
VaMEx-VTB
Modulares virtuelles Testbed für die VaMEx-Fördervorhaben

T-T-CGVR-2000-0001Simulation- and Visualization-System
Name and Institution DatePrepared by Jörn Teuber (JT) 28.01.2019Contributors Jörn Teuber (JT)Marc Jochens 20.10.2020Alexander Klier 20.10.2020Carlotta Herrmann 20.10.2020Christopher Wolff 20.10.2020Haya Al Maree 20.10.2020Julian Mehwald-Hoffman 20.10.2020Kai Gätjen 20.10.2020Lukas Gossé 20.10.2020

Checked by
Approved by

FKZ: 50NA1712 FördermittelgeberFKZ: 50NA1712 Fördermittelgeber

Document Change LogIssue
Revision

Date
Changes

Name

0 0 28.01.2019 Initial Version JT1 20.10.2020 VaMEx2020 Bachelorproject

3/27

Table of Contents
List of Figures...4
1 Introduction..5
1.1 Scope..5
1.2 Applicable Documents..5
1.3 Reference Documents..5
1.4 Acronyms..5

2 Requirements Analysis..6
3 System Design...6
3.1 High-Level Architecture..6
3.2 Components in ROS..7
3.3 Architecture of the Simulation...8
3.3.1 Architecture of the Swarm-Units ...8
3.3.2 Architecture of Support-Units..9

3.4 VaMEx Unreal Overview...10
3.4.1 Player ... 11
3.4.2 Swarm Unit & Companion ...12
3.4.3 3D-UI..13
3.4.4 3D-UI Parts, Tools & Related to Tools..14
3.4.5 Dust Devils..15
3.4.6 Other & Visualisation...16
3.4.7 Sensor & ROSData..17
3.4.8 Utility (1/2)...18
3.4.9 Utility (2/2)...19

4 Implementation..20
4.1 C++ Dokumentation..20
4.1.1 ROSMethanSensorComponent ...20
4.1.2 MethanSensorVizComponent..20
4.1.3 ProcessVisualizer..20
4.1.4 ProcessComponent..21

4.2 Unreal Engine Blueprints Dokumentation..23
4.2.1 VaMEx Menu System..23
...23
4.2.2 3DTouchable..23
4.2.3 VaMExPawn...24
4.2.4 Tools...24

4.3 ROS Interface..24
5 User Manual..24
5.1 Dependencies...24
5.2 Configuring the VTB..25

4/27

5.2.1 Configuration in Unreal..25
5.2.2 Configuration in the simulation ... 25
5.2.3 Configuration of the Components in ROS..25

5.3 Starting the VTB and ROS...25
5.4 Interacting in the VTB...25
5.5 The VaMEx Launcher..25

6 Expanding the VTB..26
6.1 Adding another Type of Swarm-Unit..26
6.2 Adding a new Visualization...26
6.3 Setting up a new Map...26

References...26

5/27

List of Figures
No table of figures entries found.List of TablesNo table of figures entries found.

6/27

1 Introduction
1.1 Scope

This document describes briefly, at a high level, the requirements, concepts, engineering and algorithms of thesimulation and visualization systems used in the VaMEx-VTB.

1.2 Applicable Documents
N/A

1.3 Reference Documents
N/A

1.4 Acronyms
VTBROS Virtual Test BedRobot Operation System

7/27

2 Requirements Analysis
At the beginning of the project all the partners were contacted to assess their requirements for the VTB. Thatincluded the requirements for the environment, the visualizations, the synthesised sensors, and the interfacesfrom ROS to the VTB and vice versa.These assessments were regularly updated during the splinter meetings at the DLR synergy-meetings andincorporated into the VTB whenever possible.VaMEx 2020:Initially requested features:

 Sensors in VR
 Environmental Process (Methane-Sensor)
 Visualisation of all sensors
 Simulate slip on slopes
 GUI for sensor visualisation settings
 Obstacles for SUs
 Dust Devils
 SU Interaction
 Companion
 Unreal Engine upgrade to 4.25
 New Terrains

3 System Design
The system architecture was designed according to the component-based software architecture, which is alsofavoured by the Unreal-Engine. This makes it possible to create the swarm units as a plug-and-play system,which each sensor or even behaviour as a component that can easily be attached to it.

