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Meshing

• Important preprocessing step for many 

applications 

• "Domain discretization“ = a complex region 

(domain) in 2D or 3D is partitioned into a set of 

much simpler polytopes , e.g., tetrahedra or 

hexahedra 

• Applications:  

• FEM = Finite Element Method (a.k.a. FEA) 

• CFD = Computational Fluid Dynamics 

• Simulation involves solving differential equations for 

„every“ point inside the domain -> solve only on the 

nodes
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Uniform 
mesh, i.e. too 
many mesh 
elements. 

Non-uniform, 
conforming mesh that 
respects the input. 
But acute triangles.

Mesh with all desired 
properties, based on quadtree.

Non-uniform, conforming mesh that 
respects the input; well-shaped, too:  
bounded aspect ratio (e.g., angles ∈ 
[45°, 90°]. 
But needs so-called "Steiner points" 
(additional points)  ⟶ where/how to 
place them?
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Example Result of Our Meshing Algorithm
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Example "snappyHexMesh"

5

Input polygons
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Other Kinds of Volume Meshes
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Variant: Exact Octrees (a.k.a. SP-Octrees)
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Boundary leaf nodes

Other leaf nodes are either completely outside, or completely inside

P0

P1

P1

P0



G. Zachmann Computational Geometry SS April 2025

Geodesic Dome

8

Start with icosahedron; subdivide 

each triangle by 4 smaller triangles 

(recursively) ⟶ quadtree in each 

base triangle. 

 

Navigation (finding neighbors of a 

node) in such an ensemble of 

quadtrees is a bit more complex 
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• Is it possible to triangulate a 

cube without additional 

points (Steiner points)? 

• Different triangulations → 

different number of 

tetrahedra:

Digression: Triangulations in 3D (=“Tetrahedralization")
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Untriangulable ("Un-Tetrahedralizable") Polyhedra

10

Thurston Polyhedron 
(1977)

Chazelle Polyhedron 
(1984)

Schönhardt Polyhedron 
(1928)

Generalization of Schönhardt 
by Rambau
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Jessen's Ikosahedron
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Point Quadtree Demo

12
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Quadtree Demo

13

Recursion criterion here: 

more than 4 points in a 
node
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Space-Filling Curves

• Definition curve: 

A curve (with endpoints) is a continuous function with domain in the unit 

interval [0, 1] and range in some d-dimensional space. 

• Definition space-filling curve: 

A space-filling curve is a curve with a range that covers the entire 2-

dimensional unit square (or, more generally, an n-dimensional hypercube).

14
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Examples of Space-Filling Curves

15

Peano curve

Hilbert curve

Z-order curve 
(a.k.a. Morton curve) Z-order curve in 3D
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• Benefit: a space-filling curve gives a mapping from the unit square to the 

unit interval 

• At least, the limit curve does that … 

• We can construct a "space-filling" curve only up to some specific (recursion) 

level, i.e., in practice space-filling curves are never really space-filling

16
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Construction of the Z-Order Curve (here, in 3D)

1. Choose a level k 

2. Construct a regular lattice of points in the unit cube, 2k points along each 

dimension 

3. Represent the coordinates of a lattice point p by integer/binary number, i.e., 

k bits for each coordinate, e.g. px = bx,k…bx,1 

4. Define the Morton code of p as the interleaved bits of the coordinates, i.e., 

m(p) = bz,kby,kbx,k…bz,1by,1bx,1 

5. Connect the points in the order of their Morton codes ⟶  

z-order curve at level k

17
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Example

18
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Note: the Z-curve induces a grid (actually, a complete quadtree)
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Properties of Morton Codes (here, in 2D)

• The Morton code of each point is 2k bits long 

• All points p with Morton code m(p) = 0xxx lie below  

the plane y = 0.5  

• All points with m(p) = 11xx lie in the upper right quadrant of the square 

• If we build a quadtree/octree on top  

of the grid, then the Morton code encodes the  

path of a point, from the root to the leaf that  

contains the point ("0" = left, "1" = right) 

• The Morton codes of two points differ  

for the first time – when read from left to right –  

at bit position h  ⇔   

the paths in the binary tree over the grid split at level h

20
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Logic Operations with Quadtrees

21

http://blog.ivank.net/quadtree-visualization.html

http://blog.ivank.net/quadtree-visualization.html
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Acceleration of "Collision Detection" by Quadtrees
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http://www.mikechambers.com/blog/2011/03/21/javascript-quadtree-implementation/ 

http://www.mikechambers.com/blog/2011/03/21/javascript-quadtree-implementation/
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Octree Models from Images
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Drehteller Gray Code 
(zur Erkennung der 
Orientierung des 
Drehtellers)
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Example Models

24
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Image Compression using Quadtrees
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The two test images par excellence

26
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Results

27
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Demo for BTC and CCC Compression
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http://ls.wim.uni-mannheim.de/de/pi4/teaching/animations/ 

http://ls.wim.uni-mannheim.de/de/pi4/teaching/animations/
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S3TC Texture Compression

• Comparison:

29

DXT1 Uncompressed

[Philipp Klaus Krause]
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• Advantage: bigger textures possible → higher quality 

• Example from the Unreal Engine:

30

uncompressed with S3TC

Unreal Retexturing Project
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Isosurfaces

• Beispiel zur Motivation: 

• Gegeben ist ein 2D Höhenfeld 

• Gesucht ist eine Visualisierung (in 2D!), so 

daß man die Form / den Verlauf des 

Höhenfeldes gut "erkennt" 

• Eine Möglichkeit: Höhenlinien = Konturen 

= Isolinien

31



G. Zachmann Computational Geometry SS April 2025

Computational vs Physical Space

32
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How Many Triangulations has the Hexahedron?

