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🚨
BSP Trees
BSP Trees are a generalization of kd trees. The main difference is that in KDtrees we 
splitted the axes in parallel with the axis now we want to relax this condition and allow 
splitting in any direction

the main idea is to introduce a splitting plane and a direction, then assign to the children 
either a node containing a geometry if there is only one in the subspace generated or 
another BSPTree. the left child always indicates the inner side of the splitting, the right 
one the outside
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more properly we can give a definition:

given a set of polygons , and a plane , we can define  
as the positive halfspace and  as the negative halfspace divided by 

if ,  is a leaf node , storing 

if ,  is an inner node that stores:

, the splitting plane

 the set of polygons completely included in  

, the subBSP over , i.e. all the polygons in the positive 
halfspace

, the subBSP over , i.e. all the polygons in the 
negative halfspace

NOTE:  the , w.r.t. polygons included in an halfspace are called Fragments 

we can also define in a similar fashion to the KD trees the region of a node , , 
being the convex subset of  covered by , i.e. the region of space where the node 
exists. notice that the region of a node is always a subset of the region of its parent

and we can also define a Supporting plane, as a plane that completely contains a 
polygon

Autopartition

S = {p ∈ R }d H ∈ Rd−1 H+

H− H

∣S∣ = 1 S v S(v) = S

∣S∣ > 1 S

Hv

S(v) = {p ∈ S∣p ⊆ H }v Hv

T+ S =+ {p ∩H ∣p ∈v
+ S}

T− S =− {p ∩H ∣p ∈v
− S}

p ∩Hv
±

v R(v)
Rd v
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a BSP where all the splitting planes  are supporting planes)

NOTE: the order in which we split the plane matters, since it could lead us to different 
trees 

Construction(in 2d)

def autopartition(S=set of lines in R^d): 
 if |S|<=1: 
  T= leaf v containing S 
 else 
  chose s1 in S in as spliting line 
  let LS1=supporting line of S1 
  compute s+ = {s in LS1+} 
  compute s- = {s in LS1-} 
  calculate T+=autopartition(S+) 
  calculate T-=autopartition(S-) 
  T=node v containing T+ and T-, LS1 and S(v) 
 return T

The algorithm can be randomized  by randomizing  in the beginning

Complexity
in 2d, , we expect a number of fragments in  constructed in a time 

. to show this we can start by saying that the number of fragments, being 
the size of the BSP is equal to  and since for every node we split in half 

the number of leaves

Hv

S

n = ∣S∣ O(n log n)
O(n log n)2

=n̄ ∣S(ν)∣
ν

∑

#nodes = 2#leaves− 1 = 2#fragments− 1 = 2 −n̄ 1
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now let  be a segment not yet 
“consumed”(used) by the algorithm and 

 the currently chosen segment.

Now we ask: what is the condition for  
 to be split by the supporting plane 

of ?

take this case:

if we selected  before ,  whould 
have been Shielded by the supporting 
plane of  

Driven by this we can define a new Distance: 

i.e. when we have an interception between the supporting plane of  and the segment 
 this distance means the number of “shielding” fragments between  and 

we can say that , where  is the 
number of segments between  and 

since we are randomizing we have to take in play probability, and we will say that the 

probability , i.e. the number of “good 

cases” among all the cases, where the good cases are all the cases where i is the 
minimum, and the number of permutation is one element less, so we obtain 

now we can calculate the expected number of splits caused by the segment S as the 

sum of all those probabilities, so , where the 

 is because every split occours at most 2 times, one per direction the line can 
follow.

at this point, since we have to compute this for every of the  segments we expect to 
compute at most  splits, and since we started with  fragments we end up with 
a number of segments in the order of 

sj

si

sj
si

sr si sj

sr

dist(s , s ) =i j

{
#segments s  with interc. point L ∩ Lr sr si

+∞
if

else

L(S ) intercepts Si j

si
sj si sj

L  splits s ⟺si j i = min{i, j, j ,…, j }1 k k

si sj

P [L  splits s ] =r si j #permutations(i,j ,…,j )1 k

#permutations(j ,…,j )1 k

P [L  splits s ] =r si j =(k+2)!
(k+1)! =

k+2
1

dist(si,sj)+2
1

≤
s =s′

∑
dist(s,s )+2′

1 2 =
i=0
∑
n−l

i+2
1 2 log(n)

