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Y Warming Up: Matrix-Vector Product

* Given matrix A, and vector x, compute

* One of the most important operations in linear algebra algorithms
e Called SGEMV in BLAS (Basic Linear Algebra Subroutines)

y = AX

* First approach: one thread per row

* Observation: all threads use the same data from x = shared memory
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Bremen

@ Algorithm for First Attempt (One Thread per Row)

multMatrixVector ( const float * A, const float * x,

const int n columns, float * y )
{
shared x cache[ THREADS PER BLOCK ];

float yi

0.0; // output of each thread
int i = threadIdx.x + blockIdx.x * blockDim.x; // row index

for ( int j = 0; jJ < n _columns; j += THREADS PER BLOCK )

{
// new segment of columns - fill cache

x cache[threadIdx.x] = x[ J + threadIdx.x ];
// now process this segment of columns

for ( int k = 0; k < THREADS PER BLOCK; k ++ )
{

Aij = A[ 1i*n columns + j+k ];

yi += Aij*x cachel[k];

}
}

yli] = yi;

* For sake of clarity, we assume M, N = multiple of block-size
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>
 The "natural way" (the "C way") to store ol 11213
matrices is called row major order 415106 7
* Ajjis stored at memory address A + i*n cols + J 8 19 |10 1
- 12|13 | 14 | 15
* For a conventional (sequential) matrix-vector- 16 | 17 | 18 | 19

multiplication algorithm, this is good:

for ( int i = 0; 1 < n rows; i ++ )

{ (

float y1i 0.0; //

for ( int j = 0; j < n_cols; j ++ ) cache lines

yi += A[1][3] * x[]];

yli] = yi;

AR
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Y Coalesced Memory Access

* One of the most important optimization techniques for massively parallel
algorithm design on GPUs and — to some degree — CPUs!

Coalesced memory accesses Uncoalesced memory accesses
Address 128 Tiwead 0 l,,\_ Address 128
Address 132 Thresd 1 | Address 132 |
Address 136 Thread 2 Address 136 .‘

s 140 Thread 3 | Address 140 ’
7
Address 144 Twenci 4 by Address 144 i
Address 148 Thresd 3. § Address 148 \1
Address 152 Thread 6 Address 152
D
Address 156 Thresd 7 [_ Address 156
N
Address 160 Thread 8 ﬁ Address 160 11

Aligned but not Seqential but
access (a few gaps are OK) sequential not aligned
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In more detail

* So long as memory access stays within a warp bound, everything is fine

* As fast as sequential Lane D
memOry access 0 1 234 56 7 8 9 10111213 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
(i.e., counts as
C0a|eSC6d, tOO) memory location

* The following access pattern gives 32*4 =128 Bytes
only%-th of the transfer bandwidth,

where n = offset
Lanes

——

offset
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2D Array Access Patterns (Row Major vs Column Major)

* Consider the following pieceina  for ( int j = 0; j < blockDim.x; j ++ )

: . {
kernel (e.g., matrix x vector): float Aij = A[threadIdx.x][j];

. do something with it ...

* Generally, most natural access pattern for direct port of host code to CUDA

>Problem: uncoalesced access pattern
* Elements read on 1st SIMT access: 0O, 32, 64, ... (assuming A has 32 columns)
* Elements read on 2nd SIMT access: 1, 33, 65, ...
e Also, extra data will be transferred in order to fill the cache line size

float A[N][32]; Element Offsets Memory

Aij = A[treadIdx.x][O0]; nn- Iayoutt.of. C

Aij = A[treadIdx.x][1]; - a matrix ”.1

-  tread e et i major
thread per row Order

(AN (/) (NS (N [N [N (N (N [N [ [N T— [
0 32 64 96 128 160 192 224 256 288 320 352 384 416 ...
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Y  How to Achieve Coalesced Access

* Addresses from a warp are converted into memory line requests

* Line sizes: 32B (= 32x char) and 128B (= 32x £loat)

addresses from a warp are within cache line

32 64 160 192 224 256 288 320

Memory addresses

* Goalis to maximally utilize the bytes in
these lines

* GPU wins over CPU at memory access,
if itis "streamed" = coalesced

* Hence, "stream programming architecture"

