eeeeee

U  Goals for Splitting Nodes

= We want (summed diversity within children) < (diversity in parent)
= Data points should be

= Homogeneous (by labels) within leaves

= Different between leaves
= Goal: try to increase purity within subsets

= Optimization goal in each node: find the attribute and a cutpoint that
splits the set of samples into two subsets with optimal purity

= This attribute is the "most discriminative" one for that data (sub-) set

= Question: what is a good measure of purity for two given subsets
of our training set?

G. Zachmann Massively Parallel Algorithms SS July 2014 Random Forests
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Y Digression: Information Gain in Politics/Journalism

= Politician X is accused of doing something wrong
= He is asked (e.g., by journalists): "Did you do it?"

" The opposition (assuming X is a member of the ruling party) is
asked: "Do you think he did it?"

= The answers are reported in the news ...

= What information do you gain?

G. Zachmann Massively Parallel Algorithms SS July 2014 Random Forests
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Information Gain

= Enter the information theoretic concept of information gain
" Imagine different events:

= The outcome of rolling a dice =6

= The outcome of rolling a biased dice = 6

= Each situation has a different amount of uncertainty whether or not
the event will occur

" |nformation = amount of reduction in uncertainty (= amount of
surprise if a specific outcome occurs)

G. Zachmann Massively Parallel Algorithms SS July 2014 Random Forests
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= | am thinking of an integer number in [1,100]
= How many yes/no questions do you need at most to find it out?
= Answer: [log, 100] =7

= Definition Information Value:

= Given a set S, the maximum work required to determine a specific
element in § by traversing a decision tree is

log, |5‘

= Call this value the information value of being told the element, rather
than having to work for it (by asking binary questions)

G. Zachmann Massively Parallel Algorithms SS July 2014 Random Forests
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= Let Y be a random variable; then we make one observation of the
variable Y (e.g., we draw a random ball out of a box) — value y

= The information we obtain if event "Y = y" occurs, i.e., the
information value of that event, is

# balls in box) 1
= log,

# y's in box m = ~logply)

I[Yzylzlogz(

= "If the probability of this event happening is small and it happens,
then the information is large"

= Examples:
= Observing the outcome of coinflip — [ = — Iog% =1
= Observing the outcome of dice==6 — | = — |og % = 2.58

G. Zachmann Massively Parallel Algorithms SS July 2014 Random Forests 22
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Entropy

= A random variable Y (= experiment) can assume different values
Y1, -, ¥n (i.e., the experiment can have different outcomes)

= What is the average information we obtain by observing the
random variable?

= |n other words: if | pick a value y;at random, according to their
respective probabilities — what is the average number of yes/no
question you need to ask to determine it?

= In probabilistic terms: what is the expected amount of information?
— captured by the notion of entropy

= Definition: Entropy
Let Y be a random variable. The entropy of Y is

H(Y) = E[I(Y)] = Z py)I[Y = yi] = — Z p(yi) log p(y;)

G. Zachmann Massively Parallel Algorithms SS July 2014 Random Forests
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" |Interpretation: The number of yes/no questions (= bits) needed
on average to pin down the value of y in a random drawing

= Example: if Y can assume 8 values, and all are equally likely, then

1 1
H(Y) = _Z§|0g§ = log 2° = 3 bits

=1

G. Zachmann Massively Parallel Algorithms SS July 2014 Random Forests
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" |n general, if there are k different possible outcomes, then
H(Y) < log k

= Equality holds when all outcomes are equally likely

= With k = 2 (two outcomes), entropy 1
looks like this:

o
©

= The more the probability distribution
deviates from uniformity,

Entropy H

0.2}

the lower the entropy

= Entropy measures the impurity:

This distribution is less uniform
Entropy is lower
The node is purer

Balls in bin model

G. Zachmann Massively Parallel Algorithms SS July 2014 Random Forests
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U  Conditional Entropy

= Now consider a random variable Y (e.g., the different classes/labels)
with an attribute X (e.g., the first variable, x; 1 , of the data points, x;)

= With every drawing of Y, we also get a value for the associated attribute X
= Assume that Xis discrete, i.e., x; € {1, 2, ..., z}
= We now consider only cases of Y that fulfill some condition, e.qg., xj=1

= The entropy of Y, provided that it assumes only values with x;=1:

H(Y|x = 1) ZP yilxi = 1) log p(yi|x; = 1)
\ )

Y
Probability of y; occurring
as a value of Y,
where we draw Y
only from the subset that
contains only data points
that have attribute x;=1

Subset with
X =1

G. Zachmann Massively Parallel Algorithms SS July 2014 Random Forests
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€
%,

= QOverall conditional entropy:

H(YIX) =) p(x=k)-H(Y|x = k)
= N " p(x = k) ZP(Yi|Xi = k) log p(yi|xi = k)
k=1, )

Probability that the attribute X has value k

H(Y|x = 1)

H(Y|x =2)

H(Y|x = 3)

G. Zachmann Massively Parallel Algorithms SS July 2014 Random Forests 29
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Y

Information Gain

= How much information do we gain if we disclose the value of one
attribute X?