≤ 2 ×…

n

2n log n n

O(n+ 2n log n) = O(n log n)
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now since the number of recursive calls is equal to the number of fragments and we 
have to compute the possible splits for every fragments we end up with  times the time 
for building all fragments, since we have  fragments, each one built in  
time, we end up with a time complexity of 

Construction(in 3d)
in this case the construction is 

Example applications

Ray casting

n

O(n log n) O(1)
O(n log n)2

O(n )2
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Rendering a set of polygones without a z-
buffer(painter’s algo)

Quality of the BSP

Balancing Vs Splits
if for example we need to make a classification task we need to reduce the worst case 
behaviour, that means reducing the depth of the tree, meaning that we want to Balance 
the splits
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if we want to make depth sortings we are interested in reducing the number of 
fragments, meaning that we need to reduce the size

the question: Can we measure the quality of the BSB?(Spoiler: Yes!)

we can measure the cost of a BSP:

, where:

 is given by the fixed cost that we need to spend at runtime if our query intercepts a 
node

 is the probability that the traversal at runtime needs to enter in the 

negative/positive subtree

 are the positive/negative subtree

Distribution Optimized(Self Organizing) BSP
we start with a Autopartition BSP, and we have a ray that starts somewhere and we 
want to shoot it into the scene and see if it has any interceptions.

The cost is equal to the number of visited nodes, that is less than the depth of the tree d 
times the number of stabbed leaves

to notice that in an autopartition the leaves always have an empty space inside, this 
means that the stabbed leaves are the spaces in which the ray passes.

what do we want to minimize is the number of stabbed leaves until the ray hits a 
polygon

we need to consider a probability density function , where  is the 
space of the rays, let  be a ray, defined by a starting point and a direction, and  
the set of polygones of the scene, let , we define the 

where  is a weight that aims to capture the probability that a specific ray hits 
the polygon  and is influenced by the angle between ray and polygon, we then need 
the normal of the polygon  and the direction of the ray 

C(T ) = 1 + P C(T ) +− − P C(T )+ +

1

P =±
vol(R(T ))
vol(R(T ))±

T±

C(T ) = #nodesVisited ≤ depth(T ) ⋅ #stabbedLeaves

ω : D → R D ⊇ R5
l ∈ D S

p ∈ S score(p) =
ω(l)w(p, l)dl

D

∫

w(p, l) l

p

n ld

w(p, l) = ∣n ⋅ l ∣ ⋅d area(s)
area(p)
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with this we can improve the BSP construction: instead of choosing a random polygon 
we can sort  by  and take the ones with the highest score 

what do we do is augmenting the BSP

Augmented BSP-Tree
we are going o turn the BSP into an on-deman construction, trying to move the 
polygons that are hit more frequently into the top of the BSP, in this way they will be hit 
earlier.

in this version each node  will store:

the splitting plane 

a set of polygons 

potentially the region , but it’s not really needed

we will say that if the node is a preliminary leaf we will store a list  of 
polygons associated with the node 

we will also store a visit counter  for each node that stores how many times we 
have visited that node

we will also store a list counter  for each polygon that stores how many times a 
polygon has bit hit 

def testRay(ray l, node v): 
 if v is leaf: 
  increment t(v) 
  test l against all L(v) 
  increment T(p) for all polygons in L(v)that are hit 
  if T(n)>threshold: 
   subdivide v 
  return the hit point or none 
 else: 
  v1 = child of v on the same side of the starting point of l 
  hitPoint = testRay(l, v1) 
  if no hit in v1: 
   hitPoint = testRay(l1, v2) 
  return hitPoint

the subdivision step of preliminary leaves
When: split if 

S score(p, l)

v

Hv

Pv

R(v)

L(v) ⊆ S

v

T (v)

T (p)

T (v) > treshhold



BSP Trees 9

How:  is the list of hits on the polygons(hit counter) and we increment it when we 
find an hit. if we want to split, we take the polygon  with the maximum counter and 
maintain  as a heap

