Bremen

Y

Massively Parallel Algorithms
Parallel Sorting

,'“m
G. Zachmann

University of Bremen, Germany
cgvr.cs.uni-bremen.de

e e

http://cgvr.cs.uni-bremen.de

Bremen

U Sorting using Spaghetti in O(1) (?)

* |s O(n) really the lower bounc

for sorting?

* Consider the following thoug

Nt experiment:

2. For each number x in the list, cut a spaghetto to length x

— list = bundle of spaghetti & unary repr.

3. Hold the spaghetti loosely in your hand and tap them on
the kitchen table — takes O(1) !

4. Lower your other hand from above until it meets with a
spaghetto — this one is clearly the longest

5. Remove this spaghetto and insert it into the front of the

output list
6. Repeat

* |f we could use this mechanical computer, then sorting
would be O(1), unless you count the extraction, too :-)

G. Zachmann Massively Parallel Algorithms

SS May 2024

Sorting

.remen ‘L; :
@J) Difficulties With Parallel Implementation of Standard Sequential Algorithms

* Insertion sort: considers only one element at a time
 Quicksort:
* Yes, some parallelism at lower levels of the recursion tree is possible
* But, would need the median as a pivot element — hard to find
* Otherwise, random pivot element causes very different sub-array sizes
* Heapsort:
* Only one element at a time
* Heap (= recursive data structure) is difficult on massively-parallel architecture
e Radix sort:
* Yes, we've seen that already, works well

* But, can handle only fixed-length numbers

G. Zachmann Massively Parallel Algorithms SS May 2024 Sorting 3

Bremen

Y Assumptions

* In this chapter, we will always assume that n = 2k

* Elements can have any type, for which there is a comparison operator

G. Zachmann Massively Parallel Algorithms SS May 2024 Sorting

E R EEEEEEENR
I.I.I.l.l.l.l.l.l.l.

Bremen

Y Sorting Networks

* Informal definition of comparator networks:
e Consist of a bundle of "wires"

* Each wirej carries a data element D; (e.g., floats) from left to right

e Two wires can be connected vertically by a comparator

*—o

e If Di >D; A i<j (i.e., wrong order), then Djand D;

are swapped by the comparator before they move on

wNn — O

along the wires

* Observation: every comparator network is data independent, i.e., the
arrangement of comparators and the running time are always the same!

e Goal: find a "small" comparator network that performs sorting for any input
— sorting network

G. Zachmann Massively Parallel Algorithms SS May 2024 Sorting

Bremen

Y Example

A

M

N

W

[

N

@)

Ll L L) L

N

\ J
Y

One stage / step

G. Zachmann Massively Parallel Algorithms SS May 2024

Sorting

I
?“;&‘T &.-.

<N

E-N1]

EEEEEEEEEN
i B BN NN NN

Bremen

Y The 0-1 Principle

e Definition (monotone function):

Let A, B be two sets with a total ordering relation, and let f: A = B be a mapping.
f is called monotone iff Vaj,a» € A: a1 < a» = f(a1) < f(a0)

* Llemma:
If f:A— B is monotone, then, f and min are commutative, i.e.

Vai,a» € A: f(min(ay, a)) = min(f(a1), f(a))
Analogously for the max.

* Proof:
Case a; < a>: f(min(ag, ax)) = f(ay) = min(f(a1), f(a2))

f(ar) < f(an)

Case a» < a1 : analogous

G. Zachmann Massively Parallel Algorithms SS May 2024 Sorting

Bremen

@J) Extension to Sequences

* Extension of f: A = B to sequences over A and B, resp.:

f(ag,...,an) = f(ag),...,f(an)

* Commutative Lemma for Comparator Networks:
Let f be a monotone mapping and AN a comparator network.
Then N and f are commutative, i.e.

VnVag,...,a,: N(f(a)) =f(N(a))

G. Zachmann Massively Parallel Algorithms SS May 2024 Sorting

Bremen

Y

Proof

* let a=(ao0,...,an) beasequence aé

* Notation: we write a comparator connecting ’ I

wires i and j like so: a’' = [i : j](a) q
* Now the following is true: an
i j1(f(a)) = [i : j1(f(a0). - - - f(an))
= (F(a0), ..., min(£(a;), F(3;)), .., max(£(a), F(a)), ... F(an))
j J

= (f(ao), .- -, f(min(a;, a;)), ..., f(max(a;, a;)), ..., f(an))
— f(ao min(a;, a;), . . ., max(a;, a;), - . ., an)
= f([i : jl(a))

Bremen

Y

* Theorem (0-1 principle):
Let N/ be a comparator network.
Now, if A sorts every sequence of 0's and 1's, then it also sorts every
sequence of arbitrary elements!

G. Zachmann Massively Parallel Algorithms SS May 2024 Sorting

10

E R EEEEEEENR
I.I.I.l.l.l.l.l.l.l.

Bremen

Y

Proof (by contradiction)

e Assumption: N sorts all 0-1 sequences, but does not sort sequence a

e Then N(a) = b is not sorted correctly, i.e. Ik : by > byi1

0, C<bk

* Define f: A— {0,1} asfollows: f(c)=
]., C Z bk

* Now, the following holds:

f(b) = f(N(a)) - N (f(a)) = N(a')

f monotone, Commut. Lemma

where a' is a 0-1 sequence.
e But: f(b) is not sorted, because f (bx) =1 and f(bk+1) =0

* Therefore, N'(a’) is not sorted as well, in other words, we have constructed a
0-1 sequence that is not sorted correctly by N .

