

Massively Parallel Algorithms Dense Matrix Algorithms

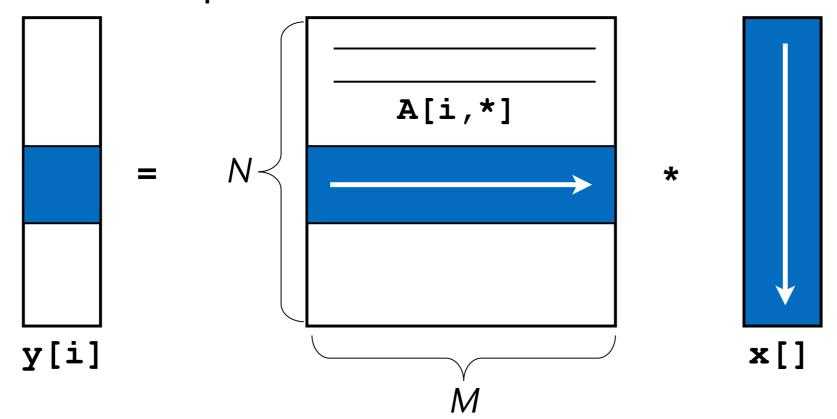
G. Zachmann
University of Bremen, Germany
cgvr.cs.uni-bremen.de

Warming Up: Matrix-Vector Product

• Given matrix *A*, and vector **x**, compute

$$y = Ax$$

- One of the most important operations in linear algebra algorithms
 - Called SGEMV in BLAS (Basic Linear Algebra Subroutines)
- First approach: one thread per row



SS

• Observation: all threads use the same data from $x \rightarrow$ shared memory

Algorithm for First Attempt (One Thread per Row)

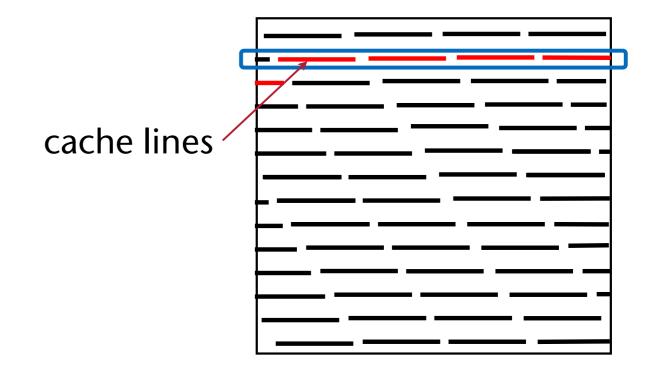

```
multMatrixVector( const float * A, const float * x,
                  const int n columns, float * y )
    shared x cache[ THREADS PER BLOCK ];
   float yi = 0.0;
                                         // output of each thread
   int i = threadIdx.x + blockIdx.x * blockDim.x; // row index
   for ( int j = 0; j < n columns; j += THREADS PER BLOCK )</pre>
      // new segment of columns - fill cache
      x cache[threadIdx.x] = x[ j + threadIdx.x ];
                                                                       Blocksize
      // now process this segment of columns
      for ( int k = 0; k < THREADS PER BLOCK; <math>k ++ )
                                                          Block of
         Aij = A[ i*n columns + j+k ];
                                                          threads
                                                                                           Block-
         yi += Aij*x cache[k];
                                                                                           size
                                                                                   *
   y[i] = yi;
```

• For sake of clarity, we assume M, N = multiple of block-size

- The "natural way" (the "C way") to store matrices is called row major order
 - A_{ij} is stored at memory address A + i*n cols + j
- For a conventional (sequential) matrix-vectormultiplication algorithm, this is good:

```
6
8
          10
12
          14
                15
16
                19
          18
```

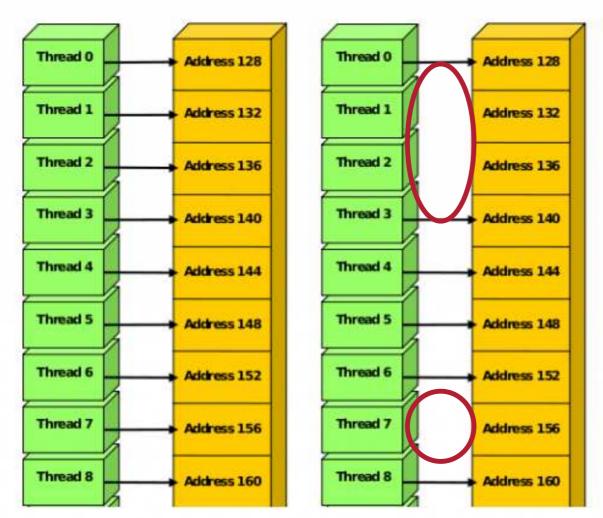
```
for ( int i = 0; i < n rows; i ++ )
   float yi = 0.0;
   for ( int j = 0; j < n cols; <math>j ++ )
      yi += A[i][j] * x[j];
   y[i] = yi;
```



Coalesced Memory Access

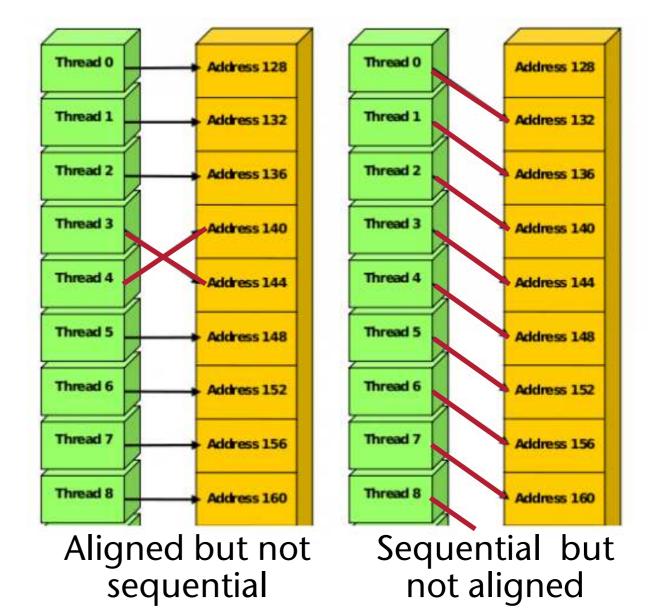
 One of the most important optimization techniques for massively parallel algorithm design on GPUs and — to some degree — CPUs!

Coalesced memory accesses



Aligned and sequential memory access (a few gaps are OK)

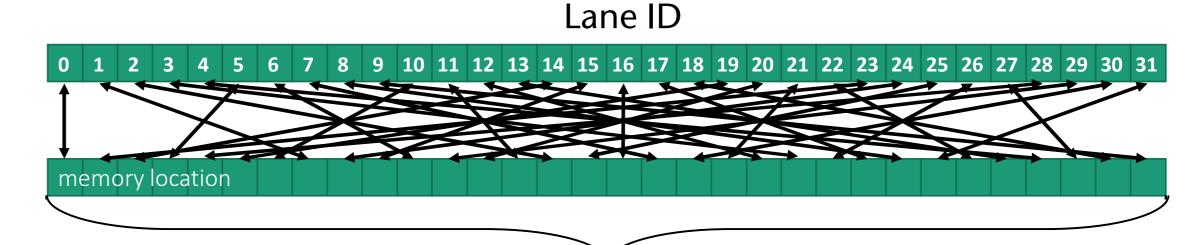
Uncoalesced memory accesses



Massively Parallel Algorithms

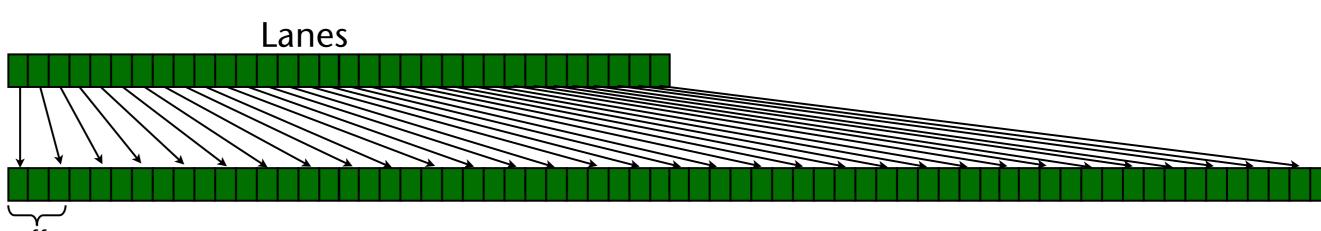
In more detail

- So long as memory access stays within a warp bound, everything is fine
- As fast as sequential memory access (i.e., counts as coalesced, too)