G. Zachmann Massively Parallel Algorithms SS April 2024
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Column Major (Transposed) 2D Array Access Pattern

e Column major :=store a logical row in a physical column | & 5 [ 0 [ 15
1 6 11 24
* le., A = A[O][O], Acr = A[T][O], Aoz = A[2][O], ... <A
1 1
A = A[O][1], An = A[1][1], A = A[2][1], ... 7S R VRN T

° In general: Ajisstoredat A + j*n columns + i

for ( int J = 0; j < blockDim.x; Jj ++ ) {
float Aij = A[j] [treadIdx.x];
. do something with it ...

* Transform the code to column major:

e Now, we have coalesced accesses:

* Elements read on 1% float A[32][N]; i
... Element Offsets
. Aij = A[O] [treadIdx.x];
SIMT access: O, 1, 2, ..., 31 E I b =
* Elements read on 2" e ----

SIMT access: 32, ..., 63 PR [ Y | Y S I [ ) SO [N S [

0 32 64 96 128 160 192 224 256 288 320 352 384 416
G. Zachmann Massively Parallel Algorithms SS April 2024 Matrix Algorithms 9




Bremen

Y Array of Structs or Struct of Arrays?

* An array of structs (AoS)
yields memory accesses

like row major:

e Astruct of arrays (SoA)
yields memory accesses

like column major:

G. Zachmann Massively Parallel Algorithms April 2024

struct Point {
float x, vy, z;

};

Point PointList[N];

PointList[threadldx] .x = ...

struct PointlList {
float x[N];
float y[N];
float z[N];

};

PointList.x[threadIdx] = ...

Matrix Algorithms
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@ Modified Matrix*Vector Algorithm for Column-Major Matrix Storage S

multMatrixVector ( const float * A, const float * x,
const int n columns, float * y )

__shared x cache[ THREADS PER BLOCK ];
float yi = 0.0; // output of each thread
int i = threadlIdx.x + blockIdx.x * blockDim.x; // row index
for ( int j = 0; jJ < n_columns; j += THREADS PER BLOCK )
{

// new segment of columns - £ill cache

X cache[threadIdx.x] = x[ j + threadIdx.x ];
// now process this segment of columns

for ( int k = 0; k < THREADS PER BLOCK; k ++ )
{
Aij = A]| 17
yi += Aij * x cachelk];
}
}

yli] = yi;

Note: n_columns is still the
number of columns of the logical matrix,
not the number of columns of the physical matrix!

G. Zachmann Massively Parallel Algorithms SS April 2024 Matrix Algorithms 11
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* Note: from now on, we will use row-major notation (just for sake of clarity)!

G. Zachmann

But we will assume that an actual implementation uses column-major!

We expect you to transform everything to column-major

Start with small matrices that you can check "by hand"

Or implement your code first on the CPU and test it there

Massively Parallel Algorithms
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Y Auto-Tuning

* Do we keep all hardware resources of the GPU busy?
e Example: 14 SMs, each supports 1536 active threads

°* If N <14x1536 = 21504 — some SMs are idle!

* |dea for the case N < 21504 and M "not too small": use 2D partitioning of our
problem/domain

segments of a row that will be multiplied to x_cache
( '
Block of Bl sh.mem.
ock 0,0 Blodk O, -
threads : ’ S12€
N<| Blogk 1,0 % [ segments
. of xthat
will be
A stored in
x_cache
\ \ J )
W—/ Y
sh.mem. M
size

G. Zachmann Massively Parallel Algorithms SS April 2024 Matrix Algorithms 13
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* All possible domain decomposition variants:
1. One thread per row
2. Several threads per row (previous slide)
3. Several rows per thread (one thread computes several y[i]'s at the same time)
4. Several threads per row, each thread handles several rows (2 & 3)

* Which version is best in which case? (YMMV)

