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e Remember the reduction operation

* Extremely important/frequent operation = Google's MapReduce

* Detfinition prefix sum:
Given an input sequence A = (ag,a1,a,...,an-1),
the (inclusive) prefix sum of this sequence is the output sequence

N\

A= (ap,a1 Pag,a>ParPag,...,an-1 D D ag)
where @ is an arbitrary binary associative operator.

* The exclusive prefix sumis

,2\’:(L,ao,al@ag,...,an_z@---@ao)

where (is the identity/zero element, e.q., O for the + operator.

* The prefix sum operation is sometimes also called a scan (operation)
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 Example:

° Input: A=(31704163)

/\

* Inclusive prefix sum: A= (34111115 16 22 25)

* Exclusive prefix sum: A’ = (034 11 11 15 16 22)

e Further variant: backward scan

* Applications: many!
* For example: polynomial evaluation (Horner's scheme)
* In general: "What came before/after me?"

* "Where do | start writing my data?"

* The prefix sum problem appears to be "inherently sequential”

G. Zachmann Massively Parallel Algorithms SS May 2024

Prefix-Sum



Bremen

Y variation: Segmented Scan

* Input: segments of numbers in one large vector

‘3‘1|7‘O‘4|1‘6‘3|(_Payloaddata

[ ToJ ToTo] T 0T 0 }— greacdtattias
"1" = new segment)

* Task: scan (prefix-sum) within each segment

* Qutput: prefix-sums for each segment, in one vector

o3 fof7zf7jofr]7]

* Forms the basis for a wide variety of algorithms:
* E.g., Quicksort, Sparse Matrix-Vector Multiply, Convex Hull

* Note: take care to store the flags array space- and bandwidth-efficient! (one integer per flag
is very in-efficient)

G. Zachmann Massively Parallel Algorithms SS May 2024 Prefix-Sum

E R EEEEEEER
EEEEEE NN



Bremen

Y Application from "Everyday" Life

e (Given:
e A 100-inch sandwich
* 10 persons

* We know how many inches each
person wants: [35271043081]

e Task: cut the sandwich quickly

e Sequential method: one cut after another
(3 inches first, 5 inches next, ...)

* Parallel method:
* Compute prefix sum
* Make cuts in parallel with 10 knives

* How quickly can we compute the prefix sum?

G. Zachmann Massively Parallel Algorithms SS May 2024
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Y lllustration of the Importance of the Scan Operation St

e Under the different parallel RAM (PRAM) Model

Algorithm EREW CRCW Scan
models, the following graph algorithms Graph Algorithms
(n vertices, m edges, m processors)
. oy 0 .. : 2
have the given parallel complexities Minimum Spanning Tree lg?n | dgn | len
Connected Components lg“n lgn lgn
. . . Maximum Flow n*lgn n’lgn n’
* Assuming the scan operation is a Maximal Independent Set e | e | lgn
. .. . . Biconnected Components 1gn lgn lgn
primitive that has unit time costs, then Sorting and Merging
.. (n keys, n processors)
the parallel complexities are reduced (or | soring len | lgn | lgn
Merging lgn Iglgn lglgn
n Ot) as fOI IOWS: Computational Geometry
(n points, n processors)
Convex Hull 1g>n lgn lgn
Building a K-D Tree g n g’ n lgn
Closest Pair in the Plane g n lgnlglgn lgn
Line of Sight lgn lgn |
Matrix Manipulation
: : : e 2
EREW = exclusive-read, exclusive-write PRAM (n X n matrix, n” processors)
CRCW = concurrent-read, concurrent-write PRAM Matrix x Matrix n n n
Scan = EREW with scan as unit-cost primitive Vector x Matrix lgn lgn !
Matrix Inversion nlgn nlgn n

Guy E. Blelloch: Vector Models for Data-Parallel Computing
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* Actually, prefix-sum (a.k.a. scan) was considered such an important
operation, that it was implemented as a primitive in the CM-2 Connection
Machine (of Thinking Machines Corp.)

G. Zachmann Massively Parallel Algorithms SS May 2024 Prefix-Sum
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U Example: Line-of-Sight

* Given:
* Terrain as grid of height values (height map)
* Point X in the grid (our "viewpoint", has a height, too)
* Viewing direction, we can look up and down, but not to the left or right

* Problem: find all visible points in the grid along the viewing direction

* Assumption: we have already extracted a vector of heights from the grid
containing all cells' heights that are along our viewing direction

e v . | : -

PPPPPP
Pat (;s‘a.!z
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* The algorithm:

* Convert height vector to vertical angles (as

e Perform max-scan on angle vector (i.e., prefix

e Test di < ai, if true then grid point is visible form X

G. Zachmann

seen from X) & A

* One thread per vector element

sum with the max operator) = A

Massively Parallel Algorithms

SS

May 2024
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Height vector

Angle vector (A)

111

Max-scan of angle vector (A)
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Y The Hillis-Steele Algorithm (MassPar Pattern)

* |terate log(n)
times:

e Notes:

* Blue = active threads

* Each thread reads from another lane, too = must use barrier sync

)
- 7@; d = 2, stride 4

‘A: 3 /1 710|411 6 | 3 \

i e R
‘ B: | 3 | 4 | 8 | 7 | 4|5 ]| 7] 9

N F 9&\\ &g %E x@\\ D |

d =1, stride 2

l y J ! ) { |

‘ Al 3 | 4 1111212 11| 14
~ v \ {

‘ B: | 3 | 4 | 11 | 11|15 |16 | 22 | 25 ‘

e Could save one barrier by double buffering

G. Zachmann
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* The algorithm as pseudo-code:

forall i in parallel do // n threads
for d = 0...1log(n)-1:
if i >= 24d :
x[i] = x[ i — 27d ] + x[i]
* Note: barrier synchronization omitted for clarity
* Remark: precision is usually better than the naive sequential algo

* Because, in the parallel version, summands (in each iteration) tend to be of the same
order

e Algorithmic technique: recursive/iterative doubling technique =
"Accesses or actions are governed by increasing powers of 2"

