
VR CoralReef: Reimplementation and Enhancement of the
coral reef simulation SICCOM into the agent-based

modeling framework FLAME

Tobias Brandt Stefan Heitmann

ABSTRACT
This paper describes the simulation part of the coral reef
visualization of the VR CoralReef 2 project.

1. INTRODUCTION
This document serves as a technical report for the coral

reef simulation plugin, developed in the master project VR
CoralReef 2 at the University of Bremen. The overall goal of
the VR CoralReef project is it to bring attention to the in-
creasing damage afflicted upon coral reefs all over the world.
VR CoralReef 2 is a follow-up project of VR CoralReef 1,
which itself is based on the 2D-simulation software Spatial
Interaction in Coral Reef Communities - SICCOM devel-
oped by the Leibniz-Zentrum fuer Marine Tropenforschung
in the Java programming language.

In the former project the communication exchange between
the Java simulation and the visualization written in C++
was implemented via a socket connection. Therefore, the
simulation needed to be simultaneously running in a seper-
ate thread, hosted by the Java Virtual Machine. This lead
to an resource overhead, which is not necessary. Further-
more, the amount of data that could be transferred to the
visualization was limited by the socket connection. Thus
only a coral reef with narrow size could be simulated and
transmitted to the visualization. Since one of the focuses of
VR CoralReef 2 lays on interaction, the former socket imple-
mentation would serve as a hindrance when adding various
interaction forms.

One of the main goals of VR Coral Reef 2 was the portation
of the existing project into the Unreal Engine. Games cre-
ated in Unreal are mainly written in C++. Thus the idea
emerged to reimplement the Java simulation in C++ in or-
der to embed the simulation directly into the visualization
as a plugin. Incorperating the simulation in this way would
also remove all aforementioned problems arising from the
socket implementation.

The 2D-simulation uses the agent-based modelling frame-
work MASON [2]. To stay as close to the original imple-
mentation as possible, the reimplementation should utilize
an agent-based modelling framework as well. Further, the
framework should provide the capability to simulate large
populations. Therefore, the C-based Flexible Large-scale
Agent Modelling Environment, short: FLAME, was chosen.

2. PREVIOUS WORK
As mentioned before, the VR CoralReef 2 project is based

on the work of the VR CoralReef project at the University of
Bremen [1], which itself gathered the coral simulation data
according to previous work by the ZMT [6]. Since then, fur-
ther research has been done to study the effects on artificial
disturbances [5].
The implementation which is described in this paper, uses
the agend-based modelling software FLAME, which is fur-
ther explained in [3] and [4]. Furthermore, there are exten-
sions, which utilize the GPU to simulate large amouts of
agents in parallel [7].

3. METHODS
The plugin consists of three distinct modules, separated

by their respective responsibilities: a simulation module, a
processing module and a communication module. Each of
the submodules is further explained in its corresponding sub-
chapter. Figure 3 gives an overview over the whole plugin.

The plugin itself is depicted using the dashed box at the
bottom and contains the simulation module as well as the
processing module. It communicates with the visualization
through the communication module inside the visualization
itself, depicted in the dashed box at the top.
The simulation module encompasses the calculation of coral
data due to agent-based simulation of corals, algae and cer-
tain utility agents, such as a temperature agent (see 3.1).
It interacts with the processing module by sending over rel-
evant agent data at the end of each simulation iteration,
which represents one specific point in time. User interac-
tion is mainly provided via manipulation of global simula-
tion states by the processing module.
The processing module (see 3.2) serves as an interlayer be-
tween the agent-based simulation in C and the communica-
tion module to the visualization in C++. It processes all
accepted data of an iteration into a frame, representing the
state of the reef at that specific point in time. The frame
is then sent to the communication module. Moreover, the
processing module enables user interaction by providing an



Figure 1: Overview of the Plugin Modules

interface through which the communication module can ma-
nipulate the simulation.
The communication module (see 3.3) communicates between
plugin and visualization. It accepts coral data frames from
the processing module, processes them into a suitable rep-
resentation for further usage and passes them to the visual-
ization. Additionally, it acts as an interface for interaction
with the simulation plugin.

3.1 Simulation module
The simulation is entirely achieved through simultaneous

execution of a large amount of independent agents. An agent
is a finite-state machine (FSM) consisting of states and tran-
sitions. Each agent is defined via a model written in XML.
A model includes the name of an agent, its attributes and its
states as well as its transition names. Each transition name
is referring to a C-function, which can operate on global and
the attributes of the agent and is called when transitioning
between states.
Models are also able to define additional environment vari-
ables. The values for this variables are defined through an
environment file called 0.xml. This file serves as an initial
input file for the simulation representing its initial state. Af-
ter each simulation cycle a new environment file is created,
containing the updated state of the reef, which subsequently
serves as the new input state.
Since coral reefs consist of numerous interdependent indi-
viduals, there is a need for communication between agents.
Hence agents are able to communicate via message boards.
Message boards are defined by their message, which can be
a part of a model as well. A message consists of its name
and various custom message attributes.
Due to the interaction between agents, a problem arises:
An agent’s state transition might require information sent
by another agent and might depend on another agent’s state

transition to be run in prior. Thus state transitions are au-
tomatically assigned to a respective execution layer inside
the execution order by FLAME.

