
7/12/10

1

G. Zachmann Informatik 2 - SS 10 Numerische Robustheit 33

C
G
C

C
G
C Der Fehler der naiven Summationsformel

  Sei eine Folge von Zahlen gegeben

  Betrachte zunächst den
"kanonischen" Algorithmus zur
Summation:

 Der Fehler im Endergebnis:

 Setze

 Der Fehler in sn ist somit

wobei die

x1, . . . , xn ∈ F

s = 0
for i = 1,...,n:
 s += x_i

s1 = x1 , s2 = s1 ⊕ x2 , . . . , si = si−1 ⊕ xi

sn = (sn−1 + xn)(1 + δn)

= (sn−2 + xn−1)(1 + δn−1)(1 + δn) + xn(1 + δn)

≈
n�

j=1

xj

�
1 +

n�

k=j

δk

�
=

n�

j=1

xj +
n�

j=1

xj

�
n�

k=j

δk

�

|δi | ≤ εm

G. Zachmann Informatik 2 - SS 10 Numerische Robustheit 34

C
G
C

C
G
C

  Indem man alle Delta's nach oben abschätzt, kann man sn nach
oben abschätzen:

 Damit wird der relative Fehler des Algorithmus':

sn ≤
n�

j=1

xj + nεm

n�

j=1

xj

|sn −
�n

j=1 xj |
|
�n

j=1 xj |
≤ nεm

7/12/10

2

G. Zachmann Informatik 2 - SS 10 Numerische Robustheit 35

C
G
C

C
G
C Die "Kahan Summation Formula"

 Der Kahan-Algorithmus heißt auch kompensierte Summation :

s = x[1]
c = 0.0
for j = 2,...,n:
 y = x[j] + c
 t = s + y
 c = y - (t – s)
 s = t

s

 yh yl

t

+

yh

s —

y

yh

yl

—

c = ← Korrekturterm in der nächsten Iteration

G. Zachmann Informatik 2 - SS 10 Numerische Robustheit 36

C
G
C

C
G
C

 Der relative Fehler von Kahan's Summation Algorithm ist:

|sn −
�n

j=1 xj |
|
�n

j=1 xj |
≤ 2εm + O

�
nε2

m

�

7/12/10

3

G. Zachmann Informatik 2 - SS 10 Numerische Robustheit 37

C
G
C

C
G
C

  Ein alternativer Ansatz: verwende rekursiv eine Kaskade von
TwoSum's

TwoSum TwoSum TwoSum . . .

TwoSum TwoSum . . .

. . .

x1

x2 x3 xn

r2 r3 rn

s2 s3 sn

sn' ⊕

G. Zachmann Informatik 2 - SS 10 Numerische Robustheit 38

C
G
C

C
G
C Cancellation

 Definition Cancellation (Auslöschung):
Seien x und y zwei Floats, die N signifikante Stellen haben.
Falls x und y auf den ersten k Stellen übereinstimmen, dann hat
das Resultat von x—y nur noch N—k signifikante Stellen.

  Catastrophic Cancellation:
Von catastrophic cancellation spricht man dann,
wenn N—k "klein" ist,
z.B. N—k = 0,...,2 .

  Beispiel: die Funktion

sollte im Nullpunkt = ½ sein.

(1− cos(x))/x2

7/12/10

4

G. Zachmann Informatik 2 - SS 10 Numerische Robustheit 39

C
G
C

C
G
C Bsp.: Korrektes Lösen von quadratischen Gleichungen

  Aufgabe: bestimme die Nullstellen von

(im Folgenden oBdA die Annahme, daß b > 0)

  Schulmethode:

  Problem: falls

 Dann ist → Cancellation bei x1

 Korrekte Lösung für x1:

  Analog falls b < 0

ax2 + bx + c = 0

x1 =
−b +

√
b2–4ac

2a
, x2 =

−b −
√

b2–4ac

2a

ac � b2

√
b2–4ac ≈ |b|

x1 =
2c

−b −
√

b2–4ac

G. Zachmann Informatik 2 - SS 10 Numerische Robustheit 40

C
G
C

C
G
C Beispiel: Auswertung von Polynomen

 Gegeben:

  "Falschest-mögliche" Art der Implementierung:

  Fast genauso falsch ist diese
(hier am Beispiel eines kleinen, konstanten Grades):

p(x) =
n�

i=0

pix
i

p = 0
for i = 0 ... n:
 p += p[i] * pow(x,i)

p = p[0] + p[1]*x + p[2]*x*x + p[3]*x*x*x

7/12/10

5

G. Zachmann Informatik 2 - SS 10 Numerische Robustheit 41

C
G
C

C
G
C

 Die korrekte Methode: Horner-Schema

  Pseudo-Code:

p(x) = (· · · ((pnx + pn−1)x + pn−2) · · · + p0)

p = p[n]
for i = n-1 ... 0:
 p = p*x + p[i]