32*4 = 128 Bytes

 The following access pattern gives only $\frac{1}{n}$ -th of the transfer bandwidth, where n = offset

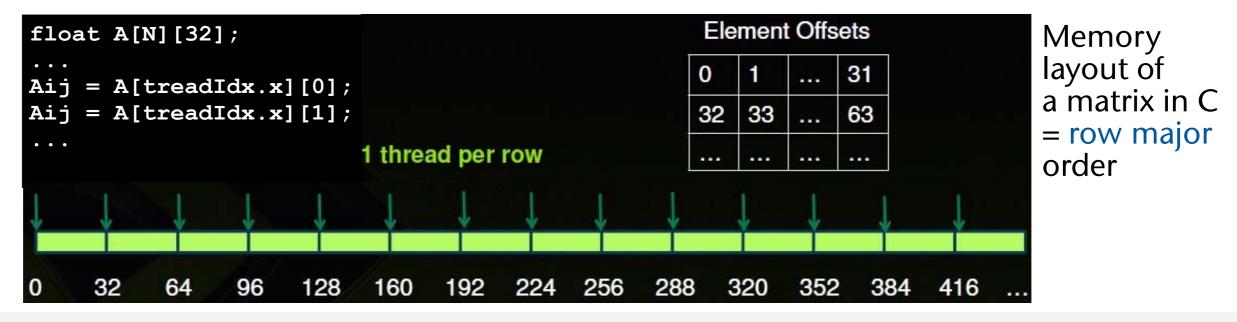


2D Array Access Patterns (Row Major vs Column Major)

 Consider the following piece in a kernel (e.g., matrix × vector):

```
for ( int j = 0; j < blockDim.x; j ++ )
{
   float Aij = A[threadIdx.x][j];
   ... do something with it ...</pre>
```

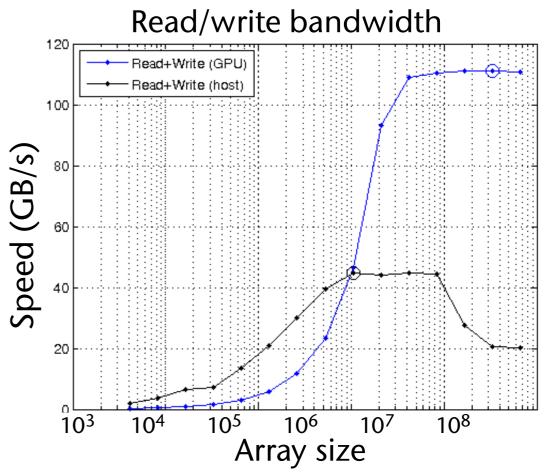
- Generally, most natural access pattern for direct port of host code to CUDA
- > Problem: uncoalesced access pattern
 - Elements read on 1st SIMT access: 0, 32, 64, ... (assuming A has 32 columns)
 - Elements read on 2nd SIMT access: 1, 33, 65, ...
 - Also, extra data will be transferred in order to fill the cache line size



How to Achieve Coalesced Access

- Addresses from a warp are converted into memory line requests
 - Line sizes: 32B (= 32x char) and 128B (= 32x float)

- Goal is to maximally utilize the bytes in these lines
- GPU wins over CPU at memory access, if it is "streamed" = coalesced
 - Hence, "stream programming architecture"



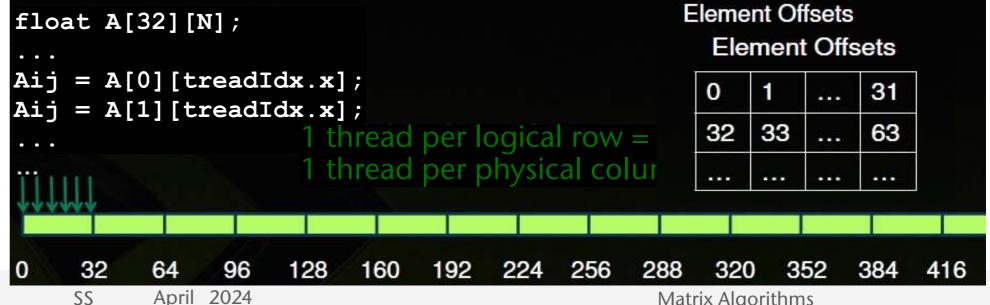
Column Major (Transposed) 2D Array Access Pattern

- Column major := store a logical row in a physical column
 - I.e., $A_{00} \to A[0][0]$, $A_{01} \to A[1][0]$, $A_{02} \to A[2][0]$, ... $A_{10} \rightarrow A[0][1], A_{11} \rightarrow A[1][1], A_{12} \rightarrow A[2][1], ...$ $A_{20} \to A[0][2], ...$

0	5	10	15
1	6	11	24
2	7	12	17
3	8	13	18
4	9	14	19

- In general: Aii is stored at A + j*n columns + i
- Transform the code to column major:
- Now, we have coalesced accesses:
 - Elements read on 1st SIMT access: 0, 1, 2, ..., 31
 - Elements read on 2nd SIMT access: 32, ..., 63

```
for ( int j = 0; j < blockDim.x; j ++ ) {</pre>
   float Aij = A[j][treadIdx.x];
   ... do something with it ...
```



Array of Structs or Struct of Arrays?

 An array of structs (AoS) yields memory accesses like row major:



```
struct Point {
   float x, y, z;
Point PointList[N];
PointList[threadIdx].x = ...
```

 A struct of arrays (SoA) yields memory accesses like *column major*:


```
struct PointList {
   float x[N];
   float y[N];
   float z[N];
PointList.x[threadIdx] =
```