* Remember the algo for maintaining dynamic arrays? (2nd/1st semester)

G. Zachmann Massively Parallel Algorithms SS May 2024 Prefix-Sum
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Y Definitions g

* Depth complexity D(n) = "#iterations" = parallel running time T,(n)
* (Think of the loops unrolled and "baked" into a hardware pipeline)
* Sometimes also called step complexity
 Work complexity W(n) = total number of operations performed by all threads

* With sequential algorithms, work complexity = time complexity

e Work-efficient:

A parallel algorithm is called work-efficient, it it performs no more work than
the sequential one (in Big-O notation)

G. Zachmann Massively Parallel Algorithms SS May 2024 Prefix-Sum 12
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* Visual definition of depth/work complexity:

* Express computation as a dependence graph of parallel tasks:

OO —O0-O-O-O0O-0O-0OL0

.'.ooooo
OO —0-C

Parallel tasks

* Work complexity = total amount of work performed by all tasks

* Depth complexity = length of the "critical path" in the graph

* Parallel algorithms should be always both work and depth efficient!

G. Zachmann Massively Parallel Algorithms SS May 2024
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Y Complexity of the Hillis-Steele Algorithm

* Depth D(n) = Ty(n) = # iterations = log(n) — good
* In iteration d: #additions = n — 297}

* Total number of add operations = work complexity

log, n log, n log, n

W(n) = Z(n—Qd_l) = Z n— Z 29"t = n-logn—n € O(nlog n)

e Conclusion: not work-efficient

» Afactor of log(n) can hurt: amounts to 20x for 106 elements

G. Zachmann Massively Parallel Algorithms SS May 2024 Prefix-Sum
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Y The Blelloch Algorithm (here for Exclusive Scan) § i

* Consists of two phases: up-sweep (= reduction) and down-sweep

1. Up-sweep:
3] 1,7 0|4 |16 ]|3
d =0, stride 1 \@:9 \»@} \@I} \»@:9
'3 147 |7 | 4|5] 6|9 ]
d=1, stride 2 ~— »é ~— »Gg
| 3| 4 | 7 1J 1] 4| 5 | 6 1¥ 4
d = 2, stride 4 I »Gt/
| 3] 4|7 | 11| 4] 5] 625

* Note: no double-buffering needed! (barrier sync is still needed, of course)

G. Zachmann Massively Parallel Algorithms SS May 2024 Prefix-Sum 15
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2. Down-sweep:

* First: zero last element (might seem strange at first thought)

d =0, stride 4
d=1, stride 2
d =2, stride 1

\ 3 | 4 M| 4| 5|60

v - !

\ 3 | 4 0| 4|5 ] 6 |1

J/ { v {

\ 31017 | 4| 4111|616

A

RS S
Y ) Y y v | Y |

\ O 3|4 111111516 ] 22

* Dashed line means "copy over" (overwriting previous content)

G. Zachmann
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* Depth complexity:

* Performs 2:log(n) iterations
* D(n) e O(logn)

* Work efficiency:

* Numberofadds:n/2+n/4+..+1+1+...+n/4+n/2
* Work complexity W(n) = 2:n = O(n)
* The Blelloch algorithm is work efficient

* This up-sweep followed by down-sweep is a very common pattern in massively parallel
algorithms!

e Limitations so far:

* Only one block of threads (what if the array is larger?)
* Only arrays with power-of-2 size

G. Zachmann Massively Parallel Algorithms SS May 2024 Prefix-Sum 17
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Y Working on Arbitrary Length Input

* Challenge: syncthreads () works only for all threads within a block, but NOT
across block borders!

e Partition array into b blocks
* Choose fairly small block size = 2k, so we can easily pad array to b-2k

* Run up-sweep on each block

* Each block writes the sum of its partition (= last element after up-sweep) into a
PartialSums array at blockIdx.x

* Run prefix sum on the PartialSums array
e Perform down-sweep on each block

* Add PartialSums[blockIdx.x] to each elementin "next" array section
blockIdx.x+1

G. Zachmann Massively Parallel Algorithms SS May 2024 Prefix-Sum 18
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G. Zachmann

Up-sweep block 3

)
| 1
| )
Up-sweep block O !} Up-sweep block 1T | Up-sweep block 2
I I
| |

Scan auxiliary array PartialSums < New kernel launch!

"Seed" last value in block i+1
with PartialSumsJi], instead of O

Down-sweep block 2

Down-sweep block O Down-sweep block 3

i
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Y Further Simple & Effective Optimization

* Each thread i loads 4 floats from global memory = float4 x
* Store ) . 3 x[i][j] in shared memory — a[i]
* Compute the exclusive prefix-sumona — &

* Each thread i stores 4 values back in global memory:
e A[4*i] = &[i] + x[O0]

e A[4*i+1] = A[i] + x[0] + =x[1]

e A[4*i+2] = A[i] + x[0] + x[1] + x[2]

e A[4*i+3] = &[i] + x[0] + =x[1] + x[2] + =x[3]

* Experience shows: 2x faster

* But why does this improve performance? — Brent's theorem

G. Zachmann Massively Parallel Algorithms SS May 2024 Prefix-Sum
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* Frequent assumption when formulating parallel algorithms: we have
arbitrarily many processors

* E.g., O(n) many processors for input of size n
e Kernel launch even reflects that:

e Often, we run as many threads as there are input elements

* |.e., CUDA/GPU provide us with this (nice) abstraction
* Real hardware: only has fixed number p of processors
* E.g., on current GPUs: p = 200—2000 (depending on viewpoint and architecture)

* Question: how fast can an implementation of a parallel algorithm really be?

G. Zachmann Massively Parallel Algorithms SS May 2024 Prefix-Sum 21
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* Assumptions for Brent's theorem: PRAM model

* No explicit synchronization needed

e Memory access = free (no cost)

* Brent's Theorem:
Given a massively parallel algorithm A; let D(n) = its depth (i.e., parallel
time) complexity, and W(n) = its work complexity.
Then, A can be run on a p-processor PRAM in time at most

W(n)
p

T(n, p) < + D(n)

(Note the "<")

G. Zachmann Massively Parallel Algorithms SS May 2024 Prefix-Sum
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e Alternative statement of Brent's theorem:

T.(n) = Tlg”) - T(n)

where Tp(n) = time complexity using p processors, T1 = sequential

complexity, T« = parallel complexity with unlimited number of processors.

