
TRIPLESIM - UNDERWATER EXPLORATION
OF AN ICY MOON IN A VIRTUAL

ENVIRONMENT
REPORT ON A MASTER PROJECT

from

Christian Hoffmann
Darius Schlese

Niklas Stockfisch
Nusrat Jahan Tamanna

Maurice Zerreßen

10. April 2024

Contents

List of figures V

Glossary VI

1 Introduction 1
1.1 Project goals . 1
1.2 Organization . 1

1.2.1 Milestones . 2
1.2.2 Meetings . 2
1.2.3 Protocols . 2

2 Overview of TripleSim 3

3 Sensors 5
3.1 USBL . 5

3.1.1 Challenges . 5
3.1.2 Implementation . 6

3.1.2.1 Current Implementation of the transceiver 7
3.1.2.2 Current Implementation of the Rays 9

3.1.3 Results . 10
3.1.4 Other approaches . 11

3.1.4.1 Collision detection at the "EchoBeam’s" 11
3.1.4.2 Sphere trace and box trace instead of line trace 12
3.1.4.3 Raypool . 12

3.2 Echo sounder . 12
3.2.1 Implementation . 13
3.2.2 Results . 14

3.3 Pressure/depth sensor . 15
3.4 Laser . 15

3.4.1 Development process . 16
3.4.2 Implementation . 16
3.4.3 Laser bins . 17
3.4.4 Change the properties of the laser 18
3.4.5 Particle detection . 18

3.4.5.1 Particle detection implementation 18
3.4.5.2 Total density of all particle systems 21

3.4.6 Challenges . 21
3.5 IMU . 21

4 Environment 23
4.1 Light & Fog . 23

4.1.1 Problems of the volumetric Fog 24
4.1.2 Light at the AUV . 25

4.2 Ice Shapes . 25
4.3 SFX . 27
4.4 Black smoker . 28

I

4.4.1 Black smoker model . 28
4.4.2 Black smoker plume . 29

4.4.2.1 Niagara vs. Niagara Fluids 29
4.4.2.2 Development process 29
4.4.2.3 Final Plume . 31

4.4.3 Black smoker blueprint . 33
4.4.4 Particle detection for real particles from the black smoker 34
4.4.5 Collision and illumination of the plume 35
4.4.6 Challenges . 36
4.4.7 Remarks . 37

4.5 Particles around the AUV . 37
4.5.1 Implementation . 37

4.5.1.1 Box containing the particles 37
4.5.1.2 Movement of the particles 38
4.5.1.3 Particle sprites . 38
4.5.1.4 Illumination of the particles 39
4.5.1.5 Ocean current modifier replacement 40

4.5.2 Change the properties of the particle system 41
4.5.3 Increase particles around AUV based on black smoker 42
4.5.4 Challenges . 43
4.5.5 Future works . 43

4.6 VFX . 44
4.6.1 1. Particle System . 44
4.6.2 Underwater shader . 45
4.6.3 Schlieren effect . 46
4.6.4 Bioluminescence . 47
4.6.5 Ice particles . 48
4.6.6 Bubbles . 48

4.7 Terrain . 49
4.7.1 1. Prototype . 49
4.7.2 Later Versions . 50

4.8 Blending with Runtime Virtual Texturing 52

5 ROS System 54
5.1 Components . 54
5.2 Changes . 55
5.3 Problems . 55

6 Unreal Project 57
6.1 VaMEx-VTB . 57

6.1.1 Version . 58
6.1.2 ROS2 plugin . 58

6.1.2.1 Usage . 58
6.1.2.2 Problems . 58

6.2 Input . 59
6.3 AUV . 59

6.3.1 3D model . 59
6.3.2 Lighting . 60

6.4 Visualization . 60
6.4.1 Path & Trajectory . 60
6.4.2 Ripple Effect . 61

II

6.4.3 Laser and bin visualization . 62
6.5 User Interface . 63

6.5.1 General Layout . 63
6.5.2 IMU UI . 67

6.5.2.1 Problems . 69
6.5.3 Laser UI . 70

6.5.3.1 Heatmap . 70
6.5.3.2 Implementation . 71
6.5.3.3 Laser data ROS . 71
6.5.3.4 Future works . 72

6.6 Camera views . 72
6.6.1 Basic views . 72
6.6.2 Orbit camera . 72

6.7 Simulation . 73
6.7.1 Ocean current simulation . 73

6.7.1.1 Implementations . 75
6.7.1.2 Results . 75
6.7.1.3 Future work . 76

6.7.2 Battery system simulation . 77
6.7.2.1 Battery system . 77
6.7.2.2 Calculation of Propulsion System power 77
6.7.2.3 Implementation . 80
6.7.2.4 Challenges . 82
6.7.2.5 ROS2 integration . 82

6.8 Containerization & Execution . 82

7 Website 86
7.1 Version 1 . 86
7.2 Version 2 . 88
7.3 Improvements . 89

8 Conclusion 91

Bibliography 92

III

List of Figures

2.1 Overview of TripleSim . 3

3.1 Sketch of the communication of the USBL 6
3.2 Results obtained by the USBL . 11
3.3 Sketch of the echo sounder . 13
3.4 Results of the echo sounder . 15
3.5 Laser colliding with an object . 17
3.6 Simplified overview of the particle detection 19

4.1 Scene without fog . 23
4.2 Scene with light fog . 24
4.3 Scene with dense fog . 24
4.4 At the left image the temporal reprojection is activated and at the right

image the temporal reprojection is deactivated 25
4.5 ice berg 1 . 26
4.6 ice berg 2 . 26
4.7 ice wall . 27
4.8 ice surface . 27
4.9 Black smoker plume progression . 29
4.10 Black smoker plume 1-to-1 correspondence 30
4.11 Overview of the Niagara particle system of the black smoker 31
4.12 Black smoker where the real particles are visible vs. final black smoker . 33
4.13 Black smoker with visible sphere vs. black smoker without sphere 33
4.14 Sphere that blocks the plume and Collider tag 36
4.15 Density inside plume and illumination of the plume 36
4.16 Sprites of the organic particles . 39
4.17 Particles around the AUV illuminated only by the AUV light vs. illumi-

nated by directional light and skylight 40
4.18 Ocean current modifier replacement . 41
4.19 Niagara setup . 44
4.20 Isolated view of the finished particle effect from a side perspective 45
4.21 Underwater shader . 46
4.22 Schlieren effect . 47
4.23 Bioluminescence . 48
4.24 Ice particles . 48
4.25 Bubbles . 49
4.26 First prototype . 50
4.27 Enceladus sea floor . 51
4.28 Seabed . 51
4.29 Foliage . 51
4.30 Scene sideview 1 . 52
4.31 Scene sideview 2 . 52
4.32 Blending with Runtime Virtual Textures 53

5.1 ROS2 system overview . 54

IV

5.2 rviz2 showing the AUV spinning, red arrows showing last few orientations 56

6.1 Remaining components . 57
6.2 Data send and received using ROS2 . 58
6.3 AUV emissive material . 60
6.4 Planned trajectory (green) and actual AUV path (red), glowing cube are

lit particles around AUV (see 4.5) . 61
6.5 The ripple effect that gets spawned from the Basestation 62
6.6 Laser bin visualization . 63
6.7 UMG Blueprint example . 64
6.8 UMG Variables example . 64
6.9 User Interface Version 1: Graph view 65
6.10 User Interface Version 1: Numeric view 65
6.11 User Interface Version 2: Keybinds . 65
6.12 User Interface Version 2: Density . 65
6.13 UMG Blueprint: Open UI in a separate window 66
6.14 Final user interface layout . 67
6.15 IMU UI . 68
6.16 Creation and update of a data series with Kantan Charts 68
6.17 Laser UI . 70
6.18 Orbit camera rotation bounds around y-axis 73
6.19 OceanCurrentModifier that uses a single cone segment 74
6.20 OceanCurrentViewer showing velocities with arrows 74
6.21 Octree close to a black smoker, box colors: blue=leaf, red=inner node . . 76
6.22 Octree with a little distance from black smoker, box colors: blue=leaf,

red=inner node . 76
6.23 Thruster in the AUV model . 78
6.24 Power Vs Thrust curve . 78
6.25 Formula for power calculation . 79
6.26 Propulsion Power Calculation . 80
6.27 Battery Sketch . 80
6.28 initial version . 81
6.29 Final Version . 82
6.30 Different ways to execute the project stack. a) Running UE application

directly on windows and ROS2 using Ubuntu 22.04 on WSL b) Running
everything using Docker . 83

7.1 Website Version 1 (1) . 87
7.2 Website Version 1 (2) . 87
7.3 Website Version 2 (1) . 89
7.4 Website Version 2 (2) . 89

V

Glossary

AUV An AUV, or Autonomous Underwater Vehicle, is a self-propelled robotic vehicle
designed to operate underwater without direct human control. It is equipped with
sensors, navigation systems, and often a payload for various tasks such as oceano-
graphic research, underwater mapping, or surveillance. 1, 5–16, 22–25, 28, 34, 35,
37–43, 47, 55, 57–62, 67, 72, 73, 82

Blender Blender is a open source 3D computer graphics software tool. This can be used
to create 3D models, for example.. 28, 29, 36

CSS CSS, or Cascading Style Sheets, is a style sheet language used to define the presenta-
tion and layout of HTML documents. It allows developers to control the appearance
of web pages by specifying styles such as colors, fonts, margins, and positioning.
CSS works by selecting HTML elements and applying styling rules to them, en-
abling the creation of visually appealing and responsive web designs. 88

GIMP "GNU Image Manipulation Program, commonly known by its acronym GIMP, is
a free and open-source raster graphics editor used for image manipulation (retouch-
ing) and image editing, free-form drawing, transcoding between different image file
formats, and more specialized tasks." [41]. 28

Go Go, also known as Golang, is a statically typed, compiled language developed by
Google. It emphasizes simplicity, efficiency, and concurrency, making it well-suited
for building scalable and reliable software systems. 86

GrapesJS GrapesJS is an open-source web builder framework that allows developers and
designers to create responsive web pages visually. It provides a drag-and-drop in-
terface for building web pages without requiring coding skills, making it accessible
to a wide range of users. 86

HTML HTML, or Hypertext Markup Language, is the standard markup language used
for creating web pages and web applications. It provides the structure and content
of web pages through a series of tags and elements. HTML elements are used to
define the different components of a webpage, such as headings, paragraphs, links,
and images. 86, 88, 89

Hugo Hugo is an open-source framework for static site generation. 86

IMU An Inertial Measurement Unit (IMU) is a device that typically combines multi-
ple sensors, such as accelerometers, gyroscopes, and magnetometers, to measure
and report on an object’s orientation, velocity, and gravitational forces. It is com-
monly used in various applications such as navigation systems in aircraft, drones,
smartphones for gesture recognition, and virtual reality systems for motion track-
ing. IMUs provide crucial data for maintaining stability, determining position, and
enabling accurate movement tracking in dynamic environments.. 21, 63, 64, 67

VI

JavaScript JavaScript is a high-level, interpreted programming language primarily used
for web development. It allows developers to create dynamic and interactive con-
tent within web browsers. JavaScript is versatile, supporting both object-oriented
and functional programming paradigms, and is essential for creating modern web
applications. 86, 88

Markdown Markdown is a lightweight markup language commonly used for formatting
plain text documents. It allows users to easily create formatted text using simple
syntax, such as using asterisks for emphasis or pound signs for headings. Mark-
down is widely used in various contexts, including writing documentation, creating
web content, and collaborating on projects. 86, 88

Niagara Niagara is the current particle system of Unreal Engine. 16, 18–21, 29–32, 34,
36, 37, 39, 40, 43–45, 47, 48

Quixel Bridge "Quixel Bridge plugin for Unreal Engine gives you full featured access to
the Megascans library within the Level Editor. You can browse collections, search
for specific assets, and add assets to your Unreal Engine projects. "[11]. 28, 49

RVT "A Runtime Virtual Texture (RVT) creates its texel data on demand using the GPU
at runtime, and works similarly to traditional texture mapping. The RVT caches
shading data over large areas, making them a good fit for Landscape shading that
uses decal-like materials and splines that are well suited to conform to the terrain."
[12]. 52, 53

ToF The Time of Flight is the time between sending a ping and receiving a ping. 5, 8, 9,
11

TRIPLE The TRIPLE (Technologies for Rapid Ice Penetration and subglacial Lake Ex-
ploration) project seeks solutions to the problem of how to conduct scientific studies
of subglacial lakes on other planets. 88

UI User Interface. 21, 62, 63, 65, 70–72

UMG Unreal UMG (Unreal Motion Graphics) is a robust visual UI authoring tool within
the Unreal Engine game development environment. It allows developers to design
and create user interfaces using a node-based system and a variety of widgets, such
as buttons, text boxes, and images. 63–65, 68

Unreal Engine Unreal Engine is a 3D computer graphics engine that is primarily used for
game development and simulation purposes. The current version is Unreal Engine
5. 1, 5, 7, 9, 11, 12, 15, 21, 27–29, 31, 36, 37, 45, 49, 57–61, 71, 72, 82–85

USBL USBL (Ultra-Short Baseline) is a type of underwater acoustic positioning system
used to track the location of submerged objects or vehicles in real-time with high
precision. It operates by measuring the time it takes for acoustic signals to travel
between a transceiver on the surface and a transponder attached to the underwater
object. 5–7, 11–14, 61, 62, 67, IV

VII

VaMEx The VaMEx project, short for Valles Marineris Explorer, searches for a swarm-
based exploration approach for future mars missions. For this goal, several au-
tonomous drone units work together in the same network, consisting of rovers,
crawlers and unmanned aerial vehicles. 1, 11, 14, 15, 21, 58, 88

VaMEx-VTB The VaMEx-VTB is a subproject of the VaMEx project with the goal to
firstly provide a test framework for swarm-based exploration systems and secondly
contain tools for evaluation. To achieve this, a communication framework between
Unreal Engine 5 and ROS has been implemented. 57, 58

VIII

1. Introduction
The German Aerospace Center (DLR) is planning an expedition to one of Saturn’s moons,
the icy moon Encelauds, for which the Triple project was founded. Triple stands for
Technologies for Rapid Ice Penetration and subglacial Lake Exploration. A large part of
the project is the development of a melting probe that can melt through layers of ice to
reach a potential lake. The melting probe will deploy an AUV, which will take a series
of samples that will then be analyzed. The AUV is also being developed as part of the
triple project. The AUV should travel around the ocean/sea, take samples and analyze
the environment, the AUV should return to the melting probe/base station after a certain
time and deliver the information. The goal of this project is to simulate such a mission.
Simulations are often used to test various aspects of such a mission, e.g. the amount of
energy required, the type of sensors or the general behavior in certain scenarios.

To develop such a simulation, we are building on the work of the VaMEx project and we
use the Unreal Engine. The VaMEx project, short for Valles Marineris Explorer, searches
for a swarm-based exploration approach for future Mars missions. For this goal, several
autonomous drone units work together in the same network, consisting of rovers, crawlers
and unmanned aerial vehicles. The VaMEx-VTB is a subproject of the University of
Bremen with the goal to firstly provide a test framework for swarm-based exploration
systems and secondly contain tools for evaluation. To achieve this, a communication
framework between Unreal Engine 5 and ROS has been implemented, which will also be
used in this project.

We simulated different sensors of the AUV and other aspects of the environment such
as an ocean current or black smokers. We also simulated part of the environment of
Enceladus based on existing information, but since Enceladus is unknown, we can only
make assumptions and do it similarly to the existing examples on Earth, e.g. Antarctica.
To simulate the different sensors, we used existing research and real sensors as a basis.

In this report, we will first explain the different sensors and their implementation, discuss
the results and the problems we encountered during the development. Then we will ex-
plain and discuss the simulation environment. Finally, we will explain the ROS system,
give an overview, explain some components and discuss our changes and problems en-
countered during development. We will also explain how to set up the simulation and how
to control the user interface of the simulation. We will also introduce our website for the
simulation.

1.1 Project goals

We want to create a simulation that simulates various aspects of such a mission. Our goal
is to create largely physically correct sensors, an environment that could be similar to that
of Enceladus, and an overall good-looking simulation to attract people for the project.

1.2 Organization

In this section, we will explain our internal organization and project management. We
discuss our milestones and how we have managed the project overall.

1

1.2.1 Milestones

We created three Milestones for the project.

The first was a vertical slice, having some sensors, a basic level, other features such as the
input system, multiple camera views and the ROS2 system integrated.

The second milestone included all sensor implementations and visualizations and a com-
plete terrain and environment and features such as the ocean current map and battery
simulation.

The third and last milestone is the finished project, which includes more polishing/adjust-
ments of the already implemented features, the complete demo, website and report.

1.2.2 Meetings

We had group meetings with the supervisors once a week. Furthermore, we had at least
one meeting without the supervisors every week, but also additional meetings depending
on the current tasks and how much we had to discuss.

1.2.3 Protocols

For each meeting a protocol was created to help document things that were discussed and
decisions that were made. The protocol writer changed on a weekly basis in a round-
robin.

2

2. Overview of TripleSim

St
ar

t
R

O
S

Sy
st

em
St

ar
t

Tr
ip

le
Si

m
.e

xe

Le
ve

l-
m

ai
n

B
eg

in
 P

la
y

U
n

re
al

 E
n

gi
n

e

M
ai

n
 le

ve
l

B
lu

e
p

ri
n

ts

A
u

v
M

o
d

el

U
se

r
In

p
u

t:
K

ey
b

o
ar

d
/M

o
u

se

U
se

r
In

te
rf

ac
e

Se
n

so
r

In
fo

rm
at

io
n

B
at

te
ry

 S
ta

tu
s

La
se

r
p

ar
ti

cl
e

U
se

r
In

te
rf

ac
e

CommunicationLaunching

R
O

S
Sy

st
e

m

Tr
aj

ec
to

ry

A
U

V
 p

o
s

A
U

V
 m

o
to

r
fo

rc
e

&

to
rq

u
e

Se
n

so
rs

B
at

te
ry

Sy

st
em

O
ce

an

C
u

rr
en

t

Input

C
o

n
tr

o
ls

R
u

n
n

in
g

U
p

d
at

e
V

al
u

e
s

in

re
al

-t
im

e

N
o

 v
al

u
e

s

Ye
s

N
o

Figure 2.1: Overview of TripleSim

3

This document outlines the basic concept of running the simulation. Its purpose is to pro-
vide clear guidance for initiating the project and observing the simulation and interaction
through the UI. This will facilitate smooth usage for new users in the future.

All installation and execution instructions are provided in the README files located
within each subfolder corresponding to different parts of the project:

• To install ’triplesim’ dependencies, refer to the triplesim README.

• To install Marum ros ws dependencies, refer to the Marum ros ws README.

We have successfully installed all the required dependencies for both Windows 10 and 11
during our project. Once all dependencies are correctly installed, the steps are as follows:

1. Start the Docker.

2. From the command shell in Ubuntu, launch the ("run uv sim.bash") file located in the
(.."/triplesim/Marum ros ws) folder. This will initiate the ROS system.

3. After starting the ROS system, launch the tripleSim project.

4. Our main level is named "Demo". Launching this level will initiate the simulation.

5. A separate window will open with controls provided. Sensor information and battery
status will be updated there and can be checked by clicking on each tab.

6. It’s essential to start the ROS system before initiating the simulation. Otherwise, there
will be no simulation or information available in the game mode.

For more detailed information, refer to the subsequent chapters in this report.

4

3. Sensors
In the following sections we will explain different types of sensors that we use for our
simulation, we will explain the details of the implementation and discuss the results.

3.1 USBL

The AUV consits of several sensors that are used to automatically control the AUV, one
of these Sensors is the Ultra Short Baseline (USBL) system. The USBL is a method for
acoustic underwater positioning. In our case, the USBL consists of two transceivers, one
is mounted on the AUV and the other one on the base station. One of these transceivers
would therefore send a ping into the ocean and the other would wait until it receives this
ping (see Figure 3.1). Based on a phase shift, which can be calculated in the hydrophones
of the transceiver, and the time difference of the impact, the transceiver that detected the
ping can calculate a direction from the ping. The transceiver would then take the cal-
culated direction and send another ping in this calculated direction. This ping would be
received by the original transceiver that sent the first ping. Using the direction calculated
from the phase shift and the time of impact of each hydrophone, the transceiver could cal-
culate the direction, and using the time of flight (ToF), which is basically the time elapsed
between the sending of the first ping and the arrival of the second ping, the transceiver
can calculate a distance, via the speed of sound in water and the time of flight.

PrePoint = cLoT +Direction ·Distance (3.1)

Distance = Speed ∗ ToF (3.2)

Eq. 3.1 & 3.2: PrePoint is the calculated position that results from the current location of
the transceiver (cLoT), the direction of the beam and the calculated distance. The

distance is calculated using the speed of sound in the water and the time of flight (ToF)

In the following, we will discuss the challenges that need to be overcome, the various
implementation approaches and finally the results of the USBL.

3.1.1 Challenges

One of the main challenges for the USBL was the simulation of sound waves in the Unreal
Engine, there was already some research on this topic [28, 7]. These papers each presented
a way to simulate the sound waves in Unreal Engine, they use multiple rays and form them
into one bundled beam. The rays of this beam would update there position every frame.
Since a sound wave loses power over time as it travels through a medium that depends on
the density of this medium. In addition, the wave would lose some of its power and be
reflected when hitting surfaces or objects. To simulate these aspects of the sound wave,
we did it similarly to the paper "Development of a Simulation Environment for Evaluation
of a Forward Looking Sonar System for Small AUVs" from Morency et al.[28]. The paper
from Morency et al. [28] also introduced several parameters for the environment, which
we modified to fit our potential environment.

5

Another challenge would be to simulate the transceiver of the USBL, the paper "Deep-Sea
Model-Aided Navigation Accuracy for Autonomous Underwater Vehicles Using Online
Calibrated Dynamic Models" from Oertel et al. [32] presented a method how to simulate
such a USBL. Five hydrophones per transceiver are used in our simulation, and they are
similarly placed as described in the paper from Oertel et al. [32]. Each hydrophone
consists of a bounding box to detect the incoming rays. Each transceiver consists of five
hydrophones and is capable of emitting a bundled beam of rays in a specific direction. In
our simulation there are two transceivers, one for the AUV and one for the base station.