3.1 High-Level Architecture

Figure 1: High-level overview of the architecture of the VTB.As you can see in Figure 1, the VTB consists of two separate parts. The left part is an installation of ROS,containing all algorithms and software-components of the partners packaged in self-contained ROS-nodes. The

8/27

right part is an Unreal Engine-project that contains the visualization, the interaction, and the simulation of theswarm units including the virtual sensors. This part will be called the simulation from now on.The two parts are connected by ROSbridge, which provides an interface for ROS that is accessible via a networkconnection. This means that the two parts of the VTB can be housed on two entirely different computersystems, for example the ROS system can be set up on a central computer accessible to all partners in theVaMEx-initiative and every partner can run the Unreal-part on their computers to visualize and interact withthis central ROS system.For development and testing purposes a setup using a virtual machine running ROS on a Windows systemwhich is running the simulation is the easiest option though.

3.2 Components in ROS

Figure 2: Components and data-flow in the ROS-system.The above figure shows all ROS-nodes and how they interact with each other and the simulation via theROSbridge. All rectangles in the middle represent ROS-nodes, which can also contain other ROS-nodes, like thevamex_vtb-node.The vamex_vtb-node contains all nodes that can and should be started before the Unreal part. That includesnodes to convert the depth-measurements sent by the virtual lidar into point clouds (all nodes up to andincluding pcl_3d_builder), a node that converts ground-truth odometry sent by the simulation into imu-dataand adds an error to it, a node containing the SPICE-kernels simulating the orbits of the orbiters, and a nodecontaining the algorithms developed in VaMEx-LAOLa.The exploration_manager-node contains the exploration strategy developed by VaMEx-CoSMiC, which hasto be started after the simulation. It supplies an environmental process for the swarm-units to explore and thesimulation to visualize, and goal-points for the swarm-units to make measurements at.The bottom-most node, vipe_slam, contains the ORB-SLAM2 algorithm it was used in VaMEx-VIPE with a fewmodifications. This is not included in the vamex_vtb-node even though it needs to be started before thesimulation as it needs to be run as its own application (it is not a ROS-node in the sense that it can’t be startedby ROS, but it communicates with ROS) and takes some time to start up.

9/

3.3 Architecture of the Simulation
The simulation can be split into 3 parts: the swarm-units, the support-units and the environment. In thefollowing subchapters, the architecture of the swarm-units and the support-units is shown. The environment,i.e. the terrain, rocks and other features of the landscape, and the sky, is handled completely by the UnrealEngine and is therefore not part of the architecture.

3.3.1 Architecture of the Swarm-Units

Figure 3: Actors, Components and data-flow of the swarm-units in the simulation. Data flows from left to right along thearrows. The swarm-units (UGV, Charlie and UAV) use components to add functionality.The swarm-units and their components are designed with reusability in mind. Most of a swarm-unit’s abilitiesare encapsulated in components which can be programmed once and then used on any swarm-unit. Thisresults in a plug-and-play-like architecture where new functionality, like virtual sensors or visualizations, can beadded, removed or just moved on a robot whenever needed.The SimulationSystem is implemented as a GameInstance, which is a central component of the UnrealEngine. When the simulation is started, the Unreal Engine creates an instance of the SimulationSystem,which in turn spawns all swarm-units and arranges them around the origin of the scene. Additionally,simulation wide actors for swarm-/support-unit independent global interactions, such as the

10/

ProcessVisualizer, are spawned. The ProcessVisualizer-Actor uses two ProcessComponents tovisualize the ground-truth and estimated environmental process as sent by the ExplorationManager in ROS.The visualization-components (in the green rectangle in Figure 3) have a common interface to make iteasy to hide and show them and make them invisible to all ROSCamera-components, which simulates aCamera and shouldn’t picture, for example, the point-clouds generated by the ROSLidar-component andshown by the PointCloudVisualization-component. The new MethanSensorVizComponent displaysthe value at the parents location within the scene of the currently tracked ProcessComponent by theSimulationSystems ProcessVisualizer actor.The ROSLidar-, ROSCamera- and, ROSPosition and ROSMethanSensor-components synthesize ground-truth sensor outputs, specifically of a lidar, a RGB(D)-camera, and an odometry-sensor and environmentalprocess methane measurement data respectively. The lidar can also visualize the plane it is currently scanning,which is encapsulated in the LidarVisualization-component. The ROSMethaneSensorComponent is notattached to any ROS Topics yet, due to lack of these in the vtb-ros-source project, which currently uses astatic demo implementation. For now, a measurement is only signaled to the currently trackedProcessComponent for side effects to be observed at visualization, which is required during demo-modeonly.

