
Massively Parallel Algorithms 
Classification & Prediction  
Using Random Forests 

G. Zachmann 
University of Bremen, Germany 
cgvr.cs.uni-bremen.de 



G. Zachmann 2 Random Forests Massively Parallel Algorithms 26 June 2013 SS 

Classification Problem Statement 

§  Given a set of points 
and for each such point a label  

§  Each label represents a class, all points with the same label are in the 
same class 

§  Wanted: a method to decide for a not-yet-seen point x which 
label it most probably has, i.e., a method to predict class labels 

§ We say that we learn a classifier C from the training set    : 

§  Typical applications: 

§  Computer vision (object recognition, …) 

§  Credit approval 

§ Medical diagnosis 

§  Treatment effectiveness analysis 

yi 2 {l1, l2, . . . , ln}

C : Rd ! {l1, l2, . . . , ln}

L = {x1, . . . , xn} 2 Rd

L
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One Possible Solution: Linear Regression 

§  Assume we have only two classes (e.g., "blue" and "yellow") 

§  Fit a plane through the data 

x1 

x2 
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Another Solution: Nearest Neighbor (NN) 

§  For the new point x, find the nearest neighbor  

§  Assign the class  

x1 

x2 

x

⇤ 2 {x1, . . . , xn} 2 Rd

l⇤ to x
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Improvement: k-NN 

§  Instead of the 1 nearest neighbor, find the k nearest neighbors of 
x,  

§  Assign the majority of the labels                     to x 

{xi1 , . . . , xik} ⇢ L
{li1 , . . . , lik}

x1 

x2 

k = 15 
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More Terminology 

§  The coordinates/components xi,j of the points xi have special 
names: independent variables, predictor variables, features, … 

§  Specific name of the xi,j depends on the domain 

§  The space where the xi live (i.e.,      ) is called feature space 

§  The labels yi are also called target, dependent variable, response 
variable, … 

§  The set      is called the training set / learning set (will become 
clear later) 

Rd

L
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Decision Trees 

§  Simple example: decide whether to play tennis or not 

overcast 

high normal calm windy 

sunny rainy 

No No Yes Yes 

Yes 

Outlook 

Humidity 
> 70% ? 

Wind 
> 5 ? 

A new sample 
(observation): 
( Outlook=rainy,    
   Wind=calm, 
   Humidity=high ) 
 
Pass it down the tree ⟶ 
decision is yes. 
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§  The feature space = "all" weather conditions 

§  Based on the attributes 
    outlook ∈ { sunny, overcast, rainy }, 
    humidity ∈ [0,100] percent , 
    wind ∈ {0, 1, …, 12} Beaufort 

§  Here, our feature space is mixed continuous/discrete 

§  Anatomy of a decision tree: 

overcast 

high normal calm windy 

sunny rainy 

No No Yes Yes 

Yes 

Outlook 

Leaves are the eventual  
decisions (= classes/labels) 

Each node tests one or more  
attribute(s). This is sometimes 
called a weak classifier 

Branches represent different  
values or ranges of the attribute(s) 

Humidity 
> 70% ? 

Wind 
> 5 ? 



G. Zachmann 9 Random Forests Massively Parallel Algorithms 26 June 2013 SS 

Another Example 

§  "Please wait to be seated" … 

§  Decide: wait or go some place else? 

§  Variables that could influence your decision: 
§  Alternate: is there an alternative restaurant nearby? 

§  Bar: is there a comfortable bar area to wait in? 

§  Fri/Sat: is today Friday or Saturday? 

§  Hungry: are we hungry? 

§  Patrons: number of people in the restaurant (None, Some, Full) 

§  Price: price range ($, $$, $$$) 

§  Raining: is it raining outside? 

§  Reservation: have we made a reservation? 