The final challenge is to balance the accuracy of the USBL with the performance of the
simulation, for example the number of rays per bundled beam, the size of the hydrophone
bounding boxes, the ping rate of the USBL et cetera.

Figure 3.1: Sketch of the communication of the USBL

3.1.2 Implementation

In the following section, we will first explain the current implementation and then discuss
other methods we have tried and explain why we do not use them.

6

3.1.2.1 Current Implementation of the transceiver

An Unreal Engine actor class named "EchoBeam" was created for the transceiver part
of the USBL, and another Unreal Engine actor class named "EchoRay" was created for
the rays. In our simulation, the base station served as the primary transmitter, which
means that the AUV is always waiting for rays. The AUV "EchoBeam" only transmit-
ted a beam upon receiving rays, although this behavior could be easily modified with the
"isAUV" boolean parameter. This Boolean parameter would deactivate the initial trans-
mission function and make the "EchoBeam" wait until it has received a few rays, per
default this boolean is deactivated at the base station and activated at the AUV.

The "EchoBeam" consists of a center point and five bounding boxes. The bounding boxes
are placed similarly as described in the paper "Deep-Sea Model-Aided Navigation Ac-
curacy for Autonomous Underwater Vehicles Using Online Calibrated Dynamic Model"
by David Oertel [32], as they represent the hydrophones. Each "EchoBeam" also calcu-
late the source level of the sound wave based on the values of a similiar USBL [14].The
bounding boxes are scaled at each frame based on the euclidean distance between the base
station and the AUV to reduce the number of rays and increase the overall performance
of the simulation.

The base station’s "EchoBeam" also has a timer that sends a beam/ping every ten sec-
onds, but this timer can be blocked if another sensor that uses this type of beam is cur-
rently running, for example the echo sounder (see 3.2), this is due to some performance
issues we had on our local computer. When the "EchoBeam" is allowed to send a beam,
the beam is constructed, for this the "EchoBeam" spawns multiple rays, with the spawn
points based on polar coordinates around the center point. The orientation of the rays
is also based on the type of "EchoBeam". The direction of the "EchoBeam" of the base
station is always upwards (0,0,1) and can be changed by rotating the "EchoBeam", and
the orientation of the AUV is based on the calculated orientation from the incoming rays.
If the "EchoBeam" of the base station has already predicted a direction, it automatically
turns in this direction and sends the next beam in this direction, but if it does not receive
a new direction in a certain time, it sends the next beam upwards again (0,0,1). The
"EchoBeam" of the base station is rotated by 180 degrees so that the original upward di-
rection (0,0,1) points downwards. The opening angle of the beam can be set via a lower
and upper boundary for the polar and azimuth angle. By default, the "EchoBeam" of the
base station has a lower polar boundary of 100 degrees and an upper boundary of -100
degrees, the AUV has a lower polar boundary of -60 degrees and an upper boundary of 60
degrees. The azimuth for both would be 360 degrees in the upper boundary and 0 in the
lower boundary. The spherical coordinates were then calculated based on the polar coor-
dinates. A vector was created based on these spherical coordinates, and this vector was
rotated according to the rotation matrix of the current rotation of the "EchoBeam". The
resulting vector served as the direction for the spawned ray. The "EchoBeam’s" also set
some parameters for the rays, e.g. the source level, which is called "TransmittedPower"
in our simulation or a reference of the EchoBeam that generated these rays, this is used
for collision detection in the rays.

In a real USBL, the hydrophones would typically wait until they were hit by the sound
wave. In our simulation, however, the opposite approach was taken, for reasons that will
be discussed later in section 3.1.4. In our simulation, the rays will do the collision detec-
tion and set some parameters in an array for the "EchoBeam". The "EchoBeam" receives

7

the time at which the rays collide with a bounding box, the impact point on the bounding
box, the name of the ray and the current endpoint of the ray, these values will be inserted
into a array, the structure of the array is the following Array<Tuple<String, Vector, float,
Vector>,...>. The rays will create a new tuple if they impact with the "EchoBeam" and
will insert it into this array as an entry. The "EchoBeam" waits until it has some values in
this array. After the first entry, the "EchoBeam" waits 1 second to receive further possible
rays.

After this second the "EchoBeam" starts calculating the predicted position, for this the
array is sorted by the ray names, so the array structure would look something like this
[Ray1[Ray1BB1Tupel, Ray1BB2Tupel, Ray1BB3Tupel, Ray1BB4Tupel,..], Ray2[...], ...].

This was performed to simulate a kind of phase shift, as afterward, a loop was made over
this array to sort each element (where the elements represented arrays of the rays, such as
[Ray1BB1Tupel, Ray1BB2Tupel,....]) based on the impact time. Subsequently, a direction
was calculated for each ray by extracting the maximum and minimum impact times and
computing an average impact point. This involved normalizing each impact point based
on the impact time and calculating the average impact point of a ray. Then, the direction
between the average impact point and the last impact point of each ray was calculated (See
equation 3.3 and 3.4). Once each ray had a direction, an average direction was calculated.
The ToF was determined as the smallest minimum impact time among all rays. Following
the acquisition of direction and ToF, a position was calculated. Additionally, zero mean
Gaussian white noise was added to a random axis of this position, and an error correction
was made for the size of bounding boxes by simply adding the X value of the bounding
box extent to the depth. The AUV’s "EchoBeam" then sent another beam in this direction,
and the base station created a spawn point at this position, using the AUV model with a
glowing red color as the spawn point. This spawning point does not decay, so it can be
used to indicate different positions or paths per cycle.

averageImpPntPerRay =
n∑

i=0

(ImpPnt(xi) · (1−
time(xi)−minTime

maxTime−minTime
)) (3.3)

rayDirection = averageImpPntPerRay−GetNormal(ImpPnt(maxTimeRay(x)))
(3.4)

Eq. 3.3 is the calculation of the average impact point per ray, where each normalized
impact point, on the bounding boxes, of a ray is summed, its bassically the normalized
sum. In Equation 3.4, the direction is calculated using the calculated average impact

point and the impact point on the bounding box with the maximal impact time.
In Eq. 3.3 x is the array per rays (for example x = [Ray1BB1Tupel, Ray1BB2Tupel,....]),
n is the size of this array, minTime and maxTime are the maximum and minimum impact

time values of x. maxTimeEntry(x) is the entry which has the maximum impact time

The decision was made to use a timer for each ray instead of a timer at the "EchoBeam"
because several problems have occurred with the other method, which is based on the
accuracy of time. The biggest problem was that the timer would start counting when
the beam was constructed, but then the timer was too early and started counting before
the first rays could move and setting the timer after the construction of the beam we had
the problem, that the timer was later than the timer of the rays and the real ToF, and

8

therefor inaccurate. This could possibly be fixed by creating a synchronized timer that
is synchronized with the rays, but for simplicity we decided to use the timer in the rays
because we use the timer anyway. Also the timer error was only in the millisecond range
at the "EchoBeam’s", but the error of the timer of the rays was just smaller and therefor
more accurate.

3.1.2.2 Current Implementation of the Rays

For the current implementation of the rays we used the paper "Development of a Simu-
lation Enviroment for Evaluation of a Forward Looking Sonar System for Small AUV’s"
from Morency et al. [28], this paper presented some formulas for the simulation of sonar
underwater. We use the formulas for the Sound Velocity, Attenuation, Volumen Backscat-
ter, Bottom Backscatter and the formula to calculate the Reflected Energy from a Object
based on the Target Strenght and the Reflected energy from the sea bottom via the Bottom
backscatter.

As values (see Table 3.1) for these formulas we use typical values from the arctis and
some other typical values for sound waves and transducers:

Table 3.1: The default ray parameter

Parameter Type Value
Temperatur -1.8 degree
Salinity 34.6 psu
Frequency 180 kHz
Transducers vertical length 1 cm
Transducers horizontal length 1 cm
Enceladus water depth 10 km

The attenuation and volume backscatter are calculated in each frame, along with the cur-
rent endpoint of the ray, which is essential for later collision detection. Additionally, a
timer is incremented each frame, which is used for calculating the ToF of the rays. Con-
sidering that the remaining power of the beam is influenced by attenuation and volume
backscatter, the current power is calculated for each frame (see equation 3.3) and checked
to see whether this power is greater than 0. If this is not the case, the ray is destroyed; if
this is the case, a collision check is carried out.

CurrentPower = OriginalPower − (Attenuation+ V olumenBackscatter) (3.5)

Eq. 3.5: The original power is the initial power of the ray, which is calculated by the
"EchoBeam’s", so the current power is the original power minus the attenuation and

backscatter of the volume.

For the collision detection, the "LineTraceSingleByChannel" function from the Unreal
Engine is used. This function receives a start and an end point as inputs and a collision
channel with which it should check whether the line would collide with something be-
tween the start and end point. The origin position of the ray served as the start point,
and the current end point is calculated per frame. "ECC_Visibility" was selected as the

9

collision channel, which includes all visible objects. Furthermore, the invisible bounding
boxes were configured to be included in this collision detection by setting their property
for this channel to true. It is possible to create your own collision channel, but for the sake
of simplicity the channel "ECC_Visibility" was chosen.

When the line trace collided with an object, the type of object is checked, whether it is
the environment or another "EchoBeam".

When the ray hits the seabed or the ice shelf, the ray would be reflected. For simplicity,
it is assumed that each surface acts like a perfect mirror. The reflected energy is calcu-
lated according to the formula for calculating reflected energy from the seabed via bottom
backscattering by Morency et al. [28], with "rock" selected as the bottom type, this for-
mula is used for both the seabed and the ice shelf. After calculating the reflected energy
and reflected direction, a new ray was created with its origin point set as the impact point.
In addition, a Boolean parameter is set to indicate whether the ray is reflected. This is
used for the echo sounder (see chapter 3.2), however, it could be considered that this
could possibly be deleted, as the incoming direction of the rays was checked anyway in
order to filter them out.

When the line trace function hit an "EchoBeam", the type of the "EchoBeam" was checked,
whether it is the the base station, the AUV, or the echo sounder (see chapter 3.2). After
that, the direction of the rays which impacted is checked. This is because hydrophones
work as directional microphones in the real world, and to simulate this aspect, the direc-
tion of the rays is checked, which can filter out some of the rays based on their direction.
For example, the AUV would be directed upwards so that rays coming from below can
be ignored. It is checked which bounding box was hit, also a tupel is created which is
used as an entry in the array that is used to calculate the position in the "EchoBeam". For
the next frame the line trace function will ignore the bounding box, which was previously
hit by the ray, such that the array contains only one hit per ray per bounding box. The
impact point was set as the hitpoint in the array, and the impact time was determined by
multiplying the rays timer by the time of the line trace function, which is an indicator at
which position the line trace function has hit the object, 0 would be the start and 1 the end-
point. In addition, a live timer is enabled for the rays, which is implemented to increase
the performance of the simulation, after the live timer expires, the ray is destroyed.

When neither the environment or another "EchoBeam" is hit but something else got hit,
the ray is reflected, and the function to calculate reflected energy from an object based
on target strength by Morency et al. [28] is used, as the target strength the value from a
sedimentary rock, which was found in China [39], is used. This value is chosen because
we assumed that we would probably come across some rock structures, like the black
smoker or something else.

For debugging purposes, a function named "UpdateRayLine" was also created, which
could display all rays in the world. However, this function is not activated by default.

3.1.3 Results

With the current implementation, it is possible to generate about 500 rays per beam, which
is due to the fact that "LineTraceSingleByChannel" uses the CPU instead of the GPU. The
accuracy depends on the angle between the AUV and the base station and the distance.
When the AUV is close to the base station, the position of the predicted point and the

10

AUV only differs by a few centimeters, but the largest errors occur when the AUV is
close to the edges of the beam and far away from the base station, fewer rays hit the
bounding boxes of the AUV and the size of the bounding boxes depends on the Euclidean
distance, so some rays hit the boundaries of the bounding boxes, which may be far from
the original AUV position, but this could easily be fixed with more computing power and
possibly collision detection via the GPU instead of the CPU, so more rays could be used
and the bounding boxes could be smaller. Also an error correction for the Z and Y axis
could be implemented, similar to the correction applied to the X axis (which is simply
calculating Distance + (BoxExtent.X · 2)), so this would be another approach to fix
this error.

Figure 3.2: The results obtained by the USBL, the left image represents one of the best
results, where the error is only a few centimeters, the middle image represents one of the
average errors, where the error is less than 1 meter, and the right image represents one of
the worst errors, where the error is about 4.5 meters. In our simulation, the AUV has a
length of 80 centimeters and the red line is the real travel path of the AUV. (for more

information about the path visualization see 6.4.1

The predicted point is then published via ROS2, for this the ROS parts of VaMEx [6]
are used, the TopicName is simply "USBL" and the frequency is set so that it roughly
corresponds to the ping rate, the position then published would be the position of the
AUV.

3.1.4 Other approaches

In this section we will discuss other approaches and explain why we do not use them.

3.1.4.1 Collision detection at the "EchoBeam’s"

Our first approach was to implement it the "right" way and not the opposite way as we
currently do. The idea was to check if a ray enters the bounding boxes, for this the timer
of the "EchoBeam" would be used for the ToF. One problem was that the Unreal Engine
is not able to recognize our rays, the Unreal Engine can only recognize if the rays has
a mesh or a bounding box, One solution would be to add a small bounding box at the
end of the rays. This approach had a big problem, because the bounding box is only
at the tip, and the speed of sound is quite high, so the end point of the ray would also
make large steps, so it could happen that the bounding box at the end point skips the
bounding boxes of the "EchoBeam", This would result in the ray passing the bounding
box but not being detected because the bounding box at the tip of the ray does not enter the
bounding box of the "EchoBeam". One solution to this problem would be to extend the
bounding box to cover the entire ray. That was done, but for some reason the performance

11

degraded significantly, the decision was made to do the collision detection in the rays. The
performance probably got so bad because the bounding boxes were constantly rotated,
scaled and shifted per frame.

3.1.4.2 Sphere trace and box trace instead of line trace

Another idea was to use sphere and box trace instead of line trace. The difference between
these different types of traces is that the Unreal Engine uses a sphere or a box for collision
detection instead of a single line. The idea was to close the empty space between the rays
with a box or a sphere. This also worked, but the problem was that the Unreal Engine
calculates the impact point differently, so the impact point was always wrong in our tests.
Due to deadlines it was decided to use line trace again and scale the bounding boxes of
the "EchoBeam", but more research could be done on this topic and it could lead to great
results.

3.1.4.3 Raypool

Another approach which was implemented is the raypool. The idea behind the raypool
is to improve the runtime of the USBL by having a pool of rays that can be used instead
of spawning new actors. Theoretically, it should be less time consuming to move an
actor instead of spawning one, so the idea was to implement a pool of rays that can be
reused. The raypool was implemented and contained around 5000 rays, these rays can be
reserved and released by other actors, so instead of spawning a ray in the "EchoBeam",
a ray would be reserved and then moved to the right position and rotated correctly and
instead of destroying the ray, the ray would simply be released. If there were no free rays
the raypool could also generate new rays if needed. The raypool works, but there was no
recognizable difference between the spawning and destroying approach. Since the pool
could spawn about 5000 rays at the start of the simulation, the simulation had to load a
lot in the beginning, which it didn’t do when the rays where destroyed and spawned, so
we decided not to use the raypool.

3.2 Echo sounder

The echo sounder is another sensor that is usually integrated into an AUV. It can be used
for automatic navigation or for mapping the seabed (bathymetry), which we do not do
in our simulation. An echo sounder consists of a transceiver that sends a sonar ping to
the seabed. These sound waves are reflected from the seabed and, ideally, received back
by the transceiver. Based on the time of flight (ToF) and the known speed of sound, the
height of the AUV to the seabed can be calculated.

12

Figure 3.3: Sketch of the function of an echo sounder: The AUV sends a ping that is
reflected from the seabed and the distance can be calculated based on the time of flight.

3.2.1 Implementation

The whole concept is similar to the USBL (see 3.1) as both sensors use sound waves, the
same functions/actors are used to simulate this sensor. The "EchoBeam" actor is also used
again, as it was used in the USBL (see 3.1) before, a variable called "isEchosounder" is
created and set to true in the "EchoBeam", this boolean lets the "EchoBeam" calculate
the depth instead of a position, as it happens in the USBL (see 3.1), and it also makes
the beam of the rays slightly smaller and reduces the number of rays per beam, also the
internal timer used to send the beams at an interval is also increased to every 15 seconds
instead of every 10 seconds like the USBL does (see 3.1). The echo sounder is also
blocked if the USBL is currently sending a ping. In addition, a boolean called "IsDepth"
is set to true as a variable for the rays which is used to check if a ray is coming from
the echo sounder, this is from a previous version and could probably be deleted anyway
because the USBL checks the direction anyway, the only change that would needed to be
made would be that the echo sounder would also check the direction, as it happens in the
USBL and probably also check whether the echo sounder is active.

The "EchoRay" is also the same as in the USBL (see 3.1) and the only change that is
made there is that the rays check if the hit actor is an echo sounder or not, for this the
boolean "isEchosounder" is checked of the hit actor and it is checked if the current ray is
sent from the seabed, both checks could be changed to a similar check as in the USBL
(see 3.1) where the direction of the ray is checked, but both methods have the same result
and are used to simulate the directional aspect of a directional hydrophone. Since the
different impact points were not relevant, the rays do not check whether they hit one of
the bounding boxes. Instead, the impact time, the impact position, the name of the ray
and the current endpoint of the ray were simply inserted into the array which is also used
in USBL for calculating the position (see 3.1).

13

Distance = ((minTime(X) · speed) + (BoxExtent.X) + noise) (3.6)

Eq. 3.6 Calculates the distance from the seabed to the AUV, minTime(X) returns the
minimum impact time in the array X, speed is the speed of sound in the water in cm,

BoxExtent.X is used for error correction to add the difference between the bounding box
border and the center of the "EchoBeam"

The "EchoBeam" for the echo sounder also waits until it has some entries in its ar-
ray, as is the case in the USBL (see 3.1). When the array has some entries, the ar-
ray is sorted. Also the smallest impact time is extracted, based on this impac time the
depth is calculated, in addition some noise is added to this depth. The calculated depth
is published via ROS2 for which the VaMEx parts are used, the TopicName is simply
"Echosounder_Distance_To_AUV", which essentially stands for the height of the AUV
to the seabed.

3.2.2 Results

The echo sounder returns good results (see figure 3.4) because we only care about the
depth, we don’t have errors like with the USBL (see 3.1). At the moment only the mini-
mum impact time of the rays is used, but this could be extended to take into account the
other impact times and the impact points of the rays on the bounding boxes, so it would
be possible to create a sensor for bathymetry, but for our purpose this sensor works very
well.

14

Figure 3.4: The results of the echo sounder, the green dot is the predicted position if the
current AUV position is used as the origin position and a downward direction (0,0,-1),

and the depth (in cm) of the echo sounder (The green dot is only used for debugging and
is not displayed in the simulation). The white circle is the ripple effect that we use to
visualize the "EchoBeam" (see chapter 6.4.2 for more information), and the green and

red lines are the path visualization (see chapter 3-Trajectory for more information).

3.3 Pressure/depth sensor

The pressure sensor is also a common sensor inAUVs and is used to determine the depth
of the AUV to the ice shelf. To do this, the pressure sensor measures the pressure and the
pressure increases with depth, the deeper I go, the higher the pressure, 1 bar corresponds
to 10 meters. For the sake of simplicity, the Z coordinate from the AUV in our world
is used, because the ice shelf is approximately at the zero point, so the Z coordinate
would represent the current depth. A Unreal Engine actor called "PressureSensor" is
implemented, which is attached to the AUV, in each frame the "PressureSensor" gets
the current position of the AUV and extracts the Z coordinate, in addition some noise is
added to this coordinate and publish this depth in meters via ROS2 with the TopicnName
"PressureSensorDepthInMeter", the VaMEx ros parts are used again as the publisher.

3.4 Laser

The laser is a sensor that can be used to measure the density of particles. It is attached
to the AUV and extends straight upwards. The features of the laser include visualiza-
tion, collision and backscattering of the laser when the laser collides with the surface of
other objects and the bins in the laser, which can be used to measure the density in dif-
ferent areas of the laser. A heatmap can be generated from the bins and their densities.
The development process and all features are described in more detail in the following

15

subsections.

3.4.1 Development process

The laser is a sensor which does not yet exist in the real AUV, but will be added in the
future. Accordingly, the development of the laser for the simulation was a very iterative
process in which the laser was continuously improved. Initially, the laser was presented
as something purely visual that could be used to point at objects in the level and where
particles are reflecting the light from the laser. This finally evolved into a laser with which
you can measure the density of particles in different areas of the laser and the particles
reflecting the light from the laser.

The first version of the laser is a purely visual laser, which was created using a Niagara
particle system. This consists of an emitter that uses a ribbon renderer to display the laser.
Another emitter is used to create the particles that should be visible within the laser. The
particles have a spawn location with the same dimensions as the emitter with the ribbon
renderer so that the particles are only visible within the laser and create the illusion that
the particles are visible because of the laser. The number of particles is increased based
on the depth of the AUV.

3.4.2 Implementation

The final blueprint of the laser can be found in the project under the following path:
Content/TripleSim/Laser/BP_Laser. The exact implementation and details can be looked
up in BP_Laser. The code and blueprints are commented.
The final laser was implemented in such a way that it has a maximum length and a current
length. If the laser does not collide with any object in the level, a spread value is added to
the current length in each frame until the current distance matches the maximum distance.
This simulates the spread of the laser. If the laser collides with an object, the spread value
is only added to the current distance until it matches the distance between the object
collided with and the origin of the laser. This was implemented with a line trace by
channel.

The collision of the laser with other objects and the backscattering of the laser from the hit
surface of an object were solved with a line trace by channel and a Niagara particle sys-
tem. The line trace by channel provides the position at which the laser hit the object. The
position can be used to calculate the current length of the laser, which is the distance be-
tween the origin of the laser and the previously determined position at which the collision
occurred. On the other hand, a Niagara particle system can be activated at the position,
which simulates the backscattering of the laser from the surface of the object that was hit.
The particle system uses real light sources, so that the particles from the backscattering
also generate real dynamic light, which illuminates the environment a little.
Figure 3.5 shows the laser colliding with an object and the previously mentioned backscat-
tering.

