Bremen

[
(]
1:\ 5
¥
€
\ 5
ot
e
A
= o

Massively Parallel Algorithms
Introduction

G. Zachmann
University of Bremen, Germany
cgvr.cs.uni-bremen.de

eeeeee

U Why Massively Parallel Computing?
">‘ F—O.Smm

= "Compute is cheap" ...

= ... "Bandwidth is expensive"

= Main memory is ~500 clock
cycles "far away" from the
processor (GPU or CPU)

G. Zachmann Massively Parallel Algorithms SS

64-bit FPU
(to scale)

1 clock

) April 2013

12mm

Organization

Bremen

W "More Moore"

Theoretical GB/s

200 GeForceGTX 680
180 GeForceGTX 480
= CPLU
160
GPU GeForceGTX 280
140
120

100 - — /
GeForce 880 .;T/
80

Sandy Bridge

Westmere

Bloomfield
Woodcrest

Prescott

Harpertown

D ‘Nortnww T T T T T T T T
2003 2004 2005 2006 2007 2008 2009 2010 2011 2012

Memory Bandwidth

G. Zachmann Massively Parallel Algorithms SS

) April 2013

..

cG
s’ VR

Theoretical
GFLOP/s

3250
GeForceGTX 680

3000
=== NVIDIA GPU Single Predsion

2750 === NVIDIA GPU Double Precision
2500 =g |ntel CPU Single Predision
=t |tel CPU Double Precision

2250
2000
1750
1500
1250

750

Tesla C2050 Sandy Bridge

Farpertown DLVCE_Btg‘e' e

Mar-0 Aug-12

Peak Performance

Organization 3

eeeee

‘;»‘;:‘ EEE
N .
7. co E

Gflops Single Precision BLAS:

400 SGEMM
350
300
250

-=-Tesla C1060 500
200 400 ®Intel MKL @CULA
150 g —_
190 5 200

- . J
: -

QR System Solve SVD Eigenproblem

Matrix Size = 10k NVIDIA C2070 vs Xeon X5560

Matrix Size

CUBLAS: CUDA 2.3, Tesla C1060

MKL 10.0.3: Intel Core2 Extreme, 3.00GHz

G. Zachmann Massively Parallel Algorithms SS) April 2013 Organization

eeeeee

When Power Consumption Matters

= Energy consumption is a serious issue on mobile devices

= Example: image processing on a mobile device (geometric
distortion + blurring + color transformation)

= Power consumption:
= CPU (ARM Cortex A8): 3.93 J/frame
= GPU (PowerVR SGX 530): 0.56 J/frame (~14%)
- 0.26]J/frame when data is already on the GPU

= High parallelism at low clock frequencies (110 MHz) is better
than low parallelism at high clock frequencies (550 Mhz)

= Dissipation increases super-linearly with frequency

G. Zachmann Massively Parallel Algorithms SS) April 2013 Organization

eeeeee

U Areas Benefitting from Massively Parallel Algos

= Computer science (e.g., visual computing, database search)

= Computational material science (e.g., molecular dynamics sim.)
= Bio-informatics (e.g., alignment, sequencing, ...)

= Economics (e.g., simulation of financial models)

= Mathematics (e.g., solving large PDEs)

= Mechanical engineering (e.g., CFD and FEM)

= Physics (e.qg., ab initio simulations)

= Logistics (e.g. simulation of traffic, assembly lines, or supply chains)

G. Zachmann Massively Parallel Algorithms SS) April 2013 Organization

6

g =

1

; =

. d o
k 34 g
. cc &
VR X

Bremen

Y

Some Statistics of the TOP500

= Who does parallel computing:

= Note that respondents had to
choose just one area

= "Not specified" probably means
"many areas"

Operating Systems

M Linux

B AIX

[Cray Linux Environment
B CNK/SLES 9

B SLES10 + SGI ProPac...
M bullx SUperCOmputer ...
[SUSE Linux Enterprise...
B cNL

13V

G. Zachmann Massively Parallel Algorithms SS) April 2013

Application Area

Segments

M Not Specified

M Research

[Web Services

B Geophysics

Il Weather and Climate ...
M Energy

M Defense

M Benchmarking

1713V

M Industry

M Research
[Academic
B Government
Il Vendor

M Classified

Organization

Bremen

Y ;