= |[nformation gain = (information before split) — (information after
split) = reduction of uncertainty by knowing attribute X

The information gained by a split in a node of a decision tree:

IG(Y,X) = H(Y) — H(Y|X)

= Goal: choose the attribute with the largest /G

= |n case of scalar attributes, also choose the optimal cutpoint

G. Zachmann Massively Parallel Algorithms SS July 2014 Random Forests
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Y

Example P ..

= Consider 2 options to split the root node of the restaurant example

Patrons?

None Some Full

EEEE M

= Random variable Y € { "yes", "no" }

French

= At the root node:

1 1
H(Y) = p(y="yes") log ——~ T ply="no")log TRGNT
(Y) =" 8 oy —yes) T 08 by = nor)
1 1
:§Iog2+§|og2:1

G. Zachmann Massively Parallel Algorithms SS July 2014 Random Forests 31
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¥ co @
HEEEEERER HEEEEER ve %
BHEHEDE ‘EEEEE\
Patrons?
None Some Full

il B E 8

= Conditional entropy for right option:
H(Y | n) = p(n="none")-H(Y|n="none" )+
p(n="some")-H(Y|n="some" )+
p(n="full")-H(Y|n="full")

where n = the attribute "#patrons" € { "none", "some", "full" }

2 Y3 ”n 13 ”n i ”n 13 "
H(Y |#patrons) = E(p(y= no")log p(y ="no") + p(y ="yes") log p(y ="yes"))+
4 '3 ”" 13 ”n 13 ”n 13 "
5 (p(y="n0")log p(y ="no") + p(y ="yes") log p(y ="yes")) +
6 X3 " i 13} 1} 13} b 12}
5 (P(y="n0") log p(y ="no") + p(y ="yes") log p(y ="yes"))
5 4 6 4 6 2 6
H(Y |#patrons) = E(l log1+0log0) + E(OlogO +1llogl) + E(E IogZ + 5 log 5)
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BEHEHEOIDE

Patrons?

None Some Full

il B E 8

= Conditional entropy for left option:

H(Yltype) = %O’(y ="no") log p(y ="no") + p(y ="yes") log p(y ="yes"))+
1 (P ="no") log p(y ="n0") + p(y ="yes") log p(y ="yes"))+
iz(p ="no") log p(y ="no") + p(y ="yes") log p(y ="yes")) +
i2(p ")log p(y="n0") + p(y ="yes") log p(y ="yes")) +

21 2 1. 2 42 4 2 4
H(Y|type) = 2. — (= | y 2. (£ 2
(Yitype) =25 (5 log 7 + 5 log 1) + 235 (G log 5 + 5 log 5)

G. Zachmann Massively Parallel Algorithms SS July 2014 Random Forests 33
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= Compare the information gains:

IG(Y, #patrons)

H(Y) — H(Y |#patrons)
1 —0.585

IG(Y type) = H(Y) — H(Y|type)
11

= So, the attribute "#patrons" gives us more information about Y

= Compute the /G obtained by a split induced by each attribute

= |n this case, the optimum is achieved by the attribute "#patrons" for
splitting the set of data points in the root

G. Zachmann Massively Parallel Algorithms SS July 2014
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Bits and Pieces -

D

VR .~

= |f there are no attributes left:

= Can happen during learning of the decision tree, when a node
contains data points with same attribute values but different labels

= This constitutes error / noise

= Stop construction here, use majority vote (discard erroneous point)
= |f there are leaves with no data points:

= While classifying a new data point

= Just choose the majority vote of the parent node

G. Zachmann Massively Parallel Algorithms SS July 2014 Random Forests 37
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U Expressiveness of Decision Trees B

= Assume all variables (attributes and labels) are Boolean

What is the class of Boolean functions that can be represented by
a decision tree?