• Cube ⟶ 2 triangulations 

• Hexahedron: 

• Triangulation must conform to border of hexahedron 

• 12 edges are fixed, 8 edges have 2 possibilities ⟶ 26 possibilities to triangulate 

the surface of a hexahedron 

• Each of these could lead  

to a number of different  

triangulation of the hexahedron 

• Question: how many are there combinatorially? do all have a geometric 

33

(= Tetrahedralizations)
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Video

34
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Problems / Challenges With Isosurface Computation

• Singularities ⟶ isosurface contracts to a 

point, or appears "out of nowhere" 

when isovalue crosses that point 

• Ambiguities during tesselation 

• Plateaus ⟶ large "jumps" of the location 

of the isosurface when isovalue changes 

by ε

35
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Examples for volume data records

36

Blunt Fin

Chapel Hill CT Head

Engine Block
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Isosurface of the  
Richtmyer-Meshkov Instability 
(Lawrence-Livermore National Labs (LLNL) ) 290M triangles, volume data set = 2.1 TB
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The 15 really different cases in 3D Marching Cubes (modulo rotation & mirroring)

38
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Demo

39

http://users.polytech.unice.fr/~lingrand/MarchingCubes/applet.html 

http://users.polytech.unice.fr/~lingrand/MarchingCubes/applet.html
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Difficult Cases for Every Isosurface Algorithm

• An ambiguous case in 2D: 

• Sometimes, triangulations of adjacent voxels won't match: 

• More on that ⟶ Advanced Computer Graphics

40

case 10

 

case 3case 3

algorithm:

.
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• Output of a single Marching-Cube-Algorithm:

42
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Example time-varying volume data set

43
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Another Demo (Metaballs)

44

http://threejs.org/ 

http://threejs.org/
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Splitting strategies when building kd-Trees

45

Along the dimension  
with the widest spread of the points, 

at the median of the coords

Along the dimension with the 
longest side of the region, 

at the coordinate closest to the 
middle of the extent of the region

Longest side kd-treeWidest spread kd-tree
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Animation of Nearest-Neighbor using kd-Trees

46

Andrew Moore, CMU
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Animation of NN search with large data set

78
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A Worst-Case for NN-Search Using kd-Trees

112

Good case Bad case

All leaves the NN algorithm had to visit are shown in white!

In a few moments, it will get worse …
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Artistic Application of k-NN Algorithm

113
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Application: Classification

• Given a set of points 

and for each such point a label  

• Each label represents a class, all points with the same label are in the same class 

• Wanted: a method to decide for a not-yet-seen point x which label it most 

probably has, i.e., a method to predict class labels 

• We say that we learn a classifier C from the training set    : 

• Typical applications: 

• Computer vision (object recognition, …) 

• Credit approval 

• Medical diagnosis

114
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One Possible Solution: Linear Regression

• Assume we have only two classes (e.g., "blue" and "yellow") 

• Fit a plane through the data

115

x1

x2
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Another Solution: Nearest Neighbor (NN) Classification

• For the query point q, find the nearest neighbor  

• Assign the class 

116

x1

x2
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Improvement: k-NN Classification

• Instead of the 1 nearest neighbor, find the k nearest neighbors of  

q,  

• Assign the majority of the labels                  to q

117

x1

x2

k = 15
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Thinking About Higher-Dimensional Space: Slicing

118
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4-Dimensional Space

• Brain teaser: what does a cube that slowly "floats" through Flatland look 

like, starting with a corner? 

• What can a higher-dimensional being do with lower-dimensional beings:

119
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Thinking About 4D: Analogy and Slicing, Example: 4-Dim. Tetrahedron

120

http://www.dimensions-math.org 

1-simplex

2-simplex

3-simplex

4-simplex

http://www.dimensions-math.org
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Thinking About 4D: the Projection Method, Example Hypercube (Tesseract)

121
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Thinking About 4D: the Unwrapping Method

122

Crucifixion  
(Corpus Hypercubus), 

1954, Salvador Dali

Matt Parker

The unfolding method: 
The projection of a 3D cube unfolding into its 2D net
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Projection of a 3D cube 
unfolding into its 2D net

Projection of a 4D cube 
unfolding into its 3D net

The "lid" of the 4D cube (what is it?) does not deform, of course; that is just an artefact of the projection into 3D,  
just like the lid of the 3D cube when projected into 2D.
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Strange Things Happen in Higher-Dimensional Space

• Consider a cube [-1,+1]d with unit spheres centered at each corner 

• What is the radius, r, of a sphere centered at the origin and just touching the 

corner spheres?

