
BSP Trees 1

🚨
BSP Trees
BSP Trees are a generalization of kd trees. The main difference is that in KDtrees we
splitted the axes in parallel with the axis now we want to relax this condition and allow
splitting in any direction

the main idea is to introduce a splitting plane and a direction, then assign to the children
either a node containing a geometry if there is only one in the subspace generated or
another BSPTree. the left child always indicates the inner side of the splitting, the right
one the outside

BSP Trees 2

more properly we can give a definition:

given a set of polygons , and a plane , we can define
as the positive halfspace and as the negative halfspace divided by

if , is a leaf node , storing

if , is an inner node that stores:

, the splitting plane

 the set of polygons completely included in

, the subBSP over , i.e. all the polygons in the positive
halfspace

, the subBSP over , i.e. all the polygons in the
negative halfspace

NOTE: the , w.r.t. polygons included in an halfspace are called Fragments

we can also define in a similar fashion to the KD trees the region of a node , ,
being the convex subset of covered by , i.e. the region of space where the node
exists. notice that the region of a node is always a subset of the region of its parent

and we can also define a Supporting plane, as a plane that completely contains a
polygon

Autopartition

S = {p ∈ R }d H ∈ Rd−1 H+

H− H

∣S∣ = 1 S v S(v) = S

∣S∣ > 1 S

Hv

S(v) = {p ∈ S∣p ⊆ H }v Hv

T+ S =+ {p ∩H ∣p ∈v
+ S}

T− S =− {p ∩H ∣p ∈v
− S}

p ∩Hv
±

v R(v)
Rd v

BSP Trees 3

a BSP where all the splitting planes are supporting planes)

NOTE: the order in which we split the plane matters, since it could lead us to different
trees

Construction(in 2d)

def autopartition(S=set of lines in R^d):
 if |S|<=1:
 T= leaf v containing S
 else
 chose s1 in S in as spliting line
 let LS1=supporting line of S1
 compute s+ = {s in LS1+}
 compute s- = {s in LS1-}
 calculate T+=autopartition(S+)
 calculate T-=autopartition(S-)
 T=node v containing T+ and T-, LS1 and S(v)
 return T

The algorithm can be randomized by randomizing in the beginning

Complexity
in 2d, , we expect a number of fragments in constructed in a time

. to show this we can start by saying that the number of fragments, being
the size of the BSP is equal to and since for every node we split in half

the number of leaves

Hv

S

n = ∣S∣ O(n log n)
O(n log n)2

=n̄ ∣S(ν)∣
ν

∑

#nodes = 2#leaves− 1 = 2#fragments− 1 = 2 −n̄ 1

BSP Trees 4

now let be a segment not yet
“consumed”(used) by the algorithm and

 the currently chosen segment.

Now we ask: what is the condition for
 to be split by the supporting plane

of ?

take this case:

if we selected before , whould
have been Shielded by the supporting
plane of

Driven by this we can define a new Distance:

i.e. when we have an interception between the supporting plane of and the segment
 this distance means the number of “shielding” fragments between and

we can say that , where is the
number of segments between and

since we are randomizing we have to take in play probability, and we will say that the

probability , i.e. the number of “good

cases” among all the cases, where the good cases are all the cases where i is the
minimum, and the number of permutation is one element less, so we obtain

now we can calculate the expected number of splits caused by the segment S as the

sum of all those probabilities, so , where the

 is because every split occours at most 2 times, one per direction the line can
follow.

at this point, since we have to compute this for every of the segments we expect to
compute at most splits, and since we started with fragments we end up with
a number of segments in the order of

sj

si

sj
si

sr si sj

sr

dist(s , s) =i j

{
#segments s with interc. point L ∩ Lr sr si

+∞
if

else

L(S) intercepts Si j

si
sj si sj

L splits s ⟺si j i = min{i, j, j ,…, j }1 k k

si sj

P [L splits s] =r si j #permutations(i,j ,…,j)1 k

#permutations(j ,…,j)1 k

P [L splits s] =r si j =(k+2)!
(k+1)! =

k+2
1

dist(si,sj)+2
1

≤
s =s′

∑
dist(s,s)+2′

1 2 =
i=0
∑
n−l

i+2
1 2 log(n)

