
KD-Trees 1

🚧
KD-Trees
We are given a set of points and we wanto to construct a
structure for storing, analyzing and managing points efficiently.We can construct a KD-
Tree in the following manner:

choose a splitting axis

compute the median of the points across this axis

divide out points in 2 sets:

recursively apply the same to and

contstruct the node that stores the pointer to the children, , and maybe the
bounding box of

stopping criterion

Note: is called the discriminator, the couple defines the splitting plane

P = {p ,p ,…,p } ⊆1 2 n Rd

i

med({p ,…,p })i
1

i
n

P =+ {p ∈ P : p >i m}

P =− {p ∈ P : p ≤i m}

P+ P−

v m i

P

∣P ∣ = 1

i (m, i)

KD-Trees 2

since we take every time the median, so we spliit in half, given n points the depth of the
tree is

Construction complexity
we are splitting along the median on the discriminator axis, but every time we need to
keep a list of nodes coordinates for every axis sorted and linked between them. this
means that when we split we need to sort the lists again. we have to make d sorting,
and a standard quick algorithm for sorting need , this gives us a complexity
of . when we apply the recursion we need a time for the creation
of the lists and then the recursive step is applied 2 times to the halves of the set, so we
get , summing up the 2 parts we get that

. More, to store the tree we just need to store the points, so we get a space
complexity of

Some variation of the kd-tree
we can store the median point into he node, leaving leaves only for “free” points

Binning: we can stop when , a certain threshold

longest spread kd-tree: we can choose the axis of the discriminator such that the
bounding box of has the largest extent along

longest side kd-tree: we can split along the largest extent of

O(logn)

O(n log n)
O(d ⋅ n log n) O(dn)

T (n) = O(dn) + 2T ()2
n T (n) = O(d ⋅

n log n)
O(n)

∣P ∣ ≤ b

P(v) i

P(v)

KD-Trees 3

NOTE: is the set of points into the region of the node , in a certain way like the
square of a point for the octrees

Applications

the nearest neighbors problem
The nearest neighbor problem is a classic problem in computational geometry, which
asks for the closest point to a given point in a set of points. In other words, given a set
of points in some space , and a query point , the nearest neighbor
problem is to determine which point in the set is closest to the query point, i.e.

.

ANSATZ
1. Start with a ball centered at the query point with an infinitely large radius.

2. Begin at the root node and move down the tree. At each node, first check if the
point in that node is closer to the query point than the radius of the ball. If it is,

P(v) v

P ⊆ Rd q ∈ Rd

p∗ p ∈∗

P ∣∀p ∈ P : ∥p −∗ q∥ ≤ ∥p − q∥

KD-Trees 4

update the radius of the ball to be the distance from the query point to the current
node.

3. Decide which of the two child nodes to move to by comparing the splitting
coordinate of the current node with the corresponding coordinate of the query point.
If the point's coordinate is less than the current node's, move to the left child,
otherwise move to the right.

4. After reaching a leaf node, backtrack to check the other half-space, but only if it
could intersect with your ball. we can quickly determine this by seeing if the distance
from the splitting coordinate to the query point is less than the radius of the ball.

5. Repeat this process until we have traversed all relevant areas of the tree. The
current best match is the nearest neighbor, and the final radius of the ball is the
distance to the nearest neighbor.

This process is also known as a "priority search". The ball shrinks as better matches
are found, and this shrinking ball helps to avoid unnecessary searches of branches of
the tree that fall outside of the ball. This can drastically improve performance, especially
in higher dimensions.

NN(v, p, r):
 input: p=current candidate, r=ball radius
 output: new candidate(p, r)
 precondition:Ball(q, r) overlaps R(v)
 if v is leaf:
 p':=nearest neighbor of P(v) to q
 r':= ||p'-q||
 if r'<r:return (p', r')
 if qi<=m:
 p, r = NN(vl, p, r)
 if Ball(q, r) overlaps R(vr):
 p, r =NN(vr, p, r)
 else:
 p, r = NN(vr, p, r)
 if Ball(q, r) overlaps R(vl):
 p, r =NN(vl, p, r)

KD-Trees 5

Texture syntesis
Given a texture , i.e. an image where we can zoom in a particular window and obtain
the same image we want to obtain a bigger texture

We can define an input pixel and an output pixel , is the neighborhood
around

init a random border around T
for all p0 in T in scan order:
 find pi in I such that d(N(pi),N(po)) is minumum
 po=pi

To compute we can use an euclidean metric, and to find the in the
third line we can use a KD-tree over the vector of pixels of

Vector of pixels:

Some observations:

all the pixels in are deterministically determined by the random border

The quality of depends on the size of neighborhoods of the points

I

T

pi po N(p)
p

d(N(pi),N(po)) pi
N(p)i

[r1 g1 b1 … rn gn bn]
T

T

T

KD-Trees 6

Possible solution: image pyramid

The scan order and the shape of the neighborhoods should match

algorithm with image pyramid(imaging painting)

construct image pyramid over I=I0 bottom up
define a neighborhood N(p)
for each level l:
 build a kd tree
 for all the neighborhoods of all points in I^l:
 for all the layers l top down:
 build T^l
 for all the pixels p0 in T^l:
 find the nearest neighbor of N(p) in the kdtree for the level l

Stackless kdtrees ray traversal
Given a scene split in a kdtree and a ray, how to compute cleverly which leaves are
traversed by the ray?

Given the directions

Took a direction , is its opposite

Let v be a node in the kd-tree

We define a rope where w is a node in the direction d with the neighbor of v in
direction d if there is only one neighbor or the last common parent of the neighbors of v
if there are several.

ANSATZ for construction the ropes:

replace by ropes to the children of w if possible.

def pushDownRope(v,w,d)
 if the splitting plane of w is perpendicular to d:
 if d in {right, top, back}:
 return w1
 else:
 return w2
 else if the splitting plane of w is parallel to d:
 if the side of R(w) is in direction opposite to d:
 return w1
 else: return w2
 return w

D = { left, right, top, bottom, front, back}

d ∈ D d̄

v w d

v w d

KD-Trees 7

def propagateRows(v):
 if v is leaf:
 return v
 for all d in D:
 if a rope from v to w in d exists
 w' =w
 do until w''=w':
 w''= pushdownrope(v,w', d)
 replace the rope in v with the rope from v to w' in d
 d=right, top or front if the splitting axe of v is x, y or x
 v1/v2=left/right child of v
 copy the existing ropes of v in v1/v2
 set rhe ropes from v1 to v2 in d and its opposite
 propagateRopesDown(v1)(v2)
def followRay():
 p0 = start point of the ray
 v = root, p=p0
 while v is not null:
 while v is an inner node:
 if p is left of the split plane:
 v=v1
 else:
 v=v2
 p'=closest interception point of the ray wiith the triangles in v
 if the interception exists and is inside R(v):
 return p'
 p=exit point of the ray out of v
 d=direction of the exit
 if exists a rope fron v to w in d:
 v=w
 else:
 v=null
 return null

Cool material
http://groups.csail.mit.edu/graphics/classes/6.838/S98/meetings/m13/kd.html

https://www.cse.iitd.ac.in/~ssen/cs852/scribe/RangeQueries.pdf

https://users.cs.utah.edu/~lifeifei/cs6931/kdtree.pdf

http://groups.csail.mit.edu/graphics/classes/6.838/S98/meetings/m13/kd.html
https://www.cse.iitd.ac.in/~ssen/cs852/scribe/RangeQueries.pdf
https://users.cs.utah.edu/~lifeifei/cs6931/kdtree.pdf