G. Zachmann Massively Parallel Algorithms SS May 2024 Sorting

11

Bremen

Y Batcher's Odd-Even-Mergesort

* In the following, we'll always assume that the length n of a sequence

do,...,dn-11S @ power of 2, i.e., n= 2k

* First of all, we define the sub-routine "odd-even merge":

oem(ag,..,an-1):

precondition: ag,..,ann2 -1 and ann ,..,an-1

postcondition: ap,..,an-1 1s sorted
if n = 2:

compare [ap:ai1]
> 2:
— aop,a2,..,an-2

if

(T

— oem(a)

— oem(a)

copy b — ao,az,..,an->2
copy b - ai,as,..,an-1
for 1€ {1,3,5,..,n-3}
compare [a;i : ai+1]

o> O W

G. Zachmann Massively Parallel Algorithms SS May 2024

// = even sub-sequence
— ai,as,..,an-1 // = odd sub-sequence

are both sorted

(1)

(2)

(3)

[1968]

Sorting

&7

N
¥, cc o
" VR %

12

HEEEEn
e

.
"

Bremen

3 =
@J) Proof of correctness i
0 1 h
* By induction and the O-1-principle % oem ST e
St na
RS AN 4 s "~ is sorted
* Base case:n=2 S S oG
' . 6 7
* Induction step: n =2k, k> 1 s |9 |
: P B 2nd half
* Consider a 0-1-sequence ao,...,an- P —1——{ (" s sorted
e Write it in two columns r | s
i
* Visualize O = white, 1 = grey I
dd sub-
. _ R . ?equsel;ce
* Obviously: both a and a consist of two sorted i
even Sup-
halves = preconditon of oem is met ; aI sequence
* After line (2) in the algo, we have this
situation (the odd sub-sequence can have at
most two 1's more than the even sub-sequence) 11
b b

G. Zachmann Massively Parallel Algorithms SS May 2024 Sorting 13

Bremen

Y

* Inloop (3), these comparisons are made,

and there can be only 3 cases:

e Afterwards, one of these two

situations has been established:
* Result: the output sequence is sorted

* Conclusion:
every 0-1-sequence (meeting the preconditions)
iIs sorted correctly

* Running time (sequ.) :

| 1 € O(nlogn)

G. Zachmann Massively Parallel Algorithms SS May 2024

-

=

L;f =
A u

' =

G o

SELN

So DN e N N o

O\

Sorting

14

* The complete general sorting algorithm:

oemSort (ag,..,an-1) :
if n = 1:

return
ao,..,an/2 -1 <« oemSort(ao,..,an/2 -1)
an/2 ,..,a@n-1 <« oemSort(an/;2 ,..,an-1)
oem(aop,..,an-1)

* Running time (sequ.): T(n) € O(nlog® n)

* Note: in a real implementation, no copying is done!

G. Zachmann Massively Parallel Algorithms SS May 2024

Sorting

HEEEEER
N

7. cc =
VR

15

Bremen

Y

Mapping the Recursion to a Massively-Parallel Architecture

Only FYI

* Load data onto the GPU (global memory)

* Each recursion in the sequential oem can be mapped to a stride parameter

value, so that sorting can be done in situ: recursion i — stride = 2/; at that
recursion level / iteration, the algo works only on elements that are stride
places apart

* The CPU executes the following control program (informal):

oem(n, stride) :
if n = 2:
launch oemBaseCaseKernel (stride)
// launch N (not n) threads
else:
oem(n/2, stride*2)
launch oemRecursionKernel (stride)

N = total size of input, n = #elements the function will actually look at

oemSort (n) :

if n =1 - return

do in parallel.:
oemSort(lower n/2)
oemSort(upper n/2)

oem(n, 1)

G. Zachmann Massively Parallel Algorithms SS May 2024 Sorting 16

Bremen

Y

Only FYI

* The kernel for line (3) of the original function cem():

oemRecursionKernel (stride):
if tid < stride || tid 2 n-stride:
output SortData[tid] // pass through
else:
a i1 — SortData[tid]
a j — SortData[tid+stride]
if tid/stride is even:
output max(a i, a j)
else:
output min(a i, a j)

As usual, tid = thread ID =0, ..., n-1

G. Zachmann Massively Parallel Algorithms SS May 2024

Sorting

17

EEEEEEEEEN
i B BN NN NN

Bremen

Y

Only FYI

* Kernel for line (1) of the function cem():

 Reminder: this kernel is executed in parallel for each index tid =0, ..., n-1

oemBaseCaseKernel (stride):

i = tid // = thread ID

if tid/stride is even: // are we on even/odd side?
J = 1 + stride

else:
J = 1 - stride

a0 « SortDatal[i] // SortData = global array

al — SortData[j]

if on even side:
SortData[1i]

else:
SortData[1i]

min (a0,al) // write output back

max (a0, al)

G. Zachmann Massively Parallel Algorithms SS May 2024 Sorting 18

EEEEEEEEEN
i B BN NN NN

Bremen

Y

Only FYI

* Depth complexity:

1|2+1I
— 108 N — 100 N
> 08 > 08

* E.g., for 220 elements this amounts to 210 passes

G. Zachmann Massively Parallel Algorithms SS May 2024

Sorting

19

Bremen

Y Bitonic Sorting g

* Definition "bitonic sequence":
A sequence of numbers ao, ..., an-1 is bitonic & there is an index i such that

- Qo, ..., A is monotonically increasing, and
ai+1, ..., an-1 1S monotonically decreasing;

- OR, if there is a cyclic shift of this sequence such that this is the case.