Configuration space (log scale) Best Kernel
10 NN NN N ENENE N U e — 10° i, .
10°} | | | ] ] ] | Several rows per thread 1055 Several rows per thread
____________________ 21000 R
g I ‘ w»n 10 threads V) 1047,-:' """"""
: 3 s
10°k = o = el o
+ ' 3 10 = H 107 & Several threads per row
Il i Il 2. Several threads per row Il : g
< : <
2 10%F P 102 § 2 1026 s
i é:—? E 4'}:: ::::::'.::'.:!::::::::'.::::::::::'.::'.:::::::'.::'.::::“
10" , 10 (% Several threads, o'k g
several cols ii Several threads, several cols
10° : : : : - 1 | ‘ | ‘ R e e e
10° 10 10" 10 10t 10" 10 10(1)00 10’ 100 10°  10*  10°  10° 10(1)00 10’ 10 10°  10*  10°  10f
M = #columns M = #columns M = #columns
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 Computational performance that can be achieved:

CUBLAS v3.2 MAGMA v1.0.0-rc5 Our kernel

Gflops 0

Performance of matrix-vector multiplication (SGEMV) over matrices of size nxm

["Fast High-performance Modeling Tools for Many-core Architectures ", Glimberg et al., 2011]

G. Zachmann Massively Parallel Algorithms SS April 2024 Matrix Algorithms
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Y  Arithmetic Intensity

* Arithmetic intensity of an algorithm :=

number of arithmetic operations

amount of transferred bytes

e Sometimes also called computational intensity

* Unfortunately, many (most?) algorithms have a low arithmetic intensity —
they are bandwidth limited

G. Zachmann Massively Parallel Algorithms SS April 2024 Matrix Algorithms
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Y Complexities of Matrix-Vector Multiplication

e Sequential version: O(n?) (assuming n=m)
* Parallel version: O(n) parallel time
* Assuming n parallel threads, one thread per row (ideal case)

* Arithmetic intensity:

: : e for 1 =1 ... n:
°* Assume fO”OWIng Slmpllfled load row i of A into fast memory
(sequential) version: for j =1 ... n: // assuming n

yi += A[1][]J] * x[]]
store yi in y[1i]

* Number of slow memory references == 2n + n?

 Number of arithmetic operations = 0 = 2n?

0,

* Arithmetic intensity a = z ~ 2 — memory bandwidth limited

G. Zachmann Massively Parallel Algorithms SS April 2024 Matrix Algorithms

load vector x completely into fast memory
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U Matrix-Matrix Multiplication

e Called SGEMM in BLAS
* Given matrices A and B, compute P = A-B

* For sake of simplicity, we'll assume
A and B are square matrices of size nxn

* Sequential algorithm:

A O |l -

for 1
for j
S =
for 1 ... n:
s += A[1] [k] * B[k][]]
P[i][j] = s

G. Zachmann Massively Parallel Algorithms SS April 2024 Matrix Algorithms 18
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* Complexity: O(n3)
2n3

e Arithmetic intensity: a = ~ 1
Y 2n3 + n?

e Even worse than matrix-vector multiplication!

e Problem: no data re-use!

* Theorem (w/o proof):
For all iterative (= non-recursive) matrix-matrix multiplication algorithmes,

the upper bound on arithmetic intensity is
2n°

a= = O(n)

3n?

G. Zachmann Massively Parallel Algorithms SS April 2024 Matrix Algorithms 19
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Y Naive Parallel Matrix Multiplication

* Approach:

* Use matrix-vector-multiplication idea

* Run one thread per row of A:

for =1 ... n:

read column j of B into fast memory (B cache)
foreach 1i =1 ... n in parallel.:
s = 0.0
for k=1 ... n:

s += A[1] [k] * B cachelk]
P[1][]] = s

Arithmetic intensit 2m ?
¢ | IC | ItY: a = ~
Y n3 + 2n?

®* Not much better ®

G. Zachmann Massively Parallel Algorithms SS April 2024
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U Blocked (Tiled) Matrix Multiplication

* Remember linear algebra class: the procedure
n
Pij = Z 3ik Dk
k=1

works also for sub-blocks of the matrices

n/m
Pij =) AwBi ( )(
k=1

]|

]|

]|
N—
PN

where A, By;, P;; € R™™ are block matrices of size m
* Assumption: n = multiple of m

* In production code, you'd have to cope with any matrix size!