= Answer: all Boolean functions!
= Proof (simple):

= Given any Boolean function

= Convert it to a truth table

= Consider each row as a data point, output = label

= Construct a DT over all data points / rows

G. Zachmann Massively Parallel Algorithms SS July 2014 Random Forests 38
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= |f Yis a discrete, numerical variable, then DTs can be regarded as
piecewise constant functions over the feature space:

I

|
| | \\ H ‘H | nm\

Ul | i

= DTs can approximate any function

G. Zachmann Massively Parallel Algorithms SS July 2014 Random Forests
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Problems of Decision Trees

= Error propagation:
= Learning a DT is based on a series of local decisions

= What happens, if one of the nodes implements the wrong decision?
(e.g., because of an outlier)

= The whole subtree will be wrong!
= Qverfitting: in general, it means the learner performs extremely

well on the training data, but very poorly on unseen data — high
generalization error

= When overfitting occurs, the DT has learned the noise in the data

G. Zachmann Massively Parallel Algorithms SS July 2014 Random Forests
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= Example for the instability of single decision trees:

G. Zachmann
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no
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. ";J: :.
"The Wisdom of Crowds" [J]ames Surowiecki, 2004] 4 g3

= Francis Galton’s experience at the 1906 West of
England Fat Stock and Poultry Exhibition R D

= Jack Treynor’s jelly-beans-in-the-jar experiment ‘_ .A
(1987) { '

= Only 1 of 56 students' guesses came closer to the
truth than the average of the class’ guesses

= Who Wants to Be a Millionaire?
= Call an expert? — 65% correct

= Ask the audience? — 91% correct

G. Zachmann Massively Parallel Algorithms SS July 2014 Random Forests 42
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= Example (thought experiment):
"Which person from the following list was not a member of the
Monkees?"
(A) Peter Tork (C) Roger Noll
(B) Davy Jones (D) Michael Nesmith

= (BTW: Monkeys are a 1960s pop band, comprising 3 band members)
= Correct answer: the non-Monkee is Roger Noll

= Now imagine a crowd of 100 people with knowledge distributed as:
/ know 3 of the Monkees
10 know 2 of the Monkees
15 know 1 of the Monkees
68 have no clue

= So "Noll" will garner, on average, 34 votes versus 22 votes for each of
the other choices

G. Zachmann Massively Parallel Algorithms SS July 2014 Random Forests
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= Implication: one should not expend energy trying to identify an
expert within a group but instead rely on the group’s collective
wisdom

= Counter example:
= Kindergartners guessing the weight of a 747
" Prerequisites for crowd wisdom to emerge:

= Opinions must be independent

= Some knowledge of the truth must reside with some group members
(— weak classifiers)

G. Zachmann Massively Parallel Algorithms SS July 2014 Random Forests
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W The Random Forest Method

e

3

= One kind of so-called ensemble (of experts) methods

= |dea: predict class label for unseen data by aggregating a set of

predictions (= classifiers learned from the training data)

G. Zachmann

Original
D Training data

v

Step 1:
Create Multiple D

| I BN B | D
Data Sets 1 1 i

4+t— U <

Step 2:
Build Multiple C
1

O
N

Ct -1

}
!

C,

Must encode the
<€—— same distribution
as the original
data set D!

Each classifier =
<—— one decision tree

Classifiers *

<

v

y

Step 3:
Combine
Classifiers
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W  Details on the Construction of Random Forests

= Learning multiple trees:

= Generate a number of random sub-sets L1, L5, ... from the original
training data £, L£; C L . There are basically two methods:

1. Bootstrapping: randomly draw samples, with replacement,
size of new data = size of original data set; or,

2. Subsampling: randomly draw samples, without replacement,
size of new data < size of original data set

= New data sets reflect the same random process as the orig. data, but
they differ slightly from each other and the orig. set due to random
variation

= Resulting trees can differ substantially (see earlier slide)
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= Growing the trees:

= Each tree is grown without any stopping criterion, i.e., until each leaf
contains data points of only one single class

= At each node, a random subset of attributes (= predictor variables/
features) is preselected; only from those, the one with the best
information gain is chosen

- NB: an individual tree is not just a DT over a subspace of feature space!
= Naming convention for 2 essential parameters:
= Number of trees = ntree
= Size of random subset of variables/attributes = mtry
= Rules of thumb:
= ntree =100 ... 300

= mtry = sqrt(d) , with d = dimensions of the feature space

G. Zachmann Massively Parallel Algorithms SS July 2014 Random Forests
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" The learning algorithm:

input: learning set L
for t = 1...ntree:
build subset L; from L by random sampling
learn tree Ty from L.:
at each node:
randomly choose mtry features
compute best split from only those features
grow each tree until leaves are perfectly pure