* Because of the second condition (OR), we understand all index arithmetic in
the following modulo n, and/or we assume in the following that the
sequence(s) have been cyclically shifted as described above

G. Zachmann Massively Parallel Algorithms SS May 2024 Sorting 20

Bremen

@J) Examples of bitonic sequences

* 0248109753 ; als0: 2481097530 ; also:4810975302 ; ..
* 101214 20 95 90 60 40

100

35231803589 , \

© 12345 . \

[. \

» 00000111110000 ; N NS
1111100000111111 ; B N\
1111100000 ; 000011111 e

* These sequences are NOT bitonic sequences:
¢ 123123
¢ 123012

G. Zachmann Massively Parallel Algorithms SS May 2024 Sorting

Bremen

@J) Visual representation of bitonic sequences

N

* Because of the "modulo" index
arithmetic, we can also visualize them
on a circle or cylinder

* Clearly, bitonic sequences have
always exactly two inflection points

G. Zachmann Massively Parallel Algorithms SS May

2024

n-1

an/2

n/2

n/2-1

n-1

Sorting

index

22

E R EEEEEEENR
I.I.I.l.l.l.l.l.l.l.

Bremen

@J) Properties of Bitonic Sequences

* The bitonic property is invariant against subset extraction, reversal, flipping

* Any sub-sequence of a bitonic sequence is a bitonic sequence (too)

* More precisely, assume qqo, ..., an-1 is bitonic and we consider some indices

O<ihrLi22... £im<n
* Then, a;,a;,...,a; Iisbitonic, too
° |f ao, ..., an1is bitonic, then an.1, ..., ao is bitonic, too

* |f we mirror a bitonic sequence "upside down", then the new sequence is
bitonic, too

* A bitonic sequence has exactly one local minimum and one local maximum

G. Zachmann Massively Parallel Algorithms SS May 2024 Sorting

Bremen

@J) Some Notions and Definitions

* More precise graphical notation of a comparator: @

|

b
* Detfinition rotation operator:
let a=(ap,...,a,-1),and je[1,n-1].
We define the rotation operator R; acting on a as
Rja — (aj, dit1,-- -, aj+n_1)
e Definition L / U operator:
La = (min(ap, az), ..., min(as_1,a, 1))
Ua = (max(ao, ag), L max(ag_l, an_1))

G. Zachmann Massively Parallel Algorithms SS May 2024

min(a,b)

max(a,b)

Sorting

24

E R EEEEEEENR
I.I.I.l.l.l.l.l.l.l.

Bremen

Y

°* Lemma:
The L/U operators are rotation invariant, i.e., for any |

la=R_jLRa, and Ua= R_;URa.

(Remember that indices are always meant mod n)

e Proof:

* We need to show that RjLa = LR;a

e This is trivially the case:

LR;a = (min(a, ajrn),...,min(as_1,a, 1),...,min(a;_1, 3j—1+g))

G. Zachmann Massively Parallel Algorithms SS May 2024 Sorting

25

Bremen :

Y

e Definition half-cleaner:

Is network that takes a as input 20 * ~
and outputs (La, Ua) ; . > La

dn/2-1 @ _/

e The network that realizes a half-cleaner a/n/z o I v ~
oY > Ua

dn-1 l _/

* Because of the rotation invariance, we can
depict a half-cleaner on a circle: N

di

* |t always produces La and Ua, no matter how a is
rotated around the circle!

dn/2+1
dn/2

G. Zachmann Massively Parallel Algorithms SS May 2024 Sorting 26

Bremen

Y

e Theorem 1:

Given a bitonic input sequence a, the output of a half-cleaner has the
following properties:

1. La and Ua are bitonic, too;

2. max{La} < min{Ua}

G. Zachmann Massively Parallel Algorithms SS May 2024 Sorting

27

E R EEEEEEENR
I.I.I.l.l.l.l.l.l.l.

Bremen

Y Proof bl

* The half-cleaner does the following:
1. Shift (only conceptually) the right half of a over to the left
2. Take the point-wise min/max — La, Ua
3. Shift Ua back to the right
* Because a is bitonic, there can be only one "cross-over" point
* By construction, both La and Ua must have length n/2
* Property 1 in theorem 1 follows from the sub-sequence property

f
N e

I I
0 n/2 n-1 0 n/2 n-1 0 n/2 n-1

Y
G. Zachmann Massively Parallel Algorithms SS May 2024 La Ua

Bremen

Y The Bitonic Merger § .

