KILIN F

Exkurs

Das eben gestellte Problem kann man auch effizienter lösen

Algorithmus prefixAverages2(X)

```
s = 0.0
for i in range(0,n):
    s += X[i]
    A[i] = s / (i + 1)
return A
O(1)
one of the content o
```

G. Zachmann Informatik 1 - WS 05/06

Komplexität 39

Average-Case-Komplexität

- Nicht leicht zu handhaben, für die Praxis jedoch relevant
- Sei p_n(x) Wahrscheinlichkeitsverteilung, mit der Eingabe x mit Länge n auftritt
- Mittlere (erwartete) Laufzeit:

$$\bar{T}(n) = \sum_{x, |x|=n} T(x) p_n(x)$$

- Wichtig:
 - Worüber wird gemittelt?
 - Sind alle Eingaben der Länge n gleichwahrscheinlich ?
- Oft: Annahme der Gleichverteilung aller Eingaben x der Länge n
 - Dann ist $p_n(x) \equiv 1/N$, N = Anzahl aller mögl. Eingaben der Länge n

$$\bar{T}(n) = \frac{1}{N} \sum_{x, |x| = n} T(x)$$

G. Zachmann Informatik 1 - WS 05/06

Komplexität 40

Beispiel

- Taktzahl (Anzahl Bitwechsel) eines seriellen Addierers bei Addition von 1 zu einer in Binärdarstellung gegebenen Zahl i der Länge n, d.h. $0 \le i \le 2^{n-1}$.
- Sie beträgt 1 plus der Anzahl der Einsen am Ende der Binärdarstellung von i.
- Worst Case: n + 1 Takte
 - Beispiel: Addition von 1 zu 111...1.
- Average Case:
 - Wir nehmen eine Gleichverteilung auf der Eingabemenge an.
 - Es gibt 2^{n-k} Eingaben der Form (x,..., x, 0, 1,..., 1) wobei k-1 Einsen am Ende stehen.
 - Hinzu kommt die Eingabe i = 2ⁿ-1, für die das Addierwerk n+1 Takte benötigt.

G. Zachmann Informatik 1 - WS 05/06

Komplexität 41

• Die average-case Rechenzeit $\bar{T}(n)$ beträgt also:

$$\bar{T}(n) = \frac{1}{2^n} ((n+1) + \sum_{1 \le k \le n} 2^{n-k} k)$$

Es ist

$$\sum_{1 \le k \le n} 2^{n-k} k = n2^{n-n} + \dots + 2 \cdot 2^{n-2} + 1 \cdot 2^{n-1}$$

$$= 2^0 + \dots + 2^{n-3} + 2^{n-2} + 2^{n-1} + 2^0 + \dots + 2^{n-3} + 2^{n-2} + 2^{n-1} + 2^0 + \dots + 2^{n-3}$$

$$\vdots$$

$$+ 2^0$$

$$= (2^n - 1) + \dots + (2^1 - 1)$$

$$= 2^{n+1} - 2 - n$$

G. Zachmann Informatik 1 - WS 05/06

mplexität 4

Demnach ist

$$\bar{T}(n) = 2^{-n}(2^{n+1} - 2 - n + (n+1)) = 2 - 2^{-n}$$

 Es genügen also im Durchschnitt 2 Takte, um eine Addition von 1 durchzuführen.

G. Zachmann Informatik 1 - WS 05/06

Komplexität 43

Das Maxsummen-Problem

- Problem: Finde ein Index-Paar (i, j) in einem Array a[1..n] von ganzen Zahlen, für das f(i, j) = a_i + ... + a_j maximal ist. Als Rechenschritte zählen arithmetische Operationen und Vergleiche.
- Der naïve Algorithmus:

Berechne alle Werte f(i, j), $1 \le i \le j \le n$, und ermittle davon den maximalen f-Wert.

Offensichtlich genügen zur Berechung von f(i, j) genau j–i viele Additionen.

Der Algoritmus startet mit $\max \leftarrow f(1, 1)$ und aktualisiert \max wenn nötig.