≤ 2 ×…

n

2n log n n

O(n+ 2n log n) = O(n log n)

BSP Trees 5

now since the number of recursive calls is equal to the number of fragments and we
have to compute the possible splits for every fragments we end up with times the time
for building all fragments, since we have fragments, each one built in
time, we end up with a time complexity of

Construction(in 3d)
in this case the construction is

Example applications

Ray casting

n

O(n log n) O(1)
O(n log n)2

O(n)2

BSP Trees 6

Rendering a set of polygones without a z-
buffer(painter’s algo)

Quality of the BSP

Balancing Vs Splits
if for example we need to make a classification task we need to reduce the worst case
behaviour, that means reducing the depth of the tree, meaning that we want to Balance
the splits

BSP Trees 7

if we want to make depth sortings we are interested in reducing the number of
fragments, meaning that we need to reduce the size

the question: Can we measure the quality of the BSB?(Spoiler: Yes!)

we can measure the cost of a BSP:

, where:

 is given by the fixed cost that we need to spend at runtime if our query intercepts a
node

 is the probability that the traversal at runtime needs to enter in the

negative/positive subtree

 are the positive/negative subtree

Distribution Optimized(Self Organizing) BSP
we start with a Autopartition BSP, and we have a ray that starts somewhere and we
want to shoot it into the scene and see if it has any interceptions.

The cost is equal to the number of visited nodes, that is less than the depth of the tree d
times the number of stabbed leaves

to notice that in an autopartition the leaves always have an empty space inside, this
means that the stabbed leaves are the spaces in which the ray passes.

what do we want to minimize is the number of stabbed leaves until the ray hits a
polygon

we need to consider a probability density function , where is the
space of the rays, let be a ray, defined by a starting point and a direction, and
the set of polygones of the scene, let , we define the

where is a weight that aims to capture the probability that a specific ray hits
the polygon and is influenced by the angle between ray and polygon, we then need
the normal of the polygon and the direction of the ray

C(T) = 1 + P C(T) +− − P C(T)+ +

1

P =±
vol(R(T))
vol(R(T))±

T±

C(T) = #nodesVisited ≤ depth(T) ⋅ #stabbedLeaves

ω : D → R D ⊇ R5
l ∈ D S

p ∈ S score(p) =
ω(l)w(p, l)dl

D

∫

w(p, l) l

p

n ld

w(p, l) = ∣n ⋅ l ∣ ⋅d area(s)
area(p)

BSP Trees 8

with this we can improve the BSP construction: instead of choosing a random polygon
we can sort by and take the ones with the highest score

what do we do is augmenting the BSP

Augmented BSP-Tree
we are going o turn the BSP into an on-deman construction, trying to move the
polygons that are hit more frequently into the top of the BSP, in this way they will be hit
earlier.

in this version each node will store:

the splitting plane

a set of polygons

potentially the region , but it’s not really needed

we will say that if the node is a preliminary leaf we will store a list of
polygons associated with the node

we will also store a visit counter for each node that stores how many times we
have visited that node

we will also store a list counter for each polygon that stores how many times a
polygon has bit hit

def testRay(ray l, node v):
 if v is leaf:
 increment t(v)
 test l against all L(v)
 increment T(p) for all polygons in L(v)that are hit
 if T(n)>threshold:
 subdivide v
 return the hit point or none
 else:
 v1 = child of v on the same side of the starting point of l
 hitPoint = testRay(l, v1)
 if no hit in v1:
 hitPoint = testRay(l1, v2)
 return hitPoint

the subdivision step of preliminary leaves
When: split if

S score(p, l)

v

Hv

Pv

R(v)

L(v) ⊆ S

v

T (v)

T (p)

T (v) > treshhold

BSP Trees 9

How: is the list of hits on the polygons(hit counter) and we increment it when we
find an hit. if we want to split, we take the polygon with the maximum counter and
maintain as a heap