G. Zachmann Massively Parallel Algorithms SS May 2024 Prefix-Sum 23
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@ Proof

* For each iteration step i, 1 <i < D(n), let Wi(n) = number of operations in
that step

* In each iteration, distribute those Wi(n) operations on p processors:

e Execute [W"(”)] operations on each of the p processors in parallel
p
Wiln) | +
* Takes { ; 1 time steps on the PRAM
* Overall :
D(n) - - D(n)
Wi:(n Wi(n W (n
T(np) =Y | 42| <3 (| A 4y < | g

=1 =1 L . o _

G. Zachmann Massively Parallel Algorithms SS May 2024 Prefix-Sum
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Application of Brent's Theorem to our Optimization of Prefix-Sum *s:

* Assume that the optimized version loads f floats into local registers

* Work complexity:
e Without optimization: W;(n) = 2n

* With optimization: Wa(n) = 2? +- ?-f = n(l + %)

* Depth complexity:
e Without optimization: D;(n) = 2log(n)

?)+2f:2logn—2logf+2f

e Iff=2,then W2 =W, and D, = Dy, i.e., we gain nothing

* With optimization: D>(n) = 2log(

* Iff> 2, speedup of version 2 (optimized) over version 1 (original):
Ti(n) 5"+ Du(n) 25 2f

p ~

T(n) ~ WO pmy T (1+2)  f+2

p

Speedup(n) =

G. Zachmann Massively Parallel Algorithms SS May 2024 Prefix-Sum
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Y  Other Consequences of Brent's Theorem
* Obviously, Speedup(n) < p
* In the sequential world, time = work: Ts(n) = Ws(n)

* |n the parallel world: Tp(n) = W’;(”) - D(n)

* Our speedup is Speedup(n) = ;i—ﬁfg - WP‘(/’\’/)Sj(Lrg(n)

p

* Assume, Wp(n) € 2( Ws(n))
i.e., our parallel algorithm would do asymptotically more work
Ws(n)
2( Ws(n)) + D(n)
because, on real hardware, p is bounded

0 as n— oo

* Then, Speedup(n) =

* This is the reason why we want work-efficient parallel algorithms!

G. Zachmann Massively Parallel Algorithms SS May 2024 Prefix-Sum



Bremen

Y

Now, look at work-efficient parallel algorithms, i.e. Wp(n) € ©( Ws(n))

Then, (n
D(n)

W
Speedup(n) = TOR
b |

In this situation, we will achieve the optimal speedup of O(p), so long as
VV(”))

D(n)

Consequence: given two work-efficient parallel algorithms, the one with the
smaller depth complexity is better, because we can run it on hardware with
more processors (cores) and still obtain a speedup of p over the sequential

algorithm (in theory).
We say this algorithm scales better.

pe O

G. Zachmann Massively Parallel Algorithms SS May 2024 Prefix-Sum
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Y Limitations of Brent's Theorem

e Brent's theorem is based on the PRAM model

* That model makes a number of unrealistic assumptions:

e Memory access has zero latency
e Memory bandwidth is infinite
* No synchronization among processors (threads) is necessary

* Arithmetic operations cost unit time

* With current hardware, rather the opposite is realistic

G. Zachmann Massively Parallel Algorithms SS May 2024
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Y Using Tensor Cores for Scan/Prefix Sum and Reduction

e Reduction (4 =) ;a; ) could be formulated as matrix multiplication:

1 1 1 1
oo o 0
a=/|\
0 0 0 0
\— /
Y
P

0 O
0 O

* Regular segmented reduction of length 16:

G. Zachmann

0
0

16 elements

16 elements

16 elements
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@J-) Algorithm for regular 16-segmented reduction

* Each warp loads parts of input array of size 256 = 16 segments of size 16,
then performs a warp-level MMA (i.e., uses the tensor cores)

Reductionl6( in array A, out array R ):

fragment a — 1init matrix P
idx = global offset into A for each warp
fragment b — load tile A[idx..idx+255] in column major
M=P'A+0 // = mma sync() in CUDA
if lane index < 16:

R[ idx/16 + lane-index ] = M[lane-index]

d

oV

S 2

G. Zachmann Massively Parallel Algorithms SS May 2024 Prefix-Sum
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Y  Extension to Scan Over 256 Elements
* Input: V=V][O0], ..., V[255] a11 412 --. 91,16
: : : : d21 d22 ... d216
 Load Vin to 16x16 matrix A in row-major order: A =

1 1.1 a16,1 16,2 - - - 316,16

: : , 01 ...1

* Define upper right T-matrix: U = _

00 ...1

* Multiplication yields row-wise inclusive scan, i.e., regular segmented inclusive
prefix sum:

16
/31,1 e D=1 1

16
32,1 . Z':l az’j

AU=|" /

16
\316,1 c .. ijl 316,j

G. Zachmann Massively Parallel Algorithms SS May 2024 Prefix-Sum
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e Multiplication of A with lower-left 1-matrix (0's on the diagonal here!) yields
a column-wise, exclusive prefix sum:

00 ...0 0 0 )
10 ...0 /A 1.1 A2 e 4116
L= f I T | a1t at aotazy - a116+ 3216
15
1 1 ...0 ZJ 13112 a2 .- ZJ 1 916,j

e Multiplication at right-hand side with an all-1-matrix yields row-wise
reduction; all elements in the same row in the output matrix will be equal

11 ...1

11 ...1
J =

11 ...1

G. Zachmann Massively Parallel Algorithms SS May 2024 Prefix-Sum 32
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e Multiplication of L-A with J yields reduction of all elements in A before that
row: 0 0 0