* The half-cleaner is the basic (and only) building block for the bitonic sorting

network!
BMT(n)
* The recursive definition of a N
. . 1 a0 — 1@
bitonic merger BM'(n) : 0
4 ol
: : : >La EM (_)
* |Input: bitonic sequence of Y . 2
length n N Y Y 1Y E
e Output: sorted sequence £ < Py PR S
. . o v
in ascending order . ¢ " BMT(g)
* Analogously, we : : ‘
can define BM*(n) L -
N v J

One half-cleaner stage

G. Zachmann Massively Parallel Algorithms SS May 2024 Sorting 29

Y visualization of a Bitonic Merger

. |

*——

* |9

*~——9

*——0

* o

*——0

—o 060 0690 0690 060 060 0690 06§

G. Zachmann Massively Parallel Algorithms SS May 2024

30

Bremen

Y Mapping to a Massively Parallel Architecture

* We have n = 2k many "lanes" = threads
* At each step, each thread needs to figure out its partner for compare/exchange

* This can be done by considering the ID of each thread (in binary):
e Atstepj,j=1, ..., k: partner ID = ID obtained by reversing bit (k-j) of own ID

* Example:
000 001 010 011 100 101 110 111
j=k3
J = k-2
J = k-1

G. Zachmann Massively Parallel Algorithms SS May 2024 Sorting 31

Bremen

Y The Bitonic Sorter

* The recursive definition of a bitonic sorter BS'(n) :

G. Zachmann

unsorted

an/2-1

A

an/2

an-1

BST(n)

BST(n/2)
\
> < BM'(n)
=
A
BS*(n/2)
D

Massively Parallel Algorithms

sorted

Sorting

S
S
¥ cc ne

" VR &%

32

Bremen

Y Visualizing Bitonic Sorting

G. Zachmann Massively Parallel Algorithms SS

Initial data sequence

1: Sort array halves in opposite directions to
achieve a bitonic sequence

2: Overlap and compare the array halves
(half-cleaner)

3: Send larger item in each pair to the right

Perform 2 & 3 recursively on each halt

May 2024 Sorting

i, co i

HEEEEER
N

" VR

33

eeeee

Lanes
(threads)
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110

Blue box = low-to-high sorter,

red box = high-to-low sorter

e |

l

¢

*—1

——

o

R |
9

~ ¢

*——0
9

—¢

1111

9 99 99 909 090 09 99

!
!
!
!
!
!
!
!

——

Wn
r—'-

80—00—.0—..—..—00—.0—..—0
D

Massively Parallel Algorithms

Bremen :

Y Example Run B

8x monotonic lists: (3) (7) (4) (8) (6) (2) (1) (5)
4x bitonic lists: (3,7) (4,8) (6,2) (1,5)

G. Zachmann Massively Parallel Algorithms SS May 2024 Sorting 35

Bremen

Y

G. Zachmann

Sort the bitonic lists (each list = 2 elements — trivially bitonic)

Massively Parallel Algorithms SS May 2024

Sorting

HEEEEER
N

¥ cc =

" VR

36

Bremen

Y

G. Zachmann

4x monotonic lists: (3,7) (8,4) (2,6) (5,1)
2x bitonic lists: (3,7,8,4) (2,6,5,1)

Massively Parallel Algorithms SS May 2024

Sorting

¥ cc =

HEEEEER
N

" VR

37

Bremen

Y

G. Zachmann

.|
v |8

S

o |

2

|

Sort the bitonic lists

Massively Parallel Algorithms

SS

May 2024

Sorting

HEEEEER
N

7. cc =

" VR

38

Bremen

Y

G. Zachmann

2

1

2x monotonic lists: (3,4,7,8) (6,5,2,1)

1x bitonic list: (3,4,7.8, 6,5,2,1)

Massively Parallel Algorithms

SS

May 2024

Sorting

HEEEEER
N

7. cc =
VR

39

Bremen

Y

G. Zachmann

Sort the bitonic lists

Massively Parallel Algorithms

May 2024

HEEEEER
N

7. cc =

" VR

40

Bremen

Y

G. Zachmann

Sort the bitonic lists

Massively Parallel Algorithms

SS

May 2024

Sorting

HEEEEER
N

7. cc =

" VR

41

Bremen

Y

G. Zachmann

Done!

Massively Parallel Algorithms

SS

May 2024

Sorting

¥ cc =

HEEEEER
N

" VR

42

Bremen

U Complexity of the Bitonic Sorter

* Depth complexity (= parallel time complexity):

* Bitonic merger: O(log n)

» Bitonic sorter: O(log” n)

* Work complexity of bitonic merger: count #comparators = C(n)

n n _
2) | 2 Wlth C(2)—1

* Recursive equation for C: C(n) = 2C(

1
e Overall: C(n) = §n|ogn

* Remark: there must be some redundancy in the sorting network, because
we know (from merge sort) that n comparisons are sufticient for merging

two sorted sequences

* Reason for the redundancy? —, because the network is data-independent!

G. Zachmann Massively Parallel Algorithms SS May 2024 Sorting 43

Bremen

Y Remarks on Bitonic Sorting

* Probably most well-known parallel sorting algo / network
* Fastest algorithm for "small" arrays
* Lower bound on depth complexity for parallel sorting is

O(n log n)

n

— O(Iog n)

assuming we have n processors (in this sense, the bitonic is not optimal)

G. Zachmann Massively Parallel Algorithms SS May 2024 Sorting

44

Bremen

iU B

* A nice property: comparators in a bitonic sorter network only ever compare
lanes whose labels (= binary lane number) differ by exactly one bit!

* Consequence for the implementation:
* One kernel for all threads

e Each thread only needs to determine which bit of its own thread ID to "flip" —
gives the "other" lane with which to compare

* Hence, bitonic sorting is sometimes pictured as well-suited for a log(n)-
dimensional hypercube parallel architecture:

e Each node of the hypercube = one processor

e Each processor is connected directly to log(n) many other processors

* |In each step, each processor talks to one of its direct neighbors

G. Zachmann Massively Parallel Algorithms SS May 2024 Sorting 45

Bremen

U Optimal Sorting Networks

* Optimal = minimal depth

* Known up to depth 11 [2013], and depth 40 [2014]

Oforn=16

* Example: optimal depth d

* Would it improve performance on the GPU??

