
Massively Parallel Algorithms
Introduction

G. Zachmann
University of Bremen, Germany
cgvr.cs.uni-bremen.de

G. Zachmann 2 Organization Massively Parallel Algorithms 10 April 2013 SS

Why Massively Parallel Computing?

§  "Compute is cheap" …

§  … "Bandwidth is expensive"

§ Main memory is ~500 clock
cycles "far away" from the
processor (GPU or CPU)

90nm chip
64-bit FPU
(to scale)

0.5mm

12mm

1 clock

G. Zachmann 3 Organization Massively Parallel Algorithms 10 April 2013 SS

"More Moore"

Memory Bandwidth Peak Performance

G. Zachmann 4 Organization Massively Parallel Algorithms 10 April 2013 SS

© NVIDIA Corporation 2009

CUBLAS Performance: CPU vs GPU

CUBLAS: CUDA 2.3, Tesla C1060
MKL 10.0.3: Intel Core2 Extreme, 3.00GHz

© NVIDIA Corporation 2009

CUBLAS Performance: CPU vs GPU

CUBLAS: CUDA 2.3, Tesla C1060
MKL 10.0.3: Intel Core2 Extreme, 3.00GHz

G. Zachmann 5 Organization Massively Parallel Algorithms 10 April 2013 SS

When Power Consumption Matters

§  Energy consumption is a serious issue on mobile devices

§  Example: image processing on a mobile device (geometric
distortion + blurring + color transformation)

§  Power consumption:

§  CPU (ARM Cortex A8): 3.93 J/frame

§  GPU (PowerVR SGX 530): 0.56 J/frame (~14%)

-  0.26 J/frame when data is already on the GPU

§  High parallelism at low clock frequencies (110 MHz) is better
than low parallelism at high clock frequencies (550 Mhz)

§  Dissipation increases super-linearly with frequency

Application 2

● “OpenCL for image processing”, Nokia

● "OpenCL embedded profile prototype in mobile device," J.
Leskelä et al., IEEE Workshop on Signal Processing
Systems, 2009.

● Geometric distortion + blurring + color transformation

● Based on OpenCL not OpenGL ES

Leskelä et al., 2009

Application 2

● “OpenCL for image processing”, Nokia

● "OpenCL embedded profile prototype in mobile device," J.
Leskelä et al., IEEE Workshop on Signal Processing
Systems, 2009.

● Geometric distortion + blurring + color transformation

● Based on OpenCL not OpenGL ES

Leskelä et al., 2009

G. Zachmann 6 Organization Massively Parallel Algorithms 10 April 2013 SS

Areas Benefitting from Massively Parallel Algos

§  Computer science (e.g., visual computing, database search)

§  Computational material science (e.g., molecular dynamics sim.)

§  Bio-informatics (e.g., alignment, sequencing, …)

§  Economics (e.g., simulation of financial models)

§  Mathematics (e.g., solving large PDEs)

§  Mechanical engineering (e.g., CFD and FEM)

§  Physics (e.g., ab initio simulations)

§  Logistics (e.g. simulation of traffic, assembly lines, or supply chains)

G. Zachmann 7 Organization Massively Parallel Algorithms 10 April 2013 SS

Some Statistics of the TOP500

§  Who does parallel computing:

§  Note that respondents had to
choose just one area

§  "Not specified" probably means
"many areas"

Application Area

Segments Operating Systems

G. Zachmann 8 Organization Massively Parallel Algorithms 10 April 2013 SS

§  Our target
platform
(GPU) is being
used among
the TOP500
[Nov 2012]:

Source: www.top500.org

G. Zachmann 9 Organization Massively Parallel Algorithms 10 April 2013 SS

The Von-Neumann Architecture

§  Uses the stored-program concept (revolutionary at the time of its
conception)

§  Memory is used for both program instructions and data

Memory

C
P
U

Control
Unit ALU

Fetch Execute

G. Zachmann 10 Organization Massively Parallel Algorithms 10 April 2013 SS

GPU = The New Architecture

§  CPU = lots of cache, little SIMD, a few cores

§  GPU = little cache, massive SIMD, lots of cores (packaged into
"streaming multi-processors")

DRAM

Cache

ALU
Control

ALU

ALU

ALU

DRAM (Main Memory)

CPU GPU

G. Zachmann 11 Organization Massively Parallel Algorithms 10 April 2013 SS

The Stream Programming Model

§  Novel programming paradigm that tries to organise data &
functions such that (as much as possible) only streaming memory
access will be done, and as little random access as possible:

§  Stream Programming Model =
"Streams of data passing through computation kernels."