* Lots of nitty-gritty details ...

G. Zachmann Massively Parallel Algorithms SS April 2024
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* New approach (2D partitioning):

* For each sub-matrix Pj, run one block of m?2
threads

e Each thread in the block computes one pj
* The kernel runs in phases
* Each phase consists of:

* Load blocks Ai, B into shared memory
* Each thread loads one ajj, one bj

e Perform "row x column" over block

e Accumulate partial results

G. Zachmann Massively Parallel Algorithms SS April 2024
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Y  Ppseudo Code

let b = n/m // = number of blocks in each dimension
foreach 1 = 1...b, jJj = 1...b run one block in parallel: } E
~ let p = 0.0 // = thread-local accumulator
_T). for k =1 b:
- load sub-matrices A(i,k) and B(k,j) into shared memory
L. — Asub , Bsub peen
S for 1 =1...m: E }
.g p += Asub[tid.x][1] * Bsub[l][tid.y]
< P[I,J] =p // I,J = per-thread global indices into P
dim3 threadsPerBlock (m,m) ; )
Kernel dim3 n blocks( n/m, n/m ); // # blocks in P (and in A, B) -
launch multMatrices<<< n blocks, threadsPerBlock >>>( A, B, P, n );

G. Zachmann Massively Parallel Algorithms SS April 2024 Matrix Algorithms 23
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* Previous optimization is called blocking/tiling (copy optimization)

* How should matrices A and B be stored?
* Remember: at the beginning of each phase: each thread loads one agj; & one bj;

* Store matrices in blocked form, in order to achieve coalesced memory
access:

Original matrix
(numbers are addresses)

Reorganized
into blocks
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* Arithmetic intensity:

* P consists of b? blocks
* For each block P;, we load b blocks of A and b blocks of B
e Overall, our algorithm loads 2b3 many blocks

* One block load = m?2 float loads

O b:%

n3

e Overall, our algorithm loads 2(%)3 m? = 2~ many floats

_2n
* Therefore, a = s =

m

* Consequence: make m large

* Bound on m: all three blocks Pj;, Ai, Bk, must fit in shared memory

G. Zachmann Massively Parallel Algorithms SS April 2024 Matrix Algorithms 25
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e Calculating m:

®* Assume: ~ 2 TFlops/sec = 2-1012 Flops/sec, and
~ 200 GB/sec = 200-10° B/sec

* Try to choose m such that we achieve peak bandwidth & peak Flops/sec

# Flops # Flops/sec 2-1012 Flops/sec
m=a= _ = S50 = 40
# Loads # Loads/sec T'mg B/sec
\

1 Load = 4 Bytes

* Note: these are very crude estimations, but good for a starting point for the search
for the sweet spot

 Consequence: size of shared memory should be at least
3-402- 4 Bytes =19.2 kB
* Otherwise, we would be bandwidth limited

G. Zachmann Massively Parallel Algorithms SS April 2024 Matrix Algorithms 26
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* Simple performance models can aid in choosing domain partition sizes

* Two ratios are key:

* Arithmetic (computational) intensity = jﬂggi
* "flops" =floating point operations, "mops" = memory operations
. _ Tflops/sec
* Machine balance = GB /sec

G. Zachmann Massively Parallel Algorithms SS April 2024 Matrix Algorithms 27
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Effects of Block Size T

G. Zachmann
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Y Comparison with MKL (Intel)

DGEMM 3.2 +DGEMM 3.1 DGEMM MKL 4 THREADS

cuBLAS 3.2

cuBLAS 3.1
il il trintten b petteee e

4+

Large perf

7x Faster than MKL | Yarence i

B YO O MDDV D DDA LoD
‘Ft "D NV DAY S v
*\"\“\“f\?fﬁ‘@ﬂ?@@@@@"@

Dimension (m=n=k)

jxnerooarda conriguration

[http://www.scribd.com/doc/47501296/CUDA-3-2-Math-Libraries-Performance]

G. Zachmann Massively Parallel Algorithms SS April 2024
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Y Limitations / Optimality

* Tiling/blocking only works, if the arithmetic operation is associative

* Arithmetic intensity, a, is bounded by size of shared memory, S:
S

a~m< —

— V3

 Our algorithm performs O(;;) many load operations

* Note: in a sense, our blocked matrix multiplication algorithm is a way to
schedule memory transfers and floating point operations

* Theorem (Hong & Kung, 1981; w/o proof):

Any schedule of conventional matrix multiplication must transter
O(\}’;) many floats between slow and fast memory.