3.3.2 Architecture of Support-Units

Figure 4: Actors and components of the support-units.The support-units fulfil a variety of tasks within the VTB and the VaMEx-swarm in general. Instead of one classspawning all these like the swarm-units, each type of support-unit has its own spawner-class. This providesmore flexibility and encapsulates the individual subsystems better.The beacons, which are spawned according to the settings in the BeaconSpawner, are used by LAOLa as staticlandmarks for their localization algorithms. They are used by the LAOLALocalization-Actor to generate themessages that are send to the LAOLa-algorithms in ROS.The OrbiterSpawner-actor spawns a set number of Orbiter-actors with settings that can be specified in thespawner, for example a scaling factor. The orbiters then get their position from their respective ROS-topic.The ProcessVisualizer-Actor uses two ProcessComponents two visualize the ground-truth and estimatedenvironmental process as sent by the ExplorationManager in ROS.Lastly, the Clock-Actor is a very simple class that sends out the simulations “official” timestamp every frame.This timestamp needs to be used by ROS-nodes that, for their measurements, rely on the current time, forexample the vamex_orbiter-node. This makes it possible to accelerate the time (time-warping) in thesimulation and see the orbiters following their orbits much quicker.

11/

3.4 VaMEx Unreal Overview
The following UML-Class Diagram will show an overview of the whole VaMEx_Unreal Module. To seethe full map, please download either the exported picture or the .vpp file. The vpp-file is made withVisual Paradigm Community Version 16.2.In the box at the top are the Unreal-Engine Classes and below are the VaMEx_Unreal Classes. ThisUML Diagram does not focus on the UnrealEngine contents. For a detailed UnrealEngineDocumentation, visit the official one.

12/

3.4.1 Player
Anything related to players and inputs

13/

3.4.2 Swarm Unit & Companion

14/

3.4.3 3D-UI

15/

3.4.4 3D-UI Parts, Tools & Related to Tools
The UI Parts are used as building blocks in assembling the 3D-UI pages (frames).

16/

3.4.5Dust Devils

17/

3.4.6Other & Visualisation

18/

3.4.7 Sensor & ROSData
Anything that is in the chain from collecting sensor data until sending it over.

19/

3.4.8Utility (1/2)

20/

3.4.9Utility (2/2)

21/

4 Implementation
4.1 C++ Dokumentation

4.1.1ROSMethanSensorComponent
If attached to a parent component, this component will perform and publish measurements of the specifiedmeasuredProcess to ROS (currently not implemented due to lack of associated topics on the rosimplementation side) as well as the visualizing ProcessComponent for demo mode filtering purposes.
4.1.1.1 Fields

Signature Descriptionfloat UpdateIntervall Time intervall on which to perform newmeasurements.(default: 1.0f)EProcessVizEnummeasuredProcess Enum specifying the currently tracked process.(default: EProcessVizEnum::None)

4.1.2MethanSensorVizComponent
This component displays the value of the ProcessComponent which is currently tracked by theProcesVisualizer at the location of the parent it is attached to.
4.1.2.1 Fields

Signature DescriptionFColor Color The color of the displayed measured value.(default: FColor(0, 255, 0, 125))UTextRenderComponent*DisplayLabel Pointer to the UTextRenderComponent used to visualize theprocess value at the attached parents location.(default: nullptr) [set during initialization]float UpdateIntervall Time intervall [s] on which to update the displayed value of theprocess at the attached parents location in seconds.(default: 1.0f)

4.1.2.2 Methods
Signature Descriptionvoid SetColor(FColorcolor) Set the color of the displayed value of the process at the attachedparents location.

4.1.3 ProcessVisualizer
This actor gets spawned during initialization of the USimulationSystem and is responsible for controllingthe display of the environmental process data ground truth and estimate by usage of twoUProcessComponent.