46

May 2024

SS

ly Parallel Algorithms

Massive

G. Zachmann

Bremen

U Adaptive Bitonic Sorting

* Theorem 2:
Let a be a bitonic sequence.
Then, we can always find an index g such that

max(aq, . aq+g_1) < mln(aq+g, . aq_l)

* This can be turned into an adaptive bitonic merger (ABM)

G. Zachmann Massively Parallel Algorithms SS May 2024

Sorting

47

Bremen

Y

Sketch of Proof

Assume (for sake of simplicity) that all elements in a
are distinct

Imagine the bitonic sequence as a "line" on a cylinder

Since a is bitonic — only two inflection points — each
horizontal plane cuts the sequence at exactly 2 points,
and both sub-sequences are contiguous (under index
arithmetic using modulo!)

Use the median m as "cut plane" — each sub-
sequence has length n/2, and
max("lower sequ.") < m < min("upper sequ.")

The index of m is exactly index g in Theorem 2

The two halves must be La and Ua, resp.

G. Zachmann Massively Parallel Algorithms SS May 2024

Sorting

48

Bremen

Y

e Visualization of the theorem:

|
0 g qg+n/2 n-1
N N .

e Theorem 3:

Any bitonic sequence a can be partitioned into four sub-sequences (al, a2,

a3, a4) =a, such that

)
@'l +[a’| =l + 'l =5 . fa'l =’ . [a%|=|[a"

and

either (La, Ua) = (a',a* a’,a’) or (La, Ua)=(a’ a° a' a*)

G. Zachmann Massively Parallel Algorithms SS May 2024 Sorting

49

Bremen

Y Visual "Proof" g

1. Input Sequence 2. Find g and partition

A

R 3. Swap parts 4. Result

G. Zachmann Massively Parallel Algorithms SS May 2024 Sorting 50

Bremen

Y Complexity

* Finding the median in a bitonic sequence — O(log n) steps
* Remark: this algorithm is no longer data-independent!
* Depth complexity: — exercise / research

* Work complexity of the adaptive bitonic merger:
 Number of comparlsons
C(n) :2C(+ log(n ZZ’ Iog) = 2n — log n-2
e This is optimall!
* Needs a trick to avoid actually copying the subsequences

e Otherwise the total complexity of an ABM(n) would be O(n log n)

* Trick = bitonic tree (see orig. paper for details)

G. Zachmann Massively Parallel Algorithms SS May 2024 Sorting

Bremen

@J) How to find the median in a bitonic sequence

* We have
median(a) = min(Ua)

or
median(a) = max(La)

(depending on the definition of the median)

* Finding the minimum in a bitonic sequence takes log(n) steps

G. Zachmann Massively Parallel Algorithms SS May 2024

Sorting

52

Bremen

Y

Overall Algorithm for Adaptive Bitonic Sorting

e Same as bitonic sorting, except we replace the half cleaner by

1.Finding the median, and

2.Swapping subsequences (only conceptually)

adaptiveBitonicSort(ao, ...
do parallel:
sort ap,..., an/2-1 ascending
sort an/2,..., an-1 descending
adaptiveBitonicMerge(aop, ..., an-1)

G. Zachmann Massively Parallel Algorithms

/ an—]_) .

SS

adaptiveBitonicMerge(ao, . ..
precond.: ag,...
find index g of median

swap subsequences as per theorem 2 and proof

do parallel:

adaptiveBitonicMerge(aop, .. .
adaptiveBitonicMerge (an/2, . ..

May 2024

/ an—l) .

4

, an-1 1s bitonic

an/2—1)
’ a-n-l)

Sorting

..

<n

53

E R EEEEEEENR
i B BN NN NN

E-N1]

Bremen

Y Topics for Master Theses

* Lots of different parallel sorting algorithms
* What is the performance of Adaptive Bitonic Sorting using CUDA?

* Do you love algorithms?

* Thinking about them?
* Proving properties?

* Implementing them super-fast?

* Then we should talk about a possible master's thesis topic! &

G. Zachmann Massively Parallel Algorithms SS May 2024

Sorting

54

Bremen

Y Application: Searching

* Given a sorted array (should be really large, i.e., >1m elements)

* How to utilize the GPU for searching for keys in the array?

* Trivial solution, if you have a huge number of search requests:

* Batch all requests into one multi-query

e Each thread processes one request, doing binary search on the array for "their" key

 Memory requests will be totally un-coalesced

* Response time = similar to response for CPU-based search

e Hardware utilization: usually, some threads will be finished early

* Throughput: slower than CPU, since all threads must wait before next multi-query

G. Zachmann Massively Parallel Algorithms SS May 2024 Sorting 55

Bremen

Y P-Ary Parallel Search

* Given a sorted array, A, of n elements, and one key g

* With p threads, choose p pivot elements (not just one)

* Each thread iloads Al i * n/p | into shared memory

* Each thread icomparesA[i*n/p]<g=<Al (+1)*n/p]

e (For the last thread, use a sentinel element)

* Repeat with the bracket containing g (it any)

G. Zachmann

(1)

30({31(32|33(34|35|36|37|38(39(40(41(42|43(44|45(46(47|48(49|50|51|52|53|54|55|56|57|58|59|60|61
T iy 1 it T
Thread 0 3 Thi : Thread 2 Thread 3
'38 39(40(41|42|43(44|45 46.
ThO Th1 Th2 Th3 All searching for '42'
Massively Parallel Algorithms SS May 2024 Sorting

ol l:l
¥ ca s
© VR .