16 16 16

16 16 16
ZJ 1916, ZJ 1916, - -- ZJ 1916,
* Add the segmented scan A-U, resulting in the inclusive prefix sum over 256
elements: y
a1 1 ary + aio e D A
16 16
L-A-J+ AU = ijl a1, t a1 ijl dij + a1+ azp Z, . Z

Z Z 1311+3161 Z Z _148ij T d161 1T d162 - Z Zjil

G. Zachmann Massively Parallel Algorithms SS May 2024 Prefix-Sum 33
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* Per block: preconditionis N=b-256, b < 256 (for sake of simplicity)

PrefixSumN( in array A, out array S ):

perform warp-level prefix-sum's over segments of A, 256 elements each
gather last element of each segment in array R

sync all threads within block

warp 0 performs exclusive prefix sum over R

sync all threads within block

all threads add R[warpIdx-1] to "their" element and output it to S

* Per grid:
* Launch 3 kernels for 3 phases, similar to above procedure

* First, block-wise (i.e., segmented) scan, gather last values of each segment (=
reduced blocks) in intermediate array; second, prefix-sum over those values; third,
distribute and accumulate values from intermediate scan to blocks

G. Zachmann Massively Parallel Algorithms SS May 2024 Prefix-Sum 34
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@ Performance for Segmented Prefix Sum

@)
§ Se — s Thrust N = 23! elements
5200 _7.\__ -- N N X w g mm = 1 Qur 16N
z ~y, . Our 256N
g - N \ wesm w1 Our 256N Block
(0]
1001 *
\ N\,
e ~ )
E 0 -~ _— oy " BN N
24 2'7 2'10 2'13 2’16 2'19 222 225 228
Segment Size (log scale)
N i

——
89% - 97% of theoretical peak throughput

G. Zachmann Computergraphik 1 WS May 2024 Introduction & Displays 35
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Y Digression: Radix-Sort

* Modeled after sorting machines of post routing
centers (but with a twist!)

* Disadvantages:

* Not generic like Quicksort, which require only a
compare operator on pairs of elements

* Works only on elements with a known, pre-

defined, fixed-length numeric representation
(e.q., 32 bits)

e Different representations require different
versions of radix sort

* Advantage: very efficient!

G. Zachmann Massively Parallel Algorithms SS May 2024
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* Observation: integers can be represented with any base r
* Naive (intuitive) idea:
* Sort all elements according to the most significant digit into bins (one bin per digit)

* Sort bin 0 using radix sort recursively

e Sort bin 1 recursively, etc. ...
* This is called MSD radix sort (MSD = most significant digit)
* For the algorithm on the next slide:

e Choose radix r and fix it

e Define z(t,a) = t-th digit of number a when represented over base r,
where t=0 denotes the least significant digit (usually the right-most digit)

G. Zachmann Massively Parallel Algorithms SS May 2024 Prefix-Sum 37
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Y The Algorithm (in Python) Optional

A = array of numbers

i = current digit used for sorting ( 0 <= i <= d-1 )
d = total number of digits (same for all keys)

def msd radix sort( A, i, d ):

# init array of r empty lists = [ []1, [1, []1, .. 1]
bin = r * [[]]

# distribute all A's in bins according to z(i,.)
for jJj in range (0, len(A) ):
bin[ z(i, A[]J]) ].append( A[]] )

# sort bins
if i >= 0:
for j in range (0, r):
msd radix sort( bin[j], i-1, 4 )

# gather bins

A = []

for j in range (0, r):
A.extend( bin[j] )
bin[j] []

G. Zachmann Massively Parallel Algorithms SS May 2024 Prefix-Sum 38
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Y Example

e Keys = integers with 64 bits
e Size of input = 224 (ca. 16m)
* We choose r= 28 = 256 as base
e E.g. "digits" = characters in fixed-length strings

* On the first recursion level, the algo checks the left-most byte of the keys
and distributes each key into one of 256 bins

* Average (expected) size of the bins (assuming uniform distribution of the
keys) = 224 / 28 = 216 = 65536

G. Zachmann Massively Parallel Algorithms SS May 2024 Prefix-Sum
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e Recursion tree:

* Problem: in each recursion, we need to save r-1 many bins (the remaining
bin is passed down to the recursively called function)

* Lots of house keeping necessary
* Solutions: either use marker arrays like with Counting Sort

* Or, use arrays of lists (lots of allocations / deallocations)

G. Zachmann Massively Parallel Algorithms SS May 2024 Prefix-Sum
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Y sSolution: LSD Radix-Sort (aka. Backward Radix-Sort)

* First, sort according to least-significant digit, then according to least but
second digit, etc.; do all of this in place, no auxiliary arrays needed!

* Let d = number of digits, digit O = least-significant one
* The algorithm:

lsd radix sort( A ):
for 1 =0, ..., d-1:
do a stable sort on A with the
i-th digit of the elements as the key

* Use, e.qg., Counting Sort inside the loop (check your Data Structures &
Algorithms course)

G. Zachmann Massively Parallel Algorithms SS May 2024 Prefix-Sum
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Y Example

* Sort 12 letters according to the post code (zip code)

* In the first iteration, consider only the last digit

Brief
Brief
Brief
Brief
Brief
Brief
Brief
Brief
Brief
Brief 10
Brief 11
Brief 12

OCONOOOPH,WN =

nach
nach
nach
nach
nach
nach
nach
nach
nach
nach
nach
nach

35037
71672
35288
35282
88662
79699
80638
80637
55128
55469
82340
82327

Marburg Brief 11
Marbach Brief 2
Wohratal Brief 4
RauschenberglBrief 5
Uberlingen  |Brief 1
Zell Brief 8
Munchen Brief 12
Munchen Brief 3
Mainz Brief 7
Simmern Brief 9
Feldafing Brief 6
Tutzing Brief 10

nach
nach
nach
nach
nach
nach
nach
nach
nach
nach
nach
nach

8234
7167
3528
8866
3503
8063
8232
3528
8063
5512
7969
5546

QOO NNSNMNMMNNOO

Feldafing
Marbach
Rauschenberg
Uberlingen
Marburg
Mulnchen
Tutzing
Wohratal
Mulnchen
Mainz

Zell
Simmern

Letters before the first iteration

Letters after the first iteration

* Notice: letters with the same digit did not change their position relative to each other!