G. Zachmann Informatik 1 - WS 05/06

mplexität

Analyse des naïven Algorithmus'

- Es gibt j Paare der Form (·, j), nämlich (1, j), ... , (j, j)
- #Vergleiche: $V_1(n) = \sum_{1 \le j \le n} j 1 = n(n+1)/2 1$
- #Additionen: $A_{1}(n) = \sum_{1 \leq i \leq n} \sum_{i \leq j \leq n} (j i)$ $= \sum_{1 \leq i \leq n} \sum_{1 \leq k \leq n i} k$ $= \sum_{1 \leq i \leq n} \sum_{1 \leq k \leq i} k$ $= \sum_{1 \leq i \leq n} \sum_{1 \leq k \leq i} (i + 1)/2$ $= \frac{1}{2} (\sum_{1 \leq i \leq n} i^{2} + \sum_{1 \leq i \leq n} i)$ $= \frac{1}{2} (\frac{1}{6} (n 1)n(2(n 1) + 1) + \frac{1}{2}(n + 1)n)$ $= \frac{1}{6} n^{3} \frac{1}{6} n$

G. Zachmann Informatik 1 - WS 05/06

omplexität 4

Zusammen:

$$T_1(n) = V_1(n) + A_1(n) = \frac{1}{6}n^3 + \frac{1}{2}n^2 + \frac{1}{3}n - 1 \in O(n^3)$$

G. Zachmann Informatik 1 - WS 05/0

nplexität

WAR

Der etwas bessere Algorithmus

- Beobachtung: Der naïve Ansatz berechnet $a_1 + a_2$ für $f(1, 2), f(1, 3), \dots, f(1, n)$, also (n-1)-mal.
- Besser geh's mit folgender Erkenntnis. Es gilt:

$$f(i,j+1) = f(i,j) + a_{i+1}$$

- Damit braucht man für alle f(i, ·)-Werte genau (n i) Additionen.
- Aufwand:
 - #Vergleiche: $V_2(n) = V_1(n) = n(n+1)/2 1$
 - #Additionen:

$$A_2(n) = \sum_{1 \le i \le n} (n-i) = \sum_{1 \le k \le n-1} k = n(n-1)/2$$

#Zusammen:

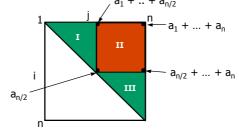
$$T_2(n) = V_2(n) + A_2(n) = n^2 - 1 \in O(n^2)$$

G. Zachmann Informatik 1 - WS 05/06

Komplexität 47

Divide-and-Conquer

- Annahme: $n = 2^k$
- Unterteilung der zu untersuchenden Paare (i, j) in drei Klassen:
 - I. $1 \le i \le j < n/2$
 - II. $1 \le i \le n/2 \le j \le n$
 - III. $n/2 < i \le j \le n$



- Wenn wir das Problem für die 3 Klassen gelöst haben, erhalten wir den "Gesamtsieger" in 3 Vergleichen
- Problem I und III sind vom gleichen Typ wie das Ausgangsprobelm → rekusiv mit dem gleichen Ansatz lösen

G. Zachmann Informatik 1 - WS 05/06

nplexität 4

Analyse Divide-and-Conquer

• Für Problem II gibt es eine effiziente direkte Lösung. Betrachte:

$$g(i) = a_i + ... + a_{n/2}$$
 und $h(j) = a_{n/2+1} + ... + a_j$

- Dann gilt:
 - f(i,j) = g(i) + h(j)
 - Um f zu maximieren reicht es aus, g und h einzeln zu maximieren: $\max_{i,j} \{f(i,j)\} = \max_{i,j} \{g(i) + h(j)\} = \max_{i} \{g(i)\} + \max_{j} \{h(j)\}$
- Berechne nacheinander (wie bei Algo Nr 2)

$$g(n/2) = a_{n/2},$$

 $g(n/2 - 1) = a_{n/2-1} + a_{n/2},$
...,
 $g(1) = a_1 + ... + a_{n/2}$

G. Zachmann Informatik 1 - WS 05/06

Komplexität 49

- Max{g(i)} benötigt n/2-1 Additionen und n/2-1 Vergleiche
- Analog: max{h(j)} benötigt n/2 Additionen und n/2–1 Vergleiche
- Damit ergeben sich für Problem II insgesamt n-1 Additionen und n-2 Vergleiche, also insgesamt O(n) viele Operationen (obwohl die Klasse O(n²) Paare (i, j) enthält!)