16

Figure 3.5: Laser colliding with an object

3.4.3 Laser bins

A laser bin always has a fixed size, including length, width and height. A bin can be
used to check how many particles or how high the density is inside a bin. Using the bins
and the densities, a heatmap can be created, which is explained in more detail in chapter
6.5.3.1.
In the first implementation of the bins, the values were stored in several arrays, e.g. some-
thing like the position and rotation of each bin. Although this version worked, it was not
as performant, as a new position had to be calculated for each bin in each frame and the
required resources also correlate with a higher number of bins. I have therefore decided to
implement a new one that runs more efficiently and makes it easier to visualize the bins.
You can find more information about the visualization of the laser and the bins in chapter
6.4.3.

In the final implementation, I use an actor that contains several collision boxes that repre-
sent the bins. Thus, the number of bins and the number of collision boxes are the same.
This means that only the position of each bin has to be calculated once at the beginning
and a certain offset value between the collision boxes. The dimensions of the collision
boxes, the offset value and the number of boxes are calculated using the laser properties.
It is important at this point that the entire functionality of the collision boxes is disabled
beforehand so that no unnecessary resources are used. We only use the advantage that the
collision boxes have a scale box extend, a position and that we can visualize the collision
boxes. The actor with the collision boxes is attached to the laser, which means that the
position and rotation of each bin no longer have to be calculated individually, as this is
automatically done by the attachment. This avoids the unnecessary calculations that had
to be done in every frame in the old implementation. Although the bins have a fixed po-
sition and size within the laser, these values must be adjusted for some bins if the laser
collides with another object.
To explain this simply, I will use example data at this point. Let’s assume that the laser
has a maximum length of 500cm, a width of 2cm and a height of 2 cm. We also assume
that we have previously defined 10 bins. This means that each bin has a length of 50cm
(500cm÷10bins), 2cm width and 2cm height. Let’s assume that the laser hits an object,
this will shorten the actual length of the laser, as the distance between the origin of the

17

laser and the hit spot is only 225cm. In this case, only 4.5 bins (225cm÷50cm) should be
visible. This means that bin 1,2,3,4 are completely visible with a length of 50cm, height
of 2cm and width of 2cm. Bin 5 is only 50% visible, i.e. it has a length of 25cm, width
of 2cm and height of 2cm. Therefore, the size of this bin must be adjusted and in this
context also the offset value, so that the bin still fits perfectly to the bin before it and no
gap is created between the bins. All bins after bin 5 (i.e. 6,7,8,9,10) have a size of 0. A
visualization of the scenario with the example data can be seen in Figure 3.5.
As soon as the laser no longer collides with any objects and has reached its maximum
length of 500cm again, all 10 bins get their full size again. To save resources, the bins
are not recalculated in every frame. They are only recalculated if the current length of
the laser from the last frame and the current length of the laser from the current frame are
different.

The sizes and positions of the collision boxes are used for the particle detection, since it
is possible to pass these values to the particles so they can check whether they are in the
bin. Further information on this is in chapter 3.4.5.

3.4.4 Change the properties of the laser

The most important variables and their current default values are listed below. These
variables can be changed to modify the properties of the laser.

• MaxDistance: Defines the maximum length that the laser can have. The current
default value is 500cm

• LaserWidth: Defines the width of the laser. The current default value is 1cm. It is
important to note that this is a scale box extend value. This means that the width
goes from one point, 1cm in the negative y-direction and 1cm in the positive y-
direction, so that the laser ends up with a total width of 2cm.

• LaserHeight: Defines the height of the laser. The current default value is 1cm. This
is also a scale box extend value, so that the laser ends up with a total height of 2cm.

• NumBins: Defines how many bins the laser has. The current default value is 40.

3.4.5 Particle detection

Various approaches were tried for particle detection, such as using a collision box or line
traces to detect whether a particle is in the laser. The problem with these approaches
was that the particles would need real meshes for each particle, because normal Niagara
sprites do not work with the overlapping event of collision boxes and cannot be hit by line
traces. With real meshes, only a few particles could be used, because meshes are much
more costly in terms of resources. I have therefore chosen a different method. The basic
idea of this method is that we give each particle the dimensions and rotation of the laser
and each particle itself checks whether it is currently inside the laser.

3.4.5.1 Particle detection implementation

The BP_Particle_Parent actor implements the basic functionality for all particle systems
that should interact with the laser. This means that other blueprints with particle systems
can inherit from this actor. This actor can be found under the path Content/TripleSim/-
Particle/BP_Particle_Parent. Exact implementation details can be looked up there, since

18

everything is commented.
Each Niagara particle system that should interact with the laser uses a self-written Niagara
scratchpad, which is called Overlapping Scratchpad. This scratchpad is used to check if a
particle is in the laser. The exact design of the Niagara particle system varies from parti-
cle system to particle system. In order to explain the basic implementation better, we will
assume a fictional particle system. The real particle systems will be explained in more
detail later in their respective chapters 4.4 and 4.5. A simplified overview of the particle
detection process is shown in figure 3.6.

Figure 3.6: Simplified overview of the particle detection

Niagara side
Since the communication between a Niagara system and a blueprint is not very intuitive,
I can recommend a video [16] to understand how this works.
In Niagara, it is possible to create user parameters that can have different data types. The
values of these user parameters can be changed via blueprints, even during runtime. This
is used to give the particle system a vector with the dimensions of the laser, i.e. a scale
box extend in x,y,z, a vector with the origin of the laser and the 3 rotation vectors of the
laser. These user parameters are updated by a blueprint in each frame.
Niagara offers the option of creating scratchpad modules. These are self-written Niagara
modules. They allow you to use something similar to blueprints, with the difference that
these scratchpads are not as powerful, e.g. no loops can be used. The scratchpads can
read various values from the particle system. For example, they can also read the data of
the previously mentioned user parameters.
Furthermore, Niagara particle systems have particle attributes. In contrast to the user

19

parameters, where the values apply to the entire particle system, particle attributes are in-
dividual for each particle. For example, there is an attribute that contains the position of a
particle. You can also create your own particle attributes. A self-created boolean particle
attribute with the name ExportData is used for the particle system.
The scratchpad uses the user parameter data of the laser and the particle attribute, which
provides us the position of the particle, to check whether the particle is within the laser.
If the particle is inside the laser, the self-created attribute ExportData is set to True. Ex-
portData is used at the end in the Export Particle Data to Blueprint module as the export
condition. This means that not all data from all particles has to be exported to the blueprint
in every frame. Instead, only the data of the particles that are actually in the laser in the
current frame are exported.
Exporting particle data is quite limited. Only 2 vectors and 1 float per particle can be
exported. The 2 vectors are named Position and Velocity, but can contain any vector.
However, they are listed in the blueprint with these names. The float has the name Size,
but can contain any float value. In our case, we export the world position, the velocity and
the sprite size of the particle.

Blueprint side
In BP_Particle_Parent, the callback handler of the Niagara system must be set so that the
Niagara system knows which blueprint it must communicate with. The Event Receive
Particle Data Interface is also implemented. This is called when particle data is exported
from the Niagara system. The particle data is only exported if the particle is located some-
where in the laser. Therefore, Event Receive Particle Data checks in which bin exactly the
particle is located. The check is first done in the blueprint and not directly in the scratch-
pad, because no loops can be used in scratchpads. To avoid having to check whether the
particle is in the bin for each individual bin, the distance between the origin of the laser
and the world position of the particle is calculated first. Based on this, the bin in which
the particle is located can be estimated. The system then checks whether the particle is
actually located in the previously estimated bin. If this is not the case, the two neighbour
bins are checked.
The total density of a particle system is stored in the corresponding blueprint in the inte-
ger variable NumParticleInsideLaser. The density of each individual bin from a particle
system is stored in the array of integers with the name NumParticlesInsideBin. The index
of the array represents the respective bin. This means NumParticlesInsideBin[0] contains
the density of bin 1, NumParticlesInsideBin[1] contains the density of bin 2 and so on.
BP_Particle_Parent also contains the integer variable SmokerDensityMultitply, the boolean
isBlackSmoker and the boolean CorrectTooHighVelocity. SmokerDensityMultitply de-
termines the value by which a particle is multiplied or how high the density of a particle
is. Let’s assume that SmokerDensityMultiply is set to 3 and there are 3 particles in the
laser, then the laser has a total density of 9 (3·3). By default, the value is 1 and is only
changed by black smoker blueprints. If new particle systems are developed in the future
that should interact with the laser, the value of SmokerDensityMultiply can be adjusted.
CorrectTooHighVelocity and isBlackSmoker are only used in the blueprint with a black
smoker particle system. This is therefore explained in more detail in the black smoker
chapter 4.4.

20

3.4.5.2 Total density of all particle systems

Since not only one particle system is used that interacts with the laser, such as the black
smoker or the particles around the AUV, the densities from the bins of all particle systems
must be added together. This is done in a new actor with the name BP_TotalParticle. This
actor can be found under the following path: Content/TripleSim/Particle/BP_TotalParticle.
Since the parent actor BP_Particle_Parent was created and all particle systems that inter-
act with the laser inherit from this class, we can simply search for and reference all actors
of type BP_Particle_Parent in the level in BP_TotalParticle. This allows us to sum up the
array with the densities of the bins of each actor in each frame. The same is done for total
particles of all actors. The result is the total density of each bin from all particle systems
that interact with the laser. Figure 3.6 contains a simple overview of the communication
and process between the Niagara system, BP_Particle_Parent and BP_TotalParticle.
The array of bins and the integer with the total density in BP_TotalParticle is used in the
laser UI (chapter 6.17) to visually display the densities of the bins and the total density.

3.4.6 Challenges

There were several challenges for the laser. As I couldn’t find anything similar to laser
simulation underwater or particle detection with a laser in Unreal Engine, I had to think
a lot about which solutions are available and which would be best for our project. This
means that I had to do a lot of experimenting and testing.
Since we have several sensors and many expensive particle systems running at the same
time, another challenge was to implement the laser and particle detection in such a way
that it requires as less computational effort as possible. This includes, for example, ex-
porting only the particle data of the particles that are actually in this frame in the laser or
that an estimation is made beforehand based on the distance from the origin of the laser
and the particle position, so that it is not necessary to check for each bin whether the
particle is located in this bin.

3.5 IMU

An IMU sensor, short for inertial measurement unit, is usually used to determine the posi-
tion of an object in space. Various parameters can be determined for this purpose, usually
these are acceleration, angular velocity and orientation. A combination of different mea-
suring devices such as accelerometers, gyroscopes and magnetometers is used for this.
The IMU usually measures values along the x, y and z axes and has installed three of the
corresponding components for this purpose. Usually, an IMU sensor measures orienta-
tion, angular velocity and acceleration along these three axes; it is also referred to as a 9
DoF IMU ([36]).

Since an implementation for an IMU sensor already exists in the VaMEx project, which
is the basis for this project, it was used largely unchanged. However, the functionality has
been slightly adjusted. Some components are not needed in this configuration, so they
have been removed. The following changes have been made:

• The simulation time stamp and the according utility class have been removed

• Commented out code has been removed

• The calculated sensor values are now passed to the IMUVisualizer (see 6.5.2)

21

The position data of the AUV’s unreal object is used to calculate the sensor values. These
are stored in the FTransform class. This class contains a variety of data that is sufficient to
calculate orientation, acceleration and angular velocity. The calculation is done in a tick
function; in addition to the FTransform, the delta time since the last tick is also required
as a parameter. This is done in the following function:
void UIMUSensor::PhysicsSubstep(float DeltaTime, float SimTime,

FTransform transform)

Since the values are to be passed to the ROS system, a corresponding message type is
used. There is a predefined message type sensor_msgs/msg/Imu Message for this purpose.
This has the following form:
std_msgs/Header header

geometry_msgs/Quaternion orientation
#float64[9] orientation_covariance # Row major about x, y, z axes

geometry_msgs/Vector3 angular_velocity
#float64[9] angular_velocity_covariance # Row major about x, y, z axes

geometry_msgs/Vector3 linear_acceleration
#float64[9] linear_acceleration_covariance # Row major x, y z

These values can then be used for visualization (see 6.5.2).

22

4. Environment
In the following we will discuss various features that we have implemented for the envi-
ronment. We will explain various sound & visualization effects, the black smoker, organic
particles around the AUV and we will discuss our terrain.

4.1 Light & Fog

During the course of the project, it was agreed that two different lighting modes should
be available for the scene: a realistic and a demo mode. Since it is assumed that the lakes
to be examined are located under thick layers of ice (see 4.7), the entire scene would be
without light, as no light would penetrate through such layers of ice. This view should be
recreated in the realistic lighting setup. However, since the demo is also an important part
of the project, a second mode is added in which ambient light is present to a certain extent
so that at least terrain features can be recognized. Nevertheless, the view should also be
limited in this setup so that the user cannot see through the entire scene.

To illuminate the scene, all objects used had to be adapted to the surroundings, as the ice
cover created a closed space. In most other Unreal projects, however, you have a direct
light source from above, usually sunlight. However, since the direct radiation is blocked
by the ice cover, various adjustments were made. Nevertheless, the scene used all the
objects that are typically used in Unreal to light a scene. These include DirectionalLight,
SkyAtmosphere, SkyLight, SkySphere and VolumetricCloud.

Figure 4.1: Scene without fog

In combination with the post process volume (see 4.6.2), a realistic view of an underwater
scene is created. Since the direct light source is above the ice layer, it must be set relatively
high in order to still generate global illumination. However, you can already see from the
image above that there are some problems with this setup. This makes it possible to look
through the entire scene, which seems very unrealistic for a 2.5km2 scene. Also, there
is no decreasing visibility with increasing depth, which would normally be expected.
Ultimately, this is problematic for the light source on the AUV in that no light cone is

23

visible. The lighting can only be recognized in this way if the corresponding material on
the AUV is activated (see 6.3.2).

To simulate these effects, an exceptional height fog was added. This component can be
used to overlay a fog over the entire scene. The fog has a starting point from which it
becomes denser as it gets deeper. This already simulates relatively well the effect that
there should be less visibility as depth increases. Various parameters can also be used to
define the extent to which the view should be restricted. In order to solve the problem of
the visible light cone, it is also necessary to activate the volumetric fog. This is the best
solution to the problem that we were able to find during the course of the project, but it
also brings with it some other problems (4.1.1). The result looks like this:

Figure 4.2: Scene with light fog

Figure 4.3: Scene with dense fog

4.1.1 Problems of the volumetric Fog

Due to some limitations with the volumetric fog, there is a ghost trail of light (see figure
4.4) when the light moves too fast. To fix this, the temporal reprojection was set to zero

24

with the command "r.VolumetricFog.TemporalReprojection 0", which gets executed every
time the simulations starts, for that the AUV blueprint execute this command at the begin
play function. This is a known limitation of the Unreal engine, which offers no solution
other than disabling the temporal reprojection.

Figure 4.4: At the left image the temporal reprojection is activated and at the right image
the temporal reprojection is deactivated

4.1.2 Light at the AUV

A spotlight is added to the AUV, which is directed upwards and is intended to illuminate
a camera that is also directed upwards. Two modes for the light were implemented, a
manual mode and an automatic mode. The user can switch between these two modes via
the control panel in the user interface. In manual mode the user can turn the light on or off
via the UI and in automatic mode the user can change the off and on time (in milliseconds)
of the light so that the light flickers a little, this should simulate the exposure time for the
camera on the AUV, in a real scenario the light would also turn on or off a certain time.
Also a spotlight on the top of the AUV was installed, which is unrealistic, but we included
it anyway for visualization purposes, this light is only activated in the demo environment
mode (see section 4.1)

4.2 Ice Shapes

Saturn’s large moon Enceladus is one of the most enigmatic worlds in our solar system.
Enceladus harbors a subsurface ocean of liquid water. Given our limited knowledge of
Enceladus, we can liken its environment to Antarctica on Earth. I have prepared the ice
shapes in different variations and as well as iceberg shapes. According to our weekly
meeting with our supervisors, these got modified and finalized. I have prepared the model
using blender.

25

Figure 4.5: ice berg 1

Figure 4.6: ice berg 2

26

Figure 4.7: ice wall

Figure 4.8: ice surface

Finally, in our main scene, it is not so visible because of volumetric fog. We had to
use these to make the environment real and in real scenarios there will be no light and
that’s why in our project scene as well, it is not much visible. To optimize and avoid
performance issues, only few shapes(4.8) are added.

4.3 SFX

To enhance the immersion in the simulation, some sound effects are added to our environ-
ment. Some of the sound effects may not be exactly suitable for a real-life scenario, but
for non-experts in this field they might fit. MetaSounds from the Unreal Engine is used,
MetaSounds is used instead of the normal sound system from Unreal Engine because it
is easier, and therefore sounds better, to customize the sound files. For the whole demo
level, an underwater ambience sound clip [34] is added and a snapping shrimps sound

27

[23] is added, these sound effects can be heard throughout the level and always have the
same volume, these sounds are not changed via MetaSounds.

Also a sound effect for the black smoker (4.4) is added, this sound is a recorded sound
clip from a real black smoker [9]. The pitch is not adjusted and the black smoker sound
is always on. An audio attenuation with the Unreal Engine audio attenuation module is
created. This attenuation ensures that the volume of the sound file is loudest in the center
of the attenuations center, which is placed directly on the black smoker, and that it gets
quieter the further you move away from the center.

A sonar ping sound [33] is also added, this sound will be triggered when the USBL (3.1)
sends a ping. To do this, the AUV checks whether its USBL part sends a ping, and if so,
it plays the sound effect. The sound effect also has sound attenuation and is attached to
the AUV so that it can only be heard in the vicinity of the AUV.

The last sound effect is the engine sounds, for the sound clip the Marum provided us
an audio clip of the IMGAM AUV’s engine [25]. The pitch of this file is changed via
MetaSounds, the pitch changes depending on the current speed of the AUV. To do this,
the current speed is calculated. The current speed is then set as the pitch parameter. The
speed is mapped (clamped) to a specific range and bounded by maximum and minimum
values to prevent the audio file from producing any noisy sounds.

The user can activate or deactivate all sounds via the user interface; there is a checkbox
under the controls for this purpose; all sounds are deactivated by default.

4.4 Black smoker

Black smokers are hydrothermal vents on the seabed. During the process, cold seawater
enters the ground where it is heated by geothermal activity, for example. During this
process, minerals and metals are dissolved from the ground. As soon as a certain heat is
reached, the hot water with the minerals and metals is released from the ground back into
the cold seawater. Black smokers form at the exit points, with the structures consisting of
metal sulfides. The "black smoke" that comes out of these structures consists of hot water
with very fine particles of minerals and metal sulfides [26].

4.4.1 Black smoker model

There were two 3D models to choose from for the exit point of the black smoker. One
was provided by Marum [24] and the other one is from Sketchfab [21].
The model from Marum was not a complete 3D model, it was rather a reconstruction of
the surface of a black smoker, from one perspective. In addition, the texturing was broken
in some places, so that some parts had no texture. I reworked the texture of the model
with Blender so that the whole model ended up with a realistic material. I solved the other
problem by cutting the model into several parts. I arranged these different parts in such
a way that the result was a complete 3D model that looks correct from every perspective
and not just from one particular perspective.
The Sketchfab model also had problems that had to be fixed. Firstly, the model had no
texture or material and secondly, the UV mapping of the model was broken. I found a
suitable texture in Unreal Engine via the Quixel Bridge [35]. I created a material using
this texture and created my own normal map with GIMP to display the depths of the
material. Due to the broken UV mapping, the texture was displayed very strangely in

28

some places, so that lines were sometimes very stretched and looked completely wrong. I
was able to fix the UV mapping using Blender so that the material is displayed correctly
without any graphical errors.
In the end, we decided to use the 3D model from Sketchfab because it looks and fits better
into our environment.

4.4.2 Black smoker plume

This subchapter describes the plume of the black smoker. It explains why I chose which
technology, the development process and the most important properties of the plume.

4.4.2.1 Niagara vs. Niagara Fluids

For the visualization of the black smoker’s plume I used the Niagara particle system from
Unreal Engine. Here I had to decide whether to use the normal Niagara, which mainly
works with 2D sprites that are always rotated to the camera, or the beta plugin Niagara
Fluids. Arguments for using normal Niagara are that it doesn’t need so many resources
and that there are many tutorials on the internet. Arguments against normal Niagara are
that it is difficult or impossible to simulate smoke realistically, such as collision with the
smoke or illumination of the smoke.
The arguments for Niagara Fluids are that things like collision, illumination of the smoke
or the movement behavior of the smoke can be simulated more realistically. One argument
against Niagara Fluids is that it is still a relatively new beta plugin and is therefore not as
mature or stable. Accordingly, there is less learning material on the internet. Furthermore,
Niagara Fluid particle systems are more expensive in terms of the resources.
In the end, I chose Niagara Fluids because this project requires a simulation that is as
realistic as possible.

4.4.2.2 Development process

I created many plumes during the project, improved them and always adapted them ac-
cording to the wishes of the project managers. A small progression of the plume can be
seen in figure 4.9.

Figure 4.9: Black smoker plume progression

Since it is not possible to get the exact position of each smoke particle in Niagara Fluids, I
used a combination of Niagara Fluids to visualize the plume and normal Niagara to detect
the particles. I gave the particles from the normal Niagara the same shape or path as the
smoke from Niagara Fluids. This was done using scratchpad modules. The particles from

29

the normal Niagara are transparent so that they are not visible for the user and we only
take advantage of the fact that it is possible to detect them with the laser. In the following,
I am talking about real particles if they are the particles from the normal Niagara that can
be detected by the laser. Chapter 3.4.5 on particle detection explains how the particles are
implemented so that they can be detected by the laser. Accordingly, these would also be
the real particles.