124
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• Radius  

• In 2D:  r = 0.414     ,  in 3D:  r = 0.73 

• In 4D:  r = 1   ⟶  

inner sphere touches box at the face centers! 

• In 5D:  r = 1.24 ⟶ inner spheres sticks outside! 

• In higher dimensions, more 

and more of the inner 

sphere is outside the box:

125
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Zum Verhalten von logd(n)

126

70

0
1 10

Therefore the algorithm for the ANN-
search is better (asymptotically) than 
brute-force searching for all points and 
calculating their distance from the query 
point q.
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Experimental Results on kd-Tree / RKD Forest    [Silpa-Anan 2008]
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100,000 random points in a 128-dim. cube are 
projected by a projection π into 20 dim. space. The 
NN p* to a query q in 128D may become n-th NN 
after projection onto 20D. The x-axis is the ranking n 
and the y-axis shows the probability that the 
projection π(p*) will be n-th NN to π(q) in 20D. The 
graph shows a long tail.  
⟶ Another reason why the RKD-forest works better.

Distribution of rank of NN after 
projection to low dimensions
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Performance depends highly on distribution of input point set

129

Search efficiency for data of varying dimensionality
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Texture Synthesis

130

Wei & Levoy

TI
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original synthesized
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original synthesized
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Experiments and Results Regarding Surflet-Pair Histograms

134

Test Objects
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Point Cloud Surfaces

• Increasingly popular geometry representation 

• Lots of sources of point clouds (laser scanners, Kinect et al., …)

136
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Applications

137
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Goal

• Surface definition that is .. 

• Quick to evaluate 

• Robust against noise 

• Smooth 

• The surface definition / representation should be well suited for: 

• Ray tracing (rendering) 

• Collision detection (physics)

139
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Weighted Moving Least Squares: an Implicit Surface Definition

• Consider a point cloud P as noisy sampling of a 

smooth surface 

• Consequence: reconstructed surface should not 

interpolate the points  

• Define the surface as an implicit surface over a 

smooth distance function f, determined by the point 

cloud P: 

 

where f is the distance to the yet unknown surface S

140

S
pi∈P
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• Define f  using 

weighted moving  

least squares over k 

nearest neighbors 

• The surface is  

approximated locally  

by a plane through 

 

 

 

where " is an appropriate weight function based on "distance" 

141

original surface

x

"

pi∈P



G. Zachmann Computational Geometry SS April 2025

• Choose n as 

• From PCA we know: n happens to be the  

smallest eigenvector of the weighted 

covariance matrix B = (bij) ∈ ℝ3x3 with 

• For the weight function ", use (e.g.) a Gaussian kernel 

 
142
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• Possible weight functions (kernels): 

• Gauß kernel 

• The cubic polynomial 

• The tricube function 

• The Wendland function

143
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• Whatever kernel you use, it is fine to consider only "close neighbors" 

around x for the computation of a(x) and n(x) 

⟶ need lots of k-NN searches in P 

• More important: what distance measure to use in                       ? 

• Euclidean distance produces artefacts like this:

144
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• Solution: use a topology-based distance measure 

• Try to mimic the geodesic distance on the surface 

• Except without knowing the surface yet 

• Use a proximity graph over point cloud 

• Define 

 

 

 

with  

and               = length of shortest path through proximity graph 

145
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Which Proximity Graph to Use

• Many kinds of proximity graphs 

• Delaunay graph                                                              (to be explained later) 

• Needs kind of a "pruning" because of "long" edges; still has problems 

• Most other proximity graphs are subgraphs of the Delaunay graph 

• Sphere-of-Influence graph (SIG): is not a subgraph of the DG 

• Definition of the SIG: 

• For each point pi∈P define 

• Connect pi and pj by an edge iff 

• Extension: k-SIG 

• Define 

146

Example SIG
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Results

147

1-SIG 2-SIG 3-SIG

Example sphere-of-
influence graph (k-
SIG)

Weighted MLS surfaces using different k-SIGs  
for the geodesic distance

Delaunay 
graph with 
pruning
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Weighted MLS surface 
with Euclidean distance  
and fixed bandwidth in kernel 

Weighted MLS surface 
with proximity graph-based distance  
and automatic bandwidth estimation in ker

M
o

re
 in

fo
 in

 [K
le

in
 &

 Z
a
ch

m
a
n

n
, 2

0
0

4
] o

n
 cg

v
r.cs.u

n
i-b

r

⟶ Master's 
Thesis!



G. Zachmann Computational Geometry SS April 2025

Potential Application: Iceberg Visualization

149
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Short digression about quaternions           [Hamilton, 1843]

• Extension of complex numbers (does not work commutatively): 

• Alternate notation: 

• Axiome for the 3 imaginary units: 

• From this immediately follow these laws of calculation:

150



G. Zachmann Computational Geometry SS April 2025

Calculation rules for quaternions

• Addition: 

• Multiplication: 

• Conjugation:  

• Absolute (Norm): 

• Inverse of unit quaternions:

151
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• Remark: sometimes it is convenient to represent the multiplication of two 

quaternions also by means of a matrix multiplication 

• In addition:

152

Written as column vector Column vectorQuaternion-Mult. – 
not Scalarmult.!