G. Zachmann Massively Parallel Algorithms SS July 2014 Random Forests
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Y ARandom Forest Example for the Smoking Data Set
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Using a Random Forest for Classification

= With a new data point:
= Traverse each tree individually using that point

= Gives ntree many class labels

Tree, Tree, Tree, ® Tree rce
\
Class = 1 Class = 1 Class = 2 Class =3

= Take majority of those class labels

= Sometimes, if labels are numbers, (weighted) averaging makes sense

G. Zachmann Massively Parallel Algorithms SS July 2014 Random Forests 51
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Why does it Work?

= Make following assumptions:
= The RF has ntree many trees (classifiers)
= Each tree has an error rate of €

= All trees are perfectly independent! (no correlation among trees)

= Probability that the RF makes a wrong prediction:

ntree ntree

ERE = Z ( I ) 8’(1 . 5)(ntree—/)
i=[ 2]

0.25

= Example: 02 |
ntree = 60, o 0157

T
®

0.1

individual error rate € =0.35 —

0.05

error rate of RF € grp = 0.01

0

10 20 30 40 50 60 70 80 90 100

ntrees
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W Variants of Random Forests

= Regression trees:

= Variable Y (dependent variable) is continuous

- l.e., no longer a class label

= Goal is to learn a function R? — R that generalizes the training data

= Example:

G. Zachmann
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177

Subject
p <0.001

{309, 335} {308, 350}
Subject
p <0.001
309 335
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Features and Pitfalls of Random Forests

"Small n, large p":

= RFs are well-suited for problems with many more variables
(dimensions in the feature space) than observations / training data

Nonlinear function approximation:
= RFs can approximate any unknown function
= Blackbox:

= RFs are a black box; it is practically impossible to obtain an analytic
function description, or gain insights in predictor variable interactions

The "XOR problem":

= In an XOR truth table, the two variables show no effect at all

- With either split variable, the information gain is O
= But there is a perfect interaction between the two variables

= Random pre-selection of mtry variables can help
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= Qut-of-bag error estimation:

= For each tree T}, a training data set £; C L was used

= Use L\ L; (the out-of-bag data set) to test the prediction accuracy
= Handling missing values:

= Occasionally, some data points contain a missing value for one or
more of its variables (e.g., because the corresponding measuring
instrument had a malfunction)

= When information gain is computed, just omit the missing values

= During splitting, use a surrogate that best predicts the values of the
splitting variable (in case of a missing value)

G. Zachmann Massively Parallel Algorithms SS July 2014 Random Forests
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= Randomness:
= Random forests are truly random

= Consequence: when you build two RFs with the same training data,
you get slightly different classifiers/predictors

- Fix the random seed, if you need reproducible RFs
= Suggestion: if you observe that two RFs over the same training data
(with different random seeds) produce noticeably different prediction

results, and different variable importance rankings, then you should
adjust the parameters ntree and mtry

G. Zachmann Massively Parallel Algorithms SS July 2014 Random Forests
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" Do random forests overfit?

= The evidence is inconclusive (with some data sets it seems like they
could, with other data sets it doesn't)

= If you suspect overfitting: try to build the individual trees of the RF to a
smaller depth, i.e., not up to completely pure leaves

G. Zachmann Massively Parallel Algorithms SS July 2014 Random Forests
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W  Application: Handwritten Digit Recognition $ai

O0000006008000000
= Data set: /20 T R VA S VAN A BV AV RV AN
, o Ar222azzpl2z222J
= Images of handwritten digits 333323233333 3333
. . HAM Y pHQEUS Y S L4
= Normalization: 20x20 pixels, S S (S S5 FESsSS
binary images 6 66C6G6ELLGELGGCEE
77F%17277 172177727
= 10 classes FPLEI T ET T EFEET]S
1275979937989 4977
= Naive feature vectors (data points):
= Each pixel = one variable — 400-dim. feature space over {0,1}
= Recognition rate: ~ 70-80 %
= Better feature vectors by domain knowledge:
= For each pixel I(i,j) compute: H(i,j)=1(i,j)NI(i,j+2)
V(i,j)=1(i,j) NI(i+2,))
NG, j)=I1(, ))NI(i+2,j+2)
S(iL,))=I(, )NI(i+2,j—2)
and a few more ...
G. Zachmann Massively Parallel Algorithms SS July 2014 Random Forests 65



