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C Der Fehler der naiven Summationsformel 

  Sei eine Folge von Zahlen                           gegeben 

  Betrachte zunächst den  
"kanonischen" Algorithmus zur  
Summation: 

 Der Fehler im Endergebnis: 

 Setze 

 Der Fehler in sn ist somit  

wobei die   

x1, . . . , xn ∈ F

s = 0 
for i = 1,...,n: 
   s += x_i 

s1 = x1 , s2 = s1 ⊕ x2 , . . . , si = si−1 ⊕ xi

sn = (sn−1 + xn)(1 + δn)

= (sn−2 + xn−1)(1 + δn−1)(1 + δn) + xn(1 + δn)
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|δi | ≤ εm
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  Indem man alle Delta's nach oben abschätzt, kann man sn nach 
oben abschätzen: 

 Damit wird der relative Fehler des Algorithmus': 

sn ≤
n�

j=1

xj + nεm

n�

j=1

xj

|sn −
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j=1 xj |
|
�n

j=1 xj |
≤ nεm
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 Der Kahan-Algorithmus heißt auch kompensierte Summation : 

s = x[1] 
c = 0.0 
for j = 2,...,n: 
   y = x[j] + c 
   t = s + y 
   c = y - (t – s) 
   s = t 

s 
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c =  ← Korrekturterm in der nächsten Iteration 
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 Der relative Fehler von Kahan's Summation Algorithm ist: 

|sn −
�n

j=1 xj |
|
�n

j=1 xj |
≤ 2εm + O

�
nε2

m
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  Ein alternativer Ansatz: verwende rekursiv eine Kaskade von 
TwoSum's 

TwoSum TwoSum TwoSum .   .  . 

TwoSum TwoSum .   .  . 

.   .  . 

x1 

x2 x3 xn 

r2 r3 rn 

s2 s3 sn 

sn' ⊕
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 Definition Cancellation (Auslöschung): 
Seien x und y zwei Floats, die N signifikante Stellen haben. 
Falls x und y auf den ersten k Stellen übereinstimmen, dann hat 
das Resultat von  x—y   nur noch  N—k signifikante Stellen. 

  Catastrophic Cancellation: 
Von catastrophic cancellation spricht man dann,  
wenn  N—k  "klein" ist,  
z.B. N—k = 0,...,2 . 

  Beispiel: die Funktion 

sollte im Nullpunkt = ½ sein. 

(1− cos(x))/x2



7/12/10 

4 

G. Zachmann      Informatik 2  -  SS 10 Numerische Robustheit      39 

C 
G 
C 

C 
G 
C Bsp.: Korrektes Lösen von quadratischen Gleichungen 

  Aufgabe: bestimme die Nullstellen von 

(im Folgenden oBdA die Annahme, daß  b > 0) 

  Schulmethode: 

  Problem: falls   

 Dann ist                                       → Cancellation bei x1 

 Korrekte Lösung für x1: 

  Analog falls b < 0 

ax2 + bx + c = 0

x1 =
−b +

√
b2–4ac

2a
, x2 =

−b −
√

b2–4ac

2a

ac � b2

√
b2–4ac ≈ |b|

x1 =
2c

−b −
√

b2–4ac
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 Gegeben: 

  "Falschest-mögliche" Art der Implementierung: 

  Fast genauso falsch ist diese  
(hier am Beispiel eines kleinen, konstanten Grades): 

p(x) =
n�

i=0

pix
i

p = 0 
for i = 0 ... n: 
   p += p[i] * pow(x,i) 

p = p[0] + p[1]*x + p[2]*x*x + p[3]*x*x*x 
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 Die korrekte Methode: Horner-Schema 

  Pseudo-Code: 

p(x) = (· · · ((pnx + pn−1)x + pn−2) · · · + p0)

p = p[n] 
for i = n-1 ... 0: 
    p = p*x + p[i] 
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  Example of failure: 

 Wahrer Wert  =  10-24 

  Auswertung der expandierten Form  

mittels Horner-Schema (implementiert mit double) 
liefert 0.0 ! 

p(x) = (x − 2)4 mit x = 2.0 + 1E − 6

p(x) = x4 − 8x3 + 24x2 − 32x + 16
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 Grund: catastrophic cancellation 

  In jedem Schleifendurchlauf werden Zahlen der Größenordnung 
10..100 addiert 

 Aber: unterschiedliche Vorzeichen 

 Um auf 10-24 zu kommen, müsste bis zum Schluß 10-24 in Zahlen der 
Größenordnung ~10 erhalten bleiben 

 Aber: das Maschinen-Epsilon für Doubles ist 2-53 ≈ 10-16 

  Fazit (u.a.): Nullstellensuche geht schief!  
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 Overflow-Error: 

 Entsteht immer dann, wenn das Ergebnis einer Rechenoperation 
außerhalb des darstellbaren Bereich liegt (bzw. liegen würde) 

 Z.B. bei  1020 / 10-20  in single-precision (float) 

 Zeigt sich meistens daran, daß (einige) Ergebnisse den Wert Inf oder 
NaN haben 
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  Betrag einer komplexen Zahl: 

  Problem: Overflow ab   

  Bessere Rechnung: 

|a + ib| =
√

a2 + b2

1E19 

1E38 

Re 

Im 

|a|, |b| � 1019

|a + ib| =






|a|·
�

1 +
�

b
a

�2
, |a| ≥ |b|

|b|·
�

1 +
�

a
b

�2
, |a| < |b|
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C Beispiel: Berechnung des Schnitts zwischen Gerade und Ebene 

  Ebene E ist gegeben durch  

 Gerade L ist gegeben durch 

  Lösung für den Schnittpunkt Q ist 

A 

Q 

n 

r 

B 
(X − A)n = 0

X = B + tr

t∗ =
(A− B)n

r·n
Q = B + t∗r
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 Was ist, wenn L und E (fast) parallel sind? 