Q1 Q2

Matrix to quaternion
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Embedding the 3D vektor space in 

• The vector space       can be embedded in      like this: 

• Definition:  

quaternions of the form           are called pure quaternions

153
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Representation of rotations using quaternions

• Let be given Axis & Angle           with  

• Definie the corresponding quaternion as 

• Observation:  |q| = 1 

• Theorem: Rotation by means of a quaternion  

Let              be a pure quaternion (= vector in 3D) and              a unit quaternion.  

Then the figure  

 

describes a (right-handed) rotation of v around the angle # and axis r are 

determined, where the pure quaternion v' arises.

154
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Alignment / Registration of Shapes

• See manuskript

155
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Shape Registration

• Task: 

• Given two shapes (point clouds) A and B that partially overlap 

• Find a registration = rigid transformation (R, t) such that the squared distance 

between A and B is minimized

156

(R, t)

A B
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Motivation: Registration of Point Clouds

157
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Approach

• We know: if correct correspondences are 

known, then we can find a correct relative 

rotation/translation (alignment) 

• How to find correspondences:  User input? 

Feature detection? 

• Alternative: assume that closest points 

correspond to each other 

• Converges (provably), provided initial 

position is "close enough"

158

alignment



G. Zachmann Computational Geometry SS April 2025

The Iterative Closest Point Algorithm (ICP)

• Optimization:  

• When starting the kd-tree traversal, initialize the candidate NN with the NN as of 

last iteration of the ICP ("warm-starting") 

• Makes the initial ball for the "ball overlaps bounds" test (hopefully) relatively small 

• The traversal does not descend into subtrees far away from true NN

159

repeat 

  forall bi in B: find NN in A  ⟶  Y ⊆ A 

  compute optimal alignment transformation (R,t) from B to Y 

  rotate/translate B 

until error (E2) < threshold
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Variants / Optimizations

• Work only on a subsample of the points (of one or both 

shapes): 

• Poisson disk subsampling 

• Random sampling in each iteration [Masuda 96] 

• Ensure that samples have normals distributed as uniformly 

as possible [Rusinkiewicz 01] 

• Use other ways to establish correspondences: 

• Restrict corresponding point pairs to "compatible" points 

(color, intensity, normals, curvature, …) [Pulli 99]

160
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• Weight pairs: replace the old least squares error measure by 

• As weight, you could consider: 

• Distance between corresponding points 

• Scanner uncertainty

161
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• Reject "bad" point pairs: 

• Reject pairs whose distance is in the top x % of 

all distances 

• Reject points at the "borders" of the shapes 

• Reject pairs that are not consistent with their 

neighboring pairs [Dorai 98]: 

• Two pairs (a1,b1) and (a2,b2) are not consistent 

if

162

A B
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Experiments with Various Rejection Rates, and Different p-Norms

163

Sofien Bouaziz, Andrea Tagliasacchi, Mark Pauly: "Sparse Iterative Closest Point". Symposium on Geometry Processing 2013
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From the Siggraph 2019

164
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Stackless kd-tree traversal for ray-tracing

165

Stefan Popov, Johannes Günther, Hans-Peter Seidel, and Philipp Slusallek. 
Nvidia GeForce 8800GTX, CUDA, 2007.
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Daniel Horn, Jeremy Sugerman, Mike Houston, Pat Hanrahan

ATI X1900XTX, PixelShader 3.0, 2007
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Real-Time KD-Tree Construction on Graphics Hardware

167

Kun Zhou, Qiming Hou, Rui Wang, Baining Guo; SIGGRAPH Asia 2008
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BSP Demo

168
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Constructive Solid Geometry (CSG) using BSP's

169

http://evanw.github.io/csg.js/ 

http://evanw.github.io/csg.js/
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Shadow Volume Checking with BSPs

170

Q  Quit 
1  Load 1st scene (simple room, 1 light source) 
2  Load 2nd scene (random objects 1) 
3  Load 3rd scene (simple room, 4 light sources) 
4  Load 4th scene (cubes, 1 light source) 
5  Load 5th scene (random objects 2) 
W, A, S, D Translate viewpoint 
Cursor keys Rotate viewpoint 
+/-  Pan up/down 
R  Reset current scene and rebuild BSP tree 
L  Toggle labels 
T  Toggle usage of BSP tree 
U  Toggle depth buffer 
E  Toggle shadows

http://bastian.rieck.ru/uni/bsp/ 

http://bastian.rieck.ru/uni/bsp/
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Kinetic Data Structures Motivation: BSP Tree with Moving Planes

171
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Kinetic Data Structures – Motivation 

172

Brute force update of bbox

Kinetic update of bbox
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General Concept of Kinetic Data Structures (KDS)

• Given: 

• A number of objects (points, lines, polygons, 

boxes, …) 

• A flight path for each of these objects,  

given by an algebraic function 

• In practice, we assume linear motion 

• Attribute = the task / purpose of a KDS 

• Examples: bbox of a set of points, kd-tree 

over a set of points, convex hull, …

173
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• Combinatorial structure = "everything that describes the attribute except 

concrete coordinates" 