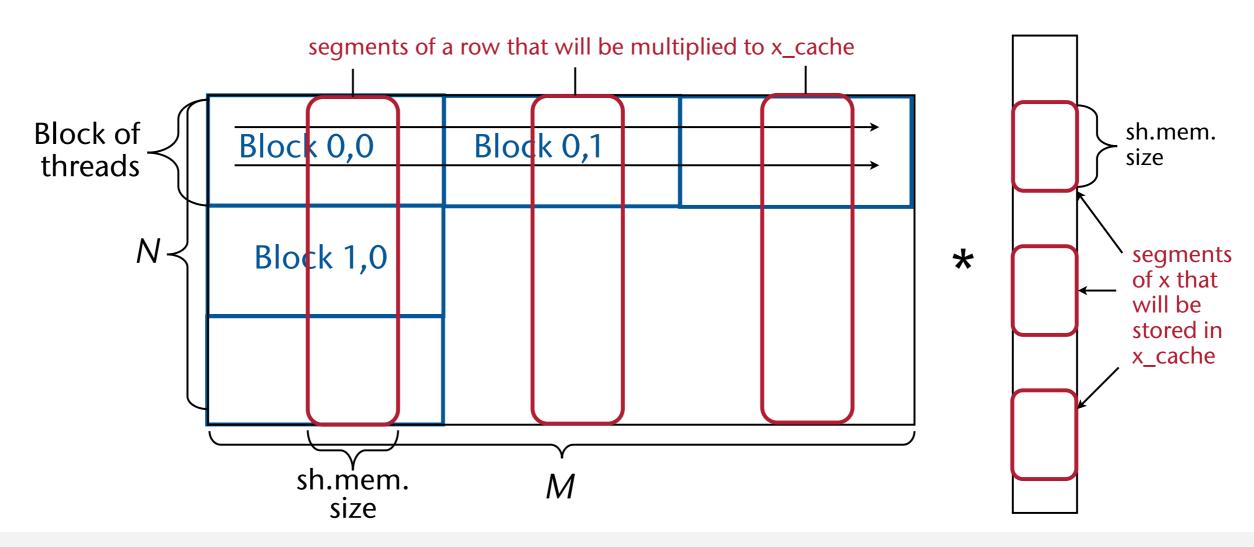
```
multMatrixVector( const float * A, const float * x,
                const int n columns, float * y )
   shared x cache[ THREADS PER BLOCK ];
  float yi = 0.0;
                                        // output of each thread
  for ( int j = 0; j < n columns; j += THREADS PER BLOCK )</pre>
     // new segment of columns → fill cache
     x cache[threadIdx.x] = x[ j + threadIdx.x ];
     // now process this segment of columns
     for ( int k = 0; k < THREADS PER BLOCK; k ++ )</pre>
        Aij = A[i + (j+k)*n columns];
        yi += Aij * x cache[k];
  y[i] = yi;
                                  Note: n columns is still the
```

number of columns of the *logical* matrix, not the number of columns of the physical matrix!

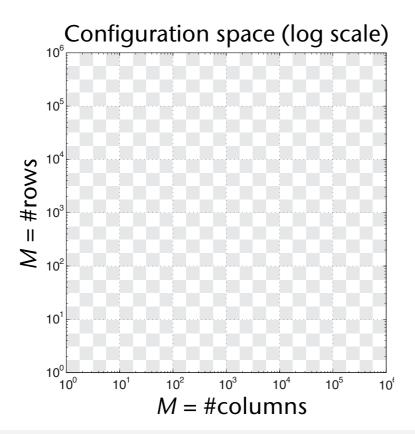
- Note: from now on, we will use row-major notation (just for sake of clarity)!
 - But we will assume that an actual implementation uses column-major!
 - We expect you to transform everything to column-major
 - Start with small matrices that you can check "by hand"
 - Or implement your code first on the CPU and test it there

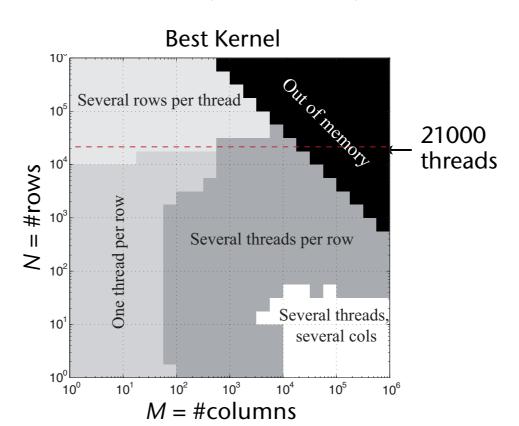
Auto-Tuning

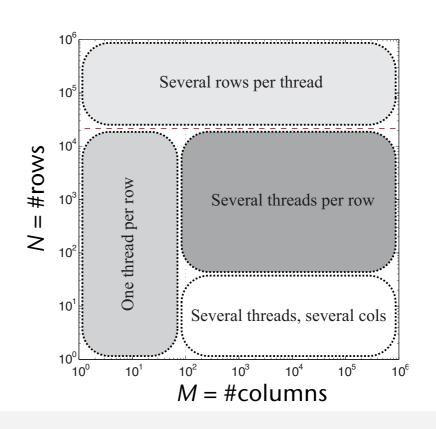
- Do we keep all hardware resources of the GPU busy?
- Example: 14 SMs, each supports 1536 active threads
 - If $N < 14 \times 1536 = 21504 \rightarrow \text{some SMs are idle!}$
- Idea for the case N < 21504 and M "not too small": use 2D partitioning of our problem/domain



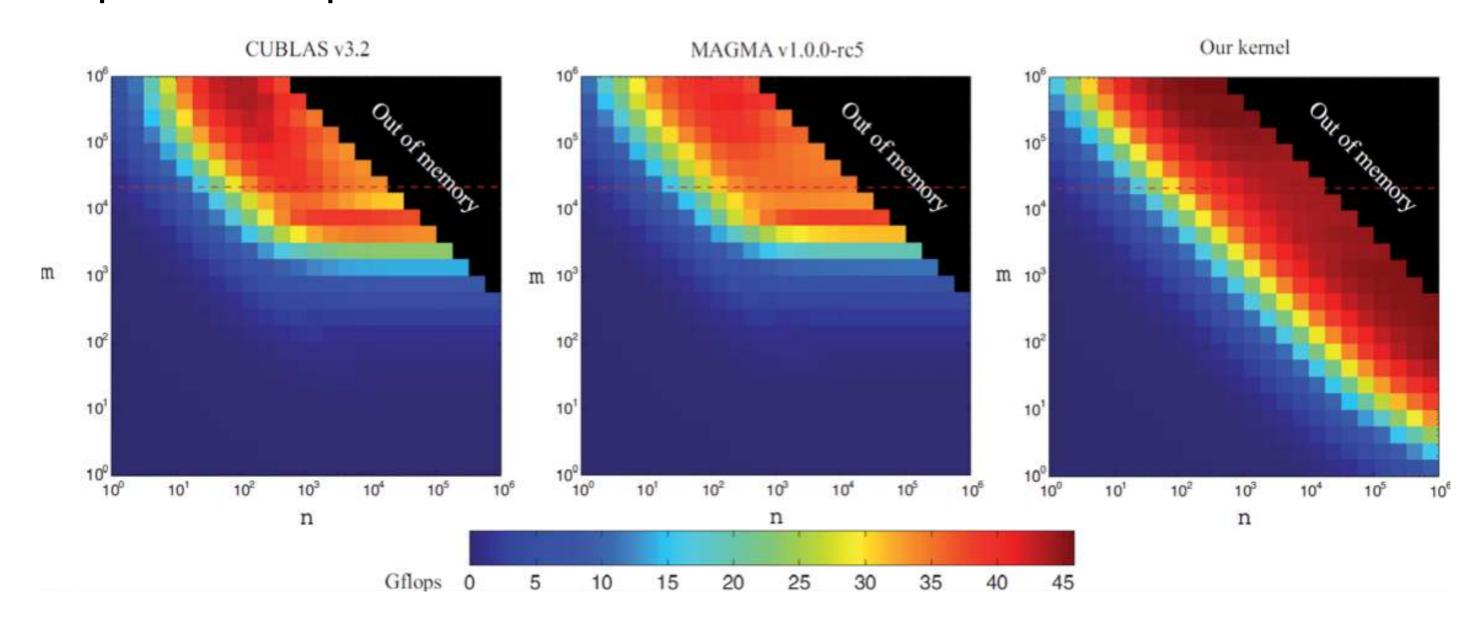
- All possible domain decomposition variants:
 - 1. One thread per row
 - 2. Several threads per row (previous slide)
 - 3. Several rows per thread (one thread computes several y[i]'s at the same time)
 - 4. Several threads per row, each thread handles several rows (2 & 3)
- Which version is best in which case? (YMMV)