§  Type: kind of restaurant (French, Italian, Thai, Burger) 

§   WaitEstimate: estimated waiting time (0-10, 10-30, 30-60, >60) 
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§  You collect data to base your decisions on: 

§  Feature space: 10-dimensional, 6 Boolean attributes, 3 discrete 
attributes, one continuous attribute 
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§  A decision tree that classifies all "training data" correctly: 

Note, you can use the same 
attribute as often as you want 
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§  A better decision tree: 

 

§  Also classifies all training data correctly! 

§  Decisions can be made faster 

§  Questions: 

§  How to construct (optimal) decision trees methodically? 

§  How well does it generalize? (what is its generalization error?) 
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Construction (= Learning) of Decision Trees 

§  By way of the following example 

§  Goal: predict adolescents' intention to smoke within next year 

§  Binary response variable IntentionToSmoke 

§  Four predictor variables (= attributes): 

§  LiedToParents (bool) = subject has ever lied to parents about doing 
something they would not approve of 

§  FriendsSmoke (bool) = one or more of the 4 best friends smoke 

§  Age (int) = subject's current age 

§  AlcoholPerMonth (int) = # times subject drank alcohol during past month 

§  Training data:  

§  Kitsantas et al.: Using classification trees to profile adolescent smoking 
behaviors. 2007 

§  200 adolescents surveyed 
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§  A decision tree: 

§  Root node splits all points into 
two subsets 

§  Node 2 = all data points with 
FriendsSmoke = False 

§  Node 2 contains 92 points, 
18% have label "yes", 
82% have label "no" 

§  Ditto for the  
other nodes 

An Introduction to Recursive Partitioning 2
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Model-Based Recursive Partitioning

• Make available the data set from the add-on package lme4.

> data("sleepstudy", package="lme4")

• Select some subjects. (Otherwise fitting will take a while, because all combinations of sub-
jects need to be compared for parameter instabilities in their regression models.)

> dat_sleep <- subset(sleepstudy, Subject %in% c(308,309,335,350))

> dat_sleep$Subject <- factor(dat_sleep$Subject)

(The latter command only eliminates the remaining factor levels.)

• Fit and plot a model-based tree.

> mymob <- mob(Reaction ~ Days | Subject, data = dat_sleep,

+ control = mob_control(minsplit = 10))

The minimum number of observations per node necessary for splitting minsplit is set to
10 here, because 10 observations are available for each subject and we want to be able to
identify even single subjects with deviating model parameters.

If each observation corresponded to one subject, and subjects were partitioned w.r.t. co-
variates such as age and gender, the default value of minsplit would guarantee, as a stop
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§  Observation: a decision tree partitions feature space into 
rectangular regions: 

Figure 1.
Partition of the smoking data by means of a binary classification tree. The tree
representation (left) corresponds to a rectangular recursive partition of the feature space
(right). In the terminal nodes of the tree, the dark and light grey shaded areas represent the
relative frequencies of “yes” and ”no” answers to the intention to smoke question in each
group respectively. The corresponding areas in the rectangular partition are shaded in the
color of the majority response.
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Model-Based Recursive Partitioning
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Selection of Splitting Variable and Cutpoint  

§  Why does our example work? 

§  In the root node, 
IntentionToSmoke=yes 
is 40% 

§  In node 2,  
IntentionToSmoke=yes 
is 18%, while  
in node 3 
IntentionToSmoke=yes 
is 60% 

§  So, after first split 
we can make  
better predictions 

Node 1 (n = 200) 

Node 5 (n = 79) Node 2 (n = 92) Node 4 (n = 29) 
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s 
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§  Ideally, a good attribute (and cutpoint) splits the samples into 
subsets that are "all positive" or "all negative" 

§  Example (restaurant): 

To wait or not to wait is still at 50% 



G. Zachmann 18 Random Forests Massively Parallel Algorithms 26 June 2013 SS 

Goals for Splitting Nodes 

§  We want (summed diversity within children) < (diversity in parent) 