Figure 3.1 shows a simulation cycle of a Porites Lobata coral.
At the beginning of a cycle the singleton lobata group agent
may create (recruit) multiple new lobata agents with ran-
dom positions and sizes. Thereafter the lobata agent checks
if it is still in the bounds of the simulated coral reef. If it is
not, the lobata dies and sends a death message containing
its last state to the singleton data collector agent, before
stopping its execution. If the lobata agent is still within the
bounds, it receives its probabilities of coral bleaching and
dying from the singleton temperature agent. It then utilizes
those probabilities to calcutate its grade of bleaching. The
lobata may die during this phase. Hence, the lobata may
send a death message to the data collector.
Consequently, the lobata agent adjusts its attributes for
growth and its radius, before sending its updated state to all
other corals for them to calculate their subsequent interac-
tion with the lobata. In turn the lobata receives the states
of all other corals and begin to update its state as result
of interacting with neighboring corals. Analogously to the
bounds check and bleaching, the lobata may die due to the
interaction. In this case the lobata would send over its death
message analogously.
After applying the previously calculated growth attributes
and updating its age, the lobata passes a message contain-
ing it’s surface to its coral group, the lobata group. The
lobata group utilizes this information for further lobata re-
cruitment.
The last step inside the simulation cycle incorporates the lo-
bata sending its state to the singleton data collector agent.
In contrast to the aforementioned death messages, this mes-
sages illustrates that the lobata is still alive after the simula-
tion step. The data collector agent is part of the processing
module described in the next subchapter.

3.2 Processing module
As stated before, the processing module acts as an inter-

layer between the C simulation and the C++ visualization.
Its main task is embedding the simulation by governing its
execution utilizing functions to initialize, run and stop it
as well as passing on simulation data to the communication
module for the visualization. Moreover, it deletes simulation
state files which become obsolete and accepts user input and
events like mechanical disturbances from the communication
module.
Figure 3.2 depicts the flow of simulation data starting in
the simulation module at the bottom. The data is handed
upwards. Interaction between the simulation in C and the
C++ interface for accessing simulation data is achieved through
a buffer. The buffer stores the reef state after an iteration
as a frame and communicates with both C and C++ via an
interface to C and C++ respectively.
Simulation data is originally determined according to the
aforementioned simulation process. After each simulation
iteration, the data collector collects the states of all corals
inside the reef. It then processes those states together with
additional reef data like temperature and amount of corals
into a frame representing the reef state after the iteration.
Subsequently, the simulation frame is transferred from the
data collector to the frame buffer. If the frame buffer is



Figure 2: Lobata Agent Simulation Cycle

full, the simulation blocks and waits until a frame can be
inserted. This leads to an automatic pausing and prevents
that the simulated state and visualized state move too much
out of synchronization.
The simulation frames inside the frame data can then be
requested via an interface in C++ and, provided a frame
is stored inside the frame buffer, a simulation frame is re-
turned.

3.3 Communication module
The main purpose of the communication module is to

serve as an interface between processing module and the
visualization in the Unreal Engine. Hence, most of its func-
tions redirect requests from the visualization to the process-
ing module.
In regular, user-defined intervals, the visualization sends a
signal to update the state of the reef. If such a signal is
received and the processing module holds another processed
frame, a separate thread starts processing the requested new
frame from the processing module. All objects within this
frame then get allocated on the heap. The thus created
references get passed on to the visualization as soon as it
sends a signal again. Deallocation is provided via an in-
terface that lets the visualization deallocated coral data on
demand. To efficiently manage the data allocation and deal-
location process, an identifier map is employed to keep track
of the allocated coral identifiers.

3.4 Disturbance Events
One event that deserves special attention and needs to

get a brief explanation is the disturbance event. It simu-

Figure 3: Simulation Frame Data Flow

lates a mechanical pertubation and serves to illustrate the
endangerment of coral reefs. If such an event is triggered, a
signal containing the dimension of the caused event is sent
to the communication module, which in turn passes it on to
the processing module. Subsequently, the processing module
manipulates the global simulation state in such a way that
all entities within the dimensions of the disturbance get de-
stroyed. After the disturbance has been processed inside the
simulation module, the simulation sends a signal to the visu-
alization passing through the processing and communication
module. On reception of the signal the visualization invokes
the visual representation of the disturbance. After the vi-
sual event has finished, the frame, in which the disturbance
got invoked, is displayed by the visualization.