Computational performance that can be achieved:



Performance of matrix-vector multiplication (SGEMV) over matrices of size n×m

["Fast High-performance Modeling Tools for Many-core Architectures ", Glimberg et al., 2011]

Arithmetic Intensity

Arithmetic intensity of an algorithm :=

number of arithmetic operations amount of transferred bytes

- Sometimes also called computational intensity
- Unfortunately, many (most?) algorithms have a low arithmetic intensity → they are bandwidth limited

Complexities of Matrix-Vector Multiplication

- Sequential version: $O(n^2)$ (assuming n=m)
- Parallel version: *O*(*n*) parallel time
 - Assuming *n* parallel threads, one thread per row (ideal case)
- Arithmetic intensity:
 - Assume following simplified (sequential) version:

- Number of slow memory references = $f = 2n + n^2$
- Number of arithmetic operations = $o = 2n^2$

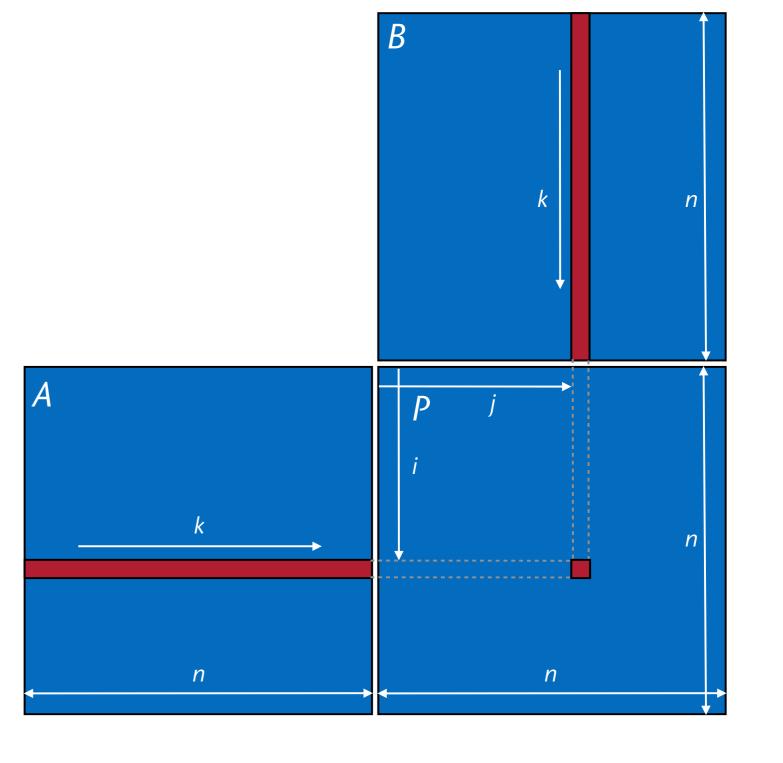
Massively Parallel Algorithms

• Arithmetic intensity $a = \frac{o}{f} \approx 2$ \rightarrow memory bandwidth limited

Matrix-Matrix Multiplication

- Called SGEMM in BLAS
- Given matrices A and B, compute $P = A \cdot B$
- For sake of simplicity, we'll assume
 A and B are square matrices of size n×n
- Sequential algorithm:

```
for i = 1 ... n:
    for j = 1 ... n:
    s = 0.0
    for k = 1 ... n:
        s += A[i][k] * B[k][j]
    P[i][j] = s
```



- Complexity: $O(n^3)$ Arithmetic intensity: $a = \frac{2n^3}{2n^3 + n^2} \approx 1$

Massively Parallel Algorithms

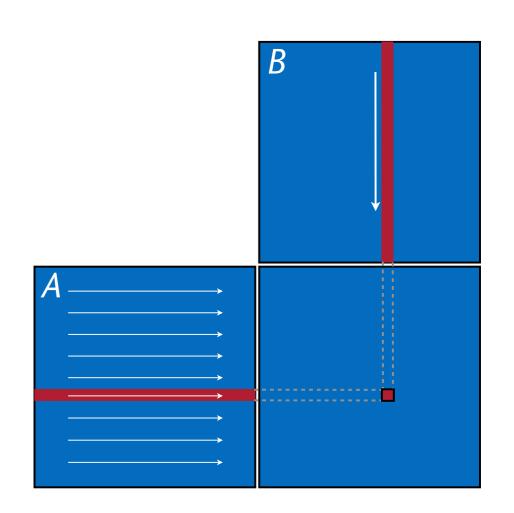
- Even worse than matrix-vector multiplication!
- Problem: no data re-use!
- Theorem (w/o proof): For all iterative (= non-recursive) matrix-matrix multiplication algorithms, the upper bound on arithmetic intensity is

$$\hat{a} = \frac{2n^3}{3n^2} \in O(n)$$

Naïve Parallel Matrix Multiplication

- Approach:
 - Use matrix-vector-multiplication idea
 - Run one thread per row of A:

```
for j = 1 ... n:
    read column j of B into fast memory (B_cache)
    foreach i = 1 ... n in parallel:
        s = 0.0
        for k = 1 ... n:
        s += A[i][k] * B_cache[k]
        P[i][j] = s
```

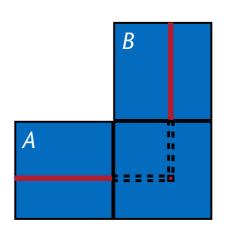


- Arithmetic intensity: $a = \frac{2n^3}{n^3 + 2n^2} \approx 2$
- Not much better @

Blocked (Tiled) Matrix Multiplication

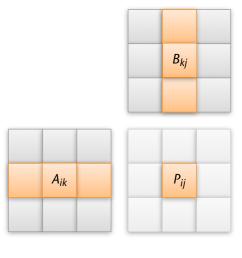
Remember linear algebra class: the procedure

$$p_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}$$



works also for sub-blocks of the matrices

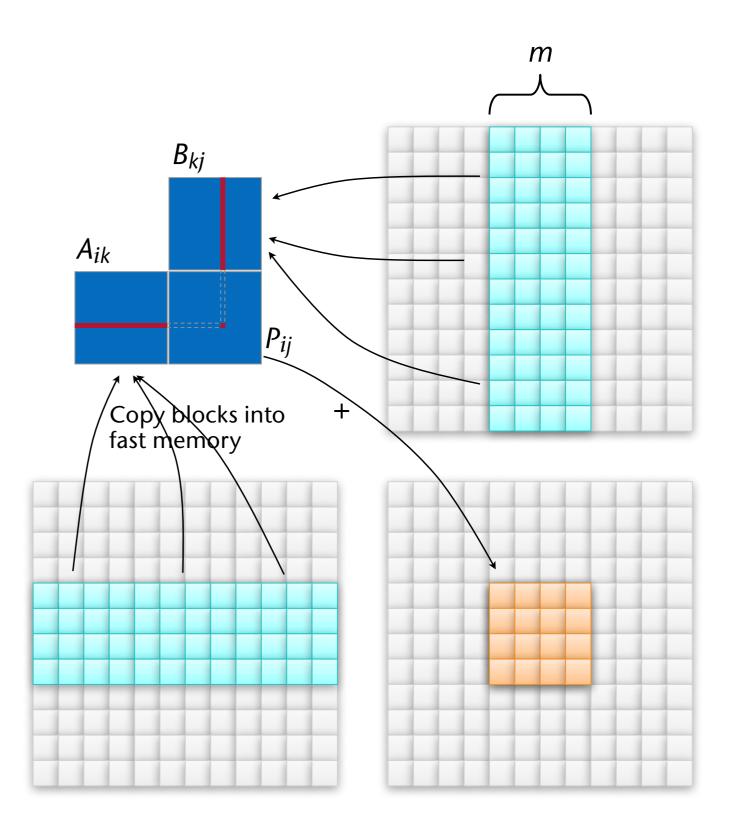
$$P_{ij} = \sum_{k=1}^{n/m} A_{ik} B_{kj}$$



where A_{ik} , B_{ki} , $P_{ii} \in \mathbb{R}^{m \times m}$ are block matrices of size m

- Assumption: n = multiple of m
 - In production code, you'd have to cope with any matrix size!
 - Lots of nitty-gritty details ...