Two plumes have been chosen for the shortlist. The first plume was implemented by cre-
ating a Niagara particle system with an emitter. This emitter generates the real particles
and also implements the Niagara side for particle detection, which was discussed in chap-
ter 3.6. The emitter spawns the particles in a sphere at the exit point of the black smoker
model. The particles receive a cone velocity and by using a self-written scratchpad, the
behavior is defined that the particles bend over time in the ocean current direction and
have approximately the shape of a real black smoker plume. In addition, another Niagara
Fluids emitter was created to generate the smoke. This emitter uses every real particle and
emits smoke from them. Properties such as density, lifetime and velocity of the Niagara
Fluids emitter are constant. This ensures a 1-to-1 correspondence between real particles
which can be detected by the laser and the smoke. Figure 4.10 attempts to visualize this
1-to-1 correspondence between real particles and smoke. In the figure, the real particles
are white to show the correspondence. These particles are normally transparent.
Although this plume has the advantage that it has a 1-to-1 correspondence, the disadvan-
tage is that it does not look as good as the other version. By ensuring the correspondence,
the smoke cannot be diluted over time and spread slowly on the horizontal plane. That’s
why our group chose the second version as the final plume.

Figure 4.10: Black smoker plume 1-to-1 correspondence between real particles and
smoke

30

Figure 4.11: Overview of the Niagara particle system of the black smoker

4.4.2.3 Final Plume

The particle system for the final plume is located in Unreal Engine at the following path:
Content/TripleSim/VFX/Niagara/HydrothermalVents/BuoyantPlume_v1
The final plume consists of two parts. The first part is responsible for the lower part of the
plume, i.e. the vertical smoke, and the other part is responsible for the upper part, i.e. the
horizontal spread of the smoke. The figure 4.11 shows an overview of the two parts and
their emitters in Niagara. One part consists of a normal Niagara emitter and a Niagara
Fluids emitter. For a better understanding, I will list the names of the emitters, explain
their functionality and most important modules.
The lower part of the plume consists of a normal Niagara emitter with the name Particle-
SourceEmitterLow and a Niagara Fluids emitter with the name Grid3D_Gas_Master_Emit-
terLow. ParticleSourceEmitterLow spawns particles in a cone, which have a velocity in
the z-direction. The particles have a very short lifetime and are transparent so that they
cannot be seen. In addition, the Set Fluid Source Attributes module is used so that the
smoke from Grid3D_Gas_Master_EmitterLow can emit from the particles of Particle-
SourceEmitterLow.
Grid3D_Gas_Master_EmitterLow uses a large number of standard modules that are re-
quired to generate the smoke. The easiest way to change the adjustable properties is the
Emitter Summary module. All adjustable properties of the modules are listed there and
separated into categories. In the following, I explain what I consider to be the most impor-
tant categories and adjustable properties for the visualization of the plume. Figure 4.11
shows what is meant by category and property and where the Emitter Summary module
can be found.
The World Size property is located in the Simulation category, where the size of the simu-
lation area can be defined. It is important to note that the required resources increase with
a bigger World Size. The Resolution Max Axis and Pressure Solve Iterations properties
are responsible for the visual quality of the simulation. Higher values result in a more
detailed and accurate smoke. However, this also increases the required resources.
The Wind category contains the Calculate Wind, Wind Direction and Wind Magnitude
properties. This category is used to implement the bending of the plume in the ocean cur-
rent direction. Suitable values must be used for the properties so that the bending looks
as realistic as possible. I used a sphere as a collider so that the plume does not break out
directly at the side, as with a real plume of a black smoker. I explain this in more detail in
chapter 4.4.3 on the final blueprint for the black smoker.

31

Particle Source specifies that the particles from ParticleSourceEmitterLow are used as
emitters for the smoke. The most important properties are Density Scale, Density Radius
Scale, Velocity Scale and Velocity Radius Scale. These properties must be adjusted with
suitable values so that there is a high density and velocity at the beginning, which decrease
and spread over time.
In the Attributes category, the Dissipation Rate Density, Substraction Rate Density, Sub-
straction Amount Density and Attribute Resolution Multiplier properties are the most
important. These determine how quickly and how much of the smoke disappears over
time.
The color of the plume can be specified in the Render Color category. In the Collide
Against category, the Use Mesh Collisions property is the most important so that the
smoke can interact or collide with other objects. It is essential that all actors in the level
that should interact with the smoke have the "Collider" tag. This allows the Niagara par-
ticle system to know which meshes it needs to interact with.

The upper part of the plume consists of the normal Niagara emitter ParticleSourceEmitter-
Top and the Niagara Fluids emitter Grid3D_Gas_Master_EmitterTop. ParticleSourceEmit-
terTop is identical to ParticleSourceEmitterLow, except that the values of the properties
are different and the Curl Noise Force Axis Scale module is also used. This module en-
sures that the particles have a certain amount of noise and that the smoke spreads slowly
on the horizontal plane and dilutes. Emitter Grid3D_Gas_Master_EmitterTop is also iden-
tical to Grid3D_Gas_Master_EmitterLow, only the values of the properties have been
adjusted accordingly.

The particle detection with the real particles is implemented in another particle system.
It can be accessed under the following path: Content/TripleSim/VFX/Niagara/Particles/-
ParticleInsideSmoker_v2
This particle system attempts to approximate the shape of the particle system with the
smoke. Therefore, there is no direct 1-to-1 correspondence between smoke and real par-
ticles. The particle system with the real particles uses the Curl Noise Force module. This
provides a certain amount of noise to ensure that not all particles behave exactly the same
in terms of speed. As a result, each particle moves slightly differently. The Drag module
is also used to slow down the particles over time. 10,000 particles are spawned per second,
with each particle having a lifespan of 6 seconds. This means that there are a maximum
of 60,000 real particles in the entire plume. The particles from the black smoker are mul-
tiplied by a higher density multiplier (SmokerDensityMultiply) during particle detection
with the laser. More on this in the subchapter 4.4.4, which deals with the particle detec-
tion of the real particles from the black smoker.
The particle system with the real particles is implemented as described in chapter 3.4.5.
The figure 4.12 shows the final plume on the left side, in which the real particles have
been made visible. On the right side is the complete black smoker as it can be seen in the
level.

32

Figure 4.12: Black smoker where the real particles are visible vs. final black smoker

Figure 4.13: Black smoker with visible sphere vs. black smoker without sphere

4.4.3 Black smoker blueprint

All components required for the black smoker have been combined in a blueprint. This
can be dragged into any level and can be found under the following path: Content/TripleS-
im/HydrothermalVents/BP_BlackSmoker_v1
The black smoker blueprint inherits from BP_Particle_Parent so that it has the basic func-
tionalities for particle detection (see chapter 3.4.5). The black smoker blueprint consists
of the 3D model, the particle system with the smoke or visual plume, a sphere that serves
as a collider, the particle system with the real particles that can be detected by the laser
and two collision boxes. The sphere is used to prevent the smoke from directly breaking
out at the side. The sphere is removed from the rendering so that it is not visible to the
user. Figure 4.13 shows the black smoker on the left, where the sphere has not been re-
moved from the rendering to show how it blocks the smoke. On the right side is the black
smoker without the sphere (where the smoke breaks out directly at the side).
The two collision boxes are used as a replacement for the ocean current modifiers (see
chapter 6.7.1) at the exit point of the black smoker. This is done so that the particles

33

around the AUV can interact correctly with the lower part of the plume. These colli-
sion boxes are used exclusively by the particles around the AUV. This is why this part is
closely related to chapter 4.5.1.5 and is explained in more detail there.
The plume of the black smoker consists of 60,000 real particles. Due to performance rea-
sons, I decided to not use more real particles. Instead, I multiply the density of each real
particle from the black smoker that was detected by the laser by the value in the Smok-
erDensityMultiply variable. This value is set to 10 for the black smoker blueprint. Let’s
assume that the laser could detect all real particles of the plume at the same time. Then
the total density would be 600,000 (60,000·10). The value in SmokerDensityMultiply can
be changed as required and, for example, reset to the default value of 1.
However, the laser is not so large that it can cover the entire plume at once. If you go
over the opening of the plume with the current size of the laser, around 400 particles are
measured. This is also shown in Figure 4.15, where you can also see how the plume is
illuminated by the AUV.

4.4.4 Particle detection for real particles from the black smoker

The real particles from the black smoker have a high velocity at the exit point (partially
up to 320). The velocity describes how much distance (in cm) the particle has traveled in
one second. If the particles are too fast, the laser may not be able to detect some of them.
For example, let’s assume that a particle travels 320cm in one second and our system is
running at 30 FPS. Then a particle travels 10.67cm (320÷30) per frame. As the laser
has a width of only 2 cm, the distance traveled per frame is greater than the width of the
laser. As a result, the laser may not detect this particle. It is true that particles that are too
fast could not be detected in real life too, but this makes no sense with the real particles
from the black smoker. I only use 60,000 particles anyway for performance reasons and
multiply the density by the SmokerDensityMultiply variable to suggest that there are more
particles. That’s why I decided to fix this error for the real particles from the black smoker.
For the other particle systems, which are not related to the black smoker, this error is not
fixed, as it is a natural phenomenon.
There were two possible solutions to fix the error. In the first solution, a mesh was created
that has the same size and position as the laser. For particle detection, the Collision
module was used in the Niagara system instead of the self-written scratchpad (covered in
chapter 3.4.5). The Collision module offers different methods to check whether a particle
has collided. The most precise method is ray tracing for the particles. Ray tracing allows
you to specify which meshes the particle should collide with. The problem is that ray
tracing only works correctly with CPU particle systems. However, CPU particle systems
can only display a few thousand particles. GPU particle systems have recently added a
ray tracing function, but this is declared by Unreal as "experimental" and "is in heavy
development". In addition, GPU ray tracing is only possible with DirectX12. Therefore,
the GPU depth buffer was used as collision method. This method uses the depth buffer
in the level to calculate the collision. The image of the camera is displayed with black to
white color tones to calculate how close an object is to the camera. Although the depth
buffer method is a very cheap way of calculating collisions for the particles, it is not very
accurate. This means that the collision can be different depending on the perspective of
the camera. In addition, the ratio of pixel density and particle size plays an important role.
If, for example, the camera is not pointed at the particle system, no collision is detected.
Another problem is that the depth buffer method does not allow you to specify that the

34

particles should only collide with certain meshes. I have developed a workaround for this.
The custom depth buffer can be used for the GPU depth buffer method. To ensure that the
particles only collide with the mesh in the laser, the mesh is removed from the main depth
buffer and added to the custom depth buffer as the only object. This makes it possible for
the particles to collide only with this single mesh, even with the depth buffer method. The
export condition for the particle data is the particle attribute, which indicates whether a
particle has collided.

Since this solution to fix the error is not very accurate, I decided to use the second solution.
This solution uses the self-written scratchpad Overlapping Scratchpad as described in
chapter 3.4.5. However, this scratchpad is modified a little. For each particle, the speed
of the particle is checked. If it is so fast that the particle could be missed by the laser, the
laser is increased for this one particle. To do this, a quaternion is made from the direction
vectors of the laser. The velocity vector of the particle is multiplied by this quaternion.
I call this vector newVector. Next, it is calculated for x,y,z whether the laser must be
increased in one of these directions so that the laser can detect the particle. This is done
with the following formula for the x-direction:
|x value of newVelocity| ÷ Framerate − Laser length − Sprite size
If the result is > 0, the laser must be increased by this value in the x-direction. If the result
is <= 0, the laser does not need to be increased in the x-direction. This is done identically
for the y-direction (width of the laser) and z-direction (height of the laser). Let’s assume
that the dimensions of the laser are x=200cm, y=2cm, z=2cm; framerate=30; particle
sprite size=2; newVelocity=200. Then the calculation for increasing the laser in the y-
direction would be: |200| ÷ 30− 2− 2 = 2.67
This means that the laser must be increased by 2.67cm in the y-direction for this one
particle. This calculates the laser dimensions for each particle individually, based on how
fast the particle is. If the particle would not cause an error, then the laser dimension is not
changed. However, it is important to note that this is only done for the real particles of
the black smoker.

4.4.5 Collision and illumination of the plume

The plume of the black smoker has collision. However, this is not automatically active for
all meshes. For an object to be able to collide with the black smoker’s plume, the object
must have the Collider tag. This lets the plume know which objects it should interact
with. Figure 4.14 shows a sphere colliding with or blocking the smoke. The collider tag
can be set in the details area of the respective object. The exact location is also shown in
figure 4.14.
The plume of the black smoker can be illuminated by all light sources as standard. This
also includes the spotlight that is attached to the AUV. Figure 4.15 shows the light from
the AUV illuminating the plume of the black smoker.

35

Figure 4.14: Sphere that blocks the plume and Collider tag

Figure 4.15: Density inside plume and illumination of the plume

4.4.6 Challenges

As there are unfortunately no digital media students in our project, the biggest challenge
for me was to take on the tasks of a digital media student. This includes creating normal
maps, textures, materials, sprites, working with Blender, particle systems i.e. the visual
part of it and 3D modeling. Before the project, I had minimal to no experience in these
areas.
Another challenge was that Niagara Fluids simulations only work with GPU particle sys-
tems. Compared to CPU systems, GPU systems can only take place in a limited area.
This means that I was much more limited, because I had to define the area in which the
simulation would take place beforehand. Here it was important to find a good balance
between performance and the size of the area.
The next challenge was that a lot of particles were needed for the real particles in the
plume of the black smoker. Here I used the workaround that there is a maximum of
60,000 real particles, but these are multiplied by a higher SmokerDensityMultiply.
Since Niagara Fluids is still a beta plugin, it is not always stable. Especially while cre-
ating the plume, my Unreal Engine crashed very often. During these crashes, even the
things that were actually saved by the auto save function were not saved. Therefore, when
working with Niagara Fluids, you should save manually as often as possible. As soon as

36

the creation of a Niagara Fluids particle system is finished, there are no more problems
with crashes. The particle system or the corresponding blueprint can be dragged into any
level and will not crash. In addition, Unreal Engine crashed a lot when I tried to start our
level. I was the only one in the group who had this problem. After changing my RHI from
Vulkan to DirectX12 in the project settings, I had no more crashes.

4.4.7 Remarks

The black smoker chapter is closely related to chapter 4.5, which deals with the particles
around the AUV. For example, the number of particles around the AUV is increased based
on how close the AUV is to the black smoker. The collision boxes in the black smoker
blueprint also have an important role there. These replace the ocean current modifiers of
the black smoker for the particles around the AUV, so this is explained in chapter 4.5.1.5.
The chapter on future works of the particles around the AUV is also related to the future
works of the black smoker. To avoid having to describe things twice, I will only describe
it once in chapter 4.5.5.

4.5 Particles around the AUV

Enceladus is still very unexplored, so we do not know what kind of particles and how
many particles there are. For the simulation, we assume that there are mainly organic
particles in the water. Since the area in which our simulation takes place is very large,
not enough particles can be placed everywhere. That’s why I decided to place them in a
limited area around the AUV.
The basic idea is that the particle system with the organic particles that are supposed to
be around the AUV is attached to the AUV. Since the cameras are only in the area close
to the AUV, the user does not even notice that the particles are only in a certain area.
For each particle, the ocean current vector is added to the velocity vector of the particle.
This causes the particles around the AUV to move in the ocean current direction (see
chapter 6.7.1). Additionally, the particles have a noise. This ensures that each particle
has a small random standard velocity so that it looks as if the particles are floating in the
water. Otherwise, the particles would be completely static in the water if there were no
ocean currents and this would look very unrealistic.
I have created several sprites for the organic particles myself. When the particle system
spawns, each particle is assigned a random sprite. Furthermore, the particles around the
AUV interact with the ocean current modifier replacements from the black smoker. If a
particle enters one of the two ocean current modifier replacements, it is pushed upwards.

4.5.1 Implementation

The exact implementation can be looked up in the particle system Content/TripleSim/VFX/-
Niagara/Particles/ParticleAroundAUV and the corresponding blueprint Content/TripleS-
im/Particle/BP_ParticleAroundAUV. Everything is commented. The basic implementa-
tion of the particles around the AUV is as described in chapter 3.4.5 so that these particles
can be detected by the laser.

4.5.1.1 Box containing the particles

To define the area in which the particles should be around the AUV, a user parameter of
type vector was created. This specifies the length, width and height of the box in which

37

the particles should be located. This user parameter is used to spawn all particles within
this box. It is also used in the scratchpad Check if Outside Scratchpad. This checks
whether the particle is still inside the box. If the particle is no longer inside the box, it
will be teleported to a random position inside the box. Let’s assume that the dimensions
of the box are x=1000, y=1000, z=1000 and the AUV is exactly in the middle of this box.
Then there are particles up to 500cm above, below, in front, behind, to the left and to the
right of the AUV.

4.5.1.2 Movement of the particles

Since the particle system is attached to the AUV, the problem occurs that the particles
also moves with the AUV. To solve this problem, I calculate in the AUV blueprint how
many cm the AUV has moved in each direction. I always calculate this for one frame,
i.e. the distance in x, y and z direction that was covered between the last frame and the
current frame. In this context, it is also determined whether the AUV has moved in the
respective positive or negative direction. Based on this, the value is determined that each
particle must have added to its current position so that it does not move with the AUV.
This value is sent from the AUV blueprint to the particle system and is added to each
particle in the scratchpad Subtract AUVDistance Traveled Scratchpad. This allows the
AUV to move forward while the particles remain at the same position. The rotation of the
particle system is reset to 0 in each frame in the AUV blueprint so that the particle system
does not automatically rotate when the AUV rotates.
To avoid the particles from being completely static, the Curls Noise Force module is used
to give each particle a small random velocity. This makes the particles less static if there
are no ocean currents.
The vector from the ocean currents is added to each particle via the self-created Parti-
cleVelocity user parameter. BP_ParticleAroundAUV gets the vector of the ocean currents
and then sets the ocean current vector in the user parameter ParticleVelocity. ParticleVel-
ocity is then used as input for the Add Velocity and Linear Force modules in the particle
system. As a result, each particle ends up with its small standard velocity due to the Curl
Noise Force and the ocean current vector is also added to this velocity.

4.5.1.3 Particle sprites

The material that the particles use as a sprite can be found under the following path:
Content/TripleSim/Assets/Materials/Particles/M_OrganicParticle.
In order to have different shapes and colors for the organic particles, I work with two
switch nodes in the material. The first switch determines the color of the particle and the
second switch determines the shape of the particle. Mixed textures and simple colors are
used for the color of the material. The colors have darker green, brown and gray tones.
I generated the textures for the color using Filter Forge [17, 18]. The second switch is
responsible for the shape and the alpha value of the particle. I found suitable textures for
this from various sources [1, 20, 40] on the internet. Both switches have 10 inputs, so
there are 10 different organic particle sprites at the end.
To assign a random shape and color for a sprite, a random number between 0 and 9
must be generated. This allows a random color and a random shape to be selected in the
material via the switches. The Dynamic Material Parameters module must be used in the
particle system so that a random number can be generated and passed to the material.
This is therefore responsible for the communication between the particle system and the
material. Figure 4.16 shows a few of the different sprites for the organic particles around
the AUV.

38

Figure 4.16: Sprites of the organic particles

4.5.1.4 Illumination of the particles

In the particle system, the Overlapping Scratchpad is used as described in chapter 3.4.5.
This was extended for the particles around the AUV so that the particles reflect the light
when the laser hits them. The standard Overlapping Scratchpad checks in each frame
whether the particle is inside the laser. This has been extended so that the particles light
up in the color of the laser if they are inside the laser. Underwater lasers often use a green
color with a wavelength between 510nm and 530nm [38]. That is why our laser uses
a green color with a wavelength of 520nm. The emissive color in the particle material
makes the particles glow. To change the emissive color during runtime, I use the color
and the alpha value of the particle color from the particle system. The color for the glow
has the same color as the laser to suggest that the particles reflect the light from the laser.
In the particle system, the alpha value of the particle color is set to 0 in the Overlapping
Scratchpad if the particle is not in the laser. If it is in the laser, the alpha value is in-
creased again. In the material, the particle color and the sprite size of a particle can be
accessed from the Niagara system. There, the sprite size of the particle is multiplied by
the StrengthEmissiveColor parameter. This value determines how strongly the particles
reflect the light. The strength of the reflection is therefore also related to the size of the
particle. StrengthEmissiveColor can be changed as required if the particles should reflect
more or less in the future. The calculated value is multiplied by the alpha value of the
particle color and the result is transferred as the emissive color. As a result, every particle
that is hit by the laser reflects the light of the laser.
The particles around the AUV are also visible through other light sources, such as direc-
tional light or skylight. The AUV also has a normal light (spotlight), which also makes the
particles visible. In the realistic mode of the simulation, there are no light sources other
than the light from the AUV. This ensures that only the particles that are in the cone of the
AUV light are visible, all other particles that are not in the cone are not visible. This also
makes it possible to see the light cone of the light on the AUV. In the other mode of the
simulation is a directional light and a skylight. This mode is intended to allow the user to
see more of the surroundings by providing more lighting and a better view. This makes
it easier to see the black smokers, for example. In this mode, all particles are also illumi-
nated by the directional light and the sky light. This means that all particles around the
AUV are always visible. Figure 4.17 shows on the left side an image where only the light
from the AUV is activated and the directional light and skylight are deactivated. It is easy
to see that only the particles that are illuminated by the cone are visible. Furthermore, the
laser is activated and there are a few particles in the laser that reflect the laser. On the right

39

side is an image in which the directional light and skylight are activated. There you can
clearly see how all the particles are visible because they are illuminated by the directional
light and skylight. The laser is also activated there and particles reflect the light of it.

Figure 4.17: Particles around the AUV illuminated only by the AUV light vs.
illuminated by directional light and skylight

4.5.1.5 Ocean current modifier replacement

This part is related to chapter 4.4. It would be an advantage if this was read beforehand.
Black smokers use current modifiers (see chapter 6.7.1) at the exit point of the smoke, as
the smoke first flows upwards and then over time in the normal ocean current direction.
An array with all ocean current modifiers would have to be sent to the particle system,
where a loop would have to be used to check whether and in which ocean current mod-
ifier a particle is located. The vector of the ocean current modifier could then be added
to the velocity of the particle. The problem is that no loops can be used in the Niagara
scratchpads. Accordingly, it is not possible to iterate through the ocean current modifier
array. Theoretically, it would be possible to use loops with a workaround by using cus-
tom HLSL (High Level Shading Language) code and looping there. However, Niagara
and the custom HLSL node explicitly state that no loops or complex if nesting should be
used, as otherwise the particle system will become very slow and the performance will be
extremely poor. I have therefore decided on a workaround for the ocean current modifier,
which I call ocean current modifier replacement.
Each black smoker has exactly two collision boxes to replace the ocean current modifiers.
These collision boxes have been placed in the black smoker so that they cover the lower
part of the plume where the normal ocean current modifiers would be. The dimensions of
the two collision boxes are sent to the Niagara system via user parameters. In the Niagara
system, two scratchpads are used to check whether one of the particles from the particles
around the AUV is in one of the two collision boxes (ocean current modifier replacement).
If a particle is in a collision box, it is pushed towards the z-direction until it is no longer
in the collision boxes.
To save performance, I check the distance between the AUV and the nearest black smoker.