G. Zachmann

Massively Parallel Algorithms

May 2024
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* Sort by last but second digit

Brief 11 nach 82 3 4{0| Feldafing Brief 12 nach 82 3|2|7 Tutzing
Brief 2 nach 716 7(2| Marbach Brief 9 nach 55 1|28 Mainz
Brief 4 nach 352 8{2| Rauschenberg||Brief 1 nach 35 0{3|7 Marburg
Brief 5 nach 886 6/2| Uberlingen Brief 8 nach 806{37 Minchen
Brief 1 nach 350 3|7| Marburg Brief 7 nach 806/3[8 Minchen
Brief 8 nach 806 3{7| Minchen Brief 11 nach 82 3/4|0 Feldafing
Briet 12 nach 82 32|7| Tutzing Brief 5 nach 886|6/2 Uberlingen
Brief 3 nach 352 8/8| Wohratal Brief 10 nach 55 4{6|9 Simmern
Brief 7 nach 806 3|8 Munchen Brief 2 nach 716(7|2 Marbach
Brief 9 nach 551 28| Mainz Brief 4 nach 35282 Rauschenberg
Brief 6 nach 796 99| Zell Brief 3 nach 352,88 Wohratal
Brief 10 nach 554 6|(9| Simmern Brief 6 nach 796(9|9 Zell

Letters before the second iteration Letters after the second iteration
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Brief 12 nach 82 3\2 7 Tutzing Brief 1 nach 35|08 7 Marburg
Brief 9 nach 55 12|18 Mainz Brief 9 nach 55/128 Mainz
Brieft 1 nach 350[{3|7 Marburg Brief 4 nach 35|28 2 Rauschenberg
Brief 8 nach 80 6{3(7 Minchen Brief 3 nach 35|28 8 Wohratal
Brief 7 nach 806|3|8 Minchen Brief 12 nach 82|83)27 Tutzing
Brief 11 nach 82 3/4|0 Feldafing Brief 11 nach 82|34 0 Feldafing
Brief 5 nach 886|6[2 Uberlingen Brief 10 nach 55|4/6 9 Simmern
Brief 10 nach 55469 Simmern Brief 8 nach 80|6{37 Minchen
Brieft 2 nach 716{7|2 Marbach Brieft 7 nach 80{6[38 Minchen
Brief 4 nach 35282 RauschenbergfBrief 5 nach 886 HG 2 Uberlingen
Brief 3 nach 35288 Wohratal Brief 2 nach 71672 Marbach
Brief 6 nach 796(9|9 Zell Brief 6 nach 79|6 J9 9 Zell

Brief 8 nach 80/637 Minchen Brief 1 nach [3/5037 Marburg
Brief 7 nach 80|638 Munchen Brief 4 nach |352 82 Rauschenberg
Brief 2 nach 7/1|6 72 Marbach Brief 3 nach [3/5288 Wohratal
Brief 12 nach 82|32 7 Tutzing Brief 9 nach [5/5128 Mainz

Brief 11 nach 2|34 0 Feldafing Brief 10 nach [55469 Simmern
Brief 1 nach %5 037 Marburg Brief 2 nach |7[]1672 Marbach
Brief 9 nach 5/5(128 Mainz Brief 6 nach 7«9 699 Zell

Brief 4 nach 35|28 2 RauschenbergyBrief 8 nach |8/06 37 Muinchen
Brief 3 nach 315 2 8 8 Wohratal Brief 7 nach |8/06 38 Munchen
Brief 10 nach 5|5/46 9 Simmern Brief 12 nach [82 32 7 Tutzing
Brief 5 nach 8/8/662 Uberlingen Brief 11 nach |82 340 Feldafing
Brief 6 nach 7|9 699 Zell Brief 5 nach [88662 Uberlingen

Letters after the fifth iteration
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Y Parallel Radix Sort, Based on the Split Operation .

* We can use base=2 (radix=2); nice consequence: we only need to maintain
2 bins, and we can re-use the input array to hold both bins

* The split operation: rearrange elements according to a flag

‘ 1 ‘ 0 ‘ 0 ‘ 1 ‘ 0 ‘ 0 ‘ 1 0 ‘<— Flags, i.e., the i-th bits of the keys

~ (Usually, there are payload data,
—\ ﬂ\ too; omitted here)

[ofofojofoln

* Note: split maintains order within each group! (i.e., it is stable)

* Use double buffering to prevent expensive synchronization among threads

G. Zachmann Massively Parallel Algorithms SS May 2024 Prefix-Sum 45
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e Radix sort (massively parallel):

radix sort( array a, int len ):
for i = 0...numbits-1: // important: go from low to high bit!
split(i, a) // split a, based on bit i of the keys

where split (i, a) rearranges a by moving all keys that have bit 1 =0 to
the front, and all keys that have bit 1 = 1 to the back (bit 0 = LSB)

* Reminder: stability of split is essentiall
* Note: main job of the split operation is to compute "which key goes where"

* Hint: the prefix-sum is probably up to the job :-)

G. Zachmann Massively Parallel Algorithms SS May 2024 Prefix-Sum
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Algorithm for the Massively-Parallel Split Operation

e Split's job:

e Determine new index for each element

* Then perform the permutation (stable!)

* Algorithm (by way of the example):

* Consider lowest bit of the keys

1. Compute exclusive "0"-scan: fi=# 0's in (ao, ..., Gi-1)

2. Set F = total number of 0's = <«

(

fn—l +1 dp—1 = 0

fn—l y dn—1 — 1

\

3. Construct d = new positions of the a;'s

°* Ifai's bit=0 = new

°* Ifai's bit=1 = new

hosition d; = f:

position di= F+ (i =),

because i—fi =# 1's to the left of g;

G. Zachmann

Massively Parallel Algorithms SS

May 2024

Example: split based on bit O

dfor "0"s: 0 1 2 3

4+(4-3)|4+(5-3)| 4+(6-3)

dor"1"s: 4+(1-1)

Prefix-Sum 47
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* A conceptual algorithm for the "0"-scan:

» Extract the relevant bit (conceptually only)
* Invert the bit

 Compute regular prefix sum with "+" operation

100

111

010

110

001

101

001

000

* In a real implementation, you would, of course, implement this as a native
"0"-scan routine with a special "+" operation in the first iteration!