• Examples: 

• Convex hull: those points that form the vertices (corners) of the convex hull 

• Bbox: those points that realize the min/max on at least one of the coord axes 

• Kd-tree: all the nodes & pointers that make up the tree, and pointers to points

174
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Example of Change of Combinatorial Changes

175
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Combinatorial  
change

Combinatorial  
change
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Combinatorial  
change
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Combinatorial  
change

Combinatorial  
change
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Combinatorial  
change
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Combinatorial  
change

Combinatorial  
change
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More Definitions for KDS

• Certificate = simple geometric relation (a.k.a. geometric predicate) involving a few of the objects 

• Example: p.n < 0, where p is an input point and n is a normal (stored somewhere in the KDS) 

• E.g.: the plane equations of the faces of the convex hull of a set of points 

• Event: a specific point in the future where one of the certificates fails, i.e., its truth value is false, 

due to the motion of the objects 

• External event = event where the combinatorial structure of the attribute changes 

• In case of convex hull: one of the points leaves the current convex hull, i.e., "crosses" over a plane 

• Internal event = event where the combinatorial structure remains the same, but the set of certificates 

changes 

• Convex hull: are there any internal events? 

• Kinetic data structure (KDS) for a geometric attribute =  

1. A set of certificates that is true whenever the combinatorial structure of the attribute is valid; as well as  

2. A set of rules (algorithm) for repairing the attribute and the set of certificates in case of an event

185
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Are There Internal Events in the KDS for the Convex Hull in 2D?

186

https://www.menti.com/bejuo8zvux
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Generic Main Loop to Maintain a KDS

187

initialize the attribute for the input objects 

initialize the set of certificates 

compute all events (failure times) of all certificates 

   (usually only up to some time in the future) 

initialize the p-queue for all events, sorted by failure time 

loop forever: 

  do computations using the KDS ... 

  update time tnew := told + Δt 

  while timestamp(front event in queue) <= tnew: 

    pop front event from the event queue  

    if external event:  

      change the attribute  

    update the set of certificates: 

      some failure times of later events might change 

      some certificates may need to be deleted 

      maybe, some new certificates need to be created
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In a graphical system, the main loop might look like this …

188

initialization ... 

while simulation runs: 

  determine time t of next rendering  

  get foremost event from the event queue  

  while timestamp(event) < t: 

    update KDS 

    get next event from the event queue 

  use the attribute of the KDS (e.g., bbox, kd-tree, BVH, …) 

  render scene
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Performance Measures for KDS

1. Responsiveness: 

A KDS is responsive, if the cost to update the set of certificates and the attribute in case of an 

event is "small" 

• Usually, "small" = O( logS n)  or O( nε) 

2. Efficiency: 

A KDS is efficient, if the ratio of #(total events) / #(external events) is small 

• I.e., the #(internal events), where the attribute's combinatorial structure does not change, is small 

• I.e., the #events is comparable to the #(attribute changes) over time 

3. Compactness: 

A KDS is compact, if the number of certificates is close to linear in the number of input objects 

4. Locality: 

A KDS is local, if all objects participate only in a small number of certificates 

• Advantage: if an object changes its flight path, then the cost for updating all events affected by it is 

not too high

189
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A Simple Example

• Maintain the topmost among points moving 

along the y-axis 

• Is a building block for the kinetic bbox 

• Look at the ty-plane (flight paths)

190
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• We are interested 

in the upper envelope: 

• Theorem (w/o proof) [Sharir, Hart, Agarwal and others]: 

Given n flight paths. If any pair of flight paths intersects at most s times, 

then the complexity of computing the upper envelope is in O(n log n)

191

t

y
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• Problem: change of flight path ⟶ recomputation of the 
envelope 

• Takes O(n log n) time 

• Can we update the envelope / topmost point faster? 

• Solution: the tournament tree = kinetic heap 

• Leaves = points 

• Inner nodes = topmost of its two children 

• Event queue = p-queue = regular heap

192
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• For all inner nodes, maintain certificate: "left 

child point is above right child point" 

• Event = left/right points swap order along y axis 

• Processing an event: 

• Replace pt stored in node with the "winner" and 

delete/add two events in the event queue 

• Which ones? 

• Potentially propagate new point up through tree 

• Takes O(log2 n) time ⟶ responsive 

• # certificates = # inner nodes = O(n) ⟶ compact 

• Each point participates in O(log n) events ⟶ local

193
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• A problem with deformable objects:  

BVH becomes invalid

194

• Brute-force, bottom-up, i.e., 

for every query / anim. step 

• O(n · #steps) , 

where n = #pgons

Classic BVH update:

• Event-based (do work only, if 

something essential changed) 

• O(n log n) → independent of query/

sim. frequency!

