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Classification Problem Statement Ljsg%

= Given a set of points £ = {x;,...,x,} € R?
and for each such pointa label y; € {l;, b, ..., I}

= Each label represents a class, all points with the same label are in the
same class

= Wanted: a method to decide for a not-yet-seen point x which
label it most probably has, i.e., a method to predict class labels
= We say that we learn a classifier C from the training set L:
C:RY—={l,b....Ih}
= Typical applications:
= Computer vision (object recognition, ...)
= Credit approval

= Medical diagnosis

= Treatment effectiveness analysis

UIcer/tumor or not7
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Y One Possible Solution: Linear Regression b

= Assume we have only two classes (e.g., "blue" and "yellow")
= Fit a plane through the data
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W  Another Solution: Nearest Neighbor (NN) Classification T

= For the query point x, find the nearest neighbor x* € {x1,...,x,} € R’
= Assign the class [" to x
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Y Improvement: k-NN Classification

= |nstead of the 1 nearest neighbor, find the k nearest neighbors of

X, {X,’l, ..

X2

G. Zachmann

. X,'k} C L
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U More Terminology

" The coordinates/components x;; of the points x; have special
names: independent variables, predictor variables, features, ...

= Specific name of the x; ; depends on the domain / community
= The space where the x; live (i.e., R?) is called feature space

= The labels y; are also called target, dependent variable, response
variable, ...

" The set L is called the training set / learning set (will become
clear later)
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W Decision Trees

= Simple example: decide whether to play tennis or not

A new sample
(= observation)
could be
( Outlook=rainy,
Wind=calm,
rairty Humidity=high )

Pass it down the tree —

decision is yes.
Yes

hlgh normal wmdy calm

m B o o
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= The feature space = "all" weather conditions

= Based on the attributes
outlook € { sunny, overcast, rainy },
humidity € [0,100] percent,
wind € {0, 1, ..., 12} Beaufort

= Here, our feature space is mixed continuous/discrete

= Anatomy of a decision tree:

Branches represent different Sunny/

values or ranges of the attribute(s) overcast

iny

Each node tests one or more > |
attribute(s). This is sometimes Yes
called a weak classifier

70...100 o 70

Leaves are the eventual
decisions (= classes/labels) \ﬁ é
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U  Another Example

= "Please wait to be seated" ...

= Decide: wait or go some place else?

= Variables that could influence your decision:

Alternate: is there an alternative restaurant nearby?

Bar: is there a comfortable bar area to wait in?

Fri/Sat: is today Friday or Saturday?

Hungry: are we hungry?

Patrons: number of people in the restaurant (None, Some, Full)
Price: price range ($, $$, $$%)

Raining: is it raining outside?

Reservation: have we made a reservation?

Type: kind of restaurant (French, Italian, Thai, Burger)
WaitEstimate: estimated waiting time (0-10, 10-30, 30-60, >60)
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= You collect data to base your decisions on:

Example Attributes Target

Alt | Bar | Fri| Hun | Pat | Price | Rain | Res | Type | Est | Wait
X, T F F T |Some| $$% F T |French| 0-10 T
X T| F F T | Full $ F F | Thai [30-60 F
X3 F| T | F F [Some| § F F | Burger| 0-10 T
Xy T| F | T | T | Ful $ F F | Thai |10-30|| T
X; T|F | T F | Full | $%% F T |French| >60 F
Xs F| T |F T |Some| $$ T T | Italian | 0-10 T
X7 F| T | F F | None| $ T F [Burger| 0-10 F
Xg F F F T |Some| $% T T | Thai | 0-10 T
X, F| T | T F | Full $ T F | Burger| >60 F
X0 T| T | T | T | Ful [ $%% F T | ltalian [ 10-30 F
X1 F | F F F | None| § F F | Thai | 0-10 F
X1o T| T | T | T | Ful $ F F |Burger|[30-60 T

= Feature space: 10-dimensional, 6 Boolean attributes, 3 discrete

attributes, one continuous attribute
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= A decision tree that classifies all "training data" correctly:

Patrons?
Note, you can use the same
None m Full attribute as often as you want
WaitEstimate?

Alternate? Hungry?
Ws No Yes
Reservation? FrisSat? Alternate?

No Yes No Yes No Ye
Bar? Ralmng'?
No Yes No as
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= A better decision tree: rm—

None m Full

French Burger

= Also classifies all training data correctly!

= Decisions can be made faster

= Questions:
= How to construct (optimal) decision trees methodically?

= How well does it generalize? (what is its generalization error?)
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W  Construction (= Learning) of Decision Trees

= By way of the following example

Goal: predict adolescents' intention to smoke within next year
= Binary response variable IntentionToSmoke
= Four predictor variables (= attributes):

= LiedToParents (bool) = subject has ever lied to parents about doing
something they would not approve of

= FriendsSmoke (bool) = one or more of the 4 best friends smoke

= Age (int) = subject's current age

= AlcoholPerMonth (int) = # times subject drank alcohol during past month
= Training data:

= Kitsantas et al.: Using classification trees to profile adolescent smoking
behaviors. 2007

= 200 adolescents surveyed
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= A decision tree:

Root node splits all points into

two subsets

FriendsSmoke = False

Node 2 contains 92 points

18% have label "yes"
82% have label "no"

Node 2 = all data points with /

Ditto for the

other nodes
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= Observation: a decision tree partitions feature space into

rectangular regions:

friends who smoke
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= Why does our example work?

= |In the root node,
IntentionToSmoke=yes
is 40%

= In node 2,
IntentionToSmoke=yes
is 18%, while
in node 3
IntentionToSmoke=yes
is 60%

= So, after first split
we can make
better predictions
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= |deally, a good attribute (and cutpoint) splits the samples into
subsets that are "all positive" or "all negative"

= Example (restaurant):
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