Der Fehler der naiven Summationsformel

= Sei eine Folge von Zahlen xi, ..., x, € F gegeben

= Betrachte zunachst den

"kanonischen" Algorithmus zur
Summation:

s =0
for i =1,...,n:

s += x i

= Der Fehler im Endergebnis:

=Setze S1=X1, HS=5DXp,..., 5§§=S_1DX;
= Der Fehler in s, ist somit

Sn = (Sn—1+ Xn)(1 4 0p)
= (Sp—2 + Xn—1)(L + 0p-1) (1 + 6n) + xa(1 + 1)

~ ij<1+z5k> = Z’Q‘*’Z@(Z‘Sk)
Jj=1 k=j Jj=1 J=1 k=j
wobei die |0;| < ep

G. Zachmann Informatik 2 - SS 10

Numerische Robustheit 33

® |ndem man alle Delta's nach oben abschatzt, kann man s, nach
oben abschatzen:

n n
sh < E Xj + NEm E X;
=1 j=1

= Damit wird der relative Fehler des Algorithmus':

n
Sn — 1 Xj
EED T

DY/

G. Zachmann Informatik 2 - SS 10 Numerische Robustheit 34

7/12/10

: . . @.’ﬂ
s Die "Kahan Summation Formula" >
= Der Kahan-Algorithmus heillt auch kompensierte Summation :

s = x[1] | S |
c=0.0
for j = 2,...,n: + | Yh Y1 |
y = x[j] + ¢
t=s+y
c=y- (t-s) | t |
s =t
= | ; |
| y |
=
c= «— Korrekturterm in der nachsten Iteration
G. Zachmann Informatik 2 - SS 10 Numerische Robustheit 35

= Der relative Fehler von Kahan's Summation Algorithm ist:

|50 — 2271 X
[25 %l

< 2e, + O(ne?)

G. Zachmann Informatik 2 - SS 10 Numerische Robustheit 36

7/12/10

A @?i
n § 7
= Ein alternativer Ansatz: verwende rekursiv eine Kaskade von
TwoSum's
X2 X3 Xn
2 53
X7 —>| TwoSum > TwoSum > —>{ TwoSum |—> Sn
rz rs I'n
TwoSum —> — > TwoSum |—> Sn -
G. Zachmann Informatik 2 - SS 10 Numerische Robustheit 37
s .

Cancellation

= Definition Cancellation (Ausldschung):

Seien x und y zwei Floats, die N signifikante Stellen haben.

Falls x und y auf den ersten k Stellen Gbereinstimmen, dann hat

das Resultat von x—y nur noch N—k signifikante Stellen.

= Catastrophic Cancellation:
Von catastrophic cancellation spricht man dann,

wenn N—k "klein" ist,
z.B.N—k=0,...,2.

= Beispiel: die Funktion
(1 — cos(x))/x?

sollte im Nullpunkt = %2 sein.

G. Zachmann Informatik 2 - SS 10

:::::

Numerische Robustheit

38

7/12/10

Bsp.: Korrektes Losen von quadratischen Gleichungen

= Aufgabe: bestimme die Nullstellen von
ax® +bx+c=0
(im Folgenden oBdA die Annahme, dall b > 0)
= Schulmethode:

—b+ vV b?>-4ac N —b — v b%>-4ac
2 p—

= 2a ' 2a

® Problem: falls ac < b?
*Dannist V b?>-4ac ~ |b| — Cancellation bei x;

= Korrekte Losung fur xq:

2c
—b — v/ b?>-4ac

X1 =

= Analog falls b < 0

G. Zachmann Informatik 2 - SS 10

Numerische Robustheit 39

@“:
- y 4

L

Beispiel: Auswertung von Polynomen

= Gegeben:

p(x) = Z pix’
i=0

= "Falschest-mdgliche" Art der Implementierung:

p=20
for i =0 ... n:

p += pl[i] * pow(x,1i)

® Fast genauso falsch ist diese
(hier am Beispiel eines kleinen, konstanten Grades):

‘P = p[0] + pl[1]l*x + p[2]*x*x + p[3]*x*x*x ‘

G. Zachmann Informatik 2 - SS 10 Numerische Robustheit 40

7/12/10

7/12/10

= Die korrekte Methode: Horner-Schema

p(x) = (- ((Px + Pa-1)X + Pn-2) - = + Po)

= Pseudo-Code:

p = pln]
for i =n-1 ... 0:
P = p*x + plil]
G. Zachmann Informatik 2 - SS 10 Numerische Robustheit 41

= Example of failure:
p(x)=(x—2)* mit x=20+1E—6
= Wahrer Wert = 1024
= Auswertung der expandierten Form
p(x) = x* — 8x> + 24x* — 32x + 16

mittels Horner-Schema (implementiert mit double)
liefert 0.0 !