- New approach (2D partitioning):
 - For each sub-matrix P_{ij} , run one block of m^2 threads
 - Each thread in the block computes one p_{ij}
 - The kernel runs in phases
- Each phase consists of:
 - Load blocks A_{ik} , B_{kj} into shared memory
 - Each thread loads one a_{ij} , one b_{ij}
 - Perform "row × column" over block
 - Accumulate partial results



Pseudo Code

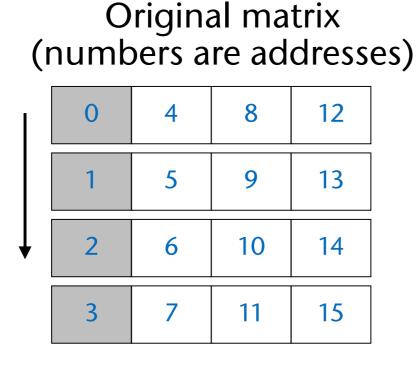

```
foreach i = 1...b, j = 1...b run one block in parallel:
       for k = 1 \dots b:
 Actual kernel!
        load sub-matrices A(i,k) and B(k,j) into shared memory
        → Asub , Bsub
       for 1 = 1 ...m:
          p += Asub[tid.x][1] * Bsub[1][tid.y]
       P[I,J] = p // I,J = per-thread global indices into P
     dim3 threadsPerBlock(m,m);
Kernel
     dim3 n blocks ( n/m, n/m ); // # blocks in P (and in A, B)
```

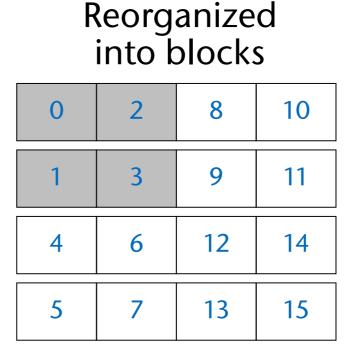
launch

April 2024

multMatrices<<< n blocks, threadsPerBlock >>>(A, B, P, n);

- Previous optimization is called blocking/tiling (copy optimization)
- How should matrices A and B be stored?
 - Remember: at the beginning of each phase: each thread loads one a_{ij} & one b_{ij}
- Store matrices in blocked form, in order to achieve coalesced memory access:





- Arithmetic intensity:
 - P consists of b^2 blocks
 - For each block P_{ij} , we load b blocks of A and b blocks of B
 - Overall, our algorithm loads 2b3 many blocks
 - One block load = m^2 float loads
 - $b = \frac{n}{m}$
 - Overall, our algorithm loads $2\left(\frac{n}{m}\right)^3 m^2 = 2\frac{n^3}{m}$ many floats
 - Therefore, $a = \frac{2n^3}{2\frac{n^3}{m}} = m$
- Consequence: make *m* large
- Bound on m: all three blocks P_{ij} , A_{ik} , B_{kj} , must fit in shared memory

• Calculating *m*:

- Assume: $\sim 2 \text{ TFlops/sec} = 2.10^{12} \text{ Flops/sec}$, and $\sim 200 \text{ GB/sec} = 200.10^9 \text{ B/sec}$
- Try to choose m such that we achieve peak bandwidth & peak Flops/sec

choose m such that we achieve peak bandwidth & peak FI
$$m = a = \frac{\# \text{Flops}}{\# \text{Loads}} = \frac{\# \text{Flops/sec}}{\# \text{Loads/sec}} = \frac{2 \cdot 10^{12} \text{ Flops/sec}}{\frac{200}{4} \cdot 10^9 \text{ B/sec}} = 40$$
1 Load = 4 Bytes

- Note: these are very crude estimations, but good for a starting point for the search for the sweet spot
- Consequence: size of shared memory should be at least

$$3 \cdot 40^2 \cdot 4 \text{ Bytes} = 19.2 \text{ kB}$$

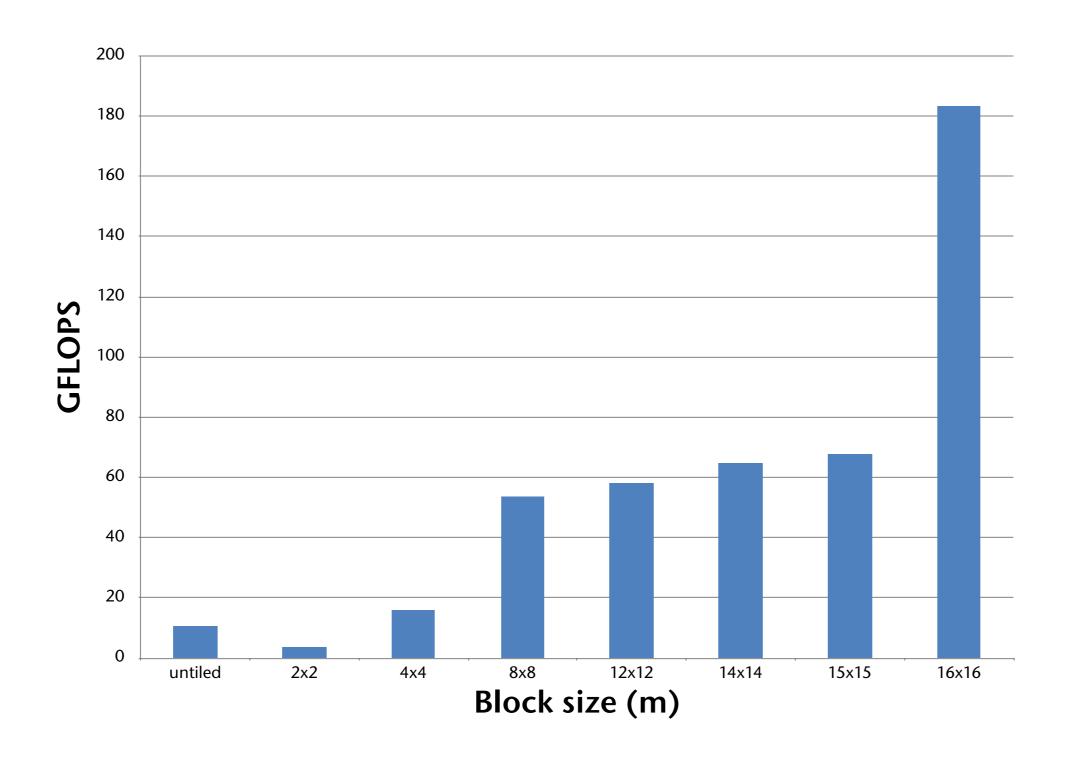
Otherwise, we would be bandwidth limited