§  Data points should be 

§  Homogeneous (by labels) within leaves 

§  Different between leaves 

§  Goal: try to increase purity within subsets 

§  Optimization goal in each node: find the attribute and a cutpoint that 
splits the set of samples into two subsets with optimal purity 

§  This attribute is the "most discriminative" one for that data (sub-) set 

§  Question: what is a good measure of purity for two given subsets 
of our training set? 
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Information Gain 

§  Enter the information theoretic concept of information gain 

§  Imagine different events: 

§  The outcome of rolling a dice = 6 

§  The outcome of rolling a biased dice = 6 

§  Each situation has a different amount of uncertainty whether or not 
the event will occur 

§  Information = amount of reduction in uncertainty (= amount of 
surprise if a specific outcome occurs) 
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§  Let Y be a random variable; then we make one observation of the 
variable Y (e.g., we draw a random ball out of a box) ⟶ value y 

§  The information we obtain if event "Y = y" occurs is 

§  "If the probability of this event happening is small and it happens, 
then the information is large" 

§  Examples: 

§ Observing the outcome of coin flip ⟶  

§ Observing the outcome of dice = 6 ⟶  

I = � log

1
2 = 1

I = � log

1
6 = 2.58

I[Y = y ] = log2

1

p(y)
= � log p(y)
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Entropy 

§  A random variable Y (= experiment) can assume different values 
y1, …, yn  (i.e., the experiment can have different outcomes) 

§  What is the average information we obtain by observing the 
random variable? 

§  In probabilistic terms: what is the expected amount of information?  
⟶ captured by the notion of entropy 

§  Definition: Entropy 
Let Y be a random variable. The entropy of Y is 

§  Example: if Y can assume 8 values, and all are equally likely, then 

H(Y ) = E [I(Y )] =

X

i

p(yi)I[Y = yi ] = �
X

i

p(yi) log p(yi)

H(Y ) = �
8X

i=1

1

8

log

1

8

= log 2

3
= 3 bits
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§  In general, if  there are k possible outcomes, then 

§  Equality holds when all outcomes are equally likely  

§  With k = 2 (two outcomes), entropy looks like this: 

§  The more the probability distribution  
deviates from uniformity the lower the entropy 

§  Entropy measures the purity: 

 
4 "yes" 
4 "no" 

 

 
8 "yes" 
0 "no" 

 

This distribution is less uniform 
Entropy  is lower 
The node is purer  

H(Y )  log k
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Conditional Entropy 

§  Now consider a random variable Y  (e.g., the different classes/labels) 
with an attribute X (e.g., the first variable, xi,1 , of the data points, xi) 

§ With every drawing of Y, we also get a value for the associated attribute X 

§  Assume that X is discrete, i.e., xi ∈ {1, 2, …, z}  

§  We now consider only cases of Y that fulfill some condition, e.g., xi=1 

§  The entropy of Y, provided that it assumes only values with xi =1: 

Probability of yi occurring 
as a value of Y, 
where we consider only 
the subset of values of Y 
that have attribute xi =1 

Subset with 
xi =1 

H(Y |xi = 1) = �
X

i

p(yi |xi = 1) log p(yi |xi = 1)
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§  Overall conditional entropy:  

  

Probability that the attribute X has value k 

H(Y )

H(Y |X ) =

zX

k=1

p(x = k)·H(Y |x = k)

= �
zX

k=1

p(x = k)
X

i

p(yi |xi = k) log p(yi |xi = k)

H(Y |x = 3)

H(Y |x = 1)

H(Y |x = 2)
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Information Gain 

§  How much information do we gain if we disclose the value of 
some attribute? 