40

If the distance is so small that a particle could be in the ocean current modifier replace-
ment, the check is performed to see if there is a particle in one of the ocean current
modifier replacements. To ensure that the correct black smoker is always defined as the
closest black smoker, the BP_ParticleAroundAUV checks every 30 seconds whether there
is a new closest black smoker. Based on this, the two ocean current modifier replacements
are then set in the user parameters of the particle system.

The real ocean current modifiers have way more cone segments or octrees (see chapter
6.7.1), while these ocean current modifier replacements only have two collision boxes.
That is why it is not quite as accurate as the normal ocean current modifiers. These
are much finer or smaller. However, the ocean current modifier replacements are better
than nothing. As a result, the particles around the AUV interact with the exit point of
the plume. Figure 4.18 shows the two ocean current modifier replacements of the black
smoker. These are shown in a red color not visible in the final product.

Figure 4.18: Ocean current modifier replacement

4.5.2 Change the properties of the particle system

The most important properties, their current values and where they can be changed are
described below.
In the Spawn Burst Instantaneous module, Spawn Count can be used to specify how many
particles should be around the AUV. The current value is 600,000. Please note that more
particles also increase the resources required.
In the Initialize Particle module, the minimum size of a particle can be defined with Uni-
form Sprite Size Min and the maximum size with Uniform Sprite Size Max. A random
value between these two values is taken for the particle size. The current values are 0.1
and 0.7, which means that all particles have a random size between 0.1cm and 0.7cm.
In the ParticlesAroundAUV particle system, the noise that each particle should have can
be defined in the Curl Noise Force module. The Noise Strength variable can be used to
specify the strength of the noise and Noise Frequency can be used to specify how often
the noise is recalculated. Noise Strength is currently set to 0.5 and Noise Frequency to

41

50. The noise can also be completely removed by deleting or deactivating the module.
The SpawnBoxDimensions user parameter defines the size of the box around the AUV in
which the particles are located. The current value is 1000 for x, y and z. This means that
the box is 1000cm high, 1000cm wide and 1000cm long. It is important to note that this
box should be at least twice as large in each direction as the laser is long. This means that
the laser should be completely covered by the particles so that the simulation for the laser
detection is still correct. The laser is currently 500cm long. This means that no matter in
which direction the AUV or the laser is rotated, the laser is still completely covered by this
box. Let’s assume, for example, that this box only goes 500cm in each direction. If the
laser is now pointing straight upwards, 250cm of it would not be covered by the particles.
However, it should be noted that the density changes when the box size is changed, as the
same number of particles are still distributed over a larger or smaller area.
The strength of the reflection of the laser light when a particle is hit by the laser can
be defined in the particle material (M_OrganicParticle). The strength is defined via the
StrengthEmissiveColor parameter. The current value is 10,000. The textures for the
sprites can of course also be exchanged in the material.

4.5.3 Increase particles around AUV based on black smoker

Towards the end of the project, the idea was introduced that the particles around the AUV
should increase as the AUV moves closer to a black smoker. For this purpose, a sec-
ond particle system is used to simulate the particles from the black smoker that are dis-
tributed in the water over time. It can be found under the following path: Content/TripleS-
im/VFX/Niagara/Particles/ParticlesFromSmoker. The corresponding blueprint is under
the path: Content/TripleSim/Particle/BP_ParticleAroundAUVFromSmoker.
The particle system and blueprint have an identical construction to the organic particles
around the AUV and are also attached to the AUV. However, these particles are not vis-
ible. There are a total of 300,000 particles around the AUV, which should represent the
particles coming from the black smoker. The SmokerDensityMultiply value of these par-
ticles is changed based on how close the AUV is to a black smoker. If the AUV is very
far away from the black smoker, SmokerDensityMultiply is 0. If the AUV is right next
to the black smoker, the value is 20. Depending on how close the AUV is, the value can
be between 0 and 20. Only the SmokerDensityMultiply value is increased and not the
number of particles, as this could otherwise lead to performance problems.
In addition, I encountered a problem. My first idea was to increase the number of parti-
cles and not just the SmokerDensityMultiply value. To implement this, I would need the
number of particles. This value would have to be read from the Engine Provided Attribute
NumParticles. This should contain the current number of particles in the system. I came
across a bug that has not yet been fixed by Unreal. It seems that it is not possible to read
out this value in a GPU simulation. It always returns 0. Then I tried a CPU simulation and
it always gave me the correct value. However, since I am working with several hundred
thousand particles, the GPU simulation must be used.
Since the idea only came up at the end of the project, the quickest and simplest solution
was used. There are better and more realistic methods that are not based on how close the
AUV is to the black smoker, but on the relative position between the black smoker and
the AUV. For example, the particles only increase if the AUV is on the side of the smoker
where the ocean currents flow. Chapter 4.5.5 describes a better implementation idea that
can be implemented in the future.

42

4.5.4 Challenges

As up to 900,000 real particles are sometimes active at the same time, the biggest chal-
lenge was dealing with so many particles at the same time. It was important to implement
things in such a way that they are as efficient as possible. Another challenge was that
loops cannot be used in Niagara scratchpads. This meant I was much more limited and
had to be creative to replace the ocean current modifiers with something else. This is how
I came up with the idea of ocean current modifier replacements, which were discussed in
chapter 4.5.1.5.

4.5.5 Future works

In the future, the increase of the particles can be improved if the AUV is closer to the black
smoker. I have two possible solutions that I unfortunately didn’t have time to implement
in the end.
The first idea would be to use another particle system that starts from the plume of the
black smoker. The particle system must of course be implemented as described in chapter
3.4.5 so that the particles can be detected by the laser. The particles are given a small
noise and the vector of the ocean currents is added. This ensures that the particles flow
from the black smoker in the ocean current direction. The particles can then be given a
different lifetime using a random range float. For example, you could define that 50%
randomly live between 2 and 10 seconds, 20% between 10 and 30 seconds, 10% between
30 and 70 seconds, and so on. These are only example numbers, the correct ones must be
determined by testing. You can also create much finer or more transitions to make it more
realistic.
The second idea is to shoot several rays from the plume of the black smoker. The rays
are shot in the direction of the ocean currents. When a ray hits the AUV, the distance
between the AUV and the black smoker is determined. Based on this, the number of
particles around the AUV is increased. This means that the particles around the AUV
are only increased if the AUV is in the path of the ocean currents. It is not so realistic
if the ocean currents would flow in the opposite direction of the AUV and the number of
particles around the AUV would still increase.

Another idea that was mentioned by the project managers at the end is that there should
be more particles at the ice shelf. This could be implemented, for example, by creating a
particle system that can be detected by the laser. This particle system is placed at the top
of the ice shelf and the ocean current is added to the velocity of the particles. In this case,
the particles should not exist forever, but only for a certain period of time. However, a few
particles should die over time so that you don’t end up with an infinite number of particles.
Because the particles die and respawn, they are only located near the ice shelf. To avoid
having to cover the entire ice shelf with these particles, you can set a smaller area for the
particle system. In a blueprint, only the x and y coordinates of the AUV could then be
read out and passed to the particle system. This means that the particle system is always
above the AUV at the ice shelf and does not consume so many resources. Here you could
also define that some particles only live between 5 and 10 seconds, some between 10 and
20, and so on. This means that you have more particles at the ice shelf, which decrease
more and more towards the bottom. Here, of course, it is important to find suitable values.

43

4.6 VFX

This chapter covers other particle systems and visual effects that were created during the
project.

4.6.1 1. Particle System

The project should include a simulation of particles in water. For the first milestone, a
prototype of such a particle system should therefore be implemented. The visualization is
first prioritized and some basic functions for the distribution of particles in the scene are
implemented.

The Niagara plugin included in Unreal is used to simulate these particles. It is a pow-
erful visual effects system that allows to create complex, dynamic particle effects within
Unreal. It offers a node-based interface for designing particle behavior and appearance.
Niagara also supports advanced features such as GPU simulation, data-driven behaviors,
and customizable modules. Every particle system starts by emitting particles from a given
emitter. These emitters spawn particles in separate ways, giving them an individual start-
ing behaviour. After this initial force application, this will in most cases be then modified
by applying other forces regularily, for example on a tick function. An example for such
a force is drag, which will continuously slow down the particle.

Figure 4.19: Niagara setup

This setup includes three different types of particles. These differ in the size and shape
of the particles as well as in their behavior. The particles each receive different forces in
the update. In addition, noise is added to each particle so that no two particles behave
completely the same. Since new particles are constantly being spawned, they have a
limited lifespan and disappear after this time. This simulation uses CPU as a simulation
target. Even if better performance could be achieved with a GPU, it is not relevant in

44

this case as not enough particles are spawned to cause serious performance problems.
CPU also offers the advantage over GPU that complete collision detection with all other
objects, meshes, etc. is possible. This is not possible when using the GPU.

Figure 4.20: Isolated view of the finished particle effect from a side perspective

The particles have randomly chosen sizes ranging from a few millimeters to about a cen-
timeter. In this way they are just visible in the viewport of the simulation and break the
otherwise monotonous impression of the scene. This means they have exactly the effect
that was intended to be achieved. In the next step, this particle system is then expanded to
include additional interactions, for example an interaction with ocean currents and black
smokers is added (see 4.5).

4.6.2 Underwater shader

For our project, I made an underwater shader, which should give the user the feeling that
he is really underwater. I created a screen warping effect for this. This was created using
two distortion texture samples where the UVs are shifted over time. The coordinates of
these are then used to sample the scene texture. Furthermore, a vignette mask with a lens
distortion was created. The further it goes to the edge of the vignette mask, the more
the image is blurred. As a result, the center of the image is completely sharp, while it
becomes blurrier towards the outside.
The shader also has a custom fog. This is created by lerping between the scene depth
and the desired fog color. It is possible to set where the fog starts and how strong the fog
increases until it reaches its maximum strength. The problem with the custom fog is that
the smoke from the black smoker was displayed very strange or was not displayed at all
in some cases. If there was no object behind the smoke, this phenomenon occurred. It
seems that the scene depth node in the material does not work correctly with Niagara Flu-
ids. Maybe this bug will be fixed by Unreal in the future. Afterward, we simply decided
to use the exponential height fog of the Unreal Engine.
The underwater shader is not used in the final demo level, as it displays the image rather
from a first-person perspective of a human, similar to how it is done in video games. How-
ever, since our simulation is also about precisely seeing and measuring things, the shader
is not used. The shader can still be found under the following path: Content/TripleS-
im/Assets/Materials/UnderwaterShader/UnderwaterPostProcess. The shader must be added
to a post process volume in the level. Figure 4.21 shows what the image looks like with
and without the shader.

45

Figure 4.21: Underwater shader

4.6.3 Schlieren effect

At the beginning of the project it was discussed that there could be a schlieren effect
underwater. Therefore, I created several materials that simulate the schlieren effect. These
can be found under the following path: Content/TripleSim/Assets/Materials/Schlieren.
The basic idea of all materials is to use a texture and manipulate or change its UV mapping
over time. This is then used as input for the Normal of the material. In addition, a
refraction is used to refract the image a little. The schlieren effect is not used in our final
demo level as there was no specific use case for it. One schlieren effect is shown in figure
4.22.

46

Figure 4.22: Schlieren effect

4.6.4 Bioluminescence

Bioluminescence is a kind of natural light source that can occur in water. These are
produced, for example, by bacteria such as Vibrio fischeri. These produce light through
mechanical stimulation [10, 27]. This phenomenon can be seen in a video [5]. For our
simulation, I have created two Niagara particle systems that simulate bioluminescence.
These can be found under the following path: Content/TripleSim/VFX/Niagara/Biolumi-
nescence.
The first particle system uses normal Niagara, accordingly it uses 2D sprites which are
rotated to the camera. The Spawn Per Unit module is used in the emitter. This ensures
that the particles are generated based on how fast the particle system is moving in the
level. This means that if the particle system is not moving, no particles are generated. I
created my own material for the particles, which consists of a bluish emissive color. This
causes the particles to generate light in the environment.
The idea is to attach the particle system to the AUV and place trigger boxes at various
points in the level. The trigger boxes should ensure that the particle system is activated at
certain areas and then deactivated again, so that it seems as if bioluminescence has been
generated by the mechanical stimulation of the AUV. The advantage of this particle sys-
tem is that it uses 2D sprites and therefore requires significantly less resources.
The second particle system uses smoke from Niagara Fluids. This has been adapted so
that it also emits a bluish light and also uses the Spawn Per Unit module. This particle
system looks better than the first one, as a much smoother and finer transition can be cre-
ated. The disadvantage is that it requires significantly more resources.
The particle systems are both finished, but there was not enough time in the end to inte-
grate this effect into the final demo level. To do this, the trigger boxes would have to be
placed in the level and a blueprint with one of the particle systems would have to be cre-
ated. In this blueprint, an event would have to be implemented that activates or deactivates
the particle system when the AUV enters a trigger box. Figure 4.23 shows the particle
system with normal Niagara on the left and the particle system with Niagara Fluids on the
right.

47

Figure 4.23: Bioluminescence

4.6.5 Ice particles

For our simulation, I created ice particles that slowly fall from the ice shelf until they
melt in the water after a certain time and disappear completely. The ice particles also
reflect the light from the laser. The blueprint can be found under the following path:
Content/TripleSim/Particle/BP_IceParticle.
To ensure that the ice particles do not look all the same, I generated six different sprites
using Filter Forge [31]. The Dynamic Material Parameter module is used to give a particle
a random sprite. The particles have a random size between 1cm and 5cm and the lifetime
of a particle is based on its size. This was implemented using a scratchpad. The particles
become smaller over time to suggest that they melt slowly. The Curl Noise Force module
is used to ensure that not every particle behaves in exactly the same way. This adds an
individual small noise to the velocity of each particle. The interaction with the laser was
implemented as described in chapter 3.4.5.
The ice particles are not used in the final demo level as they look cool but are probably
not realistic. Figure 4.24 shows a part of the ice particles at the ice shelf.

Figure 4.24: Ice particles

4.6.6 Bubbles

Enceladus is not very explored yet, so we don’t know much about the environment. Since
there is the phenomenon of methane bubbles [13] on the seabed, I decided to simulate
them using a Niagara Fluids particle system. This makes the level look more lively and
less empty. The final blueprint with the particle system can be found under the following
path: Content/TripleSim/Bubbles/BP_Bubbles.
The ParticleSurfacing emitter serves as a template for the bubble particle system. This
already generates a kind of liquid. The emitter was adjusted so that bubbles are generated
which initially go upwards. In addition, a self-created user parameter is used to add the
ocean current vector to the velocity of the bubbles so that the bubbles flow in the direction

48

of the ocean currents. The material instance MI_WaterSDF can be adjusted in the Water
Renderer. For example, the color, specular and opacity of the bubbles can be defined
there.
The previously mentioned blueprint consists of 3 bubble particle systems and a 3D model.
The 3D model is a rocky ground with cracks from which the bubbles come out. I got the
3D model for the cracked ground from the Quixel Bridge. The blueprint can be placed as
often as required in a level. Figure 4.25 shows a picture of the bubbles.

Figure 4.25: Bubbles

4.7 Terrain

This chapter is about the development of our terrain. It deals with the terrain of our first
prototype and the subsequent versions as well as the final version.

4.7.1 1. Prototype

I created the terrain for our first prototype level so that all the sensors could be tested
directly in a level. I did the sculpting in the Unreal Engine and tried to create an uneven
ground. Furthermore, I gave the ground a rocky texture, which is from the Quixel Bridge
[35]. The ice shelf is a simple plane, which also got an ice texture from the Quixel
Bridge. In addition, I adjusted the color of the image with a post process volume so that
the environment looks like it is underwater. Figure 4.26 shows the first prototype level.

49

Figure 4.26: First prototype

4.7.2 Later Versions

This first prototype, which was mainly used to prototype other objects such as the first
sensors, was to be replaced by a more realistic scene as the project progressed. As a
result of the first milestone (see 1.2.1), the dimensions that the scene should have became
clear. A size of 2.5km2 and a depth of between 500 and 1000 metres was agreed upon. In
addition to the size, the environmental details should also be adjusted.

It is not known what exactly it looks like at the bottom of a larger lake on an icy moon. The
only scientific investigations are based on the flyby of probes, such as the Cassini probe,
which was able to collect data by flying past the icy moon Enceladus ([19]). This allows
various assumptions to be made about the expected terrain. Although it is possible that
life could exist on these planets, it is to be expected that these are simple life forms ([30]).
More complex life forms such as plants are not to be expected. There is a possibility that
hydrothermal vents are present at the bottom; these would be an interesting opportunity
to investigate where life could arise ([22]). For Enceladus, measurements from Cassini
also suggest that there is an ocean about 10 kilometers deep beneath a 30 to 40 kilometer
thick layer of ice ([2]). The following image gives an idea of what it might look like at
the bottom of such an ocean:

50

Figure 4.27: Enceladus sea floor ([29])

This results in some changes that should be made to the scene:

• General shape of a lake

• Limited on the top by an ice cover

• The ground should not be flat, but varied

• Stones on the seabed

Figure 4.28: Seabed Figure 4.29: Foliage

For this project it is assumed that the scene is constrained in all directions by rising
ground. An alternative would have been open edges. However, since the shape of a
lake seems just as plausible, we decided on this. The scene is limited to the top by a sheet
of ice. Even though this is expected to be much thicker, a thickness of around 50 meters
is assumed in this project because no simulation is planned on the ice layer. The process
of ice melting should also not be included, so an accurate simulation makes no sense in

51

this case. Even if no plants or similar are to be expected on the lake bottom, at least some
objects such as stones and rocks should be added to make the bottom appear more varied.

Figure 4.30: Scene sideview 1

As can be seen in figure 4.30, the edges of the scene are relatively steep. This is due
to the fact that in Unreal’s landscaping tool the maximum depth is limited to 400 meters,
which made it difficult to reach the defined depth and achieve a realistic gradient. Overall,
however, this represents a problem because the agreed depth of 500 to 1000 meters cannot
be achieved in this way. Therefore, the scene was changed accordingly as the project
progressed.

Figure 4.31: Scene sideview 2

In this figure you can see that the edges are less steep. Overall, a shape was achieved that
more closely corresponds to the natural bottom of a lake. The depth of the scene has also
been adjusted, which is not clear from the illustration. In Unreal it is possible to adjust
the scaling of individual axes of the landscape. In this case we decided to double the scale
of the z axis. This achieves a maximum depth of up to 700 meters, which is within the
defined range.

4.8 Blending with Runtime Virtual Texturing

In order to place objects realistically on our landscape, I use Runtime Virtual Texturing
[12] to blend the material from the landscape with the material from the 3D model on the
landscape. This effect makes the objects really look as if they are part of the environment
and not just placed on top of the landscape. This also means that there is no hard switch
or edges between the landscape and 3D model.

Two RVTs of the landscape were used for the implementation. The first RVT contains
the World Height and the other the Base Color, Normal, Roughness and Specular. It is
important to note that the two RVTs must be set up again if the landscape is changed. The
RVTs are located in the folder: Content/TripleSim/Assets/VirtualTextures.
The blending was implemented in a material function. This can be found under the follow-
ing path: Content/TripleSim/Assets/MaterialFunctions/MF_VT. The material function re-
ceives material attributes as input. These are the attributes that come from the material
of the 3D model. The material attributes are blended with the RVT with the Base Color,

52

Normal, Roughness and Specular of the landscape. To ensure that the system knows ex-
actly where to blend, the RVT with the World Height of the landscape is used. This is
subtracted from the Absolute World Position and added to the Object Bounds of the 3D
model.
I have created some parameters so that you can customize the blending a little. These in-
clude the VirtualBlendHeight parameter, which specifies how high the blending should go
for the 3D model, and VirtualFallOff, which specifies how smooth the transition should
be.
The material function must be integrated into the parent material for the blending to work.
To do this, the material function is simply dragged into the parent material, which creates
the material function as a node. The old output of the parent material is dragged into the
material function node and the result of this is dragged into the output. An example of
this can be seen in the black smoker material. As a result, each material instance of the
material has the blending with Runtime Virtual Texturing.
The VirtualBlendHeight and VirtualFalloff parameters mentioned above can then be ad-
justed in the material instance. There is also the UseVT parameter. This can be used to
turn the blending with RVT on or off. All parameters can also be adjusted during runtime.

The blending with RVT is currently used for the black smoker and the bubble blueprints,
but can easily be added for new objects in the future by using the material function. Figure
4.32 shows in the top image where you can find and adjust the parameters in the material
instance. At the bottom left, the black smoker is displayed without blending and at the
bottom right with blending.

Figure 4.32: Blending with Runtime Virtual Textures

53

5. ROS System
To simulate vehicle movement, navigation and path planning a ROS2 based system de-
veloped by MARUM is used.

We used it to control the AUV visualized in the Unreal project and have it react to controls
and other environmental forces.

5.1 Components

The ROS2 system consists of different nodes that each having a clear defined purpose.

In general it takes external disturbances, optional manual input and multiple control sig-
nals as input and outputs the vehicle state as odometry/pose and the trajectory.

Figure 5.1: ROS2 system overview

The Motion Estimator node takes the body forces from the pilot node and external distur-
bances and outputs the estimated position, rotation and velocity based on the calculation
of the dynamics model.

The Planner node uses a predefined algorithm or analytical function with a given set of
configuration parameters to generate and output a trajectory of points for the navigation of
the UV. The generation advances the trajectory based on time that elapsed and optionally
the current AUV position.

The Pilot node uses either the trajectory of the planner node or manual input to generate
the forces to steer the vehicle.

The rviz2 node displays the position and rotation of the UV from the motion estimator
and the generated trajectory of the planner node in a 3D viewer.

54

5.2 Changes

During the project multiple changes were made to the ROS2 system to fix problems that
came up or fulfill new requirements.

