
1

Simulation of Massive Particle Systems
with Lennard-Jones Force on the GPU

Bastian Hassel

I. INTRODUCTION

THE Lennard-Jones potential is a model to
approximate the interaction between a pair

of neutral atoms or molecules. First proposed
was a form of the potential in 1924 by John
Lennard-Jones [1]. A common expression of the
potential is

vLJ = 4ε
[(

δ
r

)12 − (δ
r

)6] (1)

In order to simulate the forces of the Lennard-Jones
potential they need to be calculated for all particles
against ever other particle in the system, with just
256k particles 65.5 billion calculations are needed,
resulting in long computation times. Therefore the
main focus in this article is to reduce the time
complexity of O(n2) towards the best case O(n).
Particles too far away to influence the current par-
ticle can be sorted out to reduce overall workload.
The best way to achieve this is by dividing the space
into grid cells, that way any particle need only to
be calculated against their 9 adjacent cells. This also
defines the size of the cells to the range at which
particles could influence each other.

II. IMPLEMENTATION

A. Sorting

In order to place particles into their corresponding
cell they must be sorted. All particles inside a
particular cell do not need to be sorted any further,
their order does not matter. Thus the sorting can be
sped up a little by keys for their positions, so all
particles that belong to the same cell get the same
key. Also to make comparisons on the GPU faster
the key size should be limited to 4 bytes, the size
of an integer. To make byte alignment easier the 3
axes x,y,z are stored in 3 bytes. This results in a
limitation to 256 possible values for each axis.
With these limitations the key value can be calcu-
lated by dividing the particle position by the cell

size and using the dot product to align the bytes.

vkey =
⌊

~xparticle
~scellsize

⌋
·

 65536
256
1

 (2)

Since the particles need to be assigned with their key
it is necessary to save the key-value pair. The index
of the particle is sufficient to ensure that actually
the particle is sorted and not just its key alone.
Once the key is calculated the sorting can start.
Because the particle data is on the GPU and copying
the data to the CPU and back causes too much
latency an efficient sorting algorithm for the GPU
is needed. As this question is already answered a
bitonic sorter is a good solution for smaller particle
counts and radix sort is generally a good solution
[2], especially since the key value will not be
larger than 3 bytes in this simulation. Especially to
improve the speed of a radix sort it is necessary to
reduce the key size to the bare minimum.

B. Grid building
With a sorted particle list the grid for the simu-

lation can be build. Therefore every grid cell gets 2
values. The first one is the start index and the other
one the end index of the particles in the cell. Since
all particles are sorted it is ensured that indices in
between belong to particles in the same cell.

C. Simulating
For simulation itself every particle still has to be

processed but the workload is much smaller due
to the preparatory work. First the corresponding
grid cell must be calculated, then all adjacent cells
are needed, so they have to be included too. All
particles that affect the current one can then easily
be acquired by iterating from the start index to the
end index for all cells that were gathered in the first
step. For the force itself only the distance between
2 affecting particles has to be calculated and passed

2

into the function mentioned in the introduction.
All forces then need to be accumulated and then
converted into an acceleration.
The final step consist than by applying the acceler-
ation to the velocity and moving the position by the
velocity.

vt+1 = vt + at · δt (3)

xt+1 = xt + vt · δt (4)

To keep all particles closer together applying
forces from arbitrary walls would be wise. The
alternate, more accurate method would be a torus-
topology. Instead of reflecting particles beyond the
walls is to replace them instant to the other side of
the system:

x′
= x + w.xyz · (2w.w) (5)

But that alone does not allow to interact with par-
ticles on the other side, to achieve this the modulo
operator can be used instead of clamping the grid
cell indices between 0 and their maximum. The
position of particles in those cells that are actually
on the other side needs to be adjusted to represent
their position for the force calculation.

III. RESULTS

Particles will generally form cluster, greater
attraction will cause smaller and denser cluster,
greater repulsion will cause them to spread more
widely while also resulting in affected particles
having lower velocities resulting from lesser
particles being very close.

Fig. 1. Simulation Results.

Fig. 2. Simulation Results.

Although computing could be sped up sorting
the particles into cells is also created additional
artefacts. So with bigger time steps the formed
cluster tend to move towards the center of the grid
cells. Also particles vibrate more the bigger the time
steps are instead of staying in place.

REFERENCES

[1] J. E. Jones, “On the determination of molecular fields. ii. from
the equation of state of a gas,” Proceedings of the Royal
Society A: Mathematical, Physical and Engineering Sciences,
vol. 106, no. 738, pp. 463–477, Oct 1924. [Online]. Available:
http://dx.doi.org/10.1098/rspa.1924.0082

[2] N. Satish, M. Harris, and M. Garland, “Designing efficient
sorting algorithms for manycore gpus,” in Proceedings of the
2009 IEEE International Parallel & Distributed Processing
Symposium. Institute of Electrical and Electronics Engineers,
May 2009, pp. 1–10. [Online]. Available: http://dx.doi.org/10.
1109/IPDPS.2009.5161005