= Feature vector for an image = ( all pixels I(i,j) , all H(i,j), V(i,j), ...)
= Feature space = ca. 1400-dimensional = 1400 variables per data point
= Classification accuracy = ~93%

= Caveat: it was a precursor of random forests
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n o
<n
=0

= Other experiments on []
handwritten digit recognition: o
Level 2
= Feature vector = all pixels of an -
image pyramid p—

= Recognition rate: ~ 93%

= Dependence of

1
/

recognition rate

/

8
/

on ntree and mtry:

Recognition rates
L L i i

/

/771‘0, ee (# “_eeS)

B4 /0
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Body Tracking Using Depth Images (Kinect)

= The tracking / data flow pipeline:

L
*? N‘, 2 Q o
e ",ﬂ,\

Capture T
depth image & g
remove bg
Infer ﬁ + _'I.'_'_ +
body parts TR/
per pixel Cluster pixels to s
hypothesize _|_/ \+

body joint  Fit model &
[Shotton et al.: Real-Time Human Pose Recognition positions track skeleton

in Parts from Single Depth Images; CVPR 2011 ]

G. Zachmann Massively Parallel Algorithms SS July 2014 Random Forests



eeeeee

..

-
<n

E-X3)
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The Training Data

Record mocap
500k frames
distilled to 100k poses

{

Retarget to several models
|

\.
4 p
Render models: store depth & body part ID
4 4 G O L

,\ nw NS }i |
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synthetic real
(train & test) (test)

For each pixel in the depth image, we know its correct class (= label).
Sometimes, such data is also called ground truth data.
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W  Classifying Pixels

= Goal: for each pixel determine
the most likely body part (head,
shoulder, knee, etc.) it belongs
to

= Classifying pixels = compute
probability P( ¢k ) for pixel x =
(x,y), where cx = body part

= Task: learn classifier that returns

the most likely body part class
cx for every pixel x

= |dea: consider a neighborhood
around x (moving window)

G. Zachmann Massively Parallel Algorithms SS
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Fast Depth Image Features

= For a given pixel, consider all depth
comparisons inside a window

= The feature vector for a pixel x are all
feature variables obtained by all
possible depth comparisons inside
the window:
A
f(x,A)=D(x)—D
(x. 4) = D) = D(x + 50)

where D = depth image,
A = (4x, 4y) = offset vector,
and D(background) = large constant

= Note: scale 4 by 1/depth of x, so that
the window shrinks with distance

= Features are very fast to compute

G. Zachmann Massively Parallel Algorithms SS July 2014
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. 4
Y Training of a Single Decision Tree -

= The training set £ (conceptually) = all features (= all f(x, 4) ) of all
pixels (= feature vectors) of all training images, together with the
correct labels

" Training a decision tree amounts to finding that 4 and 8 such
that the information gain is maximized

P(O1

L = { feature vectors ( f(xj, 41), ..., f(x;, 4p) )
III‘lIIl with labels c(x;) | for all x;in all images }
body part ¢ f(x,A) >0

C

Pi(O)} no

L

G. Zachmann Massively Parallel Algorithms SS July 2014 Random Forests 73

e

=
=



eeeeee

W  Classification of a Pixel at Runtime ’ g

= Toy example: distinguish left (L) and right (R) sides of the body
= Note: each node only needs to store 4 and 6!

= For every pixel x in the depth image,

f(x, Al)}O\

no yes

we traverse the DT:
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Y  Training a Random Forest

= Train ntree many trees, for each one introduce lots of

randomization:

= Random subset of pixels of the training images (~ 2000)

= At each node to be trained, choose a
random set of mtry many (4, 8) values

= Note: the complete feature vectors are

never explicitly constructed (only conceptually)

55%

50% 1 tree

i
1T 2 3 4 5 6

Number of trees

accuracy
N
(9,
S

o«

Average per-class
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= Depth of trees: check whether it is really best to grow all DTs in

the RF to their maximum depth

G. Zachmann
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60%

55%

50%

45%
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35%
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More Parameters

50% 1
48% -
46% -
44% -
42% -
40% -
38% -
36% -
34% -
32% -

Average per-class accuracy

Maximum probe offset A (pixel meters)

30%
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Average per-class accuracy

Number of training images (log scale)
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U Video 5.

Input depth image (bg removed) Inferred body parts posterior
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SIZE THE WRONG.
MARKET. (

www.dilbert.com scottadams@acl.com
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