Exercise Group of 2 or alone

Important Preprocessing

- Domain discretization (decompose)
- Do grid over it → Computational inefficient
 → Uniform Grid not good
- Non-uniform, conforming mesh that respects the input.
- Long & thin triangles, always bad
- Quadtree quite nice

Used in simulation to e.g. flow (air) around a vehicle or crashed test.
Quadtrees

store geometry data

Coincidence, Incidence, adjacency

\[e \uparrow \hspace{2em} \uparrow \hspace{2em} q \]

e is incidence to point \(v \)

they are neighbors

Points/vectors: \(p, q, v, w \ldots \)

set of points, polygons: \(P, Q, S \ldots \)

Segments: \(\overrightarrow{P} \)

Quadtree = Tree, with
inner nodes corresponding to squares;
children of a node partition the node into four quadrants

Children Direction
Note: quadtree induces partitioning of the domain

Complete quadtree is like a normal grid, called multi-level grid

Terminology:

Def: nodes are adjacent: \(\iff \) their squares share an edge

Def: square of a node \(v \)

\[
q(v) = [x_v, x_v'] \times [y_v, y_v']
\]

Given: set of points \(P \subseteq \mathbb{R}^2 \)

Def: quadtree \(Q \) over point set \(P \)
Proof: \(s = 4 \)
side length of nodes \(v \) on level \(i = \frac{1}{2^k} \).
max distance inside \(v = \frac{\sqrt{2}}{2^k} \).

If \(v \) is inner node \(\Rightarrow c = \frac{\sqrt{2}}{2} \).

\[i \leq \log \frac{\sqrt{2}}{2} = \log \frac{1}{2} + \frac{1}{2} \Rightarrow \text{Lemma} \]

for leaves: \(i \leq \frac{\log \frac{1}{2} + \frac{1}{2} + 1}{\text{level of parent}} \)

Lemma: Complexity of quadtrees

A quadtree of depth \(d \) over \(n \) points, takes \(O(n(d+1)) \) nodes and takes \(O(n(d+1)) \) to construct.

Proof:

number of leaves = \((\#\text{inner nodes}) \cdot 3 + 1 \) (by induction)

\(\Rightarrow \) upper bounds on inner nodes suffice.
Part 1

- # inner nodes on one level
 \[\leq n \] (in each inner node there are at least 2 points)

- \[\Rightarrow \] # inner nodes over all levels \[\leq n \cdot (d-1) \]

- \[\Rightarrow \] # nodes \[\leq n \cdot (d-1) + 2n \]
 because in each quadtree, 2 leaves must contain a point.

Part 2

For each node \(v \), we have time \(T(v) \).

\[T(v) = O(m), \quad m = \# \text{points in } v \]

Sum of all points on level \(i \) \[\leq n \]

\[\sum_{v \text{ is node on level } i} T(v) \in O(n) \]

\[\Rightarrow \text{ time } O(n \cdot d) \text{ or } (n \cdot d + n) \]
Find north neighbor

Given: node v

Sought: v' - north neighbor of v, such that depth(v') \leq depth(v)

Algorithm get North Neighbor(v)

If \(v \) is root \(\rightarrow \) return nil

let \(p := \text{parent}(v) \)

(1) If \(v \) is lower(left) child of \(p \) \(\rightarrow \) return \(\text{LC child of } p \)

(2) If \(v \) is LR child of \(p \) \(\rightarrow \) return \(\text{UR child of } p \)

Case 1 & 2
\(p' = \text{getNorthNeighbor}(p) \)

If \(p' \) is nil or \(p' \) is leaf \(\rightarrow \) return \(p' \)

(3) If \(u \) is UL child of \(p \) \(\rightarrow \) return UL child of \(p' \)

(4) If \(u \) is UR \(\rightarrow \) return CR

\begin{align*}
\text{Running Time: } & O(d) \\
\text{Worst case to get parent go all the way up in the hierarchy and all the way down again.}
\end{align*}

\(\text{Exam: Sketch this for get west neighbors and why is it so complex in worst case?} \)
Balanced Quadtrees

Def: A quadtree is "balanced" if

\[\forall \text{neighbors } v, v': |\text{depth}(v) - \text{depth}(v')| \leq 1 \]

Corollary

If \(Q \) is balanced \(\Rightarrow \) size of neighbors differs by factor 2 at most.

Balanced Quadtree

Algo for constructing balanced quadtrees:

Maintain: Cist \(\mathcal{L} \) of leaves

while there are still nodes \(v \) in \(\mathcal{L} \):

1. check whether \(v \) needs to split (neighbor finding algo)

2. If \(v \) had to split, check whether neighbors need splitting, too
Lemma:
cet Q be a quadtree with m nodes,
\(\delta = \) balanced quadtree from Q.

Then \(\hat{Q} \) has \(O(m) \) nodes, and it can be constructed in time \(O(m \log m) \).

Proof

Part 1: We prove that there are \(O(m) \) splitting operations
\(\implies \) lemma follows, b/c each split
generate 4 additional nodes.

Define split counter
- Only for old nodes (from origin quadtree):=
 how many times did the old node cause split

- Split counter at end of balancing \(\leq 8 \)

- Each old node generated at most \(8 \times 4 \) new nodes

\(\hat{Q} \) has \(O(m) \) nodes, and it can be constructed in time \(O(m \log m) \).
Assertion (to be proven):

No matter how deep subtree under v_1 is, v_3 never has to split because of v_1.

Def: $D(v) =$ depth of subtree under v.

Base case:

$D(v_2) = D(v_3) = 0$
$D(v_1) = 2$

Inductive step: Lemma is true for $D < d$

$D(v_1) = d > 2$

$D(\text{ur child of } v) = d-1$. v_2 is split at least once.

Situation for which Lemma holds, b/c depth of ur child of $v \leq d$

\Rightarrow ur child of v_2 will not be split.

Part 2:

Time per node $\in O(d+1)$, b/c of const number of neighbor finding operations (ops).

Each node will be considered only once \Rightarrow lemma