* Depth complexity:
O(b-log(n) ),
e Amounts to O(b?) , or O(log2(n))

G. Zachmann Massively Parallel Algorithms SS May 2024

Prefix-Sum

where b = #Dbits per integer, and n = # elements
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Stream Compaction

* Sometimes also called list packing, or stream packing

G. Zachmann

Given: input stream A, and a flag/predicate for each a;

Goal: output stream A' that contains only a;'s, for which flag = true

Example:

* Given: array of upper and lower case letters

e (Goal: delete lower case letters and

compact the others to the front of the array

Solution:

* Just like with the split operation, except we don't compute indices for the "to-be-

deleted" elements

A

C

P

h

Frequent task, sometimes A/flags are not given explicitly (e.g., collision detection)

Massively Parallel Algorithms

SS

May 2024

Prefix-Sum
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U Sparse Matrices

e "Unstructured" sparse matrices:
* Most common storage format is Compressed Sparse Row (CSR)
e Matrix M, size mxn , k non-zero elements (a.k.a. "nnz")

e Stored in three arrays V, C, R
* Row i of matrix M is stored in Vg, ..., Vr, 1

» C contains column indices: element V;in M's i-th row represents element M; ¢

------------------------
------------------------
------------------------
........................
------------------------
........................
------------------------
........................
--------------

—ym

.
.
.
.
.

.
.
. .
......
.t .
. .
. .
.....
. B .
........
. . .
........
.
......

.
........
. o
------
. . ..
. . .
.....
-------
.....

.
-------
------
-----
-----
. . .
. - o
.....

. . .
. . .
..........
. .
. . .
.....
.......
. -
.....
- . .
........
. .

G. Zachmann Massively Parallel Algorithms SS May 2024 Prefix-Sum

50

e



Bremen

Y

Example

G. Zachmann

/ do 0 0 di 0 \
0 a 0 0 O
0 0 a 0 O

0 dy 0 ds dg

\0 0 0 0 a/

Computergraphik 1

WS

V = (ag, a1, a, as, a4, as, as, a7)

C=(0,3,1 21,3, 4 4)

R=(0,2 3, 4,7, 8)

May 2024

Introduction & Displays
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* Implementation in C:

struct {
int n_rows; // number of rows
int nnz; // = k = total number of non-zero elements

int row start[n rows+l];
int col idx[nnz];
double wval[nnz];

where
n_rows=m,
nnz =k,
val="V,
col idx=C,

row _start=R

G. Zachmann Massively Parallel Algorithms SS May 2024 Prefix-Sum 52
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Sparse Matrix-Vector Multiplication (SPMV)

* Task: y = Mx , where M is given as CSR

1. Multiply each element in V with its
corresponding element in x:

/
V; = Vi-Xx

2. Compute flags array, signifying row starts:

Fi=1 << ieR

3. Inclusive segmented scan (one segment
per row): V' — V"

4. Retrieve elements fory: y; = Vg 4

G. Zachmann Massively Parallel Algorithms SS May 2024

V = (30, di, d2, d3, d4, ds, de, 37)
C=(0, 3, 1, 2 1, 3, 4, 4)
R=(0, 2, 3, 4, 7, 8, )

V' = (aoXo, d1X3, d2X1, d3X2,

d4X1, d5X3, deXa, 37X4)

F=(, 0 1, 1, 1, 0, 0, 1)

/!
V© = (30Xo, doXp + d1X3, dxX1, dz3Xy,
d4X1, d4X1 1 d5X3,
asX1 + asXs + apXs, arXa)
//
y3 = Vg, 1 = a4X1 + a5 X3 + deXy

Prefix-Sum 53



U Summed-Area Tables / Integral Images

e Given: 2D array T of size wxh

* Wanted: a data structure that allows to compute

)2
>4>, T'(k, 1) j2
k=i I=j;
forany i, iz, j1,j2 in O(1) time ! i

G. Zachmann Massively Parallel Algorithms SS May 2024
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* The trick:
2 b J2 I i
ST = ST S T30S TGk )
k=i =/ k=1 |=1 k=1 |=1 k=1 |=1
g SummLce)glfAl\Jrlzsa i'?able S
+D >“nk/ L
k=1 |=1

* Define 5(i,)) S:S:

* With that, we can rewrite the sum:

G. Zachmann

k=1 I=

>2 >1 T(k, 1) = 5(i2,j2) = S(i,j2) — S(i2, 1) + S(h, 1)

k=i1 I=j1

Massively Parallel Algorithms SS May 2024

Prefix-Sum

«

<n

55

E-N1]

E R EEEEEEER
EEEEEE NN



Bremen

Y

e Definition:
Given a 2D array of numbers, T, the summed area table § stores for each
index (i,j) the sum of all elements in the rectangle (0,0) and (i,j) (inclusively):

S(j)=>) » T(kI)

k=1 [=1

* Like the prefix-sum, but for higher dimensions

e Summed area tables can also

be defined for higher dimensions Input Summed Area Table
2 1 0 0 4 91 12 | 14
* In computer vision, T Y
it is often called integral image T 1 .1, el ol .
* Example: IR 1| 2| 2| 4

G. Zachmann Massively Parallel Algorithms SS May 2024 Prefix-Sum 56
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@J) The Algorithm

e 2 phases (for 2D)

1. Do h prefix-sums horizontally (one per kernel launch) ’ l l l

2. Do w prefix-sums vertically (ditto)

* In order to maintain coalesced memory access): horizontal scan, transpose img., horiz. scan

e Or use texture memory (?)
* Depth complexity for d dimensions, w = h, and ignore transposif. d-1 log w
* Caveat: beware of precision loss in integer/floating-point arithmetic
* Assumption: each Tj needs b bits

e Consequence: number of bits needed for Swhn=logw + logh + b

* Example: 1024x1024 grey scale image, each pixel = 8 bits = >28 bits needed in §

G. Zachmann Massively Parallel Algorithms SS May 2024 Prefix-Sum 57



Bremen

Y Increasing the Precision

* The following techniques actually apply to prefix-sums, too!