Object representation using BSPs
in this scenario the leaves has a different meaning, the one of “inside” and “outside”:

Merging BSPs
given 2 BSPs and an operation , we want to compute

T (p)
p∗

L

BSP ,BSP1 2 ∘ ∈ {∩,∪, ∖}

BSP ∘1 BSP →2 BSP :3 ∀ leaves l ∈3 BSP l =3 3 {c ∘1 c , ∣c ∈2 1 l , c ∈1 2 l }2

BSP Trees 10

ANSATZ
we start with a BSP and a plane H containing the polygon that lies
completely in it, we search for a new BSP with in the root

we can create a function , that calculates from a
subroutine the subtrees , then

,

 is the root of a BSP

 is a splitting plane

if is leaf:

otherwise is an inner node

If and are coplanar with opposite normals:

If and are not coplanar, but facing the same direction:

and analogue for all possible orientations

mixed case:

T p ⊆H H

T̂ H

partition-tree(T ,H) → T̂

(,) =T
~+ T

~− splitTree(T ,H,H) =T̂

(H,p , ,)H T
~+ T

~−

splitTree(T ,H,P) → (,)T
~+ T

~−

=T
~+ T ∩H+ =T

~− T ∩H−

T = (H ,p ,T ,T)T T
− +

H

P = H ∩ R(T)

T (,) =T
~+ T

~− (T ,T)

T

H HT (,) =T
~+ T

~− (T ,T)− +

H HT (,) =T
~+ T

~−

((H ,p ,T , splitTree(T ,H,P)), (H ,p ,T , splitTree(T ,H,P)))T T
− − +

T T
+ + +

BSP Trees 11

cool material
https://slideplayer.com/slide/13535755/

https://www.semanticscholar.org/paper/Finding-perfect-auto-partitions-is-NP-hard-Berg-
Khosravi/666c26350fbc2a6130d4c7a78afae5f8fdae07ae

https://www.semanticscholar.org/paper/Coupled-Use-of-BSP-and-BVH-Trees-in-Order-
to-Ray-Cadet-Lécussan/3db1fb59a1409a4cacad5a9060710b68fb9b1ce7

https://www.researchgate.net/figure/The-construction-of-a-simple-BSP-in-2D-On-each-
step-the-space-is-divided-in-two_fig13_287646188

https://www.semanticscholar.org/paper/Fast-Robust-BSP-Tree-Traversal-Algorithm-for-
Ray-Havran-Kopal/877db116e624eb917519ae430a6ff08f1604cf48

https://onlinelibrary.wiley.com/doi/10.1111/1467-8659.t01-1-00586

https://commons.apache.org/proper/commons-geometry/tutorials/bsp-tree.html

https://www.researchgate.net/figure/4-Plane-based-Booleans-are-performed-by-
merging-BSP-trees-8_fig12_346013718

https://slideplayer.com/slide/13535755/
https://www.semanticscholar.org/paper/Finding-perfect-auto-partitions-is-NP-hard-Berg-Khosravi/666c26350fbc2a6130d4c7a78afae5f8fdae07ae
https://www.semanticscholar.org/paper/Coupled-Use-of-BSP-and-BVH-Trees-in-Order-to-Ray-Cadet-L%C3%A9cussan/3db1fb59a1409a4cacad5a9060710b68fb9b1ce7
https://www.researchgate.net/figure/The-construction-of-a-simple-BSP-in-2D-On-each-step-the-space-is-divided-in-two_fig13_287646188
https://www.semanticscholar.org/paper/Fast-Robust-BSP-Tree-Traversal-Algorithm-for-Ray-Havran-Kopal/877db116e624eb917519ae430a6ff08f1604cf48
https://onlinelibrary.wiley.com/doi/10.1111/1467-8659.t01-1-00586
https://commons.apache.org/proper/commons-geometry/tutorials/bsp-tree.html
https://www.researchgate.net/figure/4-Plane-based-Booleans-are-performed-by-merging-BSP-trees-8_fig12_346013718