G. Zachmann Informatik 2 - SS 10 Numerische Robustheit 42

C
G
C

C
G
C

  Example of failure:

 Wahrer Wert = 10-24

  Auswertung der expandierten Form

mittels Horner-Schema (implementiert mit double)
liefert 0.0 !

p(x) = (x − 2)4 mit x = 2.0 + 1E − 6

p(x) = x4 − 8x3 + 24x2 − 32x + 16

7/12/10

6

G. Zachmann Informatik 2 - SS 10 Numerische Robustheit 43

C
G
C

C
G
C

 Grund: catastrophic cancellation

  In jedem Schleifendurchlauf werden Zahlen der Größenordnung
10..100 addiert

 Aber: unterschiedliche Vorzeichen

 Um auf 10-24 zu kommen, müsste bis zum Schluß 10-24 in Zahlen der
Größenordnung ~10 erhalten bleiben

 Aber: das Maschinen-Epsilon für Doubles ist 2-53 ≈ 10-16

  Fazit (u.a.): Nullstellensuche geht schief!

G. Zachmann Informatik 2 - SS 10 Numerische Robustheit 44

C
G
C

C
G
C Overflow-Errors

 Overflow-Error:

 Entsteht immer dann, wenn das Ergebnis einer Rechenoperation
außerhalb des darstellbaren Bereich liegt (bzw. liegen würde)

 Z.B. bei 1020 / 10-20 in single-precision (float)

 Zeigt sich meistens daran, daß (einige) Ergebnisse den Wert Inf oder
NaN haben

7/12/10

7

G. Zachmann Informatik 2 - SS 10 Numerische Robustheit 45

C
G
C

C
G
C Beispiel: eine robuste Betragsoperation für komplexe Zahlen

  Betrag einer komplexen Zahl:

  Problem: Overflow ab

  Bessere Rechnung:

|a + ib| =
√

a2 + b2

1E19

1E38

Re

Im

|a|, |b| � 1019

|a + ib| =






|a|·
�

1 +
�

b
a

�2
, |a| ≥ |b|

|b|·
�

1 +
�

a
b

�2
, |a| < |b|

G. Zachmann Informatik 2 - SS 10 Numerische Robustheit 46

C
G
C

C
G
C Beispiel: Berechnung des Schnitts zwischen Gerade und Ebene

  Ebene E ist gegeben durch

 Gerade L ist gegeben durch

  Lösung für den Schnittpunkt Q ist

A

Q

n

r

B
(X − A)n = 0

X = B + tr

t∗ =
(A− B)n

r·n
Q = B + t∗r

7/12/10

8

G. Zachmann Informatik 2 - SS 10 Numerische Robustheit 47

C
G
C

C
G
C

 Was ist, wenn L und E (fast) parallel sind?

 Dann wird der Nenner in

ungefähr 0, und damit t* = Inf!

  Fazit: im Programm bei Division den Nenner immer auf 0 testen:

t∗ =
(A− B)n

r·n

Vector3d A, B, n, r;

float denom = dotprod(n, r);
if (denom ist ungefähr 0.0)
 # Ebene und Gerade sind (ungefähr) parallel
 Spezialbehandlung ...
else
 Vector3d ab = vecsub(A, B);
 t = dotprod(ab, n) / denom;
 ...

G. Zachmann Informatik 2 - SS 10 Numerische Robustheit 48

C
G
C

C
G
C

if (x == 0.0)

  Achtung: wer

schreibt, wird dazu verdammt, den Rest seines Lebens in Lisp zu
programmieren!

  Ein Lisp-Beispiel:

 Um fair zu bleiben: Lisp ist eine sehr interessante Sprache ...

(define (dismiss lst x k)
 (cond ((null? lst) ())
 ((= (remainder x k) 0) (dismiss (cdr lst) (+ 1 x) k))
 ((cons (car lst) (dismiss (cdr lst) (+ 1 x) k)))))

7/12/10

9

G. Zachmann Informatik 2 - SS 10 Numerische Robustheit 49

C
G
C

C
G
C Ein robuster Test auf "Gleichheit" mit Epsilon-Guard

  Aufgabe: teste, ob zwei Floats x und y "fast gleich" sind, unter
Berücksichtigung der Darstellungspräzision

  Erster Ansatz:

 Welchen Wert soll epsilon haben?

 Nächster Ansatz:

 Was ist, wenn y ≈ 0? Außerdem ist Division relativ teuer

if (abs(x - y) <= epsilon)

if ((abs(x - y) / y) <= epsilon)

G. Zachmann Informatik 2 - SS 10 Numerische Robustheit 50

C
G
C

C
G
C

  Beste Lösung:

 Achtung: wichtig ist <= , nicht < !