56

Bremen

I.l

l.l

| (& o :::
W=

4. e

7, CG e

VR =

ogn)
og p

* Complexity: O(Iogp n) = O(

* A (potential) practical optimization: re-arrange data to match access patterns

* If data can be re-arranged, move the p pivot elements of the first iteration to the
front of the array — coalesced memory access among the p threads

* For each of the p segments, again move the p pivot elements within that segment
to a contiguous segment in the array, etc.

* Only useful, of course, it a huge number of queries are to be made

G. Zachmann Massively Parallel Algorithms SS May 2024 Sorting 57

Bremen

Y Application: BVH Construction S

* Bounding volume hierarchies (BVHSs): very important data structure for
accelerating geometric queries

* Applications: ray-scene intersection, collision detection, spatial data bases, etc.

e Database people usually call it "R-tree" ...

* Frequently used types of bounding volumes (BVs):

G

Sphere Box, AABB (R*-trees) k-DOPs / Slabs OBB (oriented bounding box)

G. Zachmann Massively Parallel Algorithms SS May 2024 Sorting 59

Bremen

@ The Notion of Bounding Volume Hierarchies

e Schematic example: @

<N
F-Na)
EEEEEEEEER
i B BN NN NN

/ \
* Three levels of a k-DOP BVH: @% %
/ \ /N
/ N\ % AN

G. Zachmann Massively Parallel Algorithms SS May 2024 Sorting 60

Bremen

Y Pparallel Construction of BVHs

* Firstidea: linearize 3D points/objects by a space-filling curve

* Definition curve:
A curve (with endpoints) is a continuous function with its domain in the
unit interval [0, 1] and its range in some d-dimensional space.

* Definition space-filling curve:
A space-filling curve is a curve with a range that covers the entire 2-
dimensional unit square (or, more generally, an n-dimensional hypercube).

G. Zachmann Massively Parallel Algorithms SS May 2024 Sorting 61

Bremen

Y Examples of Space-Filling Curves (or, Rather, Approximations)

LT U o bt

e i Ll L

UL Bararaea: 5or
it

o e
Peano curve C
Tz
%

/4/

L LS

Z-order curve .
(a.k.a. Morton curve) Z-order curve in 3D

G. Zachmann Massively Parallel Algorithms SS May 2024 Sorting 62

Bremen

I.I

I:l

_| 7 ,4; :::
Koo

& s

")./‘; .s c G .:.

VR .=

* Benefit: a space-filling curve gives a mapping for every point in the unit
square onto a point in the unit interval

Z Iz
S (A8

L T oo

e At least, the limit curve does that ...

* |n practice, we can construct a "space-filling" curve only up to some specific
(recursion) level, i.e., in practice space-filling curves are never really space-filling

G. Zachmann Massively Parallel Algorithms SS May 2024 Sorting 63

Bremen

Y Construction of the Z-Order Curve in 3D S

e Choose a level k

e Construct a regular lattice of points in the unit cube, 2 points along each
dimension

* Represent the coordinates of a lattice point p by integer/binary number, i.e.,
k bits for each coordinate, e.qg. px = by...bx;

* Define the Morton code of p as the interleaved bits of the coordinates, i.e.,
m(p) — bz,kby,kbx,k...sz by,1 bx,1

* Connect the points in the order of their Morton codes —
z-order curve at level k

G. Zachmann Massively Parallel Algorithms SS May 2024 Sorting 64

Bremen

Y

Example (in 2D)

G. Zachmann

1010 1011 1110 1111
11 - > ® - >®
1000 1001 11;:\\\\\\\4301
10 '(\” ’ -
0010 0011 ~\\\5TFT‘~\\\\\91TI
0) - > - > e
0000 0001 100 0101
00 - >w - > w
00 01 10 11

Massively Parallel Algorithms SS May 2024

Sorting

65

Bremen

Y Note: the Z-curve induces a grid (actually, a complete quadtree)

G. Zachmann

11 1010 1011 1110

1111

10 1000 \001 \Q 00

\\\\QJO1

>

0] 0010 0011 0110

0111

/

00 0000 \\\\QPO1 \\\\QJOO

\101

}'

00 01 10

Massively Parallel Algorithms SS May 2024

11

66

Bremen

Y Properties of Morton Codes

* The Morton code of each point is 3k bits long (in 3D!)
* All points p with Morton code m(p) = Oxxx lie below the plane z=0.5
* All points with m(p) = 111xxx lie in the upper right quadrant of the cube

* If we build a quadtree/octree on top of the grid,

then the Morton code encodes the path of a point, \
from the root to the leaf that contains the point
("O" =left, "1" = right) \

* The Morton codes of two points differ for the first time
— when read from left to right — at bit position h <
the paths in the binary tree split at level h

0010

G. Zachmann Massively Parallel Algorithms SS May 2024 Sorting

67

Bremen

U Construction of Linear BVHs

* Scale all polygons such that bbox = unit cube

* Replace polygons by their "center point"

e E.g., center point = barycenter, or center point = center of bbox of polygon

1.0

0.0 1.0

G. Zachmann Massively Parallel Algorithms SS May 2024 Sorting

68

Bremen

3 =
. VR X

* Assign Morton codes to points according to their enclosing grid cell

* Assign those Morton codes to the original polygons, too

1010 1011 1110 1111

1000 1001 1100 1101 ©

000 | 0011 0110 0111

0000 0001 0100 0101

G. Zachmann Massively Parallel Algorithms SS May 2024 Sorting 69

Bremen

Y

* Now, we've got a list of pairs of {(polygon ID, Morton code)

* Example:

ooV N A N b o 4

Morton code — 1010

1000

1001

0010

0000

0011

1110

1101

e Sort list according to Morton code, i.e., along z-curve — linearization

Pgon ID _ i >N } V

Morton code — 0000

Array index i — 0

0010
1

0011

2

1000

3

1001
4

1010 1110
5 6

1101
/

* Next: find index intervals representing BVH nodes at different levels

G. Zachmann

Massively Parallel Algorithms

SS

May 2024

Sorting

.