G. Zachmann Informatik 1 - WS 05/06

nplexität

 Für das Gesamtproblem ergibt sich folgende rekursive Gleichung für den Aufwand (3 Vergleiche um Maximum der Gruppen zu finden), n = 2^k:

$$T_3(1) = 0$$

$$T_3(2^k) = 2T_3(2^{k-1}) + 2 \cdot 2^k - 3 + 3$$

$$= 2(2T_3(2^{k-2}) + 2 \cdot 2^{k-1}) + 2 \cdot 2^k$$

$$= 4T_3(2^{k-2}) + 2^{k+1} + 2^{k+1}$$

$$= 4(2T_3(2^{k-3}) + 2 \cdot 2^{k-2}) + 2^{k+1} + 2^{k+1}$$

$$= 8T_3(2^{k-3}) + 2^{k+2} + 2^{k+1} + 2^{k+1}$$

$$= 8T_3(2^{k-3}) + 2^{k+2} + 2^{k+1} + 2^{k+1}$$

G. Zachmann Informatik 1 - WS 05/06

Komplexität 51

• Nun raten wir die Lösung der Rekursionsgleichung

$$T_3(2^k) = \sum_{i=1}^k 2^{k+1}$$

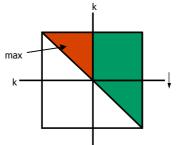
- ... und verifizieren die Vermutung mit einem Induktionsbeweis.
- Damit ist $T_3(2^k) = 2k2^k$ = $2(\log n) \cdot n$ $\in O(n \log n)$

G. Zachmann Informatik 1 - WS 05/06

nlevität

Der clevere Algorithmus

- Scanline-Prinzip: wichtige Algorithmentechnik
 - Idee: betrachte ein 2D-Problem nicht insgesamt, sondern immer nur auf einer Gerade, die über die Ebene "gleitet" → Scanline
 - Löse das Problem immer nur auf dieser Scanline, und aktualisiere die Lösung, wenn die Scanline beim nächsten interessanten "Ereignis" ankommt
- Hier: Wir verwalten nach dem Lesen von a_k in max den größten Wert von f(i, j) aller Paare (i, j) für 1 ≤ i ≤ j ≤ k.
- Für k=1 ist max = a₁



G. Zachmann Informatik 1 - WS 05/06

Komplexität 53

W

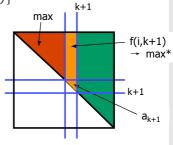
- Wenn nun a_{k+1} gelesen wird, soll max aktualisiert werden
- Dazu bestimmen wir

$$\max_{i} i\{f(i, k+1)\} = \max_{i} \{g(i)\}$$

wobei

$$g(i) := a_i + \ldots + a_{k+1}$$

(ähnlich der g-Werte vom Divide-and-Conquer Algorithmus)



Deshalb verwalten wir zusätzlich

$$\max^* := \max_{1 \le i \le k} \{ g(i) \mid \min g(i) = a_i + \ldots + a_k \}.$$

G. Zachmann Informatik 1 - WS 05/06

mplexität

W.

Akualisierung und Analyse

Sei nun a_{k+1} gelesen. Wir erhalten die neuen g-Werte

$$g_{\mathsf{neu}}(i) = g_{\mathsf{alt}}(i) + a_{k+1}, \text{ für } 1 \leq i \leq k$$

$$g_{\mathsf{neu}}(k+1) = a_{k+1}$$

- Also $\max_{\text{neu}}^* = \max\{\max_{\text{alt}}^* + a_{k+1}, a_{k+1}\}$
- Für max_{neu} kommen folgende Paare (i, j) in Frage:

$$\begin{split} &1 \leq i \leq j \leq k \text{ (maximaler Wert max}_{\text{alt}}) \\ &1 \leq i \leq k, j = k+1 \text{ (maximaler Wert max}_{\text{neu}}^*) \end{split}$$

- Also: max_{neu} = max{max_{alt}, max_{neu}}
- Bei der Verarbeitung von a_k, 2 ≤ k ≤ n, genügen also 3
 Operationen, demnach ist

$$T_4(n) = 3n - 3 \in O(n)$$

G. Zachmann Informatik 1 - WS 05/06

Komplexität 55

Zusammenstellung der Ergebnisse

$$T_1(n) = 1/6n^3 + 1/2n^2 + 1/3n - 1$$

$$T_2(n) = n^2 - 1$$

$$T_3(n) = (2\log n - 1)n + 1$$

$$T_4(n) = 3n - 3$$

n	$T_1(n)$	$T_2(n)$	$T_3(n)$	$T_4(n)$
2^{2}	19	15	13	9
2 ⁴	815	255	113	45
2 ⁶	45759	4095	705	189
2 ⁸	2829055	65535	3841	765
2^{10}	179481599	1048575	19457	3069
2^{15}	$> 5 \cdot 10^{12}$	$\approx 10^9$	950273	98301

 Es sollte sich das beruhigende Gefühl breitmachen, daß es sich lohnt, clever zu sein ; -)

G. Zachmann Informatik 1 - WS 05/06

Komplexität 56