4. RESULTS
The original goal of embedding the SICCOM simulation

directly into the visualization was achieved by reimplemen-
tation using the C-framework FLAME. In comparison to
the former implementation, this approach eliminates unnec-
essary overhead as well as limitations that were formerly
imposed by the socket communication. Hence, it is possible
to simulate and therefore visualize larger coral reefs. Despite
this, the portation is currently perceived to run slower than
its original implementation, due to the fact that the MA-
SON framework is utilizing highly efficient geometric data
structures.
The native implementation in C and the integration as an
Unreal Plugin enables the user to interact with the simu-
lation during runtime. The user is thereby able to directly
influence the simulation by changing the water temperature,
triggering external disturbances or restarting the entire sim-
ulation to experience the growth of the reef anew.
Moreover, the removal of the socket connection benefits de-
velopers, because the interface between visualization and
simulation can more easily be adjusted and expanded. This



is due to the fact that there is a direct data transfer instead
of an indirect one over a socket connection, also resulting in
less problems in terms of synchronization.

5. FUTURE WORK
This paper provided insight into the reimplementation of

the SICCOM simulation directly into the coral reef visual-
ization project developed in terms of the master’s project
VR Coral Reef 2. Due to the restricted time frame of the
project, there are still areas that could be improved in the
future. Those include further enhancement of performance
and user experience.
One possibility would be to use the framework FLAME
GPU instead of the regular FLAME framework. This would
vastly increase the performance due to massive paralleliza-
tion on the GPU utilizing CUDA. Since FLAME GPU is
an extension of FLAME, the portation effort of the existing
agent models would be minimal.
Furthermore, additional user interaction metaphors could
be integrated into the simulation. Currently, there is only
one kind of disturbance event, but there are several kinds
of other external disturbances not yet implemented. User
defined rewinding and fast-fowarding could also be added.

6. REFERENCES
[1] An interactive 3d simulation of the life of coral reefs

and its evolution depending on changing environmental
parameters.

[2] G. C. Balan, C. Cioffi-Revilla, S. Luke, L. Panait, and
S. Paus. MASON: A Java Multi-Agent Simulation
Library. In Proceedings of the Agent 2003 Conference,
2003.

[3] S. Coakley, M. Gheorghe, M. Holcombe, S. Chin,
D. Worth, and C. Greenough. Exploitation of high
performance computing in the flame agent-based
simulation framework. In 2012 IEEE 14th International
Conference on High Performance Computing and
Communication 2012 IEEE 9th International
Conference on Embedded Software and Systems, pages
538–545, June 2012.

[4] C. Greenough, S. Chin, D. Worth, S. Coakley,
M. Holcombe, and M. Kiran. An approach to the
parallelisation of agent-based applications. ERCIM
News, 2010, 2010.

[5] A. Kubicek, C. Muhando, and H. Reuter. Simulations
of long-term community dynamics in coral reefs - how
perturbations shape trajectories. PLOS Computational
Biology, 8(11):1–16, 11 2012.

[6] A. Kubicek and H. Reuter. Mechanics of multiple
feedbacks in benthic coral reef communities. Ecological
Modelling, 329(C):29–40, 2016.

[7] P. Richmond and D. Romano. Agent based gpu, a
real-time 3d simulation and interactive visualisation
framework for massive agent based modelling on the
gpu. In In Proceedings International Workshop on
Super Visualisation (IWSV08) 2008. In. Press.



Appendix

File name Description
simulation.c Main file for scheduling and managing the simulation
lobata.c Implements the behavior of a lobata agent
lobata group.c Implements the behavior of the singleton lobata group agent
lutea.c Implements the behavior of a lutea agent
lutea group.c Implements the behavior of the singleton lutea group agent
muricata.c Implements the behavior of a muricata agent
muricata group.c Implements the behavior of the singleton muricata group agent
damicornis.c Implements the behavior of a damicornis agent
damicornis group.c Implements the behavior of the singleton damicornis group agent
alga.c Implements the behavior of the a agent
alga group.c Implements the behavior of the singleton alga group agent
turf.c Implements the behavior of a turf cell agent
turf group.c Implements the behavior of the singleton turf cell group agent
temperature.c Updates the simulation temperate and calculates coral bleaching/death probabilities
recorded temps.h Stores temperature samples for calculating reef temperature
utils.c Provides utility functions, e.g. geometrical intersection/containment functions
grazing.c Calculates the amount of grazing inside the simulated reef

Table 1: Simulation Module: Corresponding Files

File name Description
sicPlugin.cpp Acts as an interface to the communication module
CoralBuffer.cpp Data structure for holding coral data frames
SharedBuffer.cpp Manages the usage and access of the coral buffer
data collector.c Agent that collects and transfers information of the simulation

Table 2: Processing Module: Corresponding Files

File name Description
PluginCommunicator.cpp Implements the communication module

Table 3: Communication Module: Corresponding Files


