Assignment 6: Dynamic Parallelism

- Extend a raytracer by scattered reflections
- A reflection causes $16 * 16$ new rays for each parent ray
- The result is added (with weighting) to the parent ray result color
- DP kernel dimensions
- blockDim $=(16,16)$
- $\operatorname{gridDim}=\#$ parentRay $=N$ (only count rays that contribute notably)

Assignment 6: Dynamic Parallelism

- Fast counting algorithm, that can also generate indices?
- Could be computed in shared memory

```
extern __shared__ T *sharedData;
__global__ void kernel( ... ) {
}
int memsize = ...; // determine how much data is needed
kernel<<<<x,y,memsize>>>( ... );
```

- Multiple arrays in dynamic shared memory:

```
int *buffer1 = &sharedData[0];
int *buffer2 = &sharedData[someNumber];
```

- memsize needs to be twice someNumber

Assignment 6: Dynamic Parallelism

- Data transfer from parent- to child-kernel and back
- Transfer parent ray data (N Rays)
- Transfer child kernel result (N Vec3s)
- Block id can be used by scattered ray thread to read from and write to
- => all threads per block share same parent ray \& reflection result sum
parentKernel:

```
__shared__ T *data; // share pointer among block
data = (T*) malloc(N * sizeof(T)); // allocate global memory (once per block)
childKernel<<<x,y>>>( data, ... ); // use memory to transfer data to or from
// ...
free(data); // (once per block)
```

childKernel:

```
auto y = data[x]; // read from global memory
data[x] = y; // write to global memory
```


Assignment 6: Dynamic Parallelism

- Scatter function:
- $x_{i}=s \frac{x\left(t_{i}\right)}{x(d)-1}-\frac{s}{2} \quad, \quad y_{i}=s \frac{y\left(t_{i}\right)}{y(d)-1}-\frac{s}{2} \quad, \quad x_{i}^{2}+y_{i}^{2}+z_{i}^{2}=1$
- t_{i} : threadld i
- d : blockDim
- $s \in[0,1]$
- Construct new orthogonal basis around ray.dir $\overrightarrow{\boldsymbol{r}}$
- $\overrightarrow{\boldsymbol{x}}=\overrightarrow{\boldsymbol{r}} \times \overrightarrow{\boldsymbol{v}}, \quad \overrightarrow{\boldsymbol{r}} \neq \overrightarrow{\boldsymbol{v}}$
- $\overrightarrow{\boldsymbol{y}}=\overrightarrow{\boldsymbol{x}} \times \overrightarrow{\boldsymbol{r}}$
- $\overrightarrow{\boldsymbol{z}}=\overrightarrow{\boldsymbol{r}}$
- Above basis not normal
- Normalize vectors constructed with it
- $\overrightarrow{\boldsymbol{r}}_{\boldsymbol{i}}=\frac{\overrightarrow{\boldsymbol{x}} x_{i}+\overrightarrow{\boldsymbol{y}} y_{i}+\vec{z} z_{i}}{\left|\overrightarrow{\boldsymbol{x}} x_{i}+\overrightarrow{\boldsymbol{y}} y_{i}+\vec{z} z_{i}\right|}$