1."Signed offset" representation:

G. Zachmann

Set T/(i J) — T(i J)_

where t = average of T = —> > T(i,))
Effectively "removes the DC component from the signal”
Consequence:

S'(i, ) S‘;‘T’ S(i,j)—i-j-t

k=1 =1
l.e., the values of §' are now in the same order as the values of T

(less bits have to be thrown away during the summation)
Note 1: we need to set aside 1 bit (sign bit)
Note 2: §'(w,h) =0 (modulo rounding errors)

Massively Parallel Algorithms SS May 2024
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Example

G. Zachmann

Input image

Computergraphik 1

Original summed area table

WS May 2024

With improved precision
using "offset" representation

Introduction & Displays
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* Move the "origin" of the j,j "coordinate frame":

e Com

e Resu

oute 4 different S-tables, one for each quadrant

t: each S-table comprises only % of the pixels/values of T

N Tk 1)

* For computation of = iZ;
do a simple case switch

G. Zachmann

Massively Parallel Algorithms SS May 2024
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Results

 Compute integral image
* From that, compute
5(i,J)
—=5(i = 1,))

=S(i,j— 1)
+S(i—1,j—1)

* Should yield the
original image (theoretically)

G. Zachmann Massively Parallel Algorithms

With methods 1 & 2

$S May 2024

Simple method

Prefix-Sum
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Y Efficient Computation of the Integral Image §

* Assumption: image = N pixels

* Naive approach: do a 1D prefix-sum per row (no transposition step)
* Depth complexity: O(\/ﬁ log N)
* Work complexity: o(\/ﬁ\/ﬁ) = O(N)

* Better solution:

* Pack all rows into one linear array of size N
e Do a 1D prefix-sum, but stop after the first n = VN levels
* Depth complexity = O(log N)

* Work complexity = O(N) nlevels{ /\
up- and
* |s a special case of segmented prefix sum &%

sweep

\ )\ ) N )
Y Y
Row 1 Row 2 Row n

G. Zachmann Massively Parallel Algorithms SS May 2024 Prefix-Sum 62



Bremen

Y Applications of the Summed Area Table

* For filtering in general
e Simple example: box filter (blurring)
* Slide box across image (convolution)
 Compute average inside a box (= rectangle)
* Application: translucent objects, i.e., transparent & matte
e E.g., "simulate" milky glass object in a game
1. Render virtual scene without translucent objects

2. Compute summed area table from frame buffer

3. Render translucent object (using a fragment shader): replace pixel behind
translucent object by average over original image within a (small) box

SS May 2024 Prefix-Sum

G. Zachmann Massively Parallel Algorithms
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Result

G. Zachmann

Computergraphik 1

WS

May 2024

Introduction & Displays
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Rendering with Depth-of-Field (Tiefenunscharfe)

1.Render scene, save color buffer and z-buffer (e.qg., in texture)

2.Compute summed area table over color buffer l/'\.
3.For each pixel do in parallel: \‘/"
1.Read depth of pixel from saved z-buffer '/\
2.Compute radius of circle of confusion (CoC) ' \|
(for details see "Advanced CG") \\/"
3.Determine size of box filter /\".

4.Compute average of the pixels within the box )

5.Write in (new) color buffer

* Note: "For each pixel in parallel"could be implemented in OpenGL by
rendering a screen-filling quad using special fragment shader

G. Zachmann Massively Parallel Algorithms SS May 2024 Prefix-Sum

65



Bremen

G. Zachmann

Computergraphik 1

WS

May 2024
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@ Artitfacts of this Technique o

* False sharp silhouettes: blurry objects (out of focus) have sharp silhouette,
i.e., won't blur over sharp object (in focus)

* Color bleeding (a.k.a. pixel bleeding): areas in focus can incorrectly bleed
into nearby areas out of focus

* Reason: the (indiscriminate) gather operation

G. Zachmann Massively Parallel Algorithms SS May 2024 Prefix-Sum 67
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Y Depth-of-Field with Scattering

* Goal: turn gather operation into scatter operation

0.2

0.5

0.7

0.5

0.2

0.42

average gathered over CoC

|

orig.
image

|

blurred
image

0.2 05]0.7|05] 0.2
0.1410.14 | 0.14 | 0.14 | 0.14
\ J
Y

one pixel scattered over CoC

* Example: scatter one pixel using the 2D prefix-sum (integral image)

G. Zachmann

Input image with one pixel set
and its "circle"-of-confusion

— 1

0.9

=

Massively Parallel Algorithms

Pixel value spread to the
corners of the rectangle

-0.1

+0.1

+0.1

-0.1

SS

May 2024

Resulting integral image
= pixel scattered over CoC

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

Prefix-Sum
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U Algorithm

1. Phase: tfor each pixel in original image do in parallel:

<N
F-Na)
EEEEEEEEEE
EEEEEE NN

* Spread Z::l(éiléj to CoC corners
e Use atomic accumulation operation for that! —
* Do this for R, G, and B channels separately
2. Phase: compute 2D prefix-sum over this "scatter - m
image" I
* Result =final image with depth-of-field - ..
* Research question: can you turn phase 1 into a

gather phase?