* In this sense, blocked matrix multiplication is optimal

G. Zachmann Massively Parallel Algorithms SS April 2024 Matrix Algorithms
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Digression: Strassen's Algorithm

e All "traditional" algorithms need O(n3) FLOPs
e Strassen's algorithm: O(n281)
e Recursive algorithm!

e See 2nd semester's course "algorithms and data structures”

 Current world record: O(n2-376)

e Strassen on the GPU?

* Probably not worth it (recursion / complex control flow)

G. Zachmann Massively Parallel Algorithms SS April 2024
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Y Recap: Strassen's Algorithm

e Task: compute C=A.B, A BcR™"
* |dea : divide-and-conquer
e Partition A, B, C in 2x2 block matrices
<C11 Clz) _ <311 312> . (bll b12>
€1 2 dp1 d22 b1 boo

. nyn
mit a;j, b,‘j, Cij € R272

e Multiplication gives:

aii1bi11 + aiobo1

C11

Cpp = ap1b11 + azoboro

* Which amounts to 8 matrix multiplications of size g X

G. Zachmann Massively Parallel Algorithms SS April 2024
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* The trick: compute some (seemingly
tedious) intermediate products

* Now we can compute the ¢;'s like so:

G. Zachmann Massively Parallel Algorithms SS

G = (311 + 322)(b11 + b22)

(@2 = (a21 + a22) b1

(3 = ay1(b12 — bx)

Qs = axo(—b11 + by1)

s = (a11 + a12) b

Qs = (—a11 + ax1)(b11 + b1o)
(7 = (a12 — ax)(bo1 + bx)

C11 = Q1+ Q4 — Qs + Q7
Cip = Q2+ Q4
Co1 = Q3+ s
Cop = Q1+ Q3 — W2+ Q6

April 2024 Matrix Algorithms
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 Computational complexity:

T(n) = 7T(§) +cn® € O(n2'8“')

e Assumption here: multiplications are the expensive operation

* However, it needs more addition operations

* How would this perform on a GPU?

G. Zachmann Massively Parallel Algorithms SS April 2024
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Y Application: All Pairs Shortest Paths (APSP) .

e Given: directed graph G = (V, E) and a distance function dist : E — R
where V = set of all vertices (nodes), |V| = n, and E = set of edges

* Goal: compute nxn matrix D = d;; that stores for each pair (vj, v;) the length
of the shortest path from v; to v; in graph G

* Example:
1 2 3 4 5
1103 8|44
2030617
3071405 |
412|550/ 6
5/08 |1 1|60

Shortest path matrix D

G. Zachmann Massively Parallel Algorithms SS April 2024 Matrix Algorithms
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Y The Adjacency Matrix Representation of Directed Graphs

* The adjacency matrix A represents the distance function dist
* Ais an nxn matrix A = (9;;) where

dist(v;, v;), if (v;,v;) € E

0jj = § 00, if (vi,v;) ¢ E
0, ifi=j

1 2 3 4 5
\ a . 110|3|8|cw]|4
e Example: c//\\ S S o I
5 © 3]0 | 4|0 oo
\ 1 / 412 o0 |5]0]0
7 5| c0|oc0|o| 6|0
9 6 Adjacency matrix

G. Zachmann Massively Parallel Algorithms SS April 2024 Matrix Algorithms
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Y The Shortest Paths Property

* We will now extend the simple, edge-based distance function to a distance
function dist' on paths

e Define

- 0, 1=y
dist (pllj) — {5“ 2
1]

* Consider a shortest path pkj from v; to v; such that |p,’j\ < k, i.e., pki can
have most k edges

* Let (v;, v)) be the last edge of path pk;
* Then, there must be a shortest path p,-kl_1 from v; to vi (optimal substructure!)