The first change that was implemented is in regard to the ocean current simulation to
make it work with the already existing calculations. There was already a 2D disturbance
velocity implemented, which can used for the ocean current, this was then extended to
3D. Furthermore the old implementation only used a constant parameter loaded at the
start of the simulation as the velocity, to make it dynamically changeable an additional
subscriber was added to update the ocean current velocity.

The second modification that was implemented tries to fix the problem that was observed,
when increasing the height amplitude to generate a trajectory that dives deeper. As the
trajectory advances faster than the underwater vehicle can travel.

This leads to situations where, when running the simulation for longer than a few minutes,
a clear distance between the current underwater vehicle position and the newest trajectory
point can be observed.

To fix this problem a distance-based trajectory generation was implemented. There the
trajectory points are only advanced forwards when the underwater vehicle is under a given
distance from the newest trajectory point.

In one of the following meetings this was discussed and remarked that in some use-cases
such an approach can fail to navigate the underwater vehicle correctly. One such case is
when external disturbances prevent the vehicle from reaching the current trajectory point.
And as in our simulation the ocean current produced by the black smokers are very fast
such a case could happen.

This was solved adding an extra timer that triggers the generation of a new trajectory point
when a specified amount of time elapsed without causing the normal trajectory generation.

Later during the project Christian Meurer provided an improved version. This added more
realistic DOFs restrictions for the vehicle. Coupled with that for DOFs that are not ac-
tively controlled a line of sight like generation is used. Additionally it now includes the
current AUV position into the trajectory generation, thereby fixing the problems men-
tioned before. Furthermore other performance improvements and bug fixes were made.

These changes replaced the custom trajectory implementation that was created before.

Furthermore for the battery system simulation the functionality to enable and disable the
motor of the vehicle and override trajectory generation with a path to the starting position
was implemented by adding additional subscribers.

5.3 Problems

During the project one problem arose for that no solution was found, that is that when ex-
ecuting the ROS2 System directly in Windows the simulation would result in erroneously
vehicle movement This is visible as the vehicle just spins chaotically without following
the trajectory.

55

Figure 5.2: rviz2 showing the AUV spinning, red arrows showing last few orientations

As most developers using ROS2 are running it using Linux no solution to the problem
was found. As such we used Windows Subsystem for Linux to run Ubuntu 22.04 on the
Windows Host system.

Another variant of executing the ROS2 system would have been to use a Docker container,
this was tried but due to networking problems between the Windows host system and the
application running in the container not working this could not be used.

The network communication problems that happened can be related to the default trans-
port layer implementation FastDDS that ROS2 uses as its default.

One of the reasons for the problem seemed to be that the discovery of nodes is not working
correctly between the Windows host and the docker container. This is partly the case
because ROS2 uses shared memory for communication as it has the smallest performance
overhead. To change this it is nessesary to create a configuration file for FastDDS.

Multiple different FastDDS and Docker container configurations were tried but none were
working.

The only way that ROS2 networking had no problems using Docker containers, was for
the case of container to container communication. This resulted in the search of a way to
containerize the Unreal Engine project, more regarding that in chapter 6.8.

56

6. Unreal Project
The following chapters contain detailed information about the Unreal Engine project it-
self, the AUV, visualizations and simulations.

6.1 VaMEx-VTB

The Triplesim project is essentially based on the VaMEx-VTB project. At the beginning
of the project, a clone of this project should be used, which contains all parts that are
relevant for the upcoming project. Since the VaMEx-VTB project is simulated in a com-
pletely different environment and the robots used also have some differences, many of
the files included are no longer needed. The following figure shows which elements were
retained and outlines the data flow between the individual elements and the external ROS
system:

Tr
ip

le
si

m

rc
IU

E

R
O

S
2

P
lu

gi
n

C
om

m
un

ic
at

io
n

be
tw

ee
n

R
O

S

an
d

U
nr

ea
l

S
ou

rc
e

V
irt

ua
lT

es
tB

ed

V
irt

ua
lT

es
tB

ed
V

T
B

G
am

eM
od

e

V
irt

ua
lT

es
tB

ed
.B

ui
ld

R
ob

ot
s

R
O

S
2R

ob
ot

R
O

S
2S

ke
le

ta
lR

ob
ot

S
en

so
rs

R
O

S
2S

en
so

r
IM

U
S

en
so

r

U
til

s

P
la

tfo
rm

F
un

ct
io

nL
ib

ra
ry

S
em

ap
ho

re

<
<

E
xt

er
n

al
>

>
R

O
S

 S
ys

te
m

pr
ov

id
e

ut
ili

ty
se

nd
 n

av
ig

at
io

n
da

ta

In
pu

t:
na

vi
ga

tio
n

da
ta

O
ut

pu
t:

se
ns

or
 d

at
a

se
nd

 s
en

so
r

da
ta

se
nd

na

vi
ga

tio
n

da
ta

Figure 6.1: Remaining components

For clarity, some elements of packages have not been added. For example, in addition

57

to VirtualTestBed.Build, a few other build files were retained, which are, however, not
relevant to the basic structure. In addition to the rcIUE plugin (see 6.1.2), the Robots,
Sensors and Utils packages were essentially retained. These contain many of the basic
functionalities needed to add a robot and enable ROS communication. The IMUSensor
already contains an implementation of a sensor, which should also be implemented in this
project. Other files, such as all assets, have been removed.

6.1.1 Version

The VaMEx-VTB project provided works with Unreal Engine 5.2. Since version 5.3 was
already available at the start of our project, attempts were made to update the project to
this version. Apart from performance improvements, this version does not contain any
new features that are relevant to the project. Therefore, this point was assigned relatively
little importance. Since various problems arose when updating the version, the decision
was made to keep version 5.2.

6.1.2 ROS2 plugin

To integrate the Unreal Engine project with ROS2 the plugin rclUE is used. It is a fork
developed by the CGVR to improve the original plugin developed by Rapyuta Robotics.

There are multiple abstractions of the plugin functionality implemented by the VaMEx
project. For example there is the ROS2Robot actor which can have multiple ROS2Sensors,
which are actor components, each representing the simulation and messaging of single
sensor. The ROS2Robot then manages the initialization and updating of each sensor.

6.1.2.1 Usage

We used ROS2Sensors for the data publishing, they are components of the AUV blueprint,
which is the main actor in which everything comes together. Subscribers regarding data
of the AUV are also part of the AUV blueprint. Other subscribers have been implemented
separately using extra ROS2Node actors.

Figure 6.2: Data send and received using ROS2

6.1.2.2 Problems

There were multiple problems produced by the plugin during the project.

One problem, was that sometimes when using Live-Coding of the Unreal Engine the

58

plugin library files (.dll) could not be copied to the output folder because the file is already
being used by Unreal Engine. Which also seemed a weird as no changes to the plugin
were made and those files during the complete project never changed. The exception that
was thrown was then just catched and ignored.

Another problem happens also when using Live-Coding, the engine crashes if a level is
currently running because of some problems produced by the plugin.

Furthermore the plugin is not correctly configured such that when creating a Windows
release/shipping build of the project the library files of the plugin were not accessible to
the project, resulting in errors on startup.

Moreover the functionality of the ROS2Publisher class is not working correctly. It is
not possible to create and use a publisher without using the inbuilt timer functionality.
Manually calling the method to send a ROS2 message is not working. This is the reason
why in many cases instead of just a ROS2Node with a publisher instead a ROS2Sensor
was used to send data, as it seemed like the only way that worked 100% of the time.

6.2 Input

The input is implemented using the enhanced input system as it makes adding new inputs
and different hardware easy and fast. This works by defining a input action for each thing
that needs input and then combining them into a mapping context where then Keyboard
buttons are assigned.

The input system in the beginning was primarily used to toggle different features on and
off and for the manual input.

Additionally as the manual control is very hard, a depth stabilization was implemented.
It is enabled by setting a target depth. Which internally overrides the up-axis movement
of the normal manual input that is send to the vehicle dynamics system.

Later in the project the focus shifted more into using the trajectory algorithm to control
the vehicle and using the check boxes implemented in the user interface to toggle features.
Which lead to a more sparse usage in the final project.

6.3 AUV

The AUV is discussed in more detail in the following subchapters. This includes the 3D
model and the light from the AUV.

6.3.1 3D model

For the AUV there were provided two different models over the span of the project.

The first version was a very simple capsule model. The second version was a more real-
istic model with fins, the turbine and more detailed geometry.

Additionally a model for the section of the melting probe that stores the AUV and deploys
it with an arm was provided. But as no group member had the needed experience, no
unload animation was created.

All the models were given as stl files and then using Blender converted to fbx. In the

59

case of the second AUV version it was separated into files for each of the different colors
used in the model. Furthermore it was not possible to shade smooth the model, as the
geometry was not very clean around screw holes or other finer details and every face was
also duplicated as one inner and one outer face.

6.3.2 Lighting

The AUV should have a light source, which is primarily intended to ensure sufficient
lighting during the camera’s lighting time. However, since the demo is an important part
of the project, we decided to add two different light sources. The headlights are located
at the front of the AUV. There is another light on the AUV right next to the camera.

Figure 6.3: AUV emissive material

For this purpose, there are two components attached to the AUV. As you can see in the
picture above, these have an emissive material that creates the impression of a lamp being
switched on. Both can be turned on and off. Since the front light is only intended for
demo purposes, the control is only carried out manually, whereas the light on the top can
be operated both manually and via an interval switch (see 4.1.2).

In addition to the material, both have a spotlight light source that emits light in a cone-
shaped area. This light only becomes visible when it collides with a surface. In order to
still achieve the effect of a visible light cone, an exceptional height fog was used in this
project (see 4.1)

6.4 Visualization

This chapter describes the visualization of our sensors and the path of the AUV.

6.4.1 Path & Trajectory

The trajectory generated by the planner node and the actual path that the AUV moved
along are visualized as line strips. They are currently limited in the amount of points
stored to render the last two minutes. As more points lead to a bigger negative perfor-
mance impact.

They are implemented using Unreal Engine’s render pipeline using a custom component
that inherits from the primitive component and then uses a custom scene proxy to render
the points. The component provides multiple ways to update the rendered line strip that
then triggers a re-render with the new data. Additionally the width it is rendered with can
be changed and the rendering can also be toggled on and off.

60

One of the problems that occurred was that the line strips were only rendered in the
level when the actor on which the custom component was attached to was visible. The
only solution that was found is to extend the bounds of the line strips over the complete
level. There probably exists a better and more correct solution but for that more in depth
knowledge of Unreal Engine’s render pipeline is needed.

Another problem for that no solution was found is that the rendering order of multiple line
strips is random which leads to a flickering effect where every few frames the line strip
that is rendered above the other changes. This probably relates to some depth settings that
is not set correctly.

Figure 6.4: Planned trajectory (green) and actual AUV path (red), glowing cube are lit
particles around AUV (see 4.5)

6.4.2 Ripple Effect

To visualize the pings from the USBL (see 3.1) and the echo sounder (see 3.2), a ripple
effect was created (see figure 6.5). The idea is to spawn particles via the Niagara particle
system, for which a special particle shape and color was created. A white circle is created
that performs some refraction. This circle is used as particle which should be spawned by
Niagara (for more information, see here [8]). It is implemented that Niagara spawns the
particles in a straight line pointing downwards, also it is implemented that the particles
grow over their lifetime, they also have a fixed lifetime of a few seconds, when that
lifetime is done the particles are destroyed, the particles are also destroyed when they
reach the AUV or the seabed. We have decided that it is sufficient to send the particles
only from the base station to the AUV, and from the AUV to the seabed.

The particles are much slower than the real rays, because the real rays are very fast, about
1480 meters per second, and therefore we would not see much of the effect, even if 2
particles overlap it looks weird, that’s also the reason why the particles are send from one
direction. These particles can be spawned via a Unreal Engine actor called "BP_Ripple",

61

there are two of these actors, one on the base station and one on the AUV. The one on the
base station will send the particles towards the AUV when the USBL is active. The other
actor, which is on the AUV, will send the particles directly downwards according to the
echo sounder. If the USBL or the echo sounder is not active, the actors do not send any
particles.

Figure 6.5: The ripple effect that gets spawned from the Basestation

6.4.3 Laser and bin visualization

Collision boxes were used to implement the laser and the bins. One collision box rep-
resents one bin. Furthermore, collision boxes already have an integrated functionality to
visualize them. The visualization can be seen in figure 6.6. The bins or collision boxes
are visualized by an outline. In the details area of the collision box, you can use Shape
Color to specify the color of the outline and Line Thickness to specify how thick the out-
line should be. The laser or bin visualization can be turned on and off at the top right of
the Laser UI (chapter 6.17) with a mouse click. The laser visualization is turned on by
default. If the entire laser is deactivated, the laser visualization is also not displayed.

62

Figure 6.6: Laser bin visualization

6.5 User Interface

This chapter explains the user interface in more detail. We will look at the general layout
and the individual tabs in the UI that display various data.

6.5.1 General Layout

The application has a user interface that both displays data and accepts input during the
simulation. Some sensor data, such as IMU measurements or a laser heatmap, can be
viewed here (see 6.5.2 and 6.5.3). There is also the option, for example, to change the ve-
hicle’s light settings. Static information, such as keyboard assignments, is also displayed.

The user interface was developed in several steps. At the beginning of development it was
only planned to use the user interface to display IMU measurements. For this purpose,
the first version of the UI was designed as an overlay directly in Unreal. The initial two
pages could be switched through one after the other with one button. Unreal’s built-in UI
functionalities in the form of the UMG library were used for this. UMG provides a variety
of predefined elements, which can be arranged accordingly in a graphical interface. The
designer offers options for drag and drop editing as well as coding. There is also the
option to develop the UI for specific screen sizes. Another useful feature are anchor
points, which enable the alignment of UI elements based on their relative position on the
screen.

63

Figure 6.7: UMG Blueprint example

Communication with Unreal via UMG is very simple: communication can be carried
out directly via blueprints. UMG contains its own graph editor, which provides the same
script functionalities as blueprints. All UMG elements can be declared as variables so that
they are accessible in these scripts. This feature is very helpful, for example, for dynamic
display of numerical values.

Figure 6.8: UMG Variables example

An external reference is necessary for communication with objects used in the scene. The
UMG environment is closed in itself; references must be set separately. For this project
we did this largely via public variables. This enables communication in a bidirectional
direction: on the one hand, it is possible to set a reference to it outside the UMG blueprint,
and on the other hand, the UMG blueprint can also be given a reference to the external
object directly.

Version 1

As described above, the actual purpose for this first version was to display IMU measure-
ments. In this version there are three different views:

1. Numerical

2. Graph

3. Hidden

64

Figure 6.9: User Interface Version
1: Graph view

Figure 6.10: User Interface Version
1: Numeric view

Version 2

As the project progressed, however, it became clear that other elements in the UI would
also be helpful. More elements have been added in this next version. These include,
among other things, keybinds and a battery status. The general layout initially remained
the same, the elements are still displayed one after the other as an overlay. In this version,
additional pages have been added for the corresponding elements.

Figure 6.11: User Interface Version
2: Keybinds

Figure 6.12: User Interface Version
2: Density

Final Version

In the 2nd milestone, the wish was expressed that the UI should be available as a separate
window. This is problematic because Unreal is designed as an application that only oc-
cupies one window. To solve this problem, the inheritance hierarchy of UMG is relevant.
UMG is a child of Slate, which can be viewed as the predecessor of UMG. Slate is also a
library for creating user interfaces, but unlike UMG, it is not directly tied to Unreal. In ad-
dition, Slate only offers the option of creating UI elements exclusively in code. Slate also
provides window management functionality, and since each UMG element inherits from
Slate, these can be used to move the user interface to its own window by wrapping the
existing UMG content inside Slate objects. The key elements of this process are outlined
in the following images:

65

Figure 6.13: UMG Blueprint: Open UI in a separate window

void AUmgWindowUtil::OpenAsWindow(UUserWidget* Widget, FString
WindowTitle, FVector2D WindowPosition, FVector2D WindowSize, bool
bUseOsBorder, bool bHasTitleBar, bool bDragEverywhere)

{
UmgWidget = Widget;
WindowOriginalSize = WindowSize;

ThisWindow = SNew(SWindow)
.Title(FText::FromString(WindowTitle))
.ScreenPosition(WindowPosition)
.ClientSize(WindowSize)
.UseOSWindowBorder(bUseOsBorder)
.bDragAnywhere(bDragEverywhere)
.CreateTitleBar(bHasTitleBar);

FSlateApplication::Get().AddWindow(ThisWindow.ToSharedRef());
ThisWindow.Get()->BringToFront(true);
WindowClosedDelegate.BindUObject(this, &AUmgWindowUtil::OnWindowClose

);
ThisWindow->SetOnWindowClosed(WindowClosedDelegate);
TSharedRef<SWidget> SlateWidget = Widget->TakeWidget();
ThisWindow->SetContent(SlateWidget);

}

Since the application now runs in its own window and no longer as an overlay, some
profound changes are necessary:

• Input options need to be changed

• Interface must make all contained elements clearly recognizable at first glance

• The interface must be adapted to changing screen sizes

• When exiting the application, the window must also be closed

The input options must be adapted to the application now running in a different window.
Changing the window using a button no longer makes sense in this view, as the focus
has to be on the Unreal Engine and not on the user interface. Since all displayed content
is now displayed in a menu bar, it also makes sense to be able to switch between them
freely instead of rotating them in a fixed order. A new window is also freely movable for
the user. For example, it is possible that he either moves the window to another monitor

66

or resizes the window to be able to view both elements on one monitor. Therefore, the
window has been modified to adapt to changing screen sizes.

Figure 6.14: Final user interface layout

This window contains all the content that was previously there. Every element that could
previously be switched through is now available as an independent window. However,
since the window for the data from the USBL and depth sensor did not contain enough
content, these were combined together with the IMU measurements in a tab. By clicking
on the respective element in the menu bar, the individual pages can be viewed.

However, this change also resulted in the problem that the system contained various key-
binds that triggered features. For example, it was possible to control the AUV’s light via
a keybind. This new window does not guarantee that the focus is permanently on Un-
real Engine, so there is a possibility that the user experience will be limited as the user
often has to switch between both windows. For this purpose, many keybinds that were
not needed for direct navigation or scene viewing were moved to the user interface. The
“Controls” section was added where various features can be controlled.

6.5.2 IMU UI

To visualize the IMU sensor, we had to decide between several possible implementations.
On the one hand, it would have been possible to visualize this data directly in the scene.
A possible implementation could have been to display a static coordinate system at the
origin of the AUV. This would have had to be supplemented with additional vectors,
for example for acceleration and angular velocity. After a few tests, however, it quickly
became clear that this type of visualization could not be implemented in the scene in such
a way that sensor data could be meaningfully read. The decision was therefore made not
to display the visualization directly in the scene, but in a separate user interface.

67

Figure 6.15: IMU UI

For this purpose, the sensor data is visualized using graphs. This representation offers the
advantage that, on the one hand, it is always clear for each value what was measured at
the respective time, but on the other hand, the previous values from a few seconds ago
can also be viewed. The Kantan Charts plugin was used to create the graphs ([3]). There
are a few data types included in this plugin that represent different graph types. Each
type already has its own UMG widget, which can be inserted into the user interface. A
few more steps are necessary to initialize a data series for a graph. When you start the
application, all graphs are first created, given the corresponding ID and added to the UMG
widget. Data points can later be added to the respective data series using this ID.

Figure 6.16: Creation and update of a data series with Kantan Charts

In earlier versions of the application there was initially another representation of the sen-
sor data, which was presented purely numerically (see 6.5.1). This representation had
the advantage that it was more compact than the graph representation and could be used
parallel to the actual scene without restrictions. However, since the values change with
every frame update, it is hardly possible to read exact values here. This was also a reason
for discarding this representation as the project progressed.

68

6.5.2.1 Problems

One problem was large values that were significantly above or below the range of values
otherwise shown. There are some situations where such large values can occur. These
include, for example, moving the Unreal Engine application, changing the editor layout
at runtime or while starting the application. In these cases it can be observed that the sim-
ulation is paused and only continues when the respective process is completed. Since the
respective positions of the scene objects of the current and last frame as well as the delta
time are used to calculate the measured values, this should actually not be a problem. It
was not possible to conclusively clarify what exactly the cause of this error was. How-
ever, it is reasonable to assume that this is due to the interaction with the ROS system. For
example, while the window is being moved, the Unreal application is paused. However,
since the ROS system works independently, when the simulation is continued, a position
is output that is calculated independently of the paused simulation and therefore no longer
matches the delta time that is used for the calculation.

This is problematic because the y-axis of the graph takes on very high values. Unfortu-
nately, the plugin used does not allow for the scale to be automatically adjusted again.
This means that normal values can no longer be recognized. After some tests it became
clear that in normal operation the fluctuations in the values are in a very small range, so
that a new value never differs from its predecessor by more than about three times. This
makes it possible to filter all values that exceed this threshold.

For this purpose, some changes have been made to the visualization. The sensor data is
visualized in the IMUVisualizer class. In order to filter out these values, it is first necessary
to save all values that are currently displayed in the graph. Unfortunately, there is no way
to get these values in the Kantan Charts plugin, so a custom implementation has to be
made. However, since not all values of each frame are interesting for each graph, but only
the largest and smallest, this somewhat limits the values that need to be saved.
/* Store the highest and lowest values that are added to the graphs in

this tick. Also store the average of the highest and lowest values
in each graph to later filter out extreme spike values */

float valueToAdd = max(max(angVel_x, angVel_y), angVel_z);
angVelMax.push_back(make_tuple(timer, valueToAdd));
float weight = angVelMax.size();
angVelMaxAvg = angVelMaxAvg == 0 ? valueToAdd : (angVelMaxAvg * ((

weight-1)/weight)) + (valueToAdd * (1/weight));

By simultaneously recording the average when inserting new values, you avoid having to
constantly re-iterate the list of available values. The calculated average can then be used
to check whether new values are above or below the threshold. The average of all values
is used here instead of the maximum or minimum. When using maximum and minimum,
multiple values that are just below the threshold may be added within a short period of
time. This causes this threshold for new values to be added to constantly increase or
decrease, which can ultimately cause the filter to stop functioning properly until these
values are out of view. This is prevented by using the average.