G. Zachmann Informatik 2 - SS 10 Numerische Robustheit 42

® Grund: catastrophic cancellation

= In jedem Schleifendurchlauf werden Zahlen der GroRenordnung
10..100 addiert

= Aber: unterschiedliche Vorzeichen

= Um auf 1024 zu kommen, musste bis zum Schluf 1024 in Zahlen der
GrolRenordnung ~10 erhalten bleiben

= Aber: das Maschinen-Epsilon fiir Doubles ist 233 = 1016

® Fazit (u.a.): Nullstellensuche geht schief!

G. Zachmann Informatik 2 - SS 10 Numerische Robustheit 43

Overflow-Errors

= Overflow-Error:

= Entsteht immer dann, wenn das Ergebnis einer Rechenoperation
auBerhalb des darstellbaren Bereich liegt (bzw. liegen wiirde)

= Z.B. bei 1020/1020 in single-precision (float)

= Zeigt sich meistens daran, daf (einige) Ergebnisse den Wert Inf oder
NaN haben

G. Zachmann Informatik 2 - SS 10 Numerische Robustheit 44

7/12/10

Beispiel: eine robuste Betragsoperation fiir komplexe Zahlen

= Betrag einer komplexen Zahl:

|a+ ib| = Va®+ b?

= Problem: Overflow ab

|al, |6 2 10

1E19

= Bessere Rechnung:

lal-\/1+ (8)* . lal > [b|
la+ib| =

b]-/1+(2) . |al < |b|

G. Zachmann Informatik 2 - SS 10 Numerische Robustheit 45

Beispiel: Berechnung des Schnitts zwischen Gerade und Ebene

= Ebene E ist gegeben durch
(X=ANn=0
= Gerade L ist gegeben durch A
X=B+tr Q

= L6sung fir den Schnittpunkt Q ist
_(A-B)n

r-n

t* Q=B+ t'r

G. Zachmann Informatik 2 - SS 10

Numerische Robustheit 46

=

7/12/10

ity

= Was ist, wenn L und E (fast) parallel sind?

= Dann wird der Nenner in
(A= B)n
r-n

th =

ungefahr 0, und damit t* = Inf!

= Fazit: im Programm bei Division den Nenner immer auf O testen:

Vector3d A, B, n, r;
float denom = dotprod(n, r);
if (denom ist ungeféhr 0.0)
Ebene und Gerade sind (ungefahr) parallel
Spezialbehandlung ...
else
Vector3d ab = vecsub(A, B);
t = dotprod(ab, n) / denom;

G. Zachmann Informatik 2 - SS 10 Numerische Robustheit 47

L

= Achtung: wer a\

r

if (x42=N070)]

schreibt, wird dazu verdammt, den Rest seines Lebens in Lisp zu
programmieren!

= Ein Lisp-Beispiel:

(define (dismiss lst x k)
(cond ((null? 1st) ())
((= (remainder x k) 0) (dismiss (cdr 1lst) (+ 1 x) k))
((cons (car 1lst) (dismiss (cdr 1lst) (+ 1 x) k)))))

= Um fair zu bleiben: Lisp ist eine sehr interessante Sprache ...

G. Zachmann Informatik 2 - SS 10 Numerische Robustheit 48

7/12/10

Ein robuster Test auf "Gleichheit" mit Epsilon-Guard

= Aufgabe: teste, ob zwei Floats x und y "fast gleich" sind, unter
Berticksichtigung der Darstellungsprazision

= Erster Ansatz:

if (abs(x - y) <= epsilon)

= Welchen Wert soll epsilon haben?

= Nachster Ansatz:

if ((abs(x - y) / y) <= epsilon)

= Was ist, wenn y = 0? AuRerdem ist Division relativ teuer

G. Zachmann Informatik 2 - SS 10 Numerische Robustheit 49

L

= Beste Losung:

if (abs(x-y) <= max(abs(x), abs(y)) * epsilon)

= Achtung: wichtig ist <= , nicht<'!

= Allerbeste Losung: Aus dem Wissen Uber die Anwendung
(Simulation von Sonnensystem oder Simulation von Molekilen?)
den Skalierungsfaktor fiir epsilon ableiten

= Oder, falls Daten verarbeitet werden: einmal vorab alle Daten scannen
und daraus epsilon ableiten

= Bemerkung: "Epsilon-Gleichheit" ist nicht transitiv!