: "&"’44 N o

<n

/70

E-N1]

E R EEEEEEENR
i B BN NN NN

Bremen

. az?g E:E
..@ ‘Kx : :::
';‘0 .:-

k J 7. CG 5
VR ."

* Root of BVH = polygons in index range O,...,N-1
* All polygons with first bit of Morton code = 0/1 are below/above the plane z= 0.5, resp.
* In the sorted array, find index i where first bit (MSB) changes from "0" to "1"

* Left child of root = polygons in index range O,...,i-1

* Right child of root = polygons in index range j,...,N-1
* In general (recursive formulation):

* Given: level h, and index range J,...,J in the sorted array, such that Morton codes are
identical for all polygons in that range up to bit h

* Find index k in [i,j] where the bit at position h' (h' > h) in Morton codes changes from
"0" to "1" (usually, h' = h+1)

* Can be achieved quickly by binary search and CUDA's c¢lz () function (= "count
number of leading zeros")

G. Zachmann Massively Parallel Algorithms SS May 2024 Sorting /71

Bremen

Y

e Consider arbitrary polygons at position i and j+1 in the array

e Condition for "same node":
Polygons i and i+1 are in the same node of the BVH at level h
Morton codes are the same up to bit h (at least)

* Define a split marker := <index i, level h)

e Parallel computation of all split markers — "split list":
* Each thread i checks polygons i and i+1

* Compare their Morton codes from left to right — h = left-most bit position where the

two Morton codes differ
* Can be calculated in one step using XORand _ clz

* Output split markers <i,h), ..., <i,3k) (seems like a bit of overkill)

* Can be at most 3k split markers per thread — static memory allocations works

G. Zachmann Massively Parallel Algorithms SS May 2024 Sorting

/2

Bremen

Y

* Example:

G. Zachmann

Pgon ID — B Q b V KP\A A

Morton code — 0000 0010 0011 1000 1001 1010 1110 1101

Array index i — 0

l

(0,3)
(0,4)

Split marker = (i,h)

Massively Parallel Algorithms

1

2

l

(1,4)

SS

3 4 S 6 /

R T

21 G4 43) 52) (64

(2,2) 4,4) (5,3) (6,3)
(2,4)

, i1e[O,N-1] , he]l,3k]

May 2024

Sorting

/3

E R EEEEEEENR
I.I.I.l.l.l.l.l.l.l.

Bremen

Y

* Last steps:

1. Compact split list
2. Sort split list by level h

e Must be a stable sort!

* For each level h, we now have ranges of indices into the array of polygons;
all primitives within a range are in the same node on that level h

May 2024 Sorting

74

G. Zachmann Massively Parallel Algorithms SS

Bremen

I.I

I.l

3 R 4 g
4. s

7. CG

VR

* Final steps:
e Convert to "regular" BVH with pointers
* Remove singleton BVH nodes

e Compute bounding boxes for each node (i.e., interval)

e Challenge: can you use the array of split markers directly

(S
* Maybe, need to add additional pointers/indices to point to child "nodesA"” N\asxes\.)

es
* How would a ray traversal through this kind of BVH work? -
* Could you even use it for collision detection, i.e., simultaneous traversal of 2 BVHs?
* Limitations:
* Not optimized for ray tracing

* Morton code only approximates locality

G. Zachmann Massively Parallel Algorithms SS May 2024 Sorting /6

Bremen

Y Example Application mi:RY\iHs: Collision Detection

9, ',"\A :7””7-:‘:- N7 Object 1 Object 2

A 1

2. 2.

PN N
B C 2 3

Iy &% dy)

traverse(node X, node Y)
if X,Y do not overlap then:
return
i1f X,Y are leaves then:
check all pairs of polygons
else
for all children pairs do:
traverse(Xi, Y5)

G. Zachmann Massively Parallel Algorithms SS May 2024 Sorting 77

Bremen

U Application of Collision Detection (Video)

G. Zachmann Massively Parallel Algorithms SS May 2024 Sorting

/8

E R EEEEEEENR
I.I.I.l.l.l.l.l.l.l.