22/

4.1.3.1 Fields
Signature DescriptionEProcessVizEnumVisualizedProcess Enum specifying the currently visualized process.(default: EProcessVizEnum::None)UMaterial* DecalMaterial Pointer to the material to be used for the UProcessComponentsmanaged.(default: nullptr) [fetched during setup]UProcessComponent*GroundTruth Pointer to the ProcessComponent handling the environmentalprocess data ground truth received from ROS.(default: nullptr) [created during initialization]UProcessComponent*Estimate Pointer to the ProcessComponent handling the environmentalprocess data estimate received from ROS.(default: nullptr) [created during initialization]

4.1.3.2 Methods
Signature Descriptionvirtual voidSetVisualizedProcess(EProcessVizEnumprocess)

Set which UProcessComponents data shall bedisplayed, if visualized.
UProcessComponent*GetVisualizedProcess() Returns a pointer to the tracked UProcessComponentwhose data is currently being visualized, ifUProcessVisualizer itself is being visualized.UProcessComponent*GetTrackedProcessByType(constEProcessVizEnum type)

Returns a pointer to the tracked UProcessComponentfor the passed type of environmental process datareceived from ROS.

4.1.4 ProcessComponent
This component processes environmental process data received from ROS for display. Instances of this areused in UProcessVisualizer.
4.1.4.1 Fields

Signature DescriptionFString TopicName The name of the topic used to receive environmental process datafrom ROS(default: “/process”)UMaterial* DecalMaterial Pointer to a UMaterial instance to be used for visualization.(default: nullptr)
UDecalComponent* Decal Pointer to the UDecalComponent instance to be used to generatethe visualization of the received environmental process data.(default: nullptr)UMaterialInstanceDynamic*OverlayMaterialDynamic Pointer to the UMaterialInstanceDynamic set for the material offield Decal derived from field DecalMaterial(default: nullptr) [set during startup]

4.1.4.2 Methods
Signature Descriptionbool isValidLocation(const Returns true, if the passed location in unreal units is covered by the

23/

FVector& location) environmental process data received from ROS, false otherwise. Indemo mode always returns true.uint8valueAtLocation(constFVector& location)
returns the value of the visualized environmental process at thepassed location in unreal units.

voidmeasurementAtLocation(const FVector& location)
Notifies the UProcessComponent about a measurement at a passedlocation in unreal units to enable filtering of visualized environmentalprocess data received from ROS in demo mode only.

4.1.5 SimulationSystem
This class is a GameInstance for the Unreal-Engine and the inheriting SimulationSystemBP Blueprint class is setup for that purpose. This is where most of the ROS startup is implemented but also where the start parametersare parsed. Those help configuring the VTB to the users wishes. Valid start parameters from theSimulationSystem side are:
-vr Used to start in vr mode. Not compatible with -pw, -dc_cluster or -vr-emulate-pw.
-dc_cluster Used to start in powerwall mode. Not compatible with -vr or -vr-emulate-pw.
-pw Same as -dc_cluster, used for debugging purposes.
-vr-emulate-pw Used to start in emulated powerwall mode. Not compatible with -vr, -pw or -dc_cluster
-ovrw Overwrites the following settings in the SimulationSystemBP unlessOverwriteStartParams is true. It is usually recommended to give -ovrw as parameterwhen starting the simulation.
-demo Starts the simulation in demo mode which effectively disables the exit buttin withinthe simulation currently.
-visualizationsFiltered Wether to use filtered visualisations for the methane visualisation or not.
-ezaf Enables or disables Easy and Fast Mode. Recommended to be used for beginners.
-companion Enables or disables the companion.

To start the VTB with these they can be appended in a cmd or powershell command this way:Unreal-Engine_path .uproject_file_path -game append_parameters_here