Kinetic BVH update:
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Extension: the Kinetic Separation List

• Definition: A separation list stores pairs of BVs in two BVHs, resp., which are 

non-overlapping and which have parents that do overlap (i.e., those pairs of 

BVs where the simultaneous traversal of the BVHs during collision detection 

stopped)

195
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Results

196

Shirt Scene (~ 100,000 triangles)
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Problems of KDS

• Number of events can kill performance 

• Computing event times is expensive 

• KDS as a whole can become very complex, housekeeping becomes too 

expensive and bug-prone (e.g., kinetic BSP in 3D) 

• KDS needs to be updated throughout time, even if we don't need it for a 

long duration in-between queries

197
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Sketch of a Possible Approach by Way of an Example

• Definition: directional width 

Let S = set of moving points.  

Define the width in direction u  

at time t as                  . 

• Definition: ε-kernel 

Let Q⊆S. Q is called an ε-kernel of S iff 

• Theorem (w/o proof) [Agarwal, Har-Peled, Varadarajan]: 

For n points moving with fixed velocity in 2D, and any ε> 0, one can compute 

an ε-kernel of size              in time                  .
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u

<latexit sha1_base64="8DTSxCaIZmmwR8YDTc3/V3FYcN0="></latexit>
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Results for BBox Maintained by Eps-Approximate KDS

199

Linear Motion of Moving Points Quadratic Motion of Moving Points

10,000 moving points 
Error < 0.02 for kernel of size 32
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Exact Algorithm Approximation Algorithm
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Kinetic Quadtree Demo

201
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Different Types of Bounding Volumes

202

Box, AABB (R*-trees) 
[Beckmann, Kriegel, et al., 1990]

Sphere 
[Hubbard, 1996]

k-DOPs / Slabs 
[Zachmann, 1998]Spherical  shell 

[...]

Prism 
[Barequet, et al., 1996]

OBB (oriented  bounding box) 
[Gottschalk, et al., 1996]

Cylinder 
[Weghorst et al., 1985]

Convex hull 
[Lin et. al., 2001]

Intersection of  
several, other BVs
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• Some ideas for several 

  

• Research questions: 

• Fast intersection of two BVs for collision detection? 

• Compute is cheap, memory transfer is expensive ⟶ BV compression? 

• Exact / approximate (biased) intersection tests? 

• Fast intersection test for rays against such BVs? 

• Efficient BVH construction? (for fast queries at runtime)

203

Master's theses …

Lunes Generalized Lunes Quadric Shells
Oriented 
Ellipsoids
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BVH with k-DOPs

204

26-DOPs

14-DOPs6-DOPs

18-DOPs

Level 0
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Level 1

26-DOPs

14-DOPs6-DOPs

18-DOPs
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Level 2

26-DOPs

14-DOPs6-DOPs

18-DOPs
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Level 5

26-DOPs

14-DOPs6-DOPs

18-DOPs
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Level 8

26-DOPs

14-DOPs6-DOPs

18-DOPs
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BVH with AABBs

209
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Wrapped vs Layered BVH

210

Wrapped BVH: 
a BV bounds its associated primitives, 

but not necessarily its child BVs

Layered BVH: 
a BV must bound its child BVs
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Directed Hausdorff distance

• Def:  

maximum distance of a set, P, to the nearest point in the other set, Q. 

• Example: 

• h(P, Q) = 

• h(Q, P) = 

• Property: Not symmetric

211
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Examples

212
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Bidirectional Hausdorff Distance

213
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Digression: Bounding Volumes can Also be Used as Inner BVs

214
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The Collision Detection Pipeline

215

Broad phaseNarrow phase

Set transform. 
in scene graph

Callback
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Hierarchical Collision Detection using BVHs

traverse( X, Y ) 

if X,Y do not overlap then 

 return 

if X,Y are leaves then 

 check polygons 

else 

 for all children pairs do 

  traverse( Xi, Yj )

216

BP
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Applications using Distance Fields

217



G. Zachmann Computational Geometry SS April 2025

Demos of Convex Hull Algorithms in 2D

218
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Demos of Convex Hull Algorithms in 2D

219

https://github.com/gregorybchris/chans
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Convex Hull in 3D

• One step of the incremental Clarkson-Shor algorithm:

220
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Michael Horn - http://www.eecs.tufts.edu/~mhorn01/comp163/ 

Clarkson-Shor-Algorithm (randomized incremental)

http://www.eecs.tufts.edu/~mhorn01/comp163/
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Tim Lambert - http://www.cse.unsw.edu.au/~lambert/java/3d/hull.html 

Different algorithms, e.g., gift wrapping

http://www.cse.unsw.edu.au/~lambert/java/3d/hull.html
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Applications of the Convex Hull

• Biology:  

• How much area does an animal occupy/need? ⟶ take the convex hull of all the 

points where it has been observed  

• Spatial extent of an outbreak in animal epidemics  

⟶ convex hull of locations of all infected animals 

• In physics engines: 

• Use the convex hull of objects as bounding volumes in broad phase 

• Calculate distance between CH's, or a separating plane 

• Robot path planning: 

• Put convex hull around complex obstacle 

• Shortest path from S to T is either a straight line, or includes a part of the CH

223

Day 1 Day 2
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Onion Peeling

• Ordering points by degree of "outsidedness": 

• Construct sequence of convex hulls (onion peeling) 

• Can be used to  

• Estimate source of an event; points are sensors  

with readings above a threshold 

• Outlier detection and removal 

• Finding the diameter of a set S of points: 

• Diameter = distance of farthest pair p,q 

• p,q must be on the convex hull 

• Walk around CH using a pair of antipodal points 

• Diameter can be used for clustering: minimize the maximal diameter over all 

clusters

224
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Extremely Fast Collision Detection for Convex Objects

• A condition for "non-collision":  

    P and Q are  "linearly separable"  :⇔ 

 

 

    (i.e., "P is completely on one side of H,  

      Q completely on the other side") 

• Preprocessing: for each coll.obj., compute its convex hull 

• Runtime: try to find a separating plane quickly

225

P

Q

Separating plane H
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The "Separating Planes" Algorithm for Convex Coll.Det. 