= Qur target Titan - Cray XK7 , Opteron 6274 16C 2.200GHz, Cray

platform Gemini interconnec

(G PU) IS bel ng Site: DOE/SC/Oak Ridge National Laboratory

System URL: http://www.olcf.ornl.gov/titan/
u Sed amon g Manufacturer: Cray Inc.
th e TO PS OO Cores: 560640
Linpack Performance (Rmax) 17590.0 TFlop/s
[N ov 2 O 1 2] . Theoretical Peak (Rpeak) 27112.5 TFlop/s
Power: 8209.00 kW
Memory: 710144 GB
Interconnect: Cray Gemini interconnect
Operating System: Cray Linux Environment
Total Rmax Rpeak Power
List Rank System Vendor Cores (TFlops) (TFlops) (kW)
11/20 @ Cray XK7 , Opteron 6274 16C Cray 560640 17590.0 271125 8209.00

2. ili Ii Cray Gemini interconnect, Inc.

Source: www.top500.0rg

G. Zachmann Massively Parallel Algorithms SS) April 2013 Organization

cG
VR

Y

The Von-Neumann Architecture $..

= Uses the stored-program concept (revolutionary at the time of its
conception)

= Memory is used for both program instructions and data

EY
N I
5
B e | —
n BIE
Fetch Execute n- =1
"=
[
C ot =
ALU P -

G. Zachmann Massively Parallel Algorithms SS) April 2013 Organization 9

eeeeee

W GPU = The New Architecture %’§

= CPU = lots of cache, little SIMD, a few cores

= GPU = little cache, massive SIMD, lots of cores (packaged into

"streaming multi-processors")

Control

ALU

ALU

G. Zachmann Massively Parallel Algorithms

ALU

ALU

EEEEEENED

SS) April 2013 Organization 10

eeeeee

W The Stream Programming Model

= Novel programming paradigm that tries to organise data &
functions such that (as much as possible) only streaming memory
access will be done, and as little random access as possible:

= Stream Programming Model =
"Streams of data passing through computation kernels. "

= Stream := ordered, homogenous set of data of arbitrary type (array)

= Kernel := program to be performed on each element of the input
stream; produces (usually) one new output stream

stream A, B, C;
L 4 =) L kernelfunc1(input: A,
O P O) O ‘B):
F& - 3% ke 3¢ FES output: B);
sV} o sV} o Q .
= kernelfunc2(input: B,
output: C);

G. Zachmann Massively Parallel Algorithms SS) April 2013 Organization

7. cc

VR =

11

Yy

Flynn's Taxonomy

" Two dimensions: instructions and data

= Two values: single and multiple

data

G. Zachmann

SISD

SIMD

single instruction, single data

single instruction, multiple data

prev instruct prev instruct prev instruct
load A(1) load A(2) load A(n)
load B(1) load B(2) load B(n)
C(1)=A(1)*"B(1) C(2)=A(2)'B(2) C(n)=A(n)*B(n){
store C(1) store C(2) store C(n)
next instruct next instruct next instruct
P1 P2 Pn
SS

Massively Parallel Algorithms

aw)

instructions
MISD
multiple instruction, single data
MIMD
multiple instruction, multiple data
prev instruct prev instruct prev instruct
load A(1) call funcD do 10 i=1,N
load B(1) X=y"2z alpha=w**3 -
3
C(1)=A(1)*B(1) sum=x-2 zeta=C(i) o
store C(1) call sub1(i,j) 10 continue
next instruct next instruct next instruct
P1 P2 Pn
Organization 12

) April 2013

eeeeee

U Some Terminology .

= Task :=logically discrete section of computational work; typically
a program or procedure

= Parallel Task := task that can be executed in parallel by multiple
processors, such that this yields the correct results

= Shared memory :=

= Hardware point of view: all processors have direct access to common
physical memory,

= Software point of view: all parallel tasks have the same "picture" of
memory and can directly address and access the same logical memory
locations regardless of where the physical memory actually exists

= Communication := exchange of data among parallel tasks, e.qg.,
through shared memory

G. Zachmann Massively Parallel Algorithms SS) April 2013 Organization 13

= Synchronization := coordination of parallel tasks, very often
associated with communications; often implemented by
establishing a synchronization point within an application
where a task may not proceed further until another task (or all
other tasks) reaches the same or logically equivalent point

= Synchronization usually involves waiting by at least one task, and can
therefore cause a parallel application's execution time to increase

= Granularity := qualitative measure of the ratio of computation to

synchronization

= Coarse granularity: large amounts of computational
work can be done between synchronization points - -
3 3
= Fine granularity: lots of synchronization points ° ?
sprinkled throughout the computational work
| communication 4 Y
[computation
Organization 14

