraphs, VRML, game enginesVirtual Reality and Physically Based Simulation November 2024WS

Demos (Some Applications of WebVR)

63

Cultural heritage
(Quelle: www.aqrazavi.org)

Education
Bsp.: sphere eversion

Illustration of
complicated
mechanics
(hier: Schmidt
Offset Coupling)Would somebody be interested in

implementing them in Unreal (with VR) or

Javascript? (for Mac) Credits, credits ☺

G. Zachmann Scenegraphs, VRML, game enginesVirtual Reality and Physically Based Simulation November 2024WS 64

G. Zachmann Scenegraphs, VRML, game enginesVirtual Reality and Physically Based Simulation November 2024WS 65