• The idea: utilize temporal coherence → 

if Et was a separating plane between P and Q 

at time t, then the new separating plane Et+1 

is probably not very "far" from Et (perhaps it 

is even the same) 

• Check candidate plane by steepest decent 

on the convex hull (from vertex to vertex) 

• For details: see Advanced Comp. Graphics

226

Et

Et+1

<latexit sha1_base64="h1myx3dcdXDhsqwQ2YENvofo/ys="></latexit>

(p, n) is separating plane ,
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Visualization

227
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Convex Surface Decomposition 

228

Decomposition into convex 
surface patches

Convex pieces at a medium level of the hierarchy 
(green = orig. surface, red = free surface, 

yellow = "contained")
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Voronoi Diagrams

• One of the first mentions are in René Descarte's 

(Cartesius') Principiorum Philosophiae, 1644: 

• Imagined that the universe is filled with matter that is 

attracted to the stars and swirls around them 

  

• Georgy F. Voronoi (Георгий Ф. Вороной, 1868–1908) 

• Born Ukraine (part of Russian empire at the time) 

• Professor in Warsaw 

• Student: Delaunay  

229
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Descartes' Vortices

230
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Delaunay (1890 – 1980)

• Student of Voronoi (and Grave) 

• One of the 3 best Russian mountaineers around 1930 

• Russian spelling: Борис Николаевич Делоне 

• At that time, French (and German) was the language of 

science!

231
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• Not to be confused with the painter Robert Delaunay! 

• 1885 – 1941 ; really French

232

Champs de Mars. La Tour rouge. 1911 Homage à Bleriot, 1914
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Independent Discoveries in Other Fields

233

Descartes				 Astronomy 1644 “Heavens” (= Voronoi regions)

Dirichlet						 Math 1850 Dirichlet tesselation

Voronoi						 Math 1908 Voronoi diagram

Boldyrev						 Geology 1909 Area of influence polygons

Thiessen					 Meteorology 1911 Thiessen polygons

Niggli					 Crystallography 1927 Domains of action

Wigner & Seitz					 Physics 1933 Wigner-Seitz regions

Frank & Casper					 Physics 1958 Atom domains

Brown						 Ecology 1965 Areas potentially available

Mead Ecology 1966 						Plant polygons

Hoofd et al.				 Anatomy 1985 Capillary domains
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Application: Maximal Empty Circles Constrained by a Polygon

234

Task: find location of maximal circle such that 
1. its center is inside polygon A 
2. it does not contain any of the points
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The "Cones Trick" to Generate Approximate 2D Voronoi Diagrams

• Observation: 

• Place a cone at every Voronoi site in the plane with 90° 

angle at the apex 

• Distance of a point X from Voronoi site = height of cone 

below X 

• Method: 

• For each site, render a cone with different color (= site ID) 

• Borders in color buffer = Voronoi edges 

• Value in Z-buffer = distance from site 

• This technique was already mentioned by Dirichlet & 

Voronoi

235

Side view

Top view
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Demo

236

http://alexbeutel.com/webgl/voronoi.html 

Hint at natural coordinates. Mention Mean Value Coordinates (which are better)

http://alexbeutel.com/webgl/voronoi.html
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Complexity in Higher Dimensions

• The Voronoi diagram over n points in d-dim. space comprises, in each 

dimension j, 0 ≤ j ≤ d-1, a number, fj , of j-dimensional facets.  

Those numbers are in the order of 

237
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Generalizations of the Voronoi Diagram

• Other distance functions 

• Other objects as sites/generators 

• Higher dimensions 

• Other equivalence classes 

• …

238
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Voronoi Diagrams with Weights

• Generalize the distance function between point x and site pi  

• Additive weights: 

• Bisectors are hyperbolic arcs (and lines) 

• A.k.a. Appolonius diagram 

• Example 

• Multiplicative weights: 

• Bisectors are circular arcs (and straight lines)

239

https://www.fernuni-hagen.de/ks/forschung/geom_lab.shtml 

<latexit sha1_base64="gQKMxsBZ9XdISLA2hfLNy81XBi0="></latexit>

d(x, pi) =
1

wi

kx� pik

https://www.fernuni-hagen.de/ks/forschung/geom_lab.shtml
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The Power Diagram

• Different distance function: 

• Here, bisectors are lines! 

