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Why Massively Parallel Computing? 

§  "Compute is cheap" … 

§  … "Bandwidth is expensive" 

§ Main memory is ~500 clock 
cycles "far away" from the 
processor (GPU or CPU) 

90nm chip 
64-bit FPU 
(to scale) 

0.5mm 

12mm 

1 clock 
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"More Moore" 

Memory Bandwidth Peak Performance 
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When Power Consumption Matters 

§  Energy consumption is a serious issue on mobile devices 

§  Example: image processing on a mobile device (geometric 
distortion + blurring + color transformation) 

§  Power consumption: 

§  CPU (ARM Cortex A8):      3.93 J/frame 

§  GPU (PowerVR SGX 530): 0.56 J/frame (~14%)  

-  0.26 J/frame when data is already on the GPU 

§  High parallelism at low clock frequencies (110 MHz) is better 
than low parallelism at high clock frequencies (550 Mhz)  

§  Dissipation increases super-linearly with frequency  

  

Application 2

● “OpenCL for image processing”, Nokia

● "OpenCL embedded profile prototype in mobile device," J. 
Leskelä et al., IEEE Workshop on Signal Processing 
Systems, 2009.

● Geometric distortion + blurring + color transformation

● Based on OpenCL not OpenGL ES

Leskelä et al., 2009
  

Application 2

● “OpenCL for image processing”, Nokia

● "OpenCL embedded profile prototype in mobile device," J. 
Leskelä et al., IEEE Workshop on Signal Processing 
Systems, 2009.

● Geometric distortion + blurring + color transformation

● Based on OpenCL not OpenGL ES

Leskelä et al., 2009



G. Zachmann 6 Organization Massively Parallel Algorithms 10 April 2013 SS 

Areas Benefitting from Massively Parallel Algos 

§  Computer science (e.g., visual computing, database search) 

§  Computational material science (e.g., molecular dynamics sim.) 

§  Bio-informatics (e.g., alignment, sequencing, …) 

§  Economics (e.g., simulation of financial models) 

§  Mathematics (e.g., solving large PDEs) 

§  Mechanical engineering (e.g., CFD and FEM) 

§  Physics (e.g., ab initio simulations) 

§  Logistics (e.g. simulation of traffic, assembly lines, or supply chains) 
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Some Statistics of the TOP500 

§  Who does parallel computing: 

§  Note that respondents had to 
choose just one area 

§  "Not specified" probably means 
"many areas" 

Application Area 

Segments Operating Systems 
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§  Our target 
platform 
(GPU) is being 
used among 
the TOP500 
[Nov 2012]: 

Source: www.top500.org  
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The Von-Neumann Architecture 

§  Uses the stored-program concept (revolutionary at the time of its 
conception) 

§  Memory is used for both program instructions and data 

Memory 

C 
P 
U 

Control  
Unit ALU 

Fetch Execute 
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GPU = The New Architecture 

§  CPU = lots of cache, little SIMD, a few cores 

§  GPU = little cache, massive SIMD, lots of cores (packaged into 
"streaming multi-processors") 

DRAM 

Cache 

ALU 
Control 

ALU 

ALU 

ALU 

DRAM (Main Memory) 

CPU GPU 
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The Stream Programming Model 

§  Novel programming paradigm that tries to organise data & 
functions such that (as much as possible) only streaming memory 
access will be done, and as little random access as possible: 

§  Stream Programming Model =  
"Streams of data passing through computation kernels." 

§  Stream := ordered, homogenous set of data of arbitrary type (array) 

§  Kernel := program to be performed on each element of the input 
stream; produces (usually) one new output stream 

stream A, B, C; 
kernelfunc1( input: A, 
                      output: B ); 
kernelfunc2( input: B, 
                       output: C); 

D
ata 

Kernel 

Kernel 

D
ata 

D
ata 
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Flynn's Taxonomy 

§  Two dimensions: instructions and data 

§  Two values: single and multiple 

SISD 
single instruction, single data 

MISD 
multiple instruction, single data 

SIMD 
single instruction, multiple data 

MIMD 
multiple instruction, multiple data 

instructions 

data 
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Some Terminology 

§  Task := logically discrete section of computational work; typically 
a program or procedure 

§  Parallel Task := task that can be executed in parallel by multiple 
processors, such that this yields the correct results 

