
Computational geometry
cigvr .

CS . Uni - bremen - de

Exersice → Grad A

Faehgesproich → grad B
) min { B , I (at B) }

THE Better ONE

951 → I
.

O

404 - - 4 .
0

Exercise Group of 2 or alone

lmcportan Preprocessing
- Domain discretion (decompose)

- Do grid over it → computational inefficient 4.Ian't
'
uses

→ Uniform Grid not good
- Non - uniform

, conforming mesh that respects the

input .

- Cong & thin triangles , always bad

- quad tree quite nice

Used in simulation to eg . flow Cair) around a vehicle
or crashed test .

Quad trees
store geometry data

coincidence
,

Incidence
,

adjacency
same location get p

. -

E
e is incidence they are neighbors
to point ✓

Points (vectors :p
, of ,

v
,

w . . . -

set of points , polygons ; - . . :P
, Q ,S . . .

Segments : tip

Quadtree - Tree
,

with
inner nodes corresponding to squares ;
children of a node partition the node
into four quadrants .

IR

E#¥*÷*
cc LR

children Direction

Note : quad tree induces partition ring of
the domain -

covers whole

! Complete quad tree is like a normal
area

,
but does

Grid , called multi - level grid not overlay
other members

Terminology :

"
: if

corner

l l L
. .

t -
y

role

square (node
:

side
:

Xv Xv
'

Dsf : nodes are adjacent .

their squares share an edge

Def : square of a node v
-

AO -
- Hu

,
Xi] × Cyr , yo 'T

Given : set of points PER
'

Def : Quddtree Q over point set P

erodes:&! :÷I÷i÷
.

on

If V is inner node →

CE Mei
-

z
i

⇒ i E log -0€ = log I + I ⇒ Lemma

for leaves : i s log It I th
-

level of parent

cemmaicomplexityofquadtreIA.am
trees of depth d over n points ,

takes 0 (n (dtd)) nodes and takes Ocn (dtr))
to construct .

I can get rid of it

proof :

leaves = (# inner nodes) . 3 tr (by induction)
Number of J

⇒ upper bounds on inner nodes suffice .

part 1
-

O

T

!
T ok to o l

I -o#¥y* .

-
i

inner nodes on one level

← n (in each inner node there are at
least 2 points)

= > # inner nodes over all levels E n Cd -1)

⇒ # nodes S n (d - t) t 2h

because in each guadtupel ,
2. leaves must

contain a point .

Parth

For each node on
,

we time TO

Tlv) = 01mL
,

m = # points in r .

Sum of all points on level is n

ETCH E Ocn)
✓ is node
on level i

⇒ time 0 (n nd) or (n - dltr

Findnorthneighbort
:-pgiven : node v

v
.

Sought : r
'

- north neighbor of v
, #/

such that depth (v ') E depth Cv)
T t

Algorithmusgetworthveig.ba#
If V is root → return mic

let p : - parent Cv)

(1) If V is lower Left @ c) child of p → return

UC child of p

(2) If V is LR child of p - > return

UR child of pCASI

R

c- vccasee)

I
@ users

p
'

= get North Neighbor (p)

if N ' is nil or P
'

is leaf → return N
'

(3) If u is UC child of p → return a child of p
'

(4) If ✓ is UR -11 -
→ return CR - n -

case 3 A 4
=

return
-

H*
'

'

T 1-

Running . gqµ-
worst case

¥¥.÷÷÷÷÷:÷:÷÷÷÷÷÷÷
:*:

West neighbors and why
is it so complex t worst
case ?

seat :a:%a÷::÷.an.a¥#¥
" " "

⇒

ttheighborsv ,
v ' :/ depth (rt - depth (v 't IET

corollary

If Q is balanced ⇒ size of neighbors
differs by factor 2 at most

.

BalancedQuadEreeALg0forconstructingbalancedquadEree#

Maintain : cist L of leaves

while there are still nodes v in C :

1
. check wether v needs to split
(neighbor finding algo)

2
. If r had to split

,
check wether neighbors need

splitting ,
too

e¥

cemmai
(et Q be a quad tree with m nodes ,

I - balanced quad tree from Q .

Then OT has 0cm) nodes
,
and it can be constructed in time Ocmcdttd)

.

Proof

Parth : we prove that there are 06h) splitting operations

(⇒ Lemma follows , b/c each split

generate 4 additional Nodes .

Definesplitcounter
• Only for old nodes (from origin quad tree) : =

how many times did the old node cause split

• split counter at end 0

of balancing
o

#neighbors # d # SEE
• Each old node generated O O O O counter O O 00

at most 8.4 new nodes M
O

-

/# e. Neighbor

I. Neighbor
. . .

-

Assertion (to be proven) :
•

✓ A V2 V 3

HEATt
→ No matter how deep subtree under Vr is

, vs never

has to split because of rn .

Def : Dis - depth of subtree under V
.

✓ V2 V 3

Basecasei ftD @ z) = DC vs) - o

D(rn) = 2

Inductive : Lemma is true for DL d

✓ n V2 V 3

DM) -

- d > 2

D CUR child of v1
=D - 1 . V2 is

situation
for which Lemma holds

,
b/c depth of

split at least ur child of v E D

Once ⇒ ur child of ve will not be split

Parth

Time per node E O @ tr)
,
b/c of const number of

neighbor finding operations Cops .)
.

Each node will be considered only once ⇒ Lemma