* Therefore, 31 : dist'(pf) = dist'(p5 ") + dy;

G. Zachmann Massively Parallel Algorithms SS April 2024 Matrix Algorithms
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Y A Simple Algorithm for APSP

* Given the adjacency matrix A, compute a series of matrices
D=A, D2, ..., D4, D" where matrix D* = diSt'(PZ) contains lengths of
shortest paths in G with at most k edges

* Final matrix D™' contains the actual shortest paths in G

* Example:
a 1 2 3 4 5 1 2 3 4 5
G// \\ 110[3[8 || 4 1103844
8 0 2|0 | 0 |oo| 1|7 21306 |17
5 4|1 2 |00 | 5] 0| o 4125|5106
/
5| c0|oc0|co| 6 |0 5| 8| |11 6 |0
6 Adjacency matrix Matrix D2

G. Zachmann Massively Parallel Algorithms SS April 2024 Matrix Algorithms
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Y ' The Algorithm
A = adjacency matrix
D1 = A
for k = 2 to n-1:
Dk = ExtendPaths (Dk-1, A)
return Dk
ExtendPaths( D, A ) MatrixMultiply( B, A )
In: A (with d8i5) = nxn adj. matrix In: A = (di5) = nxn input matrix
Out: E (with e;ij) = nxn dist. matrix Out: C = (cij)= nxn matrix product
for 1 = 1 to n: for 1 = 1 to n:
for j =1 to n: for j =1 to n:
eij = dij Cij = 0
for 1 = 1 to n: for 1 = 1 to n:
ei; = min{eij, di1 + d1j) Ccij = cij + ai1.bij (*)
return E return C

* Notice the similarity with matrix multiplication

* We can adapt our fast GPU-based matrix multiplication code to solve the APSP
problem quite easily (just replace the operators in line (*)

G. Zachmann Massively Parallel Algorithms SS April 2024 Matrix Algorithms
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Y A word on Sparse Matrices

* Just some remarks

* Frequent case: sparse band matrices

* Represent matrix as a number of vectors

* Devise specialized parallel algorithm (similar to vector addition)

Matrix

(

2 vectors

-

G. Zachmann Massively Parallel Algorithms SS April 2024
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* Many more kinds of sparse matrices

e Specialized representation / algorithms for each of them?
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W Tensor Cores

* One of the biggest increments in the GPU's architecture

e On Volta architecture, each SM has:
e 64 FP32 cores e s

e 64 Int32 cores —
e 32 FP64 cores —

INT INT FP32 FP32

TENSOR TENSOR
CORE CORE

INT INT FP32 FP32

e 8 tensor cores

* Numbers vary a lot from generation to generation!

Register File (16,384 x 32-bit)

FP64 INT INT FP32 FP32
FP64 INT INT FP32 FP32

* Specifically integrated to speed up machine learning

FP64 INT INT FP32 FP32 TENSOR TENSOR

FP64 INT INT FP32 FP32 CORE (CORE

FP64 INT INT FP32 FP32

e Different marketing terms: "tensor core" (NVidia), "
"tensor proc. unit" (Google), "neural engine" (Apple),

LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ SFU
ST ST ST ST ST ST ST ST
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Dispatch Unit (32 thread/clk)

Register File (16,384 x 32-bit)

INT INT

INT INT

INT INT

INT INT

INT INT

INT INT

INT INT

INT INT

FP32 FP32

FP32 FP32

FP32 FP32

FP32 FP32

FP32 FP32

FP32 FP32

FP32 FP32

FP32 FP32

TENSOR TENSOR
CORE CORE

Register File (16,384 x 32-bit)

INT INT

INT INT

INT INT

INT INT

INT INT

INT INT

INT INT

INT INT

FP32 FP32

FP32 FP32

FP32 FP32

FP32 FP32

FP32 FP32

FP32 FP32

FP32 FP32

FP32 FP32

TENSOR TENSOR
CORE CORE

LD/ LD/ LD/ LD/ LD/ LD/
ST ST ST ST ST ST SFU
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The GAT00 Architecture, Just FYI

PCI Express 4.0 Host Interface
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Memory Controller || Memory Controller | Memory Controller
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GA100 architecture
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The Basic Operation of Tensor Cores

e Matrix-Multiply-and-Accumulate (MMA): D = A-B + C

where C and D could be the same register,
Ais MxK, Bis KxN, Cand D are MxN matrices

e Usually (often):

FP16
storage/input

* A Bare 4x4 of type FP16 (_ half)
* C, Dare4x4 of FP32 (float)
* One MMA = 64 FLOPs in 1 cycle!
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e All CUDA libraries use them (cuBLAS, CUB, CUTLASS, cuDNN, ...)