Object representation using BSPs
in this scenario the leaves has a different meaning, the one of “inside” and “outside”:

Merging BSPs
given 2 BSPs  and an operation , we want to compute

 

T (p)
p∗

L

BSP ,BSP1 2 ∘ ∈ {∩,∪, ∖}

BSP ∘1 BSP →2 BSP :3 ∀ leaves l ∈3 BSP l =3 3 {c ∘1 c , ∣c ∈2 1 l , c ∈1 2 l }2
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ANSATZ
we start with a BSP  and a plane H containing the polygon  that lies 
completely in it, we search for a new BSP  with  in the root

we can create a function , that calculates from a 
subroutine the subtrees , then 

, 

 is the root of a BSP 

 is a splitting plane

if  is leaf: 

otherwise  is an inner node

If  and  are coplanar with opposite normals: 

If  and  are not coplanar, but facing the same direction: 

and analogue for all possible orientations

mixed case: 

T p ⊆H H

T̂ H

partition-tree(T ,H) → T̂

( , ) =T
~+ T

~− splitTree(T ,H,H) =T̂

(H,p , , )H T
~+ T

~−

splitTree(T ,H,P) → ( , )T
~+ T

~−

=T
~+ T ∩H+ =T

~− T ∩H−

T = (H ,p ,T ,T )T T
− +

H

P = H ∩ R(T )

T ( , ) =T
~+ T

~− (T ,T )

T

H HT ( , ) =T
~+ T

~− (T ,T )− +

H HT ( , ) =T
~+ T

~−

((H ,p ,T , splitTree(T ,H,P) ), (H ,p ,T , splitTree(T ,H,P) ))T T
− − +

T T
+ + +



BSP Trees 11

cool material
https://slideplayer.com/slide/13535755/

https://www.semanticscholar.org/paper/Finding-perfect-auto-partitions-is-NP-hard-Berg-
Khosravi/666c26350fbc2a6130d4c7a78afae5f8fdae07ae

https://www.semanticscholar.org/paper/Coupled-Use-of-BSP-and-BVH-Trees-in-Order-
to-Ray-Cadet-Lécussan/3db1fb59a1409a4cacad5a9060710b68fb9b1ce7

https://www.researchgate.net/figure/The-construction-of-a-simple-BSP-in-2D-On-each-
step-the-space-is-divided-in-two_fig13_287646188

https://www.semanticscholar.org/paper/Fast-Robust-BSP-Tree-Traversal-Algorithm-for-
Ray-Havran-Kopal/877db116e624eb917519ae430a6ff08f1604cf48

https://onlinelibrary.wiley.com/doi/10.1111/1467-8659.t01-1-00586

https://commons.apache.org/proper/commons-geometry/tutorials/bsp-tree.html

https://www.researchgate.net/figure/4-Plane-based-Booleans-are-performed-by-
merging-BSP-trees-8_fig12_346013718

https://slideplayer.com/slide/13535755/
https://www.semanticscholar.org/paper/Finding-perfect-auto-partitions-is-NP-hard-Berg-Khosravi/666c26350fbc2a6130d4c7a78afae5f8fdae07ae
https://www.semanticscholar.org/paper/Coupled-Use-of-BSP-and-BVH-Trees-in-Order-to-Ray-Cadet-L%C3%A9cussan/3db1fb59a1409a4cacad5a9060710b68fb9b1ce7
https://www.researchgate.net/figure/The-construction-of-a-simple-BSP-in-2D-On-each-step-the-space-is-divided-in-two_fig13_287646188
https://www.semanticscholar.org/paper/Fast-Robust-BSP-Tree-Traversal-Algorithm-for-Ray-Havran-Kopal/877db116e624eb917519ae430a6ff08f1604cf48
https://onlinelibrary.wiley.com/doi/10.1111/1467-8659.t01-1-00586
https://commons.apache.org/proper/commons-geometry/tutorials/bsp-tree.html
https://www.researchgate.net/figure/4-Plane-based-Booleans-are-performed-by-merging-BSP-trees-8_fig12_346013718