§  Shared memory :=  

§  Hardware point of view: all processors have direct access to common 
physical memory,  

§  Software point of view: all parallel tasks have the same "picture" of 
memory and can directly address and access the same logical memory 
locations regardless of where the physical memory actually exists 

§  Communication := exchange of data among parallel tasks, e.g., 
through shared memory 
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§  Synchronization := coordination of parallel tasks, very often 
associated with communications; often implemented by 
establishing a synchronization point within an application 
where a task may not proceed further until another task (or all 
other tasks) reaches the same or logically equivalent point 

§  Synchronization usually involves waiting by at least one task, and can 
therefore cause a parallel application's execution time to increase 

§  Granularity := qualitative measure of the ratio of computation to 
synchronization 

§  Coarse granularity: large amounts of computational  
work can be done between synchronization points 

§  Fine granularity: lots of synchronization points  
sprinkled throughout the computational work 
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§  Synchronous communication := requires some kind of 
"handshaking" (i.e., synchronization mechanism) 

§  Asynchronous communication := no sync required 

§  Example: task 1 sends a message to task 2, but doesn't wait for a 
response 

§  A.k.a. non-blocking communication 

§  Collective communication := more than 2 tasks are involved 
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§  Observed Speedup := measure for performance of parallel code 

§ One of the simplest and most widely used indicators for a parallel 
program's performance 

wall-clock execution time of best known serial code 

wall-clock execution time of your parallel code 
speedup = 
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Amdahl's Law 

§  Quick discussion: 

§  Suppose we want to do a 5000 piece jigsaw puzzle 

§  Time for one person to complete puzzle: n hours 

§  How much time do we need, if we add 1 more 
person at the table? 

§  How much time, if we add 100 persons? 
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Amdahl's Law (the "Pessimist") 

§  Assume a program execution consists of two parts: P and S 

§  P = time for parallelizable part  ,  
S = time for inherently sequential part 

§  W.l.o.g. set P + S = 1 

§  Assume further that the  
time taken by N processors  
working on P is  

§  Then, the maximum speedup  
achievable is 

P
N

speedupA(N) =
1

(1� P) + P
N
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§  Graphical representation of Amdahl: 
 
 
 

 
 
 
(You can squeeze the parallel part as much as you like, by throwing more 

processors at it, but you cannot squeeze the sequential part)  

§  Parallel Overhead := amount of time required to coordinate 
parallel tasks, as opposed to doing useful work; can include 
factors such as: task start-up time, synchronizations, data 
communications, etc.  

§  Scalable problem := problem where parallelizable part P 
increases with problem size 

Speedup concepts Amdahl’s formula Gustafson’s formula Reconciling Maximum Challenge

Amdahl’s formula

You can squeeze the parallel part as much as you like, by throwing
in more processors, but you cannot squeeze the sequential part!

10 / 26
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Gustafson's Law (the "Optimist") 

§  Assume a family of programs, that all run in a fixed time frame T, 
with 

§  a sequential part S, 

§  and a time portion Q for parallel execution, 

§  T = S + Q 

§  Assume, we can spend N processors 
working on larger and larger problem 
sizes in parallel 

§  So, Gustafon's speedup is 

Speedup concepts Amdahl’s formula Gustafson’s formula Reconciling Maximum Challenge

Gustafson’s formula

Assume a family of programs, ⇧, which have their sequential part,
S , fixed, and a fixed time frame, T = S + Q.

Consider a program ⇡
2

2 ⇧, as indicated by the following diagram:

For ⇡
2

, we obtain the same speedup as indicated by Amdahl’s law:

SpeedupG (⇡
2

) = (S+2Q)/( S+Q) = 4/3 = 1.33

12 / 26

Speedup concepts Amdahl’s formula Gustafson’s formula Reconciling Maximum Challenge

Gustafson’s formula

However, other programs from the same family may be speed up
substantially more.

For example, consider a program ⇡
4

2 ⇧, as indicated by the
following diagram:

13 / 26

speedupG (N) =
S + QN

S + Q
! 1 , with N ! 1
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Examples of Parallelizable Problems 

§  Compute an image, where each pixel is just 
a function of its coordinates 

§  E.g. Mandelbrot set 

§ Question: is rendering a polygonal scene one of 
this case? 