Summary

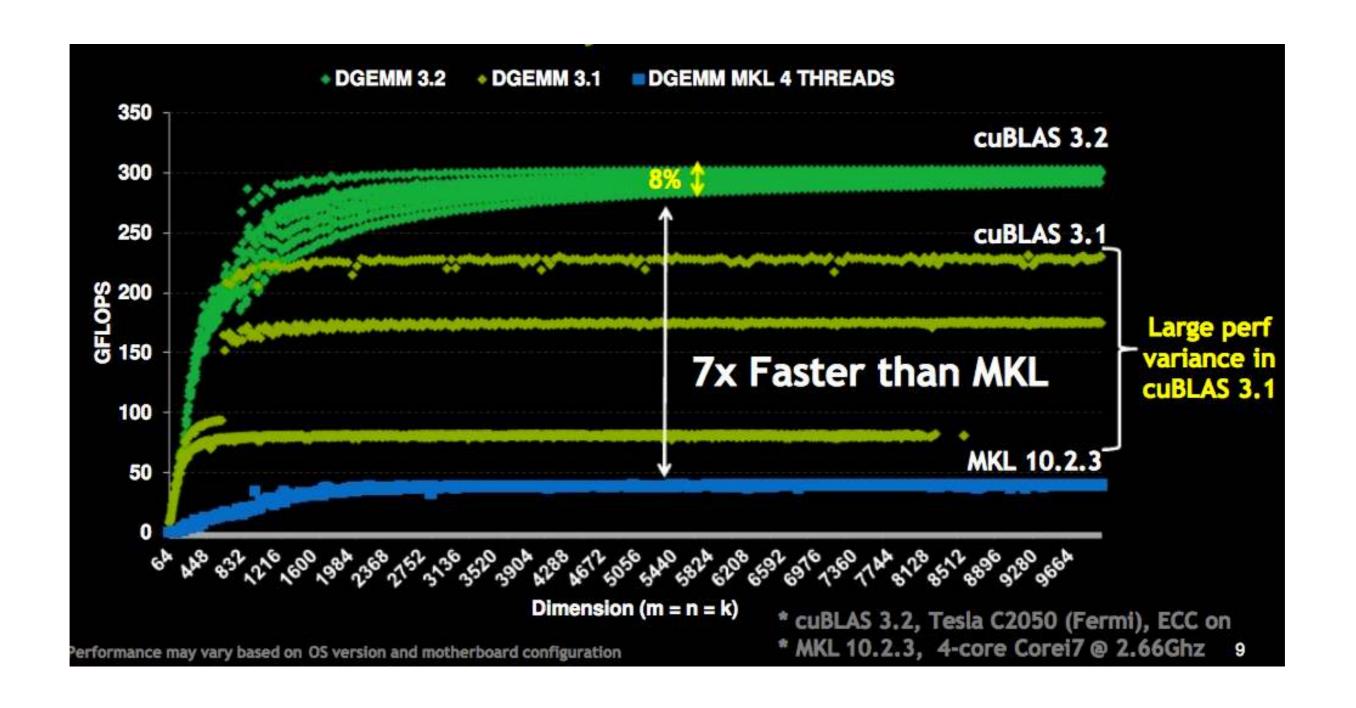
- Simple performance models can aid in choosing domain partition sizes
- Two ratios are key:
 - Arithmetic (computational) intensity = $\frac{\# \text{ flops}}{\# \text{ mops}}$
 - "flops" = floating point operations, "mops" = memory operations
 - Machine balance = $\frac{\text{Tflops/sec}}{\text{GB/sec}}$

Matrix Algorithms

Effects of Block Size



Comparison with MKL (Intel)



[http://www.scribd.com/doc/47501296/CUDA-3-2-Math-Libraries-Performance]

Limitations / Optimality

- Tiling/blocking only works, if the arithmetic operation is associative
- Arithmetic intensity, a, is bounded by size of shared memory, S:

$$a \approx m \leq \sqrt{\frac{S}{3}}$$

- Our algorithm performs $O(\frac{n^3}{\sqrt{S}})$ many load operations
- Note: in a sense, our blocked matrix multiplication algorithm is a way to schedule memory transfers and floating point operations
- Theorem (Hong & Kung, 1981; w/o proof): Any schedule of conventional matrix multiplication must transfer $O(\frac{n^3}{\sqrt{S}})$ many floats between slow and fast memory.
- In this sense, blocked matrix multiplication is optimal

Digression: Strassen's Algorithm

- All "traditional" algorithms need $O(n^3)$ FLOPs
- Strassen's algorithm: $O(n^{2.81})$
 - Recursive algorithm!
 - See 2nd semester's course "algorithms and data structures"
- Current world record: $O(n^{2.376})$
- Strassen on the GPU?
 - Probably not worth it (recursion / complex control flow)

Recap: Strassen's Algorithm

- Task: compute $C = A \cdot B$, $A, B \in \mathbb{R}^{n \times n}$
- Idea : divide-and-conquer
 - Partition A, B, C in 2x2 block matrices

$$\begin{pmatrix} c_{11} & c_{12} \\ c_{21} & c_{22} \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \cdot \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix}$$
mit $a_{ii}, b_{ii}, c_{ii} \in \mathbb{R}^{\frac{n}{2} \times \frac{n}{2}}$

Multiplication gives:

$$c_{11} = a_{11}b_{11} + a_{12}b_{21}$$

:
 $c_{22} = a_{21}b_{11} + a_{22}b_{22}$

• Which amounts to 8 matrix multiplications of size $\frac{n}{2} \times \frac{n}{2}$

 The trick: compute some (seemingly tedious) intermediate products

$$egin{aligned} Q_1 &\equiv (a_{11} + a_{22})(b_{11} + b_{22}) \ Q_2 &\equiv (a_{21} + a_{22})b_{11} \ Q_3 &\equiv a_{11}(b_{12} - b_{22}) \ Q_4 &\equiv a_{22}(-b_{11} + b_{21}) \ Q_5 &\equiv (a_{11} + a_{12})b_{22} \ Q_6 &\equiv (-a_{11} + a_{21})(b_{11} + b_{12}) \ Q_7 &\equiv (a_{12} - a_{22})(b_{21} + b_{22}) \end{aligned}$$

• Now we can compute the c_{ij} 's like so:

$$c_{11} = Q_1 + Q_4 - Q_5 + Q_7$$

 $c_{12} = Q_2 + Q_4$
 $c_{21} = Q_3 + Q_5$
 $c_{22} = Q_1 + Q_3 - Q_2 + Q_6$

Computational complexity:

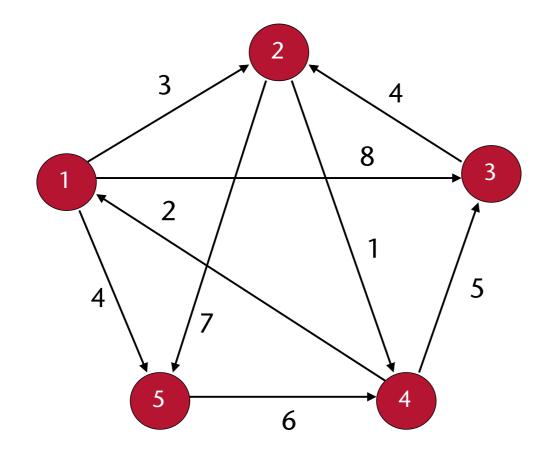
$$T(n) = 7T\left(\frac{n}{2}\right) + cn^2 \in O(n^{2.8...})$$

- Assumption here: multiplications are the expensive operation
- However, it needs more addition operations

How would this perform on a GPU?