* Would allow to avoid the atomic operations

G. Zachmann Massively Parallel Algorithms SS May 2024 Prefix-Sum
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Y  Result

First integral image, then gathering First scattering , then integral image

-

[Kosloff, Tao, Barsky, 2009]

G. Zachmann Computergraphik 1 WS May 2024 Introduction & Displays 70
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U Recap: Texture Filtering in Case of Minification

\

* What happens, when we "zoom away"
from the polygon? o

* Desired: an averaging of all texels
covered by the pixel (in uv-space); too
costly at runtime

* Solution: pre-processing = MIP-maps
(lat. "multum in parvo" = alot in a small

= — - inification
" - — —— _ | (texels are sma
Space s — : = - —_— compared to pixels
- 2 —

e S

G. Zachmann Massively Parallel Algorithms SS May 2024 Prefix-Sum /1
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* A MIP-map is just an image pyramid:

e Each level is obtained by averaging 2x2
pixels of the level below

* Consequence: the original image must N\ 2\
have size 2nx2n (atleast, in practice) %
* You can use more sophisticated ways [ ———

of filtering, e.qg., Gaussian

* Memory usage for MIP-map: 1.3x
original size

NS T
2 RS
% "o
= .
3 R A
.
[y
[+ A5
7, E
5 s
~ . - it
3
. aee

128x128 64x64 32x32

256x256

LODO LOD1 LOD2 LOD3

G. Zachmann Massively Parallel Algorithms SS May 2024 Prefix-Sum /2



Bremen

W Anisotropic Texture Filtering

75
a<€ b
LR

* Problem with MIPmapping: doesn't take the
"shape" of the pixel in texture space into account!

Y
/ texture
- e
_ N
screen
B u
* MIPmapping just puts a square box around
the pixel in texture space and averages
all texels within
* Solution: average over bounding rectangle
* Use Summed Area Table for quick summation y
* Question: how to average over highly "oblique" pixels? .

G. Zachmann Massively Parallel Algorithms SS May 2024 Prefix-Sum /3
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* This is one kind of anisotropic texture filtering

e Result:

G. Zachmann Massively Parallel Algorithms SS May 2024

No filtering

Mipmapping

Summed area table

Prefix-Sum
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* Another example:

Mipmapping Anisotropic

* Today: all graphics cards support anisotropic filtering (not necessarily using SATs)

G. Zachmann Massively Parallel Algorithms SS May 2024 Prefix-Sum 75
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U Application: Face Detection

e Goal: detect faces in images (not recognition)

Includes a "false positive"
(or does it?)

digital camera iPhoto

e Requirements (wishes):

* Real-time or close (> 2 frames/sec)

* Robust (high true-positive rate, low false-positive rate)
* Non-goal: face recognition

* In the following: no details, just overview!

G. Zachmann Massively Parallel Algorithms SS May 2024 Prefix-Sum 76
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* The term feature in computer vision:

* Can be literally any piece of information/structure presentin an image

* Each kind of feature has a type, each feature has a value

* Binary features — present / not present

* Examples:
e Edges
* Color of pixels is within specific range (e.g., skin)
* Non-binary features — probability of occurrence

* Examples:
e Gradientimage

e Sum of pixel values within a shape, e.q., rectangle

G. Zachmann Massively Parallel Algorithms SS May 2024
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Y The Viola-Jones Face Detector

! a%sr* = g
<N

* The (simple) idea:

* Move a sliding window across the image (all possible
locations, all possible sizes)

e Check, whether a face is in the window

* We are interested only in windows that are filled by a face

* Observation:
* Image contains 10's of faces

e But ~10¢ candidate windows

* Consequence: to avoid having a false positive in every
Image, our false positive rate has to be < 106

G. Zachmann Massively Parallel Algorithms SS May 2024 Prefix-Sum /8
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* Feature types used in the Viola-Jones face detector:
6 reads
* 2,3, or 4 rectangles placed next to each other f:?]’rcggpael _
* Called Haar features mage
e Feature value :=gi=
: : 8 reads
pixel-sum( white rectangle(s) ) — from the
. ' |
pixel-sum( black rectangle(s) ) 'r}tﬁggae

* Constant time per feature extraction

* In a 24x24 window (e.g., one of the

sliding windows), there are

~160,000 possible features

* All variations of type, size, location within the window

G. Zachmann Massively Parallel Algorithms SS May 2024 Prefix-Sum
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e Define a weak classifier for each feature:

+1 ,g,'>(9,'

f, =
—1 | else

* For the two-rectangles feature, for instance,
choose  ~ % + ¢

e Called "weak", because such a classifier is only
slightly better than a random "classitier"

Feature 1 Feature 2

5 [

* |dea: combine lots of weak classifiers to form one strong classifier

F(window) = a1 f; + asfh + . ..

G. Zachmann Massively Parallel Algorithms SS May 2024
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e Use learning algorithms to automatically find a set of weak
classifiers and their optimal weights and thresholds, which

together form a strong classitier (e.g., Random Forest)
* More on that in Al & machine learning courses

e Training data:

* 1000's of hand labeled faces containing many variations
(illumination, pose, skin color, ...)

e 10000 non-faces

* Weak classifiers with largest weights are meaningful and have
high discriminative power (use first k of them):

* Eyes region is darker than the upper-cheeks

* Nose bridge region is brighter than the eyes

G. Zachmann Massively Parallel Algorithms SS May 2024
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Y Some Details on Optimizations

* Arrange in a filter cascade:

* K classifiers with highest weights come first

* If window fails one a stage in the cascade —
discard window

* Advantage: "early exit" if "clearly" non-face

* Typical detector has 38 stages in the cascade,
~6000 features/weak classifiers

* Final stage: only report face, if cascade finds
several nearby face windows

e Discard "lonesome" windows

G. Zachmann Massively Parallel Algorithms SS May 2024

[ Stage 1 J—>No

l Maybe

[ Stage 2 J—»No

Maybe

v

[ Stage K ]—»No

l Almost certainly
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@ Visualization of the Algorithm
Wi

Stage 14/15 (685
Feature 56/ 10T S

A N
)
'y

AN\
\)
\
./
v

* §

Adam Harv
(http://vimeo.com/12774628)
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Y Final remarks on Viola-Jones ETt

e Pros:

* Extremely fast feature computation

e Scale and location invariant detector
* Instead of scaling the image itself (e.g. pyramid-filters), we scale the features

* Works also for some other types of objects
* Cons:

e Doesn't work very well for 45° views on faces

e Not rotation invariant
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