G. Zachmann Massively Parallel Algorithms SS) April 2013

= Synchronous communication := requires some kind of
"handshaking" (i.e., synchronization mechanism)

= Asynchronous communication := no sync required

= Example: task 1 sends a message to task 2, but doesn't wait for a
response

= A.k.a. non-blocking communication

" Collective communication := more than 2 tasks are involved

G. Zachmann Massively Parallel Algorithms SS) April 2013 Organization

W

7. cc

VR =

15

= Observed Speedup := measure for performance of parallel code

wall-clock execution time of best known serial code
speedup =

wall-clock execution time of your parallel code

= One of the simplest and most widely used indicators for a parallel
program's performance

G. Zachmann Massively Parallel Algorithms SS) April 2013 Organization

*f'. cG
VR

16

eeeeee

W Amdahl's Law

= Quick discussion:
= Suppose we want to do a 5000 piece jigsaw puzzle
= Time for one person to complete puzzle: n hours

= How much time do we need, if we add 1 more
person at the table?

= How much time, if we add 100 persons?

G. Zachmann Massively Parallel Algorithms SS) April 2013

Organization

17

eeeee

Y Amdahl's Law (the "Pessimist")

" Assume a program execution consists of two parts: P and §

= P =time for parallelizable part ,
S = time for inherently sequential part

= W.l.o.g.setP+S5=1

20.00

B

//
= Assume further that the e // parallel Portion
. 16.00 7 ——50%
time taken by N processors " / -
working on P is Lid 1200 / -
N = /
. § 10.00 7 —
= Then, the maximum speedup & _, ////
achievable is 600 a
1 4.00 V/ —
N]
SpeedupA(N) _ (1 o P) n P 2.00-%1W
N o.oo - o~ < @ o ['; @ (1= ﬁ <

2048
4096
8192
16384

o~ wn o
-

Number of Processors

G. Zachmann Massively Parallel Algorithms SS) April 2013 Organization

32768
65536

= Graphical representation of Amdahl:

(You can squeeze the parallel part as much as you like, by throwing more
processors at it, but you cannot squeeze the sequential part)

= Parallel Overhead := amount of time required to coordinate
parallel tasks, as opposed to doing useful work; can include
factors such as: task start-up time, synchronizations, data
communications, etc.

= Scalable problem := problem where parallelizable part P
increases with problem size

G. Zachmann Massively Parallel Algorithms SS) April 2013 Organization

19

Bremen

U Gustafson's Law (the "Optimist")

= Assume a family of programs, that all run in a fixed time frame T,

with
. Si(seq) | Pi(par) | Pz(par) | S;(seq)
= a sequential part S,
= and a time portion Q for parallel execution,) ‘
= T=5+Q !
S (seq) | Py(par) | Sz(seq)
P2 (par)
= Assume, we can spend N processors —a
working on larger and larger problem
. . Sy (seq) | Py(par) | Pz2(par) | Ps(par) | Ps(par) | Sz(seq)
sizes in parallel

= So, Gustafon's speedup is

S+ QN .
speedup(N) = > 00, with N — oo
S+Q
G. Zachmann Massively Parallel Algorithms SS) April 2013

T

51 (seq)

Py (par)

52 (seq)

P2 (par)

Ps (par)

P, (par)

Q

Organization

20

eeeeee

Examples of Parallelizable Problems

= Compute an image, where each pixel is just

a function of its coordinates

= E.g. Mandelbrot set

= Question: is rendering a polygonal scene one of

this case?

= Such parallel problems are called
"embarrassingly parallel"

= There is nothing embarrassing about them ©
= Other examples:

= Brute-force searches in cryptography

= Large scale face recognition

= Genetic algorithms

= SETI@home, and other such distributed comp.

G. Zachmann Massively Parallel Algorithms SS) April 2013

Organization

21

eeeeee

U Example of Inherently Sequential Algorithm

= Calculation of the Fibonacci series (1,1,2,3,5,8,13,21,...) by use of

the formula:
F(k+2) = F(k+1) + F(k)

= The problem here is data dependence
= This is one of the common inhibitors to parallelization
= Common solution: different algorithm

= Other algorithm for Fibonacci?