Application: All Pairs Shortest Paths (APSP)

- Given: directed graph G = (V, E) and a distance function dist : $E \to \mathbb{R}$ where V = set of all vertices (nodes), |V| = n, and E = set of edges
- Goal: compute $n \times n$ matrix $D = d_{ij}$ that stores for each pair (v_i, v_j) the length of the shortest path from v_i to v_j in graph G
- Example:



	1	2	3	4	5
1	0	3	8	4	4
2	3	0	6	1	7
3	7	4	0	5	11
4	2	5	5	0	6
5	8	11	11	6	0

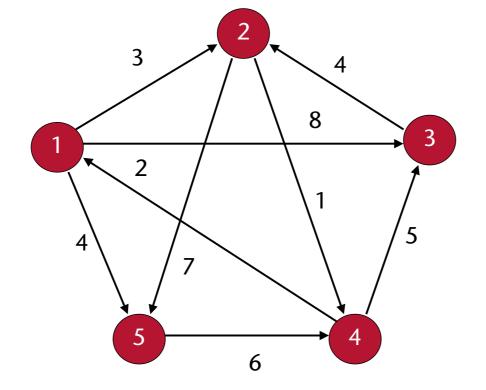
Shortest path matrix D

The Adjacency Matrix Representation of Directed Graphs

- The adjacency matrix A represents the distance function dist
- A is an $n \times n$ matrix $A = (\delta_{ij})$ where

$$\delta_{ij} = \begin{cases} \operatorname{dist}(v_i, v_j), & \text{if } (v_i, v_j) \in E \\ \infty, & \text{if } (v_i, v_j) \notin E \\ 0, & \text{if } i = j \end{cases}$$

• Example:



	1	2	3	4	5
1	0	3	8	∞	4
2	8	0	8	1	7
3	∞	4	0	8	8
4	2	8	5	0	8
5	∞	8	∞	6	0

Adjacency matrix

The Shortest Paths Property

- We will now extend the simple, edge-based distance function to a distance function dist' on paths
- Define

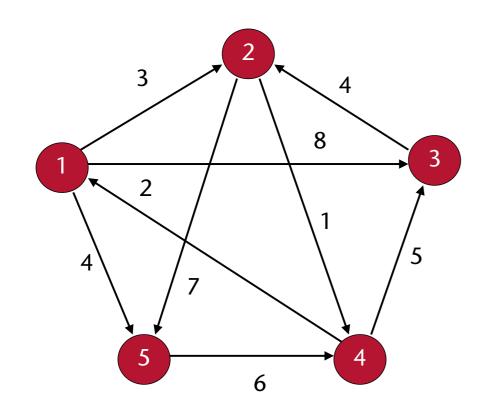
$$\operatorname{dist'}(p_{ij}^1) = egin{cases} 0, & i = j \ \delta_{ij}, & i
eq j \end{cases}$$

• Consider a shortest path $p^{k_{ij}}$ from v_i to v_j such that $|p^k_{ij}| \le k$, i.e., p^k_{ij} can have most k edges

- Let (v_l, v_j) be the last edge of path $p^{k_{ij}}$
- Then, there must be a shortest path p_{il}^{k-1} from v_i to v_l (optimal substructure!)
- Therefore, $\exists l : \mathsf{dist'}(p_{ij}^k) = \mathsf{dist'}(p_{il}^{k-1}) + \delta_{lj}$

A Simple Algorithm for APSP

- Given the adjacency matrix A, compute a series of matrices $D^1=A$, D^2 , ..., D^{n-2} , D^{n-1} where matrix $D^k=\operatorname{dist}'(p_{ij}^k)$ contains lengths of shortest paths in G with at most k edges
- Final matrix D^{n-1} contains the actual shortest paths in G
- Example:



	1	2	3	4	5
1	0	3	8	∞	4
2	∞	0	∞	1	7
3	∞	4	0	∞	∞
4	2	∞	5	0	∞
5	∞	∞	∞	6	0

Adjacency matrix

	1	2	3	4	5
1	0	3	8	4	4
2	3	0	6	1	7
3	∞	4	0	5	11
4	2	5	5	0	6
5	8	8	11	6	0

Matrix *D*²

The Algorithm


```
A = adjacency matrix
D¹ = A
for k = 2 to n-1:
    Dk = ExtendPaths(Dk-1, A)
return Dk
```

```
ExtendPaths( D, A )

In: A (with \delta_{ij}) = n×n adj. matrix

Out: E (with e_{ij}) = n×n dist. matrix

for i = 1 to n:

for j = 1 to n:

eij = d_{ij}

for l = 1 to n:

e_{ij} = min\{e_{ij}, d_{i1} + \delta_{lj}\}

return E
```

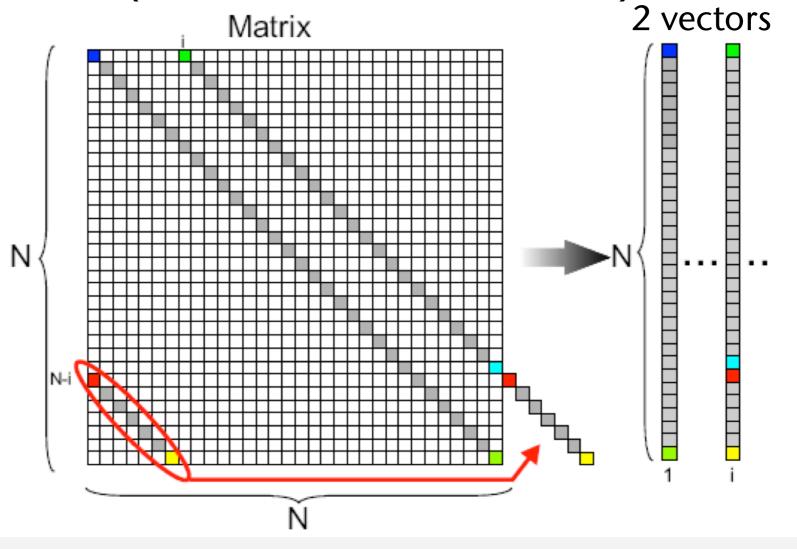
```
\label{eq:matrixMultiply} \begin{subarray}{ll} MatrixMultiply( B, A ) \\ In: A = (\delta_{ij}) = n \times n & input matrix \\ Out: C = (c_{ij}) = n \times n & matrix product \\ for i = 1 & to n: \\ for j = 1 & to n: \\ c_{ij} = 0 & \\ for l = 1 & to n: \\ c_{ij} = c_{ij} + a_{il}.b_{lj} & (*) \\ return C \end{subarray}
```

- Notice the similarity with matrix multiplication
 - We can adapt our fast GPU-based matrix multiplication code to solve the APSP problem quite easily (just replace the operators in line (*)

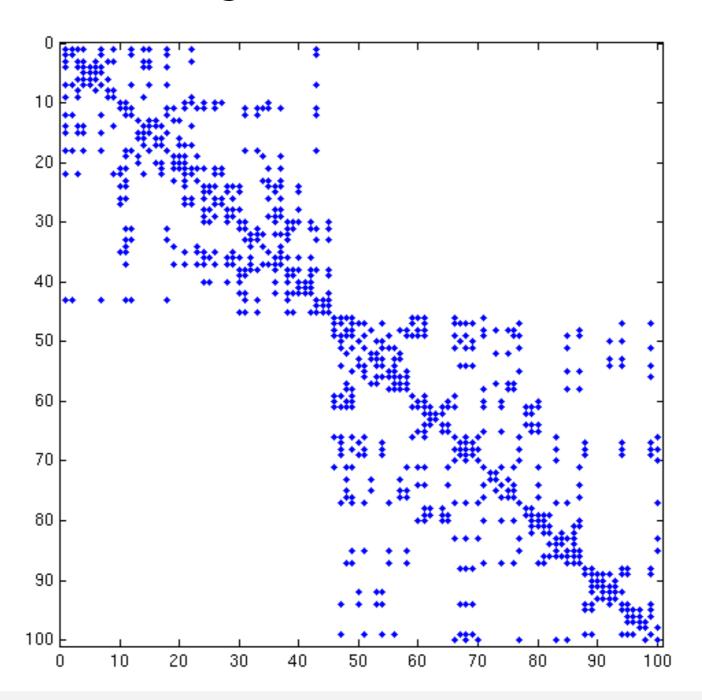
A Word on Sparse Matrices

- Just some remarks
- Frequent case: sparse band matrices
 - Represent matrix as a number of vectors

• Devise specialized parallel algorithm (similar to vector addition)



- Many more kinds of sparse matrices
 - Specialized representation / algorithms for each of them?