G. Zachmann Informatik 2 - SS 10 Numerische Robustheit 50

7/12/10

Robuste geometrische Pradikate

= Bemerkung: unter Rundungsfehlern (d.h. Rechnen

Doubles) entsteht in geometrischen Algorithmen oft folgendes

Bild

G. Zachmann Informatik 2 - SS 10

mit Floats /

Numerische Robustheit 51

7]

= Beispiel fur ein Pradikat "Punkt ist auf Ebene":
OnPlane(X;E) = true &
Punkt X befindet sich in der Ebene E

= L6sung mit Epsilon-Guard bedeutet:
teste

(Q — An < epmmax([[Q. 1Al

= Geometrische Interpretation:
"fette Ebene"

.
..,
.

.
.
.
.
.
.
.
.

G. Zachmann Informatik 2 - SS 10

Numerische Robustheit 52

7/12/10

10

Numerische Instabilitat

= Stabilitatsfehler: ein Algorithmus ist numerisch instabil, wenn
kleine Fehler am Anfang spadter groRRe Fehler verursachen

= Am Beispiel "Schnitt zwischen Gerade und Ebene":

PQ PQ

G. Zachmann Informatik 2 - SS 10 Numerische Robustheit 53

Exakte Arithmetik

" |dee:

= Implementiere eine "Bignum"-Klasse, die Integer-Zahlen mit beliebig
vielen Stellen repréasentieren kann

= Implementiere dartiber eine Klasse, die die rationalen Zahlen (Q
reprasentiert

= Implementiere die Ublichen Infix-Operatoren (+, -, *, /) und
transzendenten Funktionen (sqrt, sin, cos, ...) durch Operator- und
Funktionen-Overloading

= Rechne nur noch mit Zahlen in Q
= Vorteil: Algorithmen kénnen trivial umgeschrieben werden
= Nachteile:

= Zahler und Nenner werden schnell riesig

= Standiges Kirzen kostet sehr viel Zeit

G. Zachmann Informatik 2 - SS 10 Numerische Robustheit 54

7/12/10

N

Interval arithmetic

Idee: rechne mit Intervallen, die die gesuchte / berechnete Zahl
garantiert einschlief3t:

= Variablen = Intervalle
"ZB:x=[1,3]={xeR|1=sx<3}
= Rechenregeln fiir die arithmetischen Operatoren:
[a,b] + [c,d] =[a+ ¢, b+ d]
[a,b] — [c,d] =[a—d,b—]
[a, b] X [c, d] = [min(ac, ad, bc, bd), max(ac, ad, bc, bd)]
[a, b]/[c,d] =[a, b] x [1/d,1/c] for O ¢ [c,d]

= Dabei muB firr die Berechnung der oberen bzw. unteren Schranke die

Rundung der FPU auf "always round down" bzw. "always round up"
gestellt werden!

G. Zachmann Informatik 2 - SS 10 Numerische Robustheit 55

= Beispiel: [100,101] +[10,12] = [110,113]

G. Zachmann Informatik 2 - SS 10 Numerische Robustheit 56

7/12/10

12

Das Minimum an Take-Home Messages

= Achtung bei Division (teste auf "ungefahr Null" !) ...
= .. und bei Subtraktion (Cancellation!)

= Bei Akkumulationsschleifen: wie gro kann die Summe werden?
wie grof} sind im Verhaltnis dazu die Summanden?

= Speichere Floats als £loat, rechne zur Laufzeit mit double (d.h.,
deklariere lokale Variablen immer als double)

= (In Python ist £loat = double)

= Extra-Vorsicht bei Casts (insbesondere von Float nach Integer!)

G. Zachmann Informatik 2 - SS 10 Numerische Robustheit 58

Literatur

= David Goldberg: What Every Computer Scientist Should Know About
Floating-Point Arithmetic. March, 1991, Computing Surveys.

= Kahan & Darcy: How Java's Floating-Point Hurts Everyone
Everywhere. March 1998, ACM Workshop on Java for High-
Performance Computing, Stanford.

= W. Kahan: How Futile are Mindless Assessments of Roundoff in
Floating-Point Computation? Jan 2006.

= Press, Teukolsky, Vetterling, Flannery: Numerical Recipes.

G. Zachmann Informatik 2 - SS 10 Numerische Robustheit 59

7/12/10

13