§  Stream := ordered, homogenous set of data of arbitrary type (array)

§  Kernel := program to be performed on each element of the input
stream; produces (usually) one new output stream

stream A, B, C;
kernelfunc1(input: A,
 output: B);
kernelfunc2(input: B,
 output: C);

D
ata

Kernel

Kernel

D
ata

D
ata

G. Zachmann 12 Organization Massively Parallel Algorithms 10 April 2013 SS

Flynn's Taxonomy

§  Two dimensions: instructions and data

§  Two values: single and multiple

SISD
single instruction, single data

MISD
multiple instruction, single data

SIMD
single instruction, multiple data

MIMD
multiple instruction, multiple data

instructions

data

G. Zachmann 13 Organization Massively Parallel Algorithms 10 April 2013 SS

Some Terminology

§  Task := logically discrete section of computational work; typically
a program or procedure

§  Parallel Task := task that can be executed in parallel by multiple
processors, such that this yields the correct results

§  Shared memory :=

§  Hardware point of view: all processors have direct access to common
physical memory,

§  Software point of view: all parallel tasks have the same "picture" of
memory and can directly address and access the same logical memory
locations regardless of where the physical memory actually exists

§  Communication := exchange of data among parallel tasks, e.g.,
through shared memory

G. Zachmann 14 Organization Massively Parallel Algorithms 10 April 2013 SS

§  Synchronization := coordination of parallel tasks, very often
associated with communications; often implemented by
establishing a synchronization point within an application
where a task may not proceed further until another task (or all
other tasks) reaches the same or logically equivalent point

§  Synchronization usually involves waiting by at least one task, and can
therefore cause a parallel application's execution time to increase

§  Granularity := qualitative measure of the ratio of computation to
synchronization

§  Coarse granularity: large amounts of computational
work can be done between synchronization points

§  Fine granularity: lots of synchronization points
sprinkled throughout the computational work

G. Zachmann 15 Organization Massively Parallel Algorithms 10 April 2013 SS

§  Synchronous communication := requires some kind of
"handshaking" (i.e., synchronization mechanism)

§  Asynchronous communication := no sync required

§  Example: task 1 sends a message to task 2, but doesn't wait for a
response

§  A.k.a. non-blocking communication

§  Collective communication := more than 2 tasks are involved

G. Zachmann 16 Organization Massively Parallel Algorithms 10 April 2013 SS

§  Observed Speedup := measure for performance of parallel code

§ One of the simplest and most widely used indicators for a parallel
program's performance

wall-clock execution time of best known serial code

wall-clock execution time of your parallel code
speedup =

G. Zachmann 17 Organization Massively Parallel Algorithms 10 April 2013 SS

Amdahl's Law

§  Quick discussion:

§  Suppose we want to do a 5000 piece jigsaw puzzle

§  Time for one person to complete puzzle: n hours

§  How much time do we need, if we add 1 more
person at the table?

§  How much time, if we add 100 persons?

G. Zachmann 18 Organization Massively Parallel Algorithms 10 April 2013 SS

Amdahl's Law (the "Pessimist")

§  Assume a program execution consists of two parts: P and S

§  P = time for parallelizable part ,
S = time for inherently sequential part

§  W.l.o.g. set P + S = 1

§  Assume further that the
time taken by N processors
working on P is

§  Then, the maximum speedup
achievable is

P
N

speedupA(N) =
1

(1� P) + P
N

G. Zachmann 19 Organization Massively Parallel Algorithms 10 April 2013 SS

§  Graphical representation of Amdahl:

(You can squeeze the parallel part as much as you like, by throwing more

processors at it, but you cannot squeeze the sequential part)

§  Parallel Overhead := amount of time required to coordinate
parallel tasks, as opposed to doing useful work; can include
factors such as: task start-up time, synchronizations, data
communications, etc.

§  Scalable problem := problem where parallelizable part P
increases with problem size

Speedup concepts Amdahl’s formula Gustafson’s formula Reconciling Maximum Challenge

Amdahl’s formula

You can squeeze the parallel part as much as you like, by throwing
in more processors, but you cannot squeeze the sequential part!

10 / 26

G. Zachmann 20 Organization Massively Parallel Algorithms 10 April 2013 SS

Gustafson's Law (the "Optimist")

§  Assume a family of programs, that all run in a fixed time frame T,
with

§  a sequential part S,

§  and a time portion Q for parallel execution,

§  T = S + Q

§  Assume, we can spend N processors
working on larger and larger problem
sizes in parallel

§  So, Gustafon's speedup is

Speedup concepts Amdahl’s formula Gustafson’s formula Reconciling Maximum Challenge

Gustafson’s formula

Assume a family of programs, ⇧, which have their sequential part,
S , fixed, and a fixed time frame, T = S + Q.

Consider a program ⇡
2

2 ⇧, as indicated by the following diagram:

For ⇡
2

, we obtain the same speedup as indicated by Amdahl’s law:

SpeedupG (⇡
2

) = (S+2Q)/(S+Q) = 4/3 = 1.33

12 / 26

Speedup concepts Amdahl’s formula Gustafson’s formula Reconciling Maximum Challenge

Gustafson’s formula

However, other programs from the same family may be speed up
substantially more.

For example, consider a program ⇡
4

2 ⇧, as indicated by the
following diagram:

13 / 26

speedupG (N) =
S + QN

S + Q
! 1 , with N ! 1

G. Zachmann 21 Organization Massively Parallel Algorithms 10 April 2013 SS

Examples of Parallelizable Problems

§  Compute an image, where each pixel is just
a function of its coordinates

§  E.g. Mandelbrot set

§ Question: is rendering a polygonal scene one of
this case?