Fn — —
= V5
1 -5 1
o — Qf —1—p=—- ~ —0.6180330887
0
145
o= +2‘f ~ 1.61803 39887

G. Zachmann Massively Parallel Algorithms SS) April 2013 Organization

eeeeee

W Another Taxonomy for Parallelism Bt
= = Pipeline parallelism := between
= producers and consumers
. ata Parallel
é’ i > = Task parallelism := explicit in algorithm;
4 each task works on a different branch/
& Scatter section of the control flow graph,
) where none of the tasks' output
[Y B Y :] reaches the other task as input (similar
T to MIMD)
\éj/ = Sometimes also called thread level
A8 \V_/ / parallelism
= Data parallelism := no (little)
Data dependencies between tasks (similar to
: v _ SIMD)
v Task

G. Zachmann Massively Parallel Algorithms SS) April 2013 Organization 23

eeeeee

= An example of data (level) parallelism:

do foo parallel(array d):
if myCPU = "1":
lower limit := 0
upper limit := d.length / 2
else if myCPU = "2":
lower limit := d.length/2 + 1
upper limit := d.length

for i from lower limit to upper limit:
foo(d[i])

do foo parallel<<on both CPUs>>(global array)

= This is what we are going to do mostly in this course!

G. Zachmann Massively Parallel Algorithms SS) April 2013 Organization 24

eeeee

= Examples of pipeline parallelism:
‘ Input Assembly ’

= The graphics (hardware) pipeline
(OpenGL / DirectX)

= The app-cull-draw (software) pipeline ‘ ’
Primitive Setup

mo|4 aufjadid

‘ Rasterization ’

‘ Output Merging ’

G. Zachmann Massively Parallel Algorithms SS) April 2013 Organization

eeeeee

W A word about instruction level parallelism (ILP)

= Mostly done inside CPUs / cores
= |.e., this is parallelism on the hardware level
= Done by computer architects at the time the hardware is designed

= Example:
l: e=a +b
2: £f=c + d
3: g=e * £

= Lines T & 2 (ADD/MOV instr. for the CPU) can be executed in parallel

= Techniques employed in CPUs to achieve ILP:
= Instruction pipelining
= Out-of-order execution

= Branch prediction

G. Zachmann Massively Parallel Algorithms SS) April 2013 Organization

eeeeee

W Which Parallelism Paradigm Do We Need? ‘

Answer: all of them!

Computation graph for game angine of
Battlefied: Bad Company
provided by DICE

G. Zachmann Massi'

Bremen

Y

s’ VR

= Data parallelism:

= Task parallelism:

JS|9PON butwwelbold [9jjeled 01 uondNposu|, S,A9|04 Wi Woi4

G. Zachmann Massively Parallel Algorithms SS) April 2013 Organization 28

eeeee

= Pipeline parallelism:

App App
App frame 1 App frame 2 App frame 3 App frame 4

G. Zachmann Massively Parallel Algorithms SS) April 2013 Organization 29

eeeeee

Reconciling Task Parallelism

= Typical game workload (subsystems in % of overall time "budget"):

= |Input, Miscellaneous: 5%

= Physics: 30%

= Al, Game Logic: 10%
= Graphics: 50%

= Audio: 5%

Physics

Al

Graphics

Au

G. Zachmann

Massively Parallel Algorithms

SS

) April 2013

Organization

30

Y Pparallelism Anti-Pattern

= Naive solution: assign each subsystem to a SW thread

thread O T | [
thread 1 Physics ~ [----mmmmmmmmmo Physics ~ [---mmmmmmmmmoeoees
thread 2 Al [rrmmmmmmmmmmmmm oo o e
thread 3 Graphics Graphics
| fram'e N |
= Problems

= Communication/synchronization

= Load imbalance

= Preemption could lead to thrashing

= Don't do this

G. Zachmann

Massively Parallel Algorithms SS) April 2013

Organization 31

7. cc

VR =

= Better: group subsystems into threads with equal load

thread 0 ----| | Physics Al A Physics Al | A |-
thread 1 ---- Graphics Graphics
frame N
= Problems
= Communication/synchronization
= Poor scalability (4, 8, ... threads)
32

G. Zachmann Massively Parallel Algorithms SS) April 2013 Organization 32

eeeeee

Yy

Enough classifications ...

= |t's confusing ©

G. Zachmann Massively Parallel Algorithms SS) April 2013

Organization

33

eeeeee

Y

lllustrated History of Parallel Computing

2l 2
v\& o ‘AJ \‘f‘

‘\,("-

Yo
AT DN o

Q Tutorial CUDA, 2008, Cyril Zeller, NVIDIA Developer Technology

G. Zachmann Massively Parallel Algorithms SS) April 2013

Organization

34