§  Information gain = (information before split) – (information after 
split) = reduction of uncertainty by knowing attribute X  

§  The information gained by a split in a node of a decision tree: 

§  Goal: choose the attribute with the largest IG 

§  In case of scalar attributes, also choose the optimal cutpoint 

IG (Y ,X ) = H(Y )� H(Y |X )
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Example 

§  Consider 2 options to split the root node of the restaurant example 

§  Random variable Y ∈ { "yes", "no" } 

§  At the root node:  

H(Y ) = p(y=“yes”) log

1

p(y=“yes”)

+ p(y=“no”) log

1

p(y=“no”)

=

1

2

log 2 +

1

2

log 2 = 1
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§  Conditional entropy for right option: 
 
 

 
 

where n = the attribute  "#patrons" ∈ { "none", "some", "full" } 

H(Y | n) = p(n=“none”)·H(Y |n=“none”)+
p(n=“some”)·H(Y |n=“some”)+

p(n=“full”)·H(Y |n=“full”)

H(Y |#patrons) =

2

12

�
p(y=“no”) log p(y=“no”) + p(y=“yes”) log p(y=“yes”)

�
+

4

12

�
p(y=“no”) log p(y=“no”) + p(y=“yes”) log p(y=“yes”)

�
+

6

12

�
p(y=“no”) log p(y=“no”) + p(y=“yes”) log p(y=“yes”)

�

H(Y |#patrons) =

2

12

�
1 log 1 + 0 log 0

�
+

4

12

�
0 log 0 + 1 log 1

�
+

6

12

�
4

6

log

6

4

+

2

6

log

6

2

�
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§  Conditional entropy for left option: 
 

 H(Y |type) = 2

12

�
p(y=“no”) log p(y=“no”) + p(y=“yes”) log p(y=“yes”)

�
+

2

12

�
p(y=“no”) log p(y=“no”) + p(y=“yes”) log p(y=“yes”)

�
+

4

12

�
p(y=“no”) log p(y=“no”) + p(y=“yes”) log p(y=“yes”)

�
+

4

12

�
p(y=“no”) log p(y=“no”) + p(y=“yes”) log p(y=“yes”)

�
+

H(Y |type) = 2· 2
12

�
1

2

log

2

1

+

1

2

log

2

1

�
+ 2· 4

12

�
2

4

log

4

2

+

2

4

log

4

2

�
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§  Compare the information gains: 

§  So, the attribute "#patrons" gives us more information about Y 

§  Compute the IG obtained by a split induced by each attribute 

§  In this case, the optimum is achieved by the attribute "#patrons" for 
splitting the set of data points in the root 

IG (Y , #patrons) = H(Y )� H(Y |#patrons)

= 1� 0.585

IG (Y , type) = H(Y )� H(Y |type)
= 1� 1
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Bits and Pieces 

§  If there are no attributes left: 

§  Can happen during learning of the decision tree, when a node 
contains data points with same attributes but different labels 

§  This constitutes error / noise 

§  Stop construction here, use majority vote (discard erroneous point) 

§  If there are leaves with no data points: 

§ While classifying a new data point 

§  Just choose the majority vote of the parent node 
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Expressiveness of Decision Trees 

§  Assume all variables (attributes and labels) are Boolean 

§  What is the class of Boolean functions that can be represented by 
a decision tree? 

§  Answer: all Boolean functions! 

§  Proof (simple): 

§  Given any Boolean function 

§  Convert it to a truth table 

§  Consider each row as a data point, output = label 

§  Construct a DT over all data points / rows 
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§  If Y is a discrete, numerical variable, then DTs can be regarded as 
piecewise constant functions over the feature space: 

§  DTs can approximate any function 
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Problems of Decision Trees 

§  Error propagation: 

§  Learning a DT is based on a series of local decisions 

§ What happens, if one of the nodes implements the wrong decision? 
(e.g., because of an outlier) 

§  The whole subtree will be wrong! 

§  Overfitting: in general, it means the learner performs extremely 
well on the training data, but very poorly on unseen data ⟶ high 
generalization error 

§ When overfitting occurs, the DT has learned the noise in the data 
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§  Example for the instability of single decision trees: 

Figure 5.
Classification trees based on four bootstrap samples of the smoking data, illustrating the
instability of single trees.
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