  Allerbeste Lösung: Aus dem Wissen über die Anwendung
(Simulation von Sonnensystem oder Simulation von Molekülen?)
den Skalierungsfaktor für epsilon ableiten

 Oder, falls Daten verarbeitet werden: einmal vorab alle Daten scannen
und daraus epsilon ableiten

  Bemerkung: "Epsilon-Gleichheit" ist nicht transitiv!

if (abs(x-y) <= max(abs(x), abs(y)) * epsilon)

7/12/10

10

G. Zachmann Informatik 2 - SS 10 Numerische Robustheit 51

C
G
C

C
G
C Robuste geometrische Prädikate

  Bemerkung: unter Rundungsfehlern (d.h. Rechnen mit Floats /
Doubles) entsteht in geometrischen Algorithmen oft folgendes
Bild

Q̃

G. Zachmann Informatik 2 - SS 10 Numerische Robustheit 52

C
G
C

C
G
C

  Beispiel für ein Prädikat "Punkt ist auf Ebene":
 OnPlane(X;E) = true ⇔
 Punkt X befindet sich in der Ebene E

  Lösung mit Epsilon-Guard bedeutet:
teste

 Geometrische Interpretation:
"fette Ebene" Q

A(Q − A)n ≤ εm max(�Q�, �A�)

7/12/10

11

G. Zachmann Informatik 2 - SS 10 Numerische Robustheit 53

C
G
C

C
G
C Numerische Instabilität

  Stabilitätsfehler: ein Algorithmus ist numerisch instabil, wenn
kleine Fehler am Anfang später große Fehler verursachen

  Am Beispiel "Schnitt zwischen Gerade und Ebene":

PQ P'Q'

e

PQ

e

P'Q'

G. Zachmann Informatik 2 - SS 10 Numerische Robustheit 54

C
G
C

C
G
C Exakte Arithmetik

  Idee:

  Implementiere eine "Bignum"-Klasse, die Integer-Zahlen mit beliebig
vielen Stellen repräsentieren kann

  Implementiere darüber eine Klasse, die die rationalen Zahlen
repräsentiert

  Implementiere die üblichen Infix-Operatoren (+, -, *, /) und
transzendenten Funktionen (sqrt, sin, cos, ...) durch Operator- und
Funktionen-Overloading

 Rechne nur noch mit Zahlen in

  Vorteil: Algorithmen können trivial umgeschrieben werden

 Nachteile:

 Zähler und Nenner werden schnell riesig

 Ständiges Kürzen kostet sehr viel Zeit

Q

Q

7/12/10

12

G. Zachmann Informatik 2 - SS 10 Numerische Robustheit 55

C
G
C

C
G
C Interval arithmetic

  Idee: rechne mit Intervallen, die die gesuchte / berechnete Zahl
garantiert einschließt:

 Variablen = Intervalle

 Z.B.: x = [1,3] = { x ∈ R | 1 ≤ x ≤ 3 }

  Rechenregeln für die arithmetischen Operatoren:

 Dabei muß für die Berechnung der oberen bzw. unteren Schranke die
Rundung der FPU auf "always round down" bzw. "always round up"
gestellt werden!

[a, b] + [c , d] = [a + c , b + d]

[a, b]− [c , d] = [a − d , b − c]

[a, b]× [c , d] = [min(ac , ad , bc , bd), max(ac , ad , bc , bd)]

[a, b]/[c , d] = [a, b]× [1/d , 1/c] for 0 �∈ [c , d]

G. Zachmann Informatik 2 - SS 10 Numerische Robustheit 56

C
G
C

C
G
C

  Beispiel: [100,101] + [10,12] = [110,113]

7/12/10

13

G. Zachmann Informatik 2 - SS 10 Numerische Robustheit 58

C
G
C

C
G
C Das Minimum an Take-Home Messages

  Achtung bei Division (teste auf "ungefähr Null" !) ...

  ... und bei Subtraktion (Cancellation!)

  Bei Akkumulationsschleifen: wie groß kann die Summe werden?
wie groß sind im Verhältnis dazu die Summanden?

  Speichere Floats als float, rechne zur Laufzeit mit double (d.h.,
deklariere lokale Variablen immer als double)

  (In Python ist float = double)

  Extra-Vorsicht bei Casts (insbesondere von Float nach Integer!)

G. Zachmann Informatik 2 - SS 10 Numerische Robustheit 59

C
G
C

C
G
C Literatur

 David Goldberg: What Every Computer Scientist Should Know About
Floating-Point Arithmetic. March, 1991, Computing Surveys.

  Kahan & Darcy: How Java's Floating-Point Hurts Everyone
Everywhere. March 1998, ACM Workshop on Java for High-
Performance Computing, Stanford.

 W. Kahan: How Futile are Mindless Assessments of Roundoff in
Floating-Point Computation? Jan 2006.

  Press, Teukolsky, Vetterling, Flannery: Numerical Recipes.