24/

4.2 Unreal Engine Blueprints Dokumentation
4.2.1 VaMEx Menu System

All menus used in the simulation are bound to a VaMEx Watch which is bound to a players left arm. One Watchhas different Submenus which are technically all on the same level in the outliner even though some arepractically “deeper” (submenus of submenus) than others. Every Menu derives from the 3DUIFrame whichcomes with helping functions and a background so all menus have the same size. Each menu can containmultiple 3DTouchable which can come in different flavours depending on the need. Every Menu contains aBack or Close button for convenience. The VaMEx Watch holds functions to switch synchronously (client-server) between the menus. The client-server functionality however is implemented in the VaMEx Pawn.
4.2.2 3DTouchable
The 3DTouchable is the base class for all 3D Buttons used in VaMEx. The derivates such as buttons, sliders orcheckbuttons (buttons that stay pressed for true and not pressed for false) hold event dispatchers forbuttonDown, buttonUp and their appropriate Highlight colliders to support being pressed by a TouchFinger.
The Basic 3DTouchable reacts to being pressed and released. It has no animation properties besides changingit’s material when being pressed or highlighted.
3DButtons give user feedback by scaling down the button to give a impression of being pressed down.
3DButtonText is a 3DButton with a label for text being attached.
3DChechCubes Stay pressed in when pressed once and release on the second press action making them idealfor boolean decisions in menus.
Sliders can be pressed and moved to trigger an OnSliderMoved event.

25/

4.2.3 VaMExPawn
The VaMEx Pawn inherits from the Unreal base Character and is used in all simulation maps. It’s children reflectthe different input and output devices. The model including hands is the same for all pawns and implementedhere. Also replication for multiplayer is set up in this Pawn.There are currently 4 Pawns:- PCPawn:For use with mouse and keyboard and regular display device such as a monitor. Has the ability to clickon Menus, Robots and the Companion by using the mouse cursor. Can also fly freely around in thelevel and teleports to robots automatically when clicking on them.
- MotionControllerPawn:For use with an HMD and appropriate Controllers. Uses the Motion Controllers as virtual Hands totouch but also click on Buttons, Robots or the Companion. Hands Location will also be used forgestures for other players on the server.- DisplayClusterPawn:For use with a Powerwall and an Optitrack tracking System. Requires the powerwall.cfg to be setupcorrecty. This can be found in VaMEx_Unreal\Content\Config. Menu Controls work the same as seenin the MotionControllerPawn however without the clicking actions. To call the companion a wavinggesture is used. Movement is done streching the arms forward for going forward, up for upwards,down for downwards and T-Pose for backwards. The player can turn by holding either the right or theleft hand to his right or left.
- EmulatedDisplayClusterPawn:For use with an HMD and appropriate Controllers but only exists for testing purposes and can only beselected within the engine. Has the same functions as the DisplayClusterPawn but does not require apowerwall or Optitrack system to work. All input is emulated with motion controllers and output isshown on the HMD.
There is also another Pawn used in the Main Menu. It provides similar controls to the menu as theVaMExPawns do depending on the selected output/input methods. It is not able to move and only required forchanging simulation options and starting a map.
4.2.4 Tools
For the user to change the way the simulation behaves 3 tools have been implemented. These can be selectedin the SelectToolsMenu. Depending on the mode and tool they receive different inputs from mouse, motioncontrollers or 3DButtons. All tools however can purely controlled using the 3DButtons.There are currently 3 Tools implemented which all inherit from the Tools class. They are: Spawning-Tool,Gravity-Gun and Dust Devil-Tool. Further explanation of these Tools is given in chapter 5.4 Interacting in theVTB.

4.3 ROS Interface
5 User Manual

5.1 Dependencies
- Windows 10- Unreal Engine 4.25- Substance in UE4 Plugin (Unreal Marketplace)- ROSIntegration Plugin (included)- ROS (only for use with ROS)- VaMEx Launcher (optional but highly recommended)

26/

5.2 Configuring the VTB
Some of the configuration of the simulation can be changed with the launcher or in the SystemSimulationBPwithin in the engine. Also it can be overwritten for easier testing.
5.2.1Configuration in UnrealThe SystemSimulationBP contains all variables passed to it during standalone start which can also beoverwritten. These variables include the amount of robots, HoverUI, ConnectToROS, easyAFMode, demoModeand Companion. When Overwrite is enabled passed standalone parameters will be ignored.

5.2.2Configuration in the simulation
In the Main Menu ROS can be enabled or disabled and another type of UI the HoverUI can be enabled. Also theAmount of Robots can be set.
5.2.3Configuration of the Components in ROS

5.3 Starting the VTB and ROS
For this Chapter read the Quick Start guide. It provides all information required to start the simulation and ROS.