Tensor Cores

- One of the biggest increments in the GPU's architecture
- On Volta architecture, each SM has:
 - 64 FP32 cores
 - 64 Int32 cores
 - 32 FP64 cores
 - 8 tensor cores
- Numbers vary a lot from generation to generation!
- Specifically integrated to speed up machine learning
- Different marketing terms: "tensor core" (NVidia),
 "tensor proc. unit" (Google), "neural engine" (Apple),

• • •

43

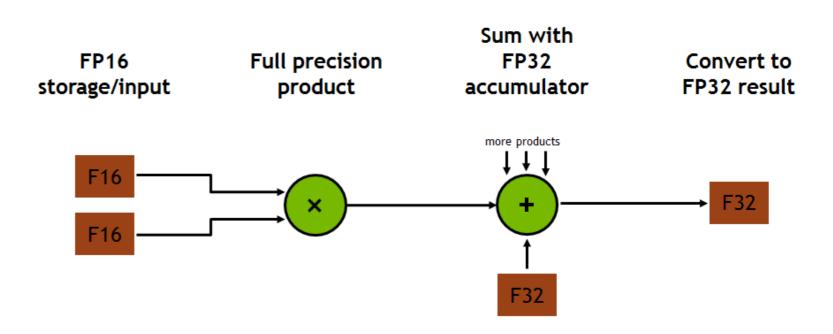
The GA100 Architecture, Just FYI

The Basic Operation of Tensor Cores

• Matrix-Multiply-and-Accumulate (MMA): $D = A \cdot B + C$

where C and D could be the same register, A is $M \times K$, B is $K \times N$, C and D are $M \times N$ matrices

- Usually (often):
 - A, B are 4×4 of type FP16 (__half)
 - *C, D* are 4×4 of FP32 (**float**)
- One MMA = 64 FLOPs in 1 cycle!



- All CUDA libraries use them (cuBLAS, CUB, CUTLASS, cuDNN, ...)
- You can use them in your own kernels, iff all threads within a warp collaborate, i.e., execute the same MMA instructions
- Idea:
 - Each warp computes an MMA for bigger matrices
 - All warps together compute big matrix multiplication in tiled fashion
- Example tiling:
 - You kernel partitions the big matrix into 16×16 tiles
 - Each warp works on one 16×16 tile
 - Distribution of one tile into 4×4 tensor core operations is done by GPU scheduler

Minimal Example: 16×16 Matrix Multiplication


```
#include <mma.h>
      using namespace nvcuda::wmma;
        global void wmma example( half* a, half* b, float* c )
        // Declare the fragments
        fragment<matrix_a, 16, 16, 16, half, col_major> frags_of_a; A warp will work on 16×16
All data types and functions are
                                                                                  matrices, each thread in the warp
        fragment<matrix b, 16, 16, 16, half, col major> frags of b;
                                                                                  will work on a "fragment" of
         fragment<accumulator, 16, 16, 16, float> frags of acc;
                                                                                  those matrices
       + fill fragment( frags of acc, 0.0f );
                                                                                  Clear the accumulator
  provided by
        // Load the inputs
        load matrix sync( frags_of_a, a, 16 );
                                                                                  All threads load "their" fragments
        load matrix_sync( frags_of_b, b, 16 );
                                                                                  of matrix a/b, resp., into the
                                                                                  registers ("sync" says they work in
        // Perform the matrix multiplication
                                                                                  sync)
        mma sync( acc frag, frags of a, frags of b, frags of acc );
                                                                                  Here, the actual multiplication
        // Store the output
                                                                                  happens, using all the tensor
         store_matrix_sync( c, frags_of_acc, 16, mem_col_major );
                                                                                  cores of the SM in collaboration
```

Matrix Algorithms

Declarations of Some of the Functions/Types in mma.h (Just FYI)


```
template< typename Use, int m, int n, int k,
          typename T, typename Layout=void > class fragment;
void load matrix sync( fragment<...> &a,
                       const T* mptr, unsigned ldm );
void store_matrix_sync( T* mptr, const fragment<...> &a,
                        unsigned ldm, layout t layout);
void fill fragment( fragment<...> &a, const T& v );
void mma sync( fragment<...> &d, const fragment<...> &a,
               const fragment<...> &b, const fragment<...> &c);
```

All threads together will declare their fragments, which together will form a tile/block of the matrix

Waits until all threads in a warp are at this load instruction, then loads the tile/block from memory

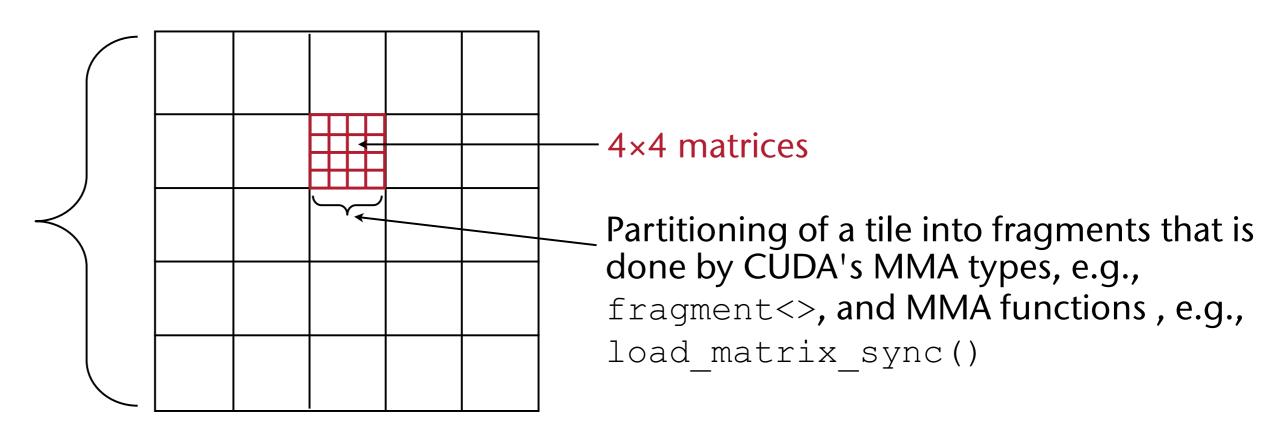
Same as load_matrix

Performs warpsynchronous matrix multiply-accumulate

High-Level Procedure for Matrix-Matrix Multiplication Using Tensor Cores


```
each block of threads works on one tile of the output P
each warp loads a 16×16 tile of A and B into shared memory:
A,B are usually stored in row or column major, so threads need
to do some offset calculations and re-arrangements
each warp multiplies the tiles and accumulates results
(the GPU partitions the work into 4×4 matrix multiplications automagically)
each warp stores the result in P
```

Partitioning of the big matrices into tiles (e.g., tiles of size 16×16) that you must do yourself



Performance

Matrix-matrix multiplication (GEMM)

cuBLAS Mixed Precision (FP16 Input, FP32 compute)