 Dann wird der Nenner in 

ungefähr 0, und damit t* = Inf!  

  Fazit: im Programm bei Division den Nenner immer auf 0 testen: 

t∗ =
(A− B)n

r·n

Vector3d A, B, n, r; 

float denom = dotprod( n, r ); 
if ( denom ist ungefähr 0.0 ) 
    # Ebene und Gerade sind (ungefähr) parallel 
    Spezialbehandlung ... 
else 
    Vector3d ab = vecsub( A, B ); 
    t = dotprod( ab, n ) / denom; 
    ... 
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if ( x == 0.0 ) 

  Achtung: wer  

schreibt, wird dazu verdammt, den Rest seines Lebens in Lisp zu 
programmieren! 

  Ein Lisp-Beispiel: 

 Um fair zu bleiben: Lisp ist eine sehr interessante Sprache ... 

(define (dismiss lst x k) 
  (cond ((null? lst) ()) 
    ((= (remainder x k) 0) (dismiss (cdr lst) (+ 1 x) k)) 
    ((cons (car lst) (dismiss (cdr lst) (+ 1 x) k))))) 
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C Ein robuster Test auf "Gleichheit" mit Epsilon-Guard 

  Aufgabe: teste, ob zwei Floats x und y "fast gleich" sind, unter 
Berücksichtigung der Darstellungspräzision 

  Erster Ansatz: 

 Welchen Wert soll epsilon haben? 

 Nächster Ansatz: 

 Was ist, wenn y ≈ 0? Außerdem ist Division relativ teuer 

if ( abs(x - y) <= epsilon ) 

if ( (abs(x - y) / y) <= epsilon ) 
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  Beste Lösung: 

 Achtung: wichtig ist  <= , nicht < ! 

  Allerbeste Lösung: Aus dem Wissen über die Anwendung 
(Simulation von Sonnensystem oder Simulation von Molekülen?) 
den Skalierungsfaktor für epsilon ableiten 

 Oder, falls Daten verarbeitet werden: einmal vorab alle Daten scannen 
und daraus epsilon ableiten 

  Bemerkung: "Epsilon-Gleichheit" ist nicht transitiv! 

if ( abs( x-y ) <= max(abs(x), abs(y)) * epsilon ) 



7/12/10 

10 

G. Zachmann      Informatik 2  -  SS 10 Numerische Robustheit      51 

C 
G 
C 

C 
G 
C Robuste geometrische Prädikate 

  Bemerkung: unter Rundungsfehlern (d.h. Rechnen mit Floats / 
Doubles) entsteht in geometrischen Algorithmen oft folgendes 
Bild 

Q̃
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  Beispiel für ein Prädikat "Punkt ist auf Ebene":   
          OnPlane(X;E) = true ⇔  
          Punkt X befindet sich in der Ebene E  

  Lösung mit Epsilon-Guard bedeutet:  
teste  

 Geometrische Interpretation: 
"fette Ebene" Q

A(Q − A)n ≤ εm max(�Q�, �A�)
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C Numerische Instabilität 

  Stabilitätsfehler: ein Algorithmus ist numerisch instabil, wenn 
kleine Fehler am Anfang später große Fehler verursachen 

  Am Beispiel "Schnitt zwischen Gerade und Ebene": 

PQ P'Q' 

e 

PQ 

e 

P'Q' 
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  Idee: 

  Implementiere eine "Bignum"-Klasse, die Integer-Zahlen mit beliebig 
vielen Stellen repräsentieren kann 

  Implementiere darüber eine Klasse, die die rationalen Zahlen  
repräsentiert 

  Implementiere die üblichen Infix-Operatoren (+, -, *, /) und 
transzendenten Funktionen (sqrt, sin, cos, ...) durch Operator- und 
Funktionen-Overloading 

 Rechne nur noch mit Zahlen in  

  Vorteil: Algorithmen können trivial umgeschrieben werden 

 Nachteile: 

 Zähler und Nenner werden schnell riesig 

 Ständiges Kürzen kostet sehr viel Zeit 

Q

Q
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  Idee: rechne mit Intervallen, die die gesuchte / berechnete Zahl 
garantiert einschließt: 

 Variablen = Intervalle 

 Z.B.: x = [1,3] = { x ∈ R | 1 ≤ x ≤ 3 } 

  Rechenregeln für die arithmetischen Operatoren: 

 Dabei muß für die Berechnung der oberen bzw. unteren Schranke die 
Rundung der FPU auf "always round down" bzw. "always round up" 
gestellt werden! 

[a, b] + [c , d ] = [a + c , b + d ]

[a, b]− [c , d ] = [a − d , b − c]

[a, b]× [c , d ] = [min(ac , ad , bc , bd), max(ac , ad , bc , bd)]

[a, b]/[c , d ] = [a, b]× [1/d , 1/c] for 0 �∈ [c , d ]
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  Beispiel: [100,101] + [10,12] = [110,113] 
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  Achtung bei Division (teste auf "ungefähr Null" !) ... 

  ... und bei Subtraktion (Cancellation!) 

  Bei Akkumulationsschleifen: wie groß kann die Summe werden? 
wie groß sind im Verhältnis dazu die Summanden? 

  Speichere Floats als float, rechne zur Laufzeit mit double (d.h., 
deklariere lokale Variablen immer als double) 

  (In Python ist  float = double) 

  Extra-Vorsicht bei Casts (insbesondere von Float nach Integer!) 
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