§  Such parallel problems are called 
"embarrassingly parallel" 

§  There is nothing embarrassing about them J 

§  Other examples: 

§  Brute-force searches in cryptography 

§  Large scale face recognition 

§  Genetic algorithms 

§  SETI@home , and other such distributed comp. 
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Example of Inherently Sequential Algorithm 

§  Calculation of the Fibonacci series (1,1,2,3,5,8,13,21,...) by use of 
the formula:  
                         F(k+2) = F(k+1) + F(k) 

§  The problem here is data dependence 

§  This is one of the common inhibitors to parallelization 

§  Common solution: different algorithm 

§  Other algorithm for Fibonacci? 
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Scatter 

Gather 

Scatter 

Gather 

Task 

Pi
pe

lin
e 

Data 

Data Parallel 

Σ 

Another Taxonomy for Parallelism 

§  Pipeline parallelism := between 
producers and consumers 

§  Task parallelism := explicit in algorithm; 
each task works on a different branch/
section of the control flow graph, 
where none of the tasks' output 
reaches the other task as input (similar 
to MIMD) 

§  Sometimes also called thread level 
parallelism 

§  Data parallelism := no (little) 
dependencies between tasks (similar to 
SIMD) 
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§  An example of data (level) parallelism: 

§  This is what we are going to do mostly in this course! 

do_foo_parallel( array d ): 
  if myCPU = "1": 
    lower_limit := 0 
    upper_limit := d.length / 2 
  else if myCPU = "2": 
    lower_limit := d.length/2 + 1 
    upper_limit := d.length 
 

  for i from lower_limit to upper_limit: 
    foo( d[i] ) 
 

do_foo_parallel<<on both CPUs>>( global_array ) 
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§  Examples of pipeline parallelism: 

§  The graphics (hardware) pipeline  
(OpenGL / DirectX) 

§  The app-cull-draw (software) pipeline Pipeline Flow
 

Input Assembly 

Vertex Shading  

Primitive Setup 

Geometry Shading  

Rasterization 

Pixel Shading  

Output Merging 



G. Zachmann 26 Organization Massively Parallel Algorithms 10 April 2013 SS 

A word about instruction level parallelism (ILP) 

§  Mostly done inside CPUs / cores 

§  I.e., this is parallelism on the hardware level 

§  Done by computer architects at the time the hardware is designed 

§  Example: 

§  Lines 1 & 2 (ADD/MOV instr. for the CPU) can be executed in parallel 

§  Techniques employed in CPUs to achieve ILP: 

§  Instruction pipelining 

§ Out-of-order execution 

§  Branch prediction 

1: e = a + b 
2: f = c + d 
3: g = e * f 
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Which Parallelism Paradigm Do We Need? 

Answer: all of them! 

Computation graph for game angine of  
Battlefied: Bad Company  
provided by DICE 
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§  Data parallelism: 

§  Task parallelism: 

From
 Tim

 Foley's "Introduction to Parallel Program
m

ing M
odels" 
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§  Pipeline parallelism: 
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Reconciling Task Parallelism 

§  Typical game workload (subsystems in % of overall time "budget"): 

§  Input, Miscellaneous: 5% 

§  Physics: 30% 

§  AI, Game Logic: 10% 

§  Graphics: 50% 

§  Audio: 5% 

AI Physics Graphics Au In 
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thread 2 

thread 3 

Parallelism Anti-Pattern 

§  Naïve solution: assign each subsystem to a SW thread 

 

 

 

§  Problems 
§  Communication/synchronization 

§  Load imbalance 

§  Preemption could lead to thrashing 

§  Don't do this 

In 

AI 

Physics 

Graphics 

I 

AI 

Physics 

Graphics 

thread 0 

thread 1 

frame N 
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§  Better: group subsystems into threads with equal load 

 

§  Problems 

§  Communication/synchronization 

§  Poor scalability (4, 8, … threads) 

I A AI Physics 

Graphics 

I A AI Physics 

Graphics 

thread 0 

thread 1 

frame N 

32 
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Enough classifications … 

§  It's confusing J 
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Illustrated History of Parallel Computing 

Tutorial CUDA, 2008, Cyril Zeller, NVIDIA Developer Technology  