§  Such parallel problems are called
"embarrassingly parallel"

§  There is nothing embarrassing about them J

§  Other examples:

§  Brute-force searches in cryptography

§  Large scale face recognition

§  Genetic algorithms

§  SETI@home , and other such distributed comp.

G. Zachmann 22 Organization Massively Parallel Algorithms 10 April 2013 SS

Example of Inherently Sequential Algorithm

§  Calculation of the Fibonacci series (1,1,2,3,5,8,13,21,...) by use of
the formula:
 F(k+2) = F(k+1) + F(k)

§  The problem here is data dependence

§  This is one of the common inhibitors to parallelization

§  Common solution: different algorithm

§  Other algorithm for Fibonacci?

G. Zachmann 23 Organization Massively Parallel Algorithms 10 April 2013 SS

Scatter

Gather

Scatter

Gather

Task

Pi
pe

lin
e

Data

Data Parallel

Σ

Another Taxonomy for Parallelism

§  Pipeline parallelism := between
producers and consumers

§  Task parallelism := explicit in algorithm;
each task works on a different branch/
section of the control flow graph,
where none of the tasks' output
reaches the other task as input (similar
to MIMD)

§  Sometimes also called thread level
parallelism

§  Data parallelism := no (little)
dependencies between tasks (similar to
SIMD)

G. Zachmann 24 Organization Massively Parallel Algorithms 10 April 2013 SS

§  An example of data (level) parallelism:

§  This is what we are going to do mostly in this course!

do_foo_parallel(array d):
 if myCPU = "1":
 lower_limit := 0
 upper_limit := d.length / 2
 else if myCPU = "2":
 lower_limit := d.length/2 + 1
 upper_limit := d.length

 for i from lower_limit to upper_limit:
 foo(d[i])

do_foo_parallel<<on both CPUs>>(global_array)

G. Zachmann 25 Organization Massively Parallel Algorithms 10 April 2013 SS

§  Examples of pipeline parallelism:

§  The graphics (hardware) pipeline
(OpenGL / DirectX)

§  The app-cull-draw (software) pipeline Pipeline Flow

Input Assembly

Vertex Shading

Primitive Setup

Geometry Shading

Rasterization

Pixel Shading

Output Merging

G. Zachmann 26 Organization Massively Parallel Algorithms 10 April 2013 SS

A word about instruction level parallelism (ILP)

§  Mostly done inside CPUs / cores

§  I.e., this is parallelism on the hardware level

§  Done by computer architects at the time the hardware is designed

§  Example:

§  Lines 1 & 2 (ADD/MOV instr. for the CPU) can be executed in parallel

§  Techniques employed in CPUs to achieve ILP:

§  Instruction pipelining

§ Out-of-order execution

§  Branch prediction

1: e = a + b
2: f = c + d
3: g = e * f

G. Zachmann 27 Organization Massively Parallel Algorithms 10 April 2013 SS

Which Parallelism Paradigm Do We Need?

Answer: all of them!

Computation graph for game angine of
Battlefied: Bad Company
provided by DICE

G. Zachmann 28 Organization Massively Parallel Algorithms 10 April 2013 SS

§  Data parallelism:

§  Task parallelism:

From
 Tim

 Foley's "Introduction to Parallel Program
m

ing M
odels"

G. Zachmann 29 Organization Massively Parallel Algorithms 10 April 2013 SS

§  Pipeline parallelism:

G. Zachmann 30 Organization Massively Parallel Algorithms 10 April 2013 SS

Reconciling Task Parallelism

§  Typical game workload (subsystems in % of overall time "budget"):

§  Input, Miscellaneous: 5%

§  Physics: 30%

§  AI, Game Logic: 10%

§  Graphics: 50%

§  Audio: 5%

AI Physics Graphics Au In

G. Zachmann 31 Organization Massively Parallel Algorithms 10 April 2013 SS

thread 2

thread 3

Parallelism Anti-Pattern

§  Naïve solution: assign each subsystem to a SW thread

§  Problems
§  Communication/synchronization

§  Load imbalance

§  Preemption could lead to thrashing

§  Don't do this

In

AI

Physics

Graphics

I

AI

Physics

Graphics

thread 0

thread 1

frame N

G. Zachmann 32 Organization Massively Parallel Algorithms 10 April 2013 SS

§  Better: group subsystems into threads with equal load

§  Problems

§  Communication/synchronization

§  Poor scalability (4, 8, … threads)

I A AI Physics

Graphics

I A AI Physics

Graphics

thread 0

thread 1

frame N

32

G. Zachmann 33 Organization Massively Parallel Algorithms 10 April 2013 SS

Enough classifications …

§  It's confusing J

G. Zachmann 34 Organization Massively Parallel Algorithms 10 April 2013 SS

Illustrated History of Parallel Computing

Tutorial CUDA, 2008, Cyril Zeller, NVIDIA Developer Technology

