Closest Pairs

In 2 dimensions:

we have n points in a plane, our objective is to find the closest couple of points between all couples in the fastst time
possible.

Notice that a naive approach whould be to test all possible couples, sort them by distance and then take the first
element, resulting in a complexity of O(n2).we will show that there is a better approach.

let's begin drawing our points on the plan:

a:(9,8), b:(36,36),

50 1 & c:(15,14), d:(0,49),
e:(49,13), f:(28,5),

40 g:(25,13), h:(29,25),
¢ i:(48,13), j:(29,28),

30 4 & k:(49,22), 1:(8,30),
! F ¢ m:(9,30), n:(0,25),

ol ¢ ¢ ‘ 0:(42,12), p:(40,1),
& q:(36,31), r:(16,36),

N e e i, e s:(36,27), t:(47,18),
o uw: (11,29), wv:(24,13),
N w: (43,22), z:(33,23),
0 10 20 E 40 50 y:(8,28), 2:(36,10)

what we can do now is write all our points into one array P = {py ...pp},pz € R?, remember that we seek for
Pas P : ||Pa — Dol < ||Pe — Pal|VPes Pd 7 ParPo; ParPbyPe, Pa € P, s the couple with minimum distance.

Anstatz

we will use a Divide Et Impera algorithm, where we split into 2 parts:

Divide

we sort the points according to the x coordinate int 2 halves
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Conquer

we can consider 3 cases for the couple we are searching:
« the 2 points are both on the left
« the 2 points are both on the right
« one point is on the left, the other on the right

what we want to do is taking the smaller distance in the 3 cases
Algorithm

Function ClosestPair(P)
Let n be the number of points in set P.
If n <= 3, compute the distance between each pair and return the smallest.
Sort the points in P according to their x-coordinates, let's call this array Px.
Sort the points in P according to their y-coordinates, let's call this array Py.
Call the auxiliary function ClosestPairAux(Px, Py).

Function ClosestPairAux(Px, Py)
Let n be the number of points in set P.
If n <= 3, compute the distance between each pair and return the smallest.
Find the midpoint Q of Px, divide Px into two subsets:
Qx (points to the left of the midpoint)
Rx (points to the right of the midpoint)
Divide the Py into two subsets:
Qy (points in Qx, sorted by y-coordinate)
Ry (points in Rx, sorted by y-coordinate)
d1l = ClosestPairAux(Qx, Qy) // recursive call on the left subset
d2 = ClosestPairAux(Rx, Ry) // recursive call on the right subset
d = min(d1, d2) // find the minimum distance
Sy = points of Py that are within distance d from the midpoint Q.
d3 = minimum distance of pairs in Sy.
return min(d, d3)

T(n) = 2T(%) + O(nlogn) + O(nlogn) = 2T(%) + O(nlogn) = O(nlog?(n))

let’s consider the last part in closedSplitPairs: why do we iterate only 6 times?
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the answer lives in this Conjecture: \Q| < 6, i.e. given a point and a distance § we can show that there a a maximum
of 6 points with that distance form that point:

coincident points,
one in P,

one in Pp

coincident points,

.‘///_/I' one in PL=

[ ! one in Pp

(b)

>
-_+_________.-K_

in higher dimensions

in the case of higher dimensions the splitting describes
an hyperplane H with dimension d — 1 and partition P
according to the x coordinate of this hyperplane. This
time the closest points are not contained in a square , but
in an hyperspace distant § in all dimensions from the
cutting hyperplane. At this point we project all the points
onto H and we get a d — 1 dimensional closest pairs
problem, then we can iterate until we reach our case in 2
dimensions
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Function ClosestPair(P)
Let n be the number of points in set P.
For each dimension d in D, sort the points in P according to their d-th coordinate, let's call these arrays P1, P2, ...,
Call the auxiliary function ClosestPairAux(P1, P2, ..., PD, 1).
Function ClosestPairAux(P1, P2, ..., PD, current_dim)

Let n be the number of points in set P.
If n <= 3, compute the distance between each pair and return the smallest.
Find the midpoint Q of P[current_dim], divide P[current_dim] into two subsets:
Qx (points to the left of the midpoint)
Rx (points to the right of the midpoint)
For each dimension d in D, divide the sorted list P[d] into two subsets based on Q:
Qy (points in Qx, sorted by d-th coordinate)
Ry (points in Rx, sorted by d-th coordinate)
d1l = ClosestPairAux(Q1, Q2, ..., QD, (current_dim % D) + 1) // recursive call on the left subset
d2 = ClosestPairAux(R1, R2, ..., RD, (current_dim % D) + 1) // recursive call on the right subset
d = min(d1, d2) // find the minimum distance
Sy = points of P[current_dim] that are within distance d from the midpoint Q.
d3 = minimum distance of pairs in Sy considering all dimensions in a circular manner starting from (current_dim % D) + 1.
Return min(d, d3)

The new complexity becomes:

T(n,d) = 2T(4,d) + O(n) + U(n,d — 1),

where U is the complexity of finding the closest pairs in the d — 1 sized problem
U(n,d — 1) = O(nlog? 2n),

it follows that: T'(n, d) = 2T'(§,d) + O(n) + O(nlog® *n) = O(nlog®'n)

it can be proven that if we build an hyperbox around a point we will discover that that box will contain a number of
points in the order of O (4¢)
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proof:

imagine we have a ball of radius g into a box of size 29
vol (box) = (26)?

vol(ball) = const - (g)d

vol(boz) __ Ad
voltsal) =

#ballsNonOverlapping <

Cool material

https://sites.cs.ucsb.edu/~suri/cs235/ClosestPair.pdf

https://itzsyboo.medium.com/algorithms-studynote-4-divide-and-conguer-closest-pair-49ba679ce3c7

https://www.cs.ucdavis.edu/~bai/ECS122A/Notes/Closestpair.pdf
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https://sites.cs.ucsb.edu/~suri/cs235/ClosestPair.pdf
https://itzsyboo.medium.com/algorithms-studynote-4-divide-and-conquer-closest-pair-49ba679ce3c7
https://stackoverflow.com/questions/15664962/explanation-of-these-seven-points-in-finding-the-closest-pair-of-points
https://www.cs.ucdavis.edu/~bai/ECS122A/Notes/Closestpair.pdf