5.4 Interacting in the VTB
Menu interaction can happen by touching the buttons or clicking them with the trigger button (in VR). To openthe menu the watch needs to be activated.Robots can only be clicked on but they can be tipped over when touched.In the ‘Tools’ section of the menu 3 different tools can be equipped. A tool can be unequipped by holding itbehind the users back/camera or by pressing the tool toggle button (Left Motion Controller Menu Button or Tfor PC). The tools are:- Spawning-Tool: Used to spawn different sized and shaped Rocks- Gravity-Gun: Used to move Objects around. Without EasyAF it has the ability to activate a second mode byclicking the button on the top right corner of the tool which allows holding Objects. This mode is default inEasyAF Mode. By moving the lever on the side or the mouse wheel (PC) the Object in front of the gun can bemoved closer or further away.- Dust Devil-Tool: Used to spawn a dust devil in front of the user. When pointed at the ground the Dust Devilwill go towards the pointed location. To move around on PC use WASD Space and Ctrl. For VR use the Trackpadto teleport around. The trackpad finger position is used to determine the rotation after the teleport wheneasyAF mode is off.

5.5 The VaMEx Launcher
The VaMEx Launcher can be used to easily start the VTB. It alsohas some built in utilities to clean up the Binaries and theIntermediate folder of the Unreal-Engine project and can repairSymlinks if their destination does not exist anymore. This wasused to externalize the Binaries and Intermediate folder to aRAM drive due to the Unreal-Engines behaviour of writing andreading very often from these locations which can heavilydecrease the write cycles of an SSD and speed up the buildingand hot reload process rapidly especially when using slowerstorage media.It works by locating the Unreal-Engine installation folderautomatically and starting it with some the given parameters.In case the simulation is started -game is being used to startthe engine for directly starting a standalone game.

27/

The Launcher is the recommended way to start the simulation as the editor does not show the variables thatcan be chosen here with user friendly buttons. Also using the Launcher two instances of the same simulationcan be started by staring first the engine and starting an instance using the launcher afterwards.It is written in C# and can be built using the csproj file located in: VaMEx_StandaloneLauchner\VaMEx-StandaloneLauchner\VaMEx-StandaloneLauchner\VaMEx-StandaloneLauchner.csproj.If Visual Studio says the dotNET Framework version is not the right one, also 6.1 can be use and others maywork too. Build the Launcher as Release and copy the resulting .exe from VaMEx_StandaloneLauchner\VaMEx-StandaloneLauchner\VaMEx-StandaloneLauchner\bin\Release\StandaloneLauchner.exeto the projects directory.

6 Expanding the VTB
6.1 Adding another Type of Swarm-Unit

To add another Swarm-Unit, there is a series of things that need to be done to provide the full intendedfunctionality:
 A ROS Interface that supports the desired number of the new Swarm-Unit is needed.
 The Behaviour, Appearance and Components need to be defined by a custom Blueprint.
 For full functionality as well as data consistency a few changes in the USimulationSystem are needed◦ All Swarm-Units are saved in the array SwarmUnits, the new ones should be added◦ numSwarmUnits should be updated to equal the sum of all Swarm-Units now including the newone◦ A new variable for the new Swarm-Unit amount (numberOf<name>s) should be added
 The spawn script should be updated to also spawn the new Swarm-Unit
 On spawn, Swarm-Units of the new type should register to LAOLA.
 The GUI should give control over the new Swarm Units sensor visualisation, offer an info page similarto the other ones and also implement the search feature.
 To ensure proper physical interactions, the collision should be set to match the other Swarm-Units.
 The new Swarm-Unit needs to be replicated◦ To properly replicate and set up the Actor, make sure to factor in network latency in combinationwith the fact that actor-initialisation is not an atomic operation.
6.2 Adding a new Visualization

If the new visualisation is supposed to be attached to individual actors, such as swarm- or support-units, itshould consist of a reusable component implementing its behaviour. To use it it should then get added to thedesired Unit. If the visualisation is global, this restriction does not apply and it can be placed in the world usinga custom Actor. Currently the visualisations are set for each individual player and done client-side, so noreplication is desired.
6.3 Setting up a new Map

When a new Map is used, it requires a valid NavMesh in the middle because of automatic robot spawns. Also aLAOLa Localisation Actor is required for the visualisations to work and a Clock-Actor for the ROS timings towork. For the Beacons there is the BeaconsSpawner and for Orbiters to work the Orbiters Spawner is required.

References
Im aktuellen Dokument sind keine Quellen vorhanden.

