
• Extend a raytracer by scattered reflections

• A reflection causes 16 ∗ 16 new rays for each parent ray

• The result is added (with weighting) to the parent ray result color

• DP kernel dimensions

• blockDim = (16,16)

• gridDim = #parentRay = 𝑁 (only count rays that contribute notably)

Assignment 6: Dynamic Parallelism

• Fast counting algorithm, that can also generate indices?
• Could be computed in shared memory

• Multiple arrays in dynamic shared memory:

• memsize needs to be twice

Assignment 6: Dynamic Parallelism

• Data transfer from parent- to child-kernel and back
• Transfer parent ray data (𝑁 Rays)
• Transfer child kernel result (𝑁 Vec3s)
• Block id can be used by scattered ray thread to read from and write to
• => all threads per block share same parent ray & reflection result sum

Assignment 6: Dynamic Parallelism

• Scatter function:

• 𝑥𝑖 = 𝑠
𝑥(𝑡𝑖)

𝑥(𝑑)−1
−

𝑠

2
, 𝑦𝑖 = 𝑠

𝑦 𝑡𝑖

𝑦 𝑑 −1
−

𝑠

2
, 𝑥𝑖

2 + 𝑦𝑖
2 + 𝑧𝑖

2 = 1

• 𝑡𝑖: threadId 𝑖

• 𝑑: blockDim

• 𝑠 ∈ [0,1]

• Construct new orthogonal basis around ray.dir 𝒓
• 𝒙 = 𝒓 × 𝒗, 𝒓 ≠ 𝒗

• 𝒚 = 𝒙 × 𝒓

• 𝒛 = 𝒓

• Above basis not normal
• Normalize vectors constructed with it

• 𝒓𝒊 =
𝒙𝑥𝑖+𝒚𝑦𝑖+𝒛𝑧𝑖

|𝒙𝑥𝑖+𝒚𝑦𝑖+𝒛𝑧𝑖|

Assignment 6: Dynamic Parallelism

	Slide 1: Assignment 6: Dynamic Parallelism
	Slide 2: Assignment 6: Dynamic Parallelism
	Slide 3: Assignment 6: Dynamic Parallelism
	Slide 4: Assignment 6: Dynamic Parallelism