In addition, a short delay must be added at the beginning of the application. This is
because, like moving a window, very large values are output. Since there is no further
data at the beginning that would make it possible to filter this value, this was solved by
inserting a short delay at the beginning.

69

6.5.3 Laser UI

Figure 6.17: Laser UI

The laser UI can be found under the following path: Content/TripleSim/UserInterface/UI-
_Laser. Exact implementation details can be looked up there, as everything is commented.
Figure 6.17 shows the UI of the laser. The laser UI can be accessed via the "Laser" tab. At
the top right, the laser and the laser visualization can be turned on and off with a mouse
click. The total density is also displayed in the UI. This indicates how high the density
was in the entire laser at the last measured time. Below the total density, a scrollable
list is displayed which shows how high the density was in each individual bin at the last
measured time. The structure is as follows: Bin number: Density in the bin. 1: 0 would
therefore mean that the first bin has a density of 0. The values for the total density and the
bins are taken from the arrays of the blueprint BP_TotalParticle
In addition, the laser UI displays a message in an orange color. This message is only
displayed if the AUV is traveling too fast and it could happen that particles cannot be
detected by the laser. The topic of the too fast particles or AUV has already been discussed
in chapter 4.4.4 which deals with particle detection for the particles of the black smoker.

6.5.3.1 Heatmap

The laser UI has a heatmap that is generated based on the density of the bins. This is a 5-
color-heatmap [42], which ranges from blue to red. Blue means that there are no particles
in the bin and red means that all particles are in this bin. Since green is exactly in the
middle of the color gradient from blue to red, this would mean that 50% of the particles
are in this bin. Let’s assume that we have a total density of 12. 6 particles are in bin 1,
3 particles in bin 4 and 3 particles in bin 10. Bin 1 would then be green because 50% of
the particles are in this bin. Bins 4 and 10 would have the color turquoise because they
each contain 25% of the particles. All other bins would have the color blue because there
are no particles in these bins. At the top left of the UI is the density distribution. This is
a kind of legend that translates the colors into percentages so that you know which color
stands for which number. The exact number is always different, depending on how many
particles are currently in the laser. If the last measured value in the laser is 25, then the

70

100% is represented by the number 25. The first heatmap also has a coordinate system
that shows how big the laser and the bins along the laser are and how wide the laser and
the bins are.
Several heatmaps are displayed in the UI. This is a history of the heatmaps over time.
The first heatmap is slightly thicker as it shows the last measured densities. The density
measurement for the heatmap takes place at a certain interval and is called the update rate
in the UI. This specifies how often the density is measured per second. The update rate is
a slider and can be changed by the user. By default, the update rate is 0.03. As the system
runs at 30 FPS, 0.03 means that the densities are measured and the heatmap is updated
every frame. The update rate can be increased up to 10 seconds. As soon as the density
is measured again, the heatmaps shift one position to the right. This creates the heatmap
over time. Let’s assume the default value of 0.03. The new density is then measured. The
heatmap at position 1 receives the newly measured values, heatmap 2 receives the values
from heatmap 1 from the last frame, heatmap 3 receives the values from heatmap 2 from
the last frame, and so on.

6.5.3.2 Implementation

Creating a heatmap directly in the Unreal Engine UI is normally not possible. However,
with a lot of testing, I have found a workaround to make this possible.
Every heatmap is actually a ListView. This ListView consists of border widgets, which
are normally used to give UI elements a border. I use these borders to visualize the bins in
the heatmap, because it is possible to assign different colors to the borders during runtime.
The size of the borders is calculated based on the number of bins and the size of the laser.
The color is calculated during runtime based on the densities of the bins. This data comes
from the BP_TotalParticle and has already been discussed in chapter 3.4.5.2. The color for
a bin is calculated using several lerps between the 5 main colors. It is lerped between the
RGB colors (0,0,255) & (0,255,255), (0,255,255) & (0,255,0), (0,255,0) & (255,255,0)
and (255,255,0) & (255,0,0). The density in the bin is used to decide between which two
colors to lerp. In addition, the alpha value for the lerp is calculated so that the respective
color proportion between the two colors can be determined. This ensures that the correct
color is always generated for the respective bin in the heatmap.
The coordinate system for the first heatmap is an image that I created myself. However,
the numbers on the coordinate system are text widgets. These numbers are automatically
set correctly based on the size and number of bins. For example, you can change the size
of the laser and the numbers in the coordinate system will adjust correctly.

6.5.3.3 Laser data ROS

Since it is not possible to create a full 3D heatmap with rotations in the Unreal Engine
UI, I send all the data required to create such a heatmap to ROS. The data is sent in the
BP_ExportLaserData. This actor must be placed in the level so that the data can be sent to
ROS. The values from ROS can then be read out and used to generate a real 3D heatmap,
e.g. in Python.
The array TotalParticleBins from BP_TotalParticle is sent, which contains the densities
of all bins. The corresponding topic is called LaserBinsDensity. In addition, the origin
of the laser is sent as a vector and has the topic name LaserOriginPosition. Finally, the
rotation of the laser is sent as a vector. The topic name is LaserOriginRotation. The time
is sent as standard in ROS anyway. All other values required to generate the 3D heatmap
are fixed values or can be derived from the ROS data sent. This includes the dimensions
of the laser. These are fixed and therefore do not need to be constantly sent to ROS. The

71

laser currently has a length of 500cm, a width of 2cm and a height of 2cm. The number of
bins is also fixed and is currently 40. The size of a bin can be calculated using these two
values. A bin has the same width and height as the laser, i.e. 2cm each. The length of a
bin can be calculated by the length of the laser ÷ number of bins, i.e. 12.5cm (500÷40).
The rotation of the bins can be derived from the origin of the laser and the rotation of the
laser. The exact position of the bins can also be calculated. Since we know that the first
bin starts at the origin of the laser and has a length of 12.5cm, the second bin then comes
directly after the first bin, i.e. starts at 12.5cm and goes up to 25cm, and so on.

6.5.3.4 Future works

In the future, an attempt could be made to generate the 3D heatmap with rotations in
Python and then send an image of the heatmap back to Unreal Engine during runtime.
This would allow the image to be displayed in the Laser UI. As the idea of the heatmap
only came up at the end of the project, I was unable to implement this due to a lack of
time.

6.6 Camera views

There are various camera perspectives in our system. These are explained in the following
subchapters.

6.6.1 Basic views

Early in the project the need for multiple camera views became apparent, without it either
the environment or the vehicle could not be observed in a good way.

As such the first version included a freely controllable spectator camera with which it is
possible to move through the complete level. And a fixed camera on the vehicle with
which a more realistic view of what the AUV sees is presented. It was possible to switch
between them using a keyboard input.

6.6.2 Orbit camera

As the project progressed, it became apparent that more camera perspectives were needed.
Due to the limited view within the scene, it is difficult to maneuver without a fixed point
on which the camera focuses and not lose the spatial impression. Although the camera
on the AUV delivers realistic images from the vehicle’s perspective, the fixed positioning
limits the field of view and does not always necessarily capture all interesting objects. For
this reason a third view was added.

The orbit camera is focused on the AUV and allows circular movements around it. The
camera can be activated via a keyboard assignment, which can also be used to exit it again.
You can navigate around the vehicle by moving the mouse in the x or y direction. There
are also other parameters that define the behavior of the camera, such as camera speed.
However, these are not directly accessible during runtime.

In the first version it was possible to move around the AUV without any further restric-
tions. This presented some problems. In this way it was possible to lose spatial orien-
tation, especially if the AUV itself was not exactly in space. In addition, an error could
occur on the y-axis when exceeding 360°, which caused the camera position to change
suddenly, resulting in a very unpleasant flicker.

72

Figure 6.18: Orbit camera rotation bounds around y-axis

In the second version, the camera was adapted accordingly. The range of motion on the x
axis is still unrestricted, but on the y axis it can only be maneuvered within a range of -35°
to 35°. This makes it much easier to track the actual spatial position of the AUV. This
also solves the problem of flickering, as the camera never reaches the required degrees.
Finally, a zoom function was added. This makes it possible to observe the AUV from a
distance of between one and ten meters. Zoom can be adjusted by operating the mouse
wheel.

6.7 Simulation

This chapter discusses the ocean current simulation and the simulation of the battery
system in more detail.

6.7.1 Ocean current simulation

The ocean currents are simulated to add external disturbances to the AUV to make the
simulation more realistic. Currently the only source of ocean current velocities is a con-
stant velocity for the complete level combined with local changes around black smokers.

These changes are defined by creating OceanCurrentModifier actors which influence the
local velocities around them by defining a cone from multiple cone segments to model the
shape and a velocity that has a normal distribution based on the distance from the center
to the edges.

73

Figure 6.19: OceanCurrentModifier that uses a single cone segment

For debugging purposes there are multiple options to directly view the velocities as arrows
in the level. Additionally there is the OceanCurrentViewer that just shows the velocities
in a grid of variable size and step size between sample points. These arrows have the
length proportional to the length of the velocity. Additionally the arrows are blue if the
velocity has the default value and green otherwise.

Figure 6.20: OceanCurrentViewer showing velocities with arrows

The computation of the ocean current map happens on a per level basis using the param-
eters set in the OceanCurrent actor and all OceanCurrentModifier actors existing in the
level. After which it is saved to disk to just load the next time the level is started. The val-
ues are calculated by averaging all OceanCurrentModifier velocities, that are near enough
the evaluation position to have an influence, with the default velocity.

With the approach of pre-computing the values a one-time generation time in the order
of seconds or minutes does not matter, as all subsequent starts can load the map in a few

74

milliseconds. Additionally more complex algorithms of computational fluid dynamics
could be used to get more realistic results, for this project they were not realistically
implementable in the given time frame.

After finishing the pre-computation the underlying data structure is saved directly from
memory as a binary file. This makes loading fast, as it does not have any overhead in
contrast to HDF5 or other formats.

6.7.1.1 Implementations

The first implementation used a self-implemented generic 3D grid to store the values. But
it was clear that it is not possible to store the values in a fine-enough resolution to be useful
as that would consume too much ressources. The level has a size of 5000x5000x750
meters with the black smokers having an opening about the size of 0.2 meters a resolution
of 0.1 meters would be appropriate. This would result in 50000·50000·7500 = 1.875·1013
values. When using 3D floats to save the values it results in 12Bytes · 1.875 · 1013 ≈
204.636TiB which is definitely to much to have in system memory or save to disk for
normal computers.

Consequently a data structure that does not need so much system memory is needed, the
octree is a good solution as it partitions space into a tree of octants and areas that store the
same value can be combined into one area.

The nodes of the tree store whether it is a leaf or inner node as a boolean, indices to the
child nodes as integers and a value over which the octree is generated. For which the
storage size can only determined at time of usage as the implementation is generic to be
usable with other kinds of maps/data. This created the problem of not knowing the data
type while constructing the octree, which lead to the need of having functions as parame-
ters to control the construction process. These functions are a sampling function to gener-
ate the value given a 3D world position and a splitting function to determine whether two
values are different enough from each other and the octants should be split into smaller
octants. The values are then inserted into the octree which makes the construction process
independent of the amount of points that the octree should store.

But a further optimization was to convert the octree to a sparse octree. Which makes use of
the value variable in inner nodes to store values for child nodes that would have the same
value. This changes how the octree is expanded, now only one child node needs to be
created for a new value instead of the eight when using a standard octree. This drastically
reduces the amount of nodes in the higher level inner nodes of the octree where a complete
black smoker fits into one octant needing only one instead of eight nodes.

Additionally as to smooth out transitions between octants the AUV uses trilinear interpo-
lation, where the eight points are at the corners of a oriented bounding box of the AUV.

6.7.1.2 Results

The following images were made with one black smoker in the level and a cell size of
25cm this results in a build time of around 100 milliseconds with a node count of 4000
and a file size of 250 KiB. A higher cell size was chosen for the images as the boxes are
rendered using debug boxes which do not have a good performance.

For a level with three black smokers and a cell size of 10cm the map builds in 10.71
seconds and has around 150k nodes and has a file size of 9.08 MiB.

75

Figure 6.21: Octree close to a black smoker, box colors: blue=leaf, red=inner node

Figure 6.22: Octree with a little distance from black smoker, box colors: blue=leaf,
red=inner node

6.7.1.3 Future work

In the future an improvement to the current saving/loading and octree generation system
could be to move those implementations into its own library, such that external applica-
tion can generate octree files. Furthermore currently the parameters are stored in the file
names, it would be good to directly store those information in the file or create separate
meta files.

Another big improvement could be made to the way ocean current velocities are cal-
culated. Maybe some open-source computational fluid dynamics solver or self-written
implementations could be used.

A aspect that is currently completely neglected, is the how ocean currents change with
time and through tidal influences. To save such data efficiently the data structure temporal
index tree could be used. It builds a tree where nodes store a time period and the data that
has small temporal variance during this period, which in our case would be a sparse octree.

76

6.7.2 Battery system simulation

Our simulation also simulates the battery system of the AUV. This consists of the part in
Unreal and the ROS side. In the following this will be explained in more detail.

6.7.2.1 Battery system

One of the features of our project is battery simulation, which was included in our second
milestone. The purpose of this feature is to provide an estimate of the average energy
consumption for our operations. I obtained the values from our supervisors at MARUM
and prepared the dynamic battery simulation model accordingly.

Parameters Quantity Wh
Propulsion Power 1 23(average)

Communication Power 1 20
Depth Sensor 2 2
IMU Sensor 1 1

Echolot 1 3
USBL 1 4
Light 1 100
Laser 1 2

RGB Camera 1 5
Total energy Consumption (W) =160

Table 6.1: Spreadsheet

The power-hungry components of the nano AUV are the propulsion system, sensors, com-
munication devices. Thus, we have to consider the minimum amount it needs to operate
and came back to the base station. So we are considering 20% safety Margin.

Total Energy Consumption = 160 Wh

Desired Operation Time = 1 hr

Battery Capacity = 200 Wh

6.7.2.2 Calculation of Propulsion System power

Propulsion System:

Autonomous Underwater Vehicle (AUV) typically utilizes a small-scale propulsion sys-
tem due to its miniature size. These propulsion systems are designed to be efficient,
lightweight, and capable of maneuvering in confined spaces.

77

Figure 6.23: Thruster in the AUV model

Nano AUVs often use miniature thrusters, typically electrically powered, to generate
thrust for propulsion. These thrusters can be designed to operate efficiently in underwater
conditions while being compact enough to fit within the small form factor of the vehicle.
Propeller thrusters are common propulsion systems for nano AUVs, making autonomous
underwater robotics an affordable possibility for researchers, scientists, and businesses.

According to the technical details available on the Blue robotics website[4], we consid-
ered for 10 V

Figure 6.24: Power Vs Thrust curve

This figure shows the power against the thrust and the unit of thrust is in kilogram force,
as we don not know about gravitational force on Enceladus. We kept the value as it is.

78

Figure 6.25: Formula for power calculation

f(x) = p1x
3 + p2x

2 + p3x+ p4 (6.1)

I have used Matlab curve fitting tool and extracted the equation to calculate propulsion
power for the battery system.

To calculate the propulsion power with the help of achieved formula, I have calculated
the force and toque that is being received from the ROS system.

Force = x1 + x2 + x3

Torque = y1 + y2 + y3

Propulsion power =
√

x2
1 + x2

2 + x2
3 + y21 + y22 + y23

79

Figure 6.26: Propulsion Power Calculation

The ROS System provides the values. Without ROS system the battery system will not be
executed, as it is proving the propulsion power.

Figure 6.27: Battery Sketch

This fig shows the load on the battery and the final output showing the remaining level
and energy.

6.7.2.3 Implementation

Display Battery Status

The primary goal is to monitor battery status to assess its performance during operations,
both with and without additional loads such as lights. It doesn’t need to be always on
during the operation, and energy can be saved. For communication, the communication
board must be always active. For calculation, we are considering the sensors are active
by default as they consume very less power and we are not considering duty cycle. We

80

considered a safety margin so that when the battery is less than 20%, the AUV can return
to the base station. I have implemented logic in Blueprints to monitor the battery level
continuously. When the battery level falls below 20%, it triggers an alert displaying a
warning message.

In the main level, with a key binding, it is not required to display the battery status all
the time. According to discussions in our weekly meetings, I assigned a key binding to
display the battery status when the main level is running. So, when the key is pressed, it
will show the battery status. For the second milestone, I prepared a power consumption
UI widget to display battery features in the main scene. Later on, after modifications
and based on discussions, we agreed to display everything together in one UI. I have
continuously iterated on the UI design based on feedback from discussions and meetings.

Figure 6.28: initial version

81

Figure 6.29: Final Version

6.7.2.4 Challenges

UI widget should display real-time data on energy usage and we are displaying everything
together in one UI, UI elements render quickly and efficiently, even in complex scenes but
Complex UI layouts with numerous widgets can impact performances. So, I had to think
alternately for implementing custom event handling and data binding mechanisms for
keeping UI content synchronized with the game world.

6.7.2.5 ROS2 integration

To make it possible to enable and disable the engine of the AUV in case of complete
battery depletion or have the AUV cancel the currently planned trajectory and return to
the melting probe additional components were added to the AUV actor. These are used to
send the control message to the ROS2 system. To make usage of this functionality easier
a wrapper around the components was created to combine all into one actor.

Additionally to compute the power usage the motor output of the AUV was needed.
Therefore an extra actor was created to subscribe to the control forces output by the pilot
node.

This functionality is completely implemented and working, but not used in the Unreal
Engine battery system simulation.

6.8 Containerization & Execution

As already mentioned in chapter 5.3 there was the need to containerize our Unreal Engine
project, as ROS2 communication between containers was the only working alternative to
running the unreal project directly on the Windows host and ROS2 application in Ubuntu
22.04 using WSL.

82

Figure 6.30: Different ways to execute the project stack. a) Running UE application
directly on windows and ROS2 using Ubuntu 22.04 on WSL b) Running everything

using Docker

Another aspect of why a containerized approach would be better, is that to run the Unreal
project in Windows a lot of installation and setup is needed because of ROS2. So people
that want to run the software in the future need to have all the right software installed
otherwise it would not work.

There a containerized approach to deployment has the advantage that it would be possible
to create custom Docker images and use the GitLab package registry to store them. Then
running the complete application stack would only require a docker compose up to start
all containers, all needed images could be build using GitLabs CI/CD pipelines and then
directly stored in the package registry of the repository.

To complete this goal the first step would be to have the finished release build binaries
for the Unreal Engine project. As the containerization of the ROS2 application is already
finished.

Epic Games provides Docker images for building and running of Unreal Engine projects.
The problem with them was that the base image they are based on is Ubuntu 18.04 which
is not supported by the ROS2 version Humble that we are using.

This lead to the question of do we even need automated builds at this point in time? The
answer to that is no, as the runtime images are also based on Ubuntu 18.04 running the
project with this approach would also not work.

This lead shifting the goal to just manually building the project for Linux with Unreal
Engine’s cross-compilation. And trying to just run the application in a container.

To accomplish this, more in depth research was made into what does our Unreal Engine
application need to run on Linux.

The requirements are the following:

• Full Linux distributions

• GPU acceleration

• ROS2 humble (Ubuntu 22.04)

83

Full Linux distribution come with a lot of libraries and application pre-installed that are
needed for all kinds of purposes and also needed by Unreal Engine applications. There-
fore more minimal distributions such as Alpine would not work out of the box and need a
lot of additional work.

Additionally the container needs to support GPU acceleration for Unreal Engine to be
able to use the GPU to do rendering. Currently our project uses Unreal Engine version
5.2, for which the render pipeline of Linux builds only supports Vulkan. Older versions
such as 4.25 also supported OpenGL, but that is no longer the case.

Consequently a container is needed that uses Ubuntu 22.04, the NVIDIA container toolkit
for GPU acceleration, supports Vulkan and provides a way to display the application
windows from inside of the container on the host system.

According to these requirements already existing images were found. The images by
Adam Rehn on Dockerhub provide pre-configured images for all kinds of environments
and configuration how Unreal Engine projects can be run.

After running our project with the image adamrehn/ue4-runtime:22.04-vulkan-x11 which
uses X11 to display the windows on the host system. The error that no compatible Vulkan
device was found appeared.

This was weird as the images were functioning for many other users. After trying multiple
different images without success, I researched how to debug the Vulkan API. One such
application is vulkaninfo it provides detailed information about all Vulkan devices and
their capabilities. There only llvmpipe was listed as a device, which is basically just using
the CPU as a Vulkan device.

Now the question was why does Vulkan not list the installed GPU although it is listed
using NVIDIA’s system management interface (nvidia-smi)?

As it turns out this is caused by the missing support for Vulkan drivers when running
Docker on a Windows host system through WSL. Also it was not possible to switch to
Linux as the operation system, because all our project members are using Windows 10 or
11 and not all may be experienced/able to work using Linux.

Therefore other Vulkan drivers that work in containers with a Windows host and WSL was
needed. The only one that seemed promising was Mesa, which is a library of open-source
implementations of multiple rendering pipeline specifications. It contains the driver called
Dozen which is a translation layer from the Vulkan API to the DirectX12 API. The de-
velopment to include the driver in Mesa begun in january of 2022. This allows running
Vulkan applications through DirectX12 in WSL on a Windows host.

It is important to note that Dozen is currently experimental and is not included in the
packages of Mesa in the package registries, because of this it was needed to build Mesa
from source.

After installation vulkaninfo now shows the correct GPU hardware and the Vulkan test
application vulkancube also starts correctly and works using the GPU.

Sadly when running the Unreal Engine project it crashes on startup. This appears to be
caused by the Dozen driver being incomplete and not supporting all of Vulkan’s function-
alities.

84

https://hub.docker.com/r/adamrehn/ue4-runtime
https://gitlab.freedesktop.org/mesa/mesa

No other way to run Vulkan applications in a container on a Windows host using WSL was
found. As a consequence the containerization of the Unreal Engine project is not possible,
which combined with the networking issues regarding ROS2 between container and host
system means, that the application stack has to be run without the use of containers.

This leads to the way of running the Unreal Engine project on Windows which needs a
complete ROS2 installation. Furthermore to avoid the erroneous movement of the AUV
the ROS2 application has to be run on Ubuntu 22.04 using WSL.