Bremen

Y Collision Detection Without Auxiliary Data Structures

e Goal: collision detection of deformable objects

e Consequence: auxiliary (acceleration) data structure could potentially slow
down the whole method

e Given: a large set of AABB's (each enclosing one polygon)

e Sought: pairs of AABB's that intersect (overlap)
* Potentially intersecting pairs of polygons
* Could be boxes of different objects — regular collision detection

* Could be boxes of same object — self-collision / self-intersection

e Simplification here: ignore problem with pairs of boxes where triangles are
adjacent in the same mesh

* Need to be filtered before doing the actual intersection tests

G. Zachmann Massively Parallel Algorithms SS May 2024 Sorting /79

Bremen

) o i
#

* General idea: dimension reduction by plane sweep

e Sweep plane through space along an axis
e Consider only boxes that intersect that plane

e Check intersection of those boxes in 2D

* Alternative description:

* Project all boxes onto the (sweep) axis
— set of intervals

* Find pairs of intervals that overlap

* Sweep/projection axis can be
chosen arbitrarily

G. Zachmann Massively Parallel Algorithms SS May 2024 Sorting 80

Bremen

Y The Algorithm

parallel for all triangles:
compute AABB
sort all end points S; and E; of all AABBs
in one common array
(key = x-coord., value = triangle ID)
create list C of overlapping intervals (x)
parallel for all pairs in C: (xX)
perform complete AABB overlap test
if no overlap: remove pair from list C
perform stream compaction on C
parallel for all triangle pairs (Ti, Tj) in C:
if (Ti, Tj) share an edge: remove pair from C
if (Ti, Tj) do not intersect: remove pair from C
perform stream compaction on C
output C

Remark: we can perform steps (x) and (xx) at the same time, shown here as separate steps for clarity

G. Zachmann Massively Parallel Algorithms SS May 2024 Sorting 81

Bremen

Y

Step (x): create list C of overlapping intervals

* |dea:

e Consider all starting points $;

* Find all intervals [S;, Ej] with S; €[S;, Ej]

* Do not consider the endpoints £, otherwise each overlapping pair is found twice
* Naive parallelization: one thread per triangle

* Thread starts at position i of "its" §; in the sorted array of start/end points

e Scans array from there to the right
* Goal for parallelization: one thread per overlapping pair

* Problem: number of threads and amount of memory for Cis unknown

G. Zachmann Massively Parallel Algorithms SS May 2024 Sorting

82

Bremen

Y

* Trick: prefix sum over a tlags array

. . . . A indi o 1 2 3 4 5 6 7
e Similar to "split" in radix sort ey e
Sorted array of start/end |[S, |S-|Sg |Ec|EA|Es S |ED
. . interval endpoints
* Also, all triangles know their Start/endflags | 1| T | T |° oo (1]
start/end index in the Prefixsum,P [o [1|23 3|33 |4
sorted array of endpoints
. . i A B D
* Number of potentially overlapping friangle ID c
intervals / boxes = P[E;] — P[S;]-1 dartindex 1 012] 1]°
—. number of threads per triangle i Fndindex [4121717
* Reduction yields A B ¢ D
3—0—-1|3—2—-1|3—-1-1]14-3—-1

total number of threads = max length of array C

G. Zachmann Massively Parallel Algorithms SS May 2024

Sorting

83

Bremen

Y Extension: the Cluster-PCA-Based Sweep Plane Method

* Problem: sweep plane method —
dimension reduction by projection
— potentially many false positives

* |dea: utilize fact that the sweep/sorting
axis can be chosen arbitrarily

e Use axis such that number of overlapping
projected AABBs is minimized
— heuristic: longest axis of PCA
(= axis of largest variation)

* Further problem: could still produce lots of
false positives

G. Zachmann Massively Parallel Algorithms SS May 2024

?\\ .
I /!
e » %A
& v;//
$ X

Triangles of front side

Triangles of back side

Sorting

84

Bremen

Y FYI

* Second idea to further reduce false positives: partition objects into clusters, perform

previous method in parallel for all clusters
" V 2 clusters
| | 16 clusters

* Problem: need to find overlapping AABBs between clusters, too

* Solution: assign polygons along cluster borders to both clusters

* Method: fuzzy c-means (variant of k-means algo)

G. Zachmann Massively Parallel Algorithms SS May 2024 Sorting 85

Bremen

@ Overall Algorithm FYI

parallel for all triangles:
compute center points
subdivide scene into ¢ (overlapping) clusters
parallel for all clusters:
compute PCA
transform all points into PCA coord. system
perform rest of collision detection as before

G. Zachmann Massively Parallel Algorithms SS May 2024

Sorting

86

Bremen

W Results: Cloth on Ball Benchmark

* Cloth (92k triangles) 40 | | | |
35 L Complete collision detection
dI’OpS down on a Tri-TTr1 intersection
rotating ball (760 ap [-Collect overlapping intervals ¢
i D B Compute AABBSs
trlangles) é 2 Clustering and PCA
2 20 |-
~
O
_ E 15 powsuiil
‘ N ///
5 \\\\\m\\\\\\\\\\\\\\\\\\'«\ AN NN
0

0 10 20 30 40 50 60 70 80 90
frame number

G. Zachmann Massively Parallel Algorithms SS May 2024 Sorting 87

Bremen

Y Results: Funnel Benchmark

%)
-]

DO
ot

DO
)

Ball (1.7k triangles) pushes
a cloth (14k triangles)
through a funnel (2k
triangles)

time /millisec
o

—_
-

5

0

l | |

Complete collisic
— Tri-Tri

Collect overlappci

Com

Clusterin

pute AABBs ¢

l | I

n detection ——
intersection]
g intervals wzz

NN

ort AABBs &

g and PCA

77777

AR AN N

G. Zachmann Massively Parallel Algorithms

0 50 100 150 200 250 300 350

frame number

SS May 2024

400

450

Sorting

[

VR

88

Bremen

@ Demo Movie

h
A

G. Zachmann Massively Parallel Algorithms SS May 2024 Sorting 89