* You can use them in your own kernels, iff all threads within a warp
collaborate, i.e., execute the same MMA instructions

* |dea:

e Each warp computes an MMA for bigger matrices

* All warps together compute big matrix multiplication in tiled fashion
* Example tiling:

* You kernel partitions the big matrix into 16x16 tiles

e Each warp works on one 16x16 tile

* Distribution of one tile into 4x4 tensor core operations is done by GPU scheduler

G. Zachmann Massively Parallel Algorithms SS April 2024 Matrix Algorithms
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Y Minimal Example: 16x16 Matrix Multiplication

#include <mma.h>
using namespace nvcuda: :wmma;

__global  void wmma example( half* a, half* b, float* c )

{
// Declare the fragments
fragment<matrix a, 16, 16, 16, half, col major> frags of a;<—A warp will work on 16x16
fragment<matrix b, 16, 16, 16, half, col major> frags of b; matrices, each thread in the warp

fragment<accumulator, 16, 16, 16, float> frags of acc; will work on a "fragment" of
those matrices

— fill fragment( frags of acc, 0.0f ); -

Clear the accumulator

// Load the inputs

load matrix sync( frags_of _a, a, 16 ); All threads load "their" fragments
load matrix sync( frags of b, b, 16 ); of matrix a/b, resp., into the
registers ("sync" says they work in
sync)

A

// Perform the matrix multiplication
mma sync( acc frag, frags of a, frags of b, frags of acc );

“————— Here, the actual multiplication
Ve e G happens, using all the tensor

store_matrix_sync ( c, frags_of_acc , 16, mem_col_major ) ; cores of the SM in collaboration

All data types and functions are
provided by mma.h

}
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@ Declarations of Some of the Functions/Types in mma . h (Just FYT) #ce

uEEEn
N

" VR

template< typename Use, int m, int n, int k, All threads together will

typename T, typename Layout=void > class fragment; declare their fragments, which

together will form a tile/block
of the matrix

void load matrix sync( fragment<...> &a, Waits until al Fhl’eadS In a
- - const T* mptr, unsigned 1ldm ) ; warp are at this load
instruction, then loads the

tile/block from memory

void store matrix sync( T* mptr, const fragment<...> &a, Same as load_matrix
unsigned ldm, layout t layout );

void fill fragment( fragment<...> &a, const T& v );

void mma sync( fragment<...> &d, const fragment<...> &a, Performs warp-

const fragment<...> &b, const fragment<...> &c); synchronous matrix
multiply-accumulate
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@ High-Level Procedure for Matrix-Matrix Multiplication Using Tensor Cores SRt

each block of threads works on one tile of the output P

each warp loads a 16x16 tile of A and B into shared memory:
A,B are usually stored in row or column major, so threads need
to do some offset calculations and re-arrangements

each warp multiplies the tiles and accumulates results
(the GPU partitions the work into 4x4 matrix multiplications automagically)

each warp stores the result in P

/’

4x4 matrices

Partitioning of the big

matrlceg into tiles (e.g., ————1_Partitioning of a tile into fragments that is
tiles of size 16x16) that done by CUDA's MMA types, e.g.

you must do yourself fragment<>, and MMA functions, e.qg.,
load matrix sync()

1

e
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Y, Performance

Matrix-matrix multiplication (GEMM)
cuBLAS Mixed Precision (FP16 Input, FP32 compute)

10
¢ WP100(CUDA8)
. M V100 Tensor Cores (CUDA 9)
2
c 9. 3
=
5 6
S 3
a
5
)
S8 3
[,
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2
1 II
0

1024 4096
Matrix Size (M=N=K)
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