85

7. Website
Another goal of this project was to provide a website that shows our progress and contains
general project information. Since this website is only required to display information,
we have decided to not integrate any further back-end implementation. Instead, the focus
is on the clear representation of the existing data. During the development process there
were essentially two iterations of the website, which are described below.

7.1 Version 1

The first iteration relies on using a framework to create static web pages. This framework
is Hugo, which says it is one of the best-known and most popular frameworks for creating
static websites ([15]). Hugo does not rely on JavaScript, but rather on Go as a scripting
language. A major advantage of using this technology is that creating a simple website is
possible with very little effort. In most cases it is sufficient to follow the few installation
steps, clone a template and integrate it into a project. Most templates are structured in
such a way that they create new content as sub pages and simply add links to them on the
main page, like in a blog. New content can then be added in just a few steps. Unlike other
frameworks, Markdown files are used directly; HTML code is not usually written directly,
even though this is possible. Since Markdown files require relatively little effort and
experience, it is very quick to add new content this way. Most of the general site layout
and formatting is already handled by the chosen template. Since our website seemed to
fit exactly into this framework, we initially agreed to use it.

Another alternative that has been considered is GrapesJS. Unlike Hugo, GrapesJS, as the
name suggests, uses JavaScript as scripting language. GrapesJS is also less of a standalone
framework like Hugo, but rather intended for integration into other content management
systems, even though it can be used alone. A big advantage of GrapesJS is the presence
of a drag & drop editor for creating the interface. In this way, in many cases HTML code
is abstracted and worked directly with visual feedback, even if direct coding is possible
at any time. Like Hugo, predefined templates are also available here, but the selection is
significantly smaller.

We ultimately decided against using GrapesJS because the expected effort was considered
to be higher than Hugo. Hugo already contains all the layout elements that our site should
contain, whereas in GrapesJS these would probably have required additional work.

86

Figure 7.1: Website Version 1 (1)

Figure 7.2: Website Version 1 (2)

The layout shown in the figure is largely determined by the used template which is called
"PaperMod". A menu bar is already provided, there is also a dark mode and interna-
tionalization. Likewise, any content will be centered and only fill the middle 50% of
the screen. Furthermore, many features are already included that increase user comfort.
These include, among other things, smooth scrolling, scroll to top and pleasantly readable
formatting.

The content that should be displayed on the website can be divided into the following
subcategories:

1. Overview/Introduction

2. Project Information of related project

3. Project information about our project including demo video

4. Project features

87

5. Team

In the introductory part, the project will first be roughly outlined, and the project frame-
work will be explained. Since the TRIPLE and VaMEx projects are relevant to the project
context, they will be described directly afterwards. The project goals are briefly outlined
below, and the demo video is shown, followed by some selected project features. We lim-
ited ourselves to a selection of four features, all of which contain both a text description
and an image or GIF. The team section at the end is intended to inform the reader about
which people participated in the project.

Even though this first version meets all the criteria that we initially declared as the goal
for the website, some errors became apparent during creation. Markdown files are too
inflexible for the purposes intended here. Despite the possibility to quickly create a page
that contains mostly text, formatting images and text presents some problems. For exam-
ple, it is not possible to display an image next to text in Markdown; HTML or CSS is
required for this. In addition, it became apparent during implementation that structuring
into multiple sub pages did not make sense given the amount of content. However, since
the template provides for such structuring, this is also problematic, for example when
creating the menu bar entries. Even though the page in this version is easy to read and
functional, it still appears very simple and does not have a title page. The way the content
is structured, this is a problem because when you first read the page, too little information
about the Triplesim project is presented before the other projects are presented. For these
reasons, it became obvious that this framework does not really fit the intended use, as
many features are not or hardly used.

7.2 Version 2

No framework was used for the second iteration, this implementation relies solely on
HTML, CSS and JavaScript. Among other things, this version should fix the following
problems:

• Provide a title page for the project

• Better content formatting

• Less simple representation

• Include animations

88

Figure 7.3: Website Version 2 (1)

Figure 7.4: Website Version 2 (2)

This version includes a title page which, together with the overview, adequately introduces
the project before the other projects are introduced. The site makes better use of the
available space which also allows font and size customization. The website floats on
a grey background, which is only visible in an eight-pixel wide gap at the side. This
provides a more dynamic feel when scrolling through the page, since this background
stays the same, while the content seems to be structured in individual boxes or cards.
Animations were used to underline this effect. Most content now fades in when the reader
scrolls to it. For these animations, an open-source library called "Animation on Scroll"
([37]) was used. This commonly used library contains many easily accessible animations
that can be included in any HTML page.

7.3 Improvements

The site works on all monitors in landscape format up to a very low resolution of around
800x600. On lower resolutions, formatting errors may occur. There currently is no re-

89

sponsive design included, so the website is not properly displayed on mobile devices or
devices in portrait format. Due to time constraints, this can no longer be integrated into
the project.

90

8. Conclusion
All in all, we are very pleased with the progress we made in this project. In its current
state, the project simulates a realistic scene of an underwater ocean of an icy moon. Many
sensors are included and fully simulated, their values are output both in a user interface
that is accessible at runtime and via ROS. Therefore we would describe the current status
as a success.

However, there is definitely some room for improvements. In many sections of this report
there are already possible improvements mentioned. Due to a lack of people in the project,
we couldn’t realize many features, that very initially planned. Also the visualization could
be improved. In the current state there are no animations included, which could be a
possible improvement in the future.

91

Bibliography
[1] Ahkâm. Dust png transparent background. https://www.freeiconspng.

com/img/35071, 2014. last accessed 24. March 2024.

[2] J. Amos. Saturn’s enceladus moon hides ’great lake’ of water. https://www.
bbc.com/news/science-environment-26872184, 2014. last accessed:
2024-03-24.

[3] C. Angus and I. O. Tarifa. Kantan charts. https://github.com/kamrann/
KantanCharts, 2016. last accessed 31.03.2024.

[4] BlueRobotics. T200 thruster. https://bluerobotics.com/store/
thrusters/t100-t200-thrusters/t200-thruster-r2-rp/. last
accessed 10.04.2024.

[5] CBS TEXAS. Plankton light the sea in wales: ’it really is something magi-
cal’. https://www.youtube.com/watch?v=eWIhn16RsHU, 2018. last
accessed 25. March 2024.

[6] CGVR. VaMEx-VTB - U Bremen. https://cgvr.cs.uni-bremen.de/
research/vamex-vtb/. last accessed: 2024-03-22.

[7] W.-S. Choi, D. R. Olson, D. Davis, M. Zhang, A. Racson, B. Bingham, M. McCar-
rin, C. Vogt, and J. Herman. Physics-Based Modelling and Simulation of Multibeam
Echosounder Perception for Autonomous Underwater Manipulation. Frontiers in
Robotics and AI, 8, Sept. 2021.

[8] CodeLikeMe. Unreal engine 5 - sound ripple effect. https://www.youtube.
com/watch?v=0Hk7Ykcq4i8, 2022. last accessed 25.03.2024.

[9] T. J. Crone, W. S. D. Wilcock, A. H. Barclay, and J. D. Parsons. The Sound
Generated by Mid-Ocean Ridge Black Smoker Hydrothermal Vents. PLOS ONE,
1(1):e133, Dec. 2006.

[10] J. Engebrecht, K. Nealson, and M. Silverman. Bacterial bioluminescence: isolation
and genetic analysis of functions from vibrio fischeri. Cell, 32(3):773–781, 1983.

[11] Epic Games. Quixel bridge plugin for unreal engine. https://dev.
epicgames.com/documentation/en-us/unreal-engine/quixel-
bridge-plugin-for-unreal-engine?application_version=5.
0. last accessed 27. March 2024.

[12] Epic Games. Runtime virtual texturing - an overview of runtime virtual tex-
tures in unreal engine. https://docs.unrealengine.com/4.27/en-
US/RenderingAndGraphics/VirtualTexturing/Runtime/. last ac-
cessed 26. March 2024.

[13] EVNautilus. Spectacular methane hydrate bubble plumes | nautilus live. https://
www.youtube.com/watch?v=LajZxIQmZzs, 2016. last accessed 26. March
2024.

92

https://www.freeiconspng.com/img/35071
https://www.freeiconspng.com/img/35071
https://www.bbc.com/news/science-environment-26872184
https://www.bbc.com/news/science-environment-26872184
https://github.com/kamrann/KantanCharts
https://github.com/kamrann/KantanCharts
https://bluerobotics.com/store/thrusters/t100-t200-thrusters/t200-thruster-r2-rp/
https://bluerobotics.com/store/thrusters/t100-t200-thrusters/t200-thruster-r2-rp/
https://www.youtube.com/watch?v=eWIhn16RsHU
https://cgvr.cs.uni-bremen.de/research/vamex-vtb/
https://cgvr.cs.uni-bremen.de/research/vamex-vtb/
https://www.youtube.com/watch?v=0Hk7Ykcq4i8
https://www.youtube.com/watch?v=0Hk7Ykcq4i8
https://dev.epicgames.com/documentation/en-us/unreal-engine/quixel-bridge-plugin-for-unreal-engine?application_version=5.0
https://dev.epicgames.com/documentation/en-us/unreal-engine/quixel-bridge-plugin-for-unreal-engine?application_version=5.0
https://dev.epicgames.com/documentation/en-us/unreal-engine/quixel-bridge-plugin-for-unreal-engine?application_version=5.0
https://dev.epicgames.com/documentation/en-us/unreal-engine/quixel-bridge-plugin-for-unreal-engine?application_version=5.0
https://docs.unrealengine.com/4.27/en-US/RenderingAndGraphics/VirtualTexturing/Runtime/
https://docs.unrealengine.com/4.27/en-US/RenderingAndGraphics/VirtualTexturing/Runtime/
https://www.youtube.com/watch?v=LajZxIQmZzs
https://www.youtube.com/watch?v=LajZxIQmZzs

[14] EvoLogics. S2C R 48/78 USBL | EvoLogics. https://evologics.com/
product/s2c-r-48-78-usbl-25. last accessed: 2024-03-23.

[15] S. Francia. Hugo. https://gohugo.io/. last accessed: 2024-03-23.

[16] GameDev Outpost. Ue4 - niagara export particle data to blueprint - collision.
https://www.youtube.com/watch?v=aA_8NLzbUTA, 2021. last ac-
cessed 20. March 2024.

[17] V. Golovin. Caviar. https://www.filterforge.com/filters/209.
html, 2010. last accessed 24. March 2024.

[18] V. Golovin. Organics. https://www.filterforge.com/filters/218.
html, 2010. last accessed 24. March 2024.

[19] J. H. W. Jr., W. S. Lewis, B. A. Magee, J. I. Lunine, and W. B. McKinnon. Liquid
water on enceladus from observations of ammonia and 40ar in the plume. In Nature,
Volume 460 Nr. 7254, pages 487–490, july 2009.

[20] Kenney.nl. Particle pack (80+ sprites). https://opengameart.org/
content/particle-pack-80-sprites, 2018. last accessed 24. March
2024.

[21] Klogg23. Black smoker (hydrothermal vent). https://sketchfab.
com/3d-models/black-smoker-hydrothermal-vent-
7210f54bb30943ea80347472ce00b64f, 2020. last accessed 21. March
2024.

[22] J. P. Laboratory. Saturn moon’s ocean may harbor hydrothermal activ-
ity. https://web.archive.org/web/20151204083326/http://
solarsystem.nasa.gov/news/display.cfm?News_ID=48922NASA,
2015. last accessed: 2024-03-24.

[23] H. Leila. Oh Snap! What Tiny Shrimp Can Tell Us About Habitat Health. https:
//sanctuaries.noaa.gov/news/dec21/oh-snap.html, Dec. 2021.
last accessed: 2024-03-25.

[24] Marum. Marum - dem meer auf den grund gehen! https://www.marum.de.
last accessed 21. March 2024.

[25] Marum. Successful sea trials on HEINCKE-expedition. https:
//www.marum.de/en/The-Ocean-Floor/Successful-sea-
trials-on-HEINCKE-expedition.html, Mar. 2022. last accessed:
2024-03-24.

[26] MarumTV. Nachgefragt - folge 1: Wie entstehen schwarze raucher? https://
www.youtube.com/watch?v=rhrI-JpET3c, 2019. last accessed 20. March
2024.

[27] T. Miyashiro and E. G. Ruby. Shedding light on bioluminescence regulation in
vibrio fischeri. Molecular microbiology, 84(5):795–806, 2012.

[28] C. Morency, D. J. Stilwell, and S. Hess. Development of a Simulation Environment
for Evaluation of a Forward Looking Sonar System for Small AUVs. In OCEANS
2019 MTS/IEEE SEATTLE, pages 1–9, Oct. 2019. arXiv:2210.06535 [cs, eess].

93

https://evologics.com/product/s2c-r-48-78-usbl-25
https://evologics.com/product/s2c-r-48-78-usbl-25
https://gohugo.io/
https://www.youtube.com/watch?v=aA_8NLzbUTA
https://www.filterforge.com/filters/209.html
https://www.filterforge.com/filters/209.html
https://www.filterforge.com/filters/218.html
https://www.filterforge.com/filters/218.html
https://opengameart.org/content/particle-pack-80-sprites
https://opengameart.org/content/particle-pack-80-sprites
https://sketchfab.com/3d-models/black-smoker-hydrothermal-vent-7210f54bb30943ea80347472ce00b64f
https://sketchfab.com/3d-models/black-smoker-hydrothermal-vent-7210f54bb30943ea80347472ce00b64f
https://sketchfab.com/3d-models/black-smoker-hydrothermal-vent-7210f54bb30943ea80347472ce00b64f
https://web.archive.org/web/20151204083326/http://solarsystem.nasa.gov/news/display.cfm?News_ID=48922NASA
https://web.archive.org/web/20151204083326/http://solarsystem.nasa.gov/news/display.cfm?News_ID=48922NASA
https://sanctuaries.noaa.gov/news/dec21/oh-snap.html
https://sanctuaries.noaa.gov/news/dec21/oh-snap.html
https://www.marum.de
https://www.marum.de/en/The-Ocean-Floor/Successful-sea-trials-on-HEINCKE-expedition.html
https://www.marum.de/en/The-Ocean-Floor/Successful-sea-trials-on-HEINCKE-expedition.html
https://www.marum.de/en/The-Ocean-Floor/Successful-sea-trials-on-HEINCKE-expedition.html
https://www.youtube.com/watch?v=rhrI-JpET3c
https://www.youtube.com/watch?v=rhrI-JpET3c

[29] B. Murray. Ocean floor of enceladus. https://www.planetary.org/
space-images/ocean-floor-of-enceladus. last accessed: 2024-03-25.

[30] NASA. Nasa cassini data reveals building block for life in enceladus’ ocean.
https://www.nasa.gov/missions/cassini/nasa-cassini-
data-reveals-building-block-for-life-in-enceladus-
ocean/. last accessed: 2024-03-24.

[31] C. Nisbet. Ice chunk sprite 2.0. https://www.filterforge.com/
filters/12607.html, 2014. last accessed 26. March 2024.

[32] D. Oertel. Deep-Sea Model-Aided Navigation Accuracy for Autonomous Un-
derwater Vehicles Using Online Calibrated Dynamic Models. 2018. doi:
10.5445/IR/1000081117.

[33] Pixabay. Sonar ping. https://pixabay.com/de/sound-effects/
sonar-ping-95840/. last accessed: 2024-03-25.

[34] Pixabay. Underwater Ambience. https://pixabay.com/de/sound-
effects/underwater-ambiencewav-14428/. last accessed: 2024-03-25.

[35] Quixel. Quixel bridge. https://quixel.com/bridge. last accessed 21.
March 2024.

[36] G. Robits. Imu and robotics: All you need to know. https:
//www.generationrobots.com/blog/en/imu-and-robotics-
all-you-need-to-know/, 2020. last accessed 31.03.2024.

[37] M. Sajnóg. Aos. https://github.com/michalsnik/aos. last accessed:
2024-03-23.

[38] Subsea Imaging. Particle pack (80+ sprites). https://de.subcimaging.
com/case-studies/faq-underwater-lasers-for-subsea-
imaging, 2016. last accessed 24. March 2024.

[39] A. Suzuki, S. Hakura, T. Hamura, M. Hattori, R. Hayama, T. Ikeda, H. Kusuno,
H. Kuwahara, Y. Muto, K. Nagaki, R. Niimi, Y. Ogata, T. Okamoto, T. Sasamori,
C. Sekigawa, T. Yoshihara, S. Hasegawa, K. Kurosawa, T. Kadono, A. M. Naka-
mura, S. Sugita, and M. Arakawa. Laboratory experiments on crater scaling-law for
sedimentary rocks in the strength regime. Journal of Geophysical Research: Planets,
117(E8):2012JE004064, Aug. 2012. ,doi:10.1029/2012JE004064, issn:0148-0227.

[40] Upklyak. Brown dusty cloud. https://www.freepik.com/free-
vector/brown-dusty-cloud_6538010.htm#from_view=detail_
alsolike. last accessed 24. March 2024.

[41] Wikipedia. Gimp. https://en.wikipedia.org/wiki/GIMP#:~:text=
GNU%20Image%20Manipulation%20Program%2C%20commonly,
formats%2C%20and%20more%20specialized%20tasks. last accessed
27. March 2024.

[42] Wikipedia. Code - heatmaps and color gradients. https://www.
andrewnoske.com/wiki/Code_-_heatmaps_and_color_
gradients, 2019. last accessed 23. March 2024.

94

https://www.planetary.org/space-images/ocean-floor-of-enceladus
https://www.planetary.org/space-images/ocean-floor-of-enceladus
https://www.nasa.gov/missions/cassini/nasa-cassini-data-reveals-building-block-for-life-in-enceladus-ocean/
https://www.nasa.gov/missions/cassini/nasa-cassini-data-reveals-building-block-for-life-in-enceladus-ocean/
https://www.nasa.gov/missions/cassini/nasa-cassini-data-reveals-building-block-for-life-in-enceladus-ocean/
https://www.filterforge.com/filters/12607.html
https://www.filterforge.com/filters/12607.html
https://pixabay.com/de/sound-effects/sonar-ping-95840/
https://pixabay.com/de/sound-effects/sonar-ping-95840/
https://pixabay.com/de/sound-effects/underwater-ambiencewav-14428/
https://pixabay.com/de/sound-effects/underwater-ambiencewav-14428/
https://quixel.com/bridge
https://www.generationrobots.com/blog/en/imu-and-robotics-all-you-need-to-know/
https://www.generationrobots.com/blog/en/imu-and-robotics-all-you-need-to-know/
https://www.generationrobots.com/blog/en/imu-and-robotics-all-you-need-to-know/
https://github.com/michalsnik/aos
https://de.subcimaging.com/case-studies/faq-underwater-lasers-for-subsea-imaging
https://de.subcimaging.com/case-studies/faq-underwater-lasers-for-subsea-imaging
https://de.subcimaging.com/case-studies/faq-underwater-lasers-for-subsea-imaging
https://www.freepik.com/free-vector/brown-dusty-cloud_6538010.htm#from_view=detail_alsolike
https://www.freepik.com/free-vector/brown-dusty-cloud_6538010.htm#from_view=detail_alsolike
https://www.freepik.com/free-vector/brown-dusty-cloud_6538010.htm#from_view=detail_alsolike
https://en.wikipedia.org/wiki/GIMP#:~:text=GNU%20Image%20Manipulation%20Program%2C%20commonly,formats%2C%20and%20more%20specialized%20tasks.
https://en.wikipedia.org/wiki/GIMP#:~:text=GNU%20Image%20Manipulation%20Program%2C%20commonly,formats%2C%20and%20more%20specialized%20tasks.
https://en.wikipedia.org/wiki/GIMP#:~:text=GNU%20Image%20Manipulation%20Program%2C%20commonly,formats%2C%20and%20more%20specialized%20tasks.
https://www.andrewnoske.com/wiki/Code_-_heatmaps_and_color_gradients
https://www.andrewnoske.com/wiki/Code_-_heatmaps_and_color_gradients
https://www.andrewnoske.com/wiki/Code_-_heatmaps_and_color_gradients

	List of figures
	Glossary
	Introduction
	Project goals
	Organization
	Milestones
	Meetings
	Protocols

	Overview of TripleSim
	Sensors
	USBL
	Challenges
	Implementation
	Current Implementation of the transceiver
	Current Implementation of the Rays

	Results
	Other approaches
	Collision detection at the "EchoBeam's"
	Sphere trace and box trace instead of line trace
	Raypool

	Echo sounder
	Implementation
	Results

	Pressure/depth sensor
	Laser
	Development process
	Implementation
	Laser bins
	Change the properties of the laser
	Particle detection
	Particle detection implementation
	Total density of all particle systems

	Challenges

	IMU

	Environment
	Light & Fog
	Problems of the volumetric Fog
	Light at the AUV

	Ice Shapes
	SFX
	Black smoker
	Black smoker model
	Black smoker plume
	Niagara vs. Niagara Fluids
	Development process
	Final Plume

	Black smoker blueprint
	Particle detection for real particles from the black smoker
	Collision and illumination of the plume
	Challenges
	Remarks

	Particles around the AUV
	Implementation
	Box containing the particles
	Movement of the particles
	Particle sprites
	Illumination of the particles
	Ocean current modifier replacement

	Change the properties of the particle system
	Increase particles around AUV based on black smoker
	Challenges
	Future works

	VFX
	1. Particle System
	Underwater shader
	Schlieren effect
	Bioluminescence
	Ice particles
	Bubbles

	Terrain
	1. Prototype
	Later Versions

	Blending with Runtime Virtual Texturing

	ROS System
	Components
	Changes
	Problems

	Unreal Project
	VaMEx-VTB
	Version
	ROS2 plugin
	Usage
	Problems

	Input
	AUV
	3D model
	Lighting

	Visualization
	Path & Trajectory
	Ripple Effect
	Laser and bin visualization

	User Interface
	General Layout
	IMU UI
	Problems

	Laser UI
	Heatmap
	Implementation
	Laser data ROS
	Future works

	Camera views
	Basic views
	Orbit camera

	Simulation
	Ocean current simulation
	Implementations
	Results
	Future work

	Battery system simulation
	Battery system
	Calculation of Propulsion System power
	Implementation
	Challenges
	ROS2 integration

	Containerization & Execution

	Website
	Version 1
	Version 2
	Improvements

	Conclusion
	Bibliography

