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🀄
Closest Pairs

In 2 dimensions:
we have n points in a plane, our objective is to find the closest couple of points between all couples in the fastst time 
possible.

Notice that a naive approach whould be to test all possible couples, sort them by distance and then take the first 
element,  resulting in a complexity of .we will show that there is a better approach.

let’s begin drawing our points on the plan:

what we can do now is write all our points into one array , remember that we seek for 
, so the couple with minimum distance.

Anstatz
we will use a Divide Et Impera algorithm, where we split into 2 parts:

Divide
we sort the points according to the  coordinate int 2 halves

O(n )2

a : (9, 8),
c : (15, 14),
e : (49, 13),
g : (25, 13),
i : (48, 13),
k : (49, 22),
m : (9, 30),
o : (42, 12),
q : (36, 31),
s : (36, 27),
u : (11, 29),
w : (43, 22),
y : (8, 28),

b : (36, 36),
d : (0, 49),
f : (28, 5),
h : (29, 25),
j : (29, 28),
l : (8, 30),
n : (0, 25),
p : (40, 1),
r : (16, 36),
t : (47, 18),
v : (24, 13),
x : (33, 23),
z : (36, 10)

P = {p …p },p ∈1 n x R2
p ,p :a b ∥p −a p ∥ ≤b ∥p −c p ∥∀p ,p =d c d  p ,p ;   p ,p ,p ,p ∈a b a b c d P

x
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Conquer
we can consider 3 cases for the couple we are searching:

the 2 points are both on the left

the 2 points are both on the right

one point is on the left, the other on the right

what we want to do is taking the smaller distance in the 3 cases

Algorithm

Function ClosestPair(P) 
  Let n be the number of points in set P. 
  If n <= 3, compute the distance between each pair and return the smallest. 
  Sort the points in P according to their x-coordinates, let's call this array Px. 
  Sort the points in P according to their y-coordinates, let's call this array Py. 
  Call the auxiliary function ClosestPairAux(Px, Py). 
 
Function ClosestPairAux(Px, Py) 
  Let n be the number of points in set P. 
  If n <= 3, compute the distance between each pair and return the smallest. 
  Find the midpoint Q of Px, divide Px into two subsets:  
    Qx (points to the left of the midpoint)  
    Rx (points to the right of the midpoint) 
  Divide the Py into two subsets:  
    Qy (points in Qx, sorted by y-coordinate)  
    Ry (points in Rx, sorted by y-coordinate) 
  d1 = ClosestPairAux(Qx, Qy) // recursive call on the left subset 
  d2 = ClosestPairAux(Rx, Ry) // recursive call on the right subset 
  d = min(d1, d2) // find the minimum distance 
  Sy = points of Py that are within distance d from the midpoint Q. 
  d3 = minimum distance of pairs in Sy. 
  return min(d, d3)

let’s consider the last part in closedSplitPairs: why do we iterate only 6 times?

P = {d,n, l,y,a,m,u, c, r, v, g,f,h, j,x, b, q, s, z,p, o,w, t, i, e,k}

T (n) = 2T ( ) +2
N O(nlogn) +O(nlogn) = 2T ( ) +2

N O(nlogn) = O(nlog (n))2
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the answer lives in this Conjecture: , i.e. given a point and a distance  we can show that there a a maximum 
of 6 points with that distance form that point:

in higher dimensions
in the case of higher dimensions the splitting describes 
an hyperplane  with dimension  and partition  
according to the  coordinate of this hyperplane. This 
time the closest points are not contained in a square , but 
in an hyperspace distant  in all dimensions from the 
cutting hyperplane. At this point we project all the points 
onto  and we get a  dimensional closest pairs 
problem, then we can iterate until we reach our case in 2 
dimensions

∣Q∣ ≤ 6 δ

H d− 1 P

x

δ

H d− 1
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Function ClosestPair(P) 
  Let n be the number of points in set P. 
  For each dimension d in D, sort the points in P according to their d-th coordinate, let's call these arrays P1, P2, ..., PD. 
  Call the auxiliary function ClosestPairAux(P1, P2, ..., PD, 1). 
 
Function ClosestPairAux(P1, P2, ..., PD, current_dim) 
  Let n be the number of points in set P. 
  If n <= 3, compute the distance between each pair and return the smallest. 
  Find the midpoint Q of P[current_dim], divide P[current_dim] into two subsets: 
    Qx (points to the left of the midpoint) 
    Rx (points to the right of the midpoint) 
  For each dimension d in D, divide the sorted list P[d] into two subsets based on Q: 
    Qy (points in Qx, sorted by d-th coordinate) 
    Ry (points in Rx, sorted by d-th coordinate) 
  d1 = ClosestPairAux(Q1, Q2, ..., QD, (current_dim % D) + 1) // recursive call on the left subset 
  d2 = ClosestPairAux(R1, R2, ..., RD, (current_dim % D) + 1) // recursive call on the right subset 
  d = min(d1, d2) // find the minimum distance 
  Sy = points of P[current_dim] that are within distance d from the midpoint Q. 
  d3 = minimum distance of pairs in Sy considering all dimensions in a circular manner starting from (current_dim % D) + 1. 
  Return min(d, d3)

The new complexity becomes: 

, 

where  is the complexity of finding the closest pairs in the  sized problem

,

it follows that: 

it can be proven that if we build an hyperbox around a point we will discover that that box will contain  a number of 
points in the order of 

T (n,d) = 2T ( ,d) +2
N O(n) + U(n,d− 1)

U d− 1

U(n,d− 1) = O(nlog n)d−2

T (n,d) = 2T ( ,d) +2
N O(n) +O(nlog n) =d−2 O(nlog n)d−1

O(4 )d
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proof:
imagine we have a ball of radius  into a box of size 

Cool material
https://sites.cs.ucsb.edu/~suri/cs235/ClosestPair.pdf

https://itzsyboo.medium.com/algorithms-studynote-4-divide-and-conquer-closest-pair-49ba679ce3c7

https://stackoverflow.com/questions/15664962/explanation-of-these-seven-points-in-finding-the-closest-pair-of-points

https://www.cs.ucdavis.edu/~bai/ECS122A/Notes/Closestpair.pdf

2
δ 2δ

vol(box) = (2δ)d

vol(ball) = const ⋅ ( )2
δ d

#ballsNonOverlapping ≤ =
vol(ball)
vol(box) 4d

https://sites.cs.ucsb.edu/~suri/cs235/ClosestPair.pdf
https://itzsyboo.medium.com/algorithms-studynote-4-divide-and-conquer-closest-pair-49ba679ce3c7
https://stackoverflow.com/questions/15664962/explanation-of-these-seven-points-in-finding-the-closest-pair-of-points
https://www.cs.ucdavis.edu/~bai/ECS122A/Notes/Closestpair.pdf