• Example:

240
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Other Distance Metrics

• Voronoi diagram using L1 and L∞ norm:

241

L∞ - norm 
(maximum-norm)

L1-norm 
(Manhattan norm)

Convex norm 
(can be defined 
over any convex 

polygon!)
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Voronoi Diagrams on Other Two-Manifolds (e.g. Sphere)

• On the sphere, bisectors are great circles

242
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Higher-Order Voronoi Diagrams

• Definition:  

In a Voronoi diagram of k-th order, Vk(S), all points in space belong to the 

same Voronoi region that have the same set of k nearest neighbors in S. 

• Differences to the classical Voronoi diagram: 

• A "bisector" can contribute to several, different Voronoi edges! 

• A Voronoi region no longer necessarily contains its generators (Voronoi sites)

243
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Examples

244

1-st order 2-nd order

3-rd order 4-th order
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Demo

245

https://www.fernuni-hagen.de/ks/forschung/geom_lab.shtml 

https://www.fernuni-hagen.de/ks/forschung/geom_lab.shtml
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Voronoi Diagrams over Line Segments

• Sites (generators) are now points and line segments 

• Bisectors = lines and parabolas 

• Example:

246
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Example with Weighted Sites and Higher-Order Sites

247

Weighted 
distances

Higher-
order sites

2.0

0.5
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The "Cones Trick" for Higher-Order Sites

• Observation: the surface in 3D, 

generated by  

 
where d(x,y) = distance from the 

Voronoi site is a swept cone, where 

the apex is swept over all points of 

the generator 

• Idea: approximate distance function 

by a mesh

248
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More Example Swept Cones (Distance Meshes)

249
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The Outer Voronoi Regions over a Convex Polyhedron

250

The external  
Voronoi regions of … 

(a) faces  
(b) all features 
(c) a single edge 
(d) vertices 
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Application Areas for Voronoi Diagrams

251

• Anthropology and Archeology -- Identify the parts of 
a region under the influence of different Neolithic 
clans, chiefdoms, ceremonial centers, or hill forts.  

• Astronomy -- Identify clusters of stars and clusters of 
galaxies (Here we saw what may be the earliest picture 
of a Voronoi diagram, drawn by Descartes in 1644, 
where the regions described the regions of gravitational 
influence of the sun and other stars.)  

• Biology, Ecology, Forestry -- Model and analyze plant 
competition ("Area potentially available to a tree", 
"Plant polygons")  

• Cartography -- Piece together satellite photographs 
into large "mosaic" maps  

• Crystallography and Chemistry -- Study chemical 
properties of metallic sodium ("Wigner-Seitz regions"); 
Modelling alloy structures as sphere packings 
("Domain of an atom")  

• Finite Element Analysis -- Generating finite element 
meshes which avoid small angles  

• Geography -- Analyzing patterns of urban settlements  

• Geology -- Estimation of ore reserves in a deposit using 
information obtained from bore holes; modelling crack 
patterns in basalt due to contraction on cooling 

• Geometric Modeling -- Finding "good" triangulations 
of 3D surfaces  

• Marketing -- Model market of US metropolitan areas; 
market area extending down to individual retail stores  

• Mathematics -- Study of positive definite quadratic 
forms ("Dirichlet tessellation", "Voronoi diagram")  

• Metallurgy -- Modelling "grain growth" in metal films  

• Meteorology -- Estimate regional rainfall averages, 
given data at discrete rain gauges ("Thiessen 
polygons")  

• Pattern Recognition -- Find simple descriptors for 
shapes that extract 1D characterizations from 2D 
shapes ("Medial axis" or "skeleton" of a contour)  

• Physiology -- Analysis of capillary distribution in cross-
sections of muscle tissue to compute oxygen transport 
("Capillary domains")  

• Robotics -- Path planning in the presence of obstacles  

• Statistics and Data Analysis -- Analyze statistical 
clustering ("Natural neighbors" interpolation)  

• Zoology -- Model and analyze the territories of animals  
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Application: Fracturing (e.g., in Games)

252
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Path Planning

• Given: a floor plan as set of line segments 

• Sought: path (e.g. for autonomous 

vehicle = robot) with maximum distance 

to walls 

• Solution:  

• Construct (generalized) Voronoi diagram 

• Find Voronoi nodes closest to the start and 

end point, resp. 

• Use Dijkstra's algorithm to find shortest 

path from start to end nodes through 

Voronoi diagram

253

http://www.cs.columbia.edu/~pblaer/projects/path_planner/ 

http://www.cs.columbia.edu/~pblaer/projects/path_planner/
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Example

254
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Assessing the Quality of Samplings

• Example: weather stations 

• Question: where is the lowest density? 

• Ideal sampling → each point would cover an 

area of 
 

 

where A = total area 

• Usually, there are constraints, e.g., accessibility
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• Solution: 

• Calculate Voronoi and Delaunay diagrams 

• Relative size per cell is 

• Ai > 1 → density too low 

• "Penalize" sample points if they are close 

together relative to the size of the cell → 

distance to nearest neighbor
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Aus Roland's Diss: Verfeinerung der Küstenlinie
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Metrology: Determining the "Sphere-ness" of a Shape

• Application: manufacturing balls for bearings 

• High-precision/high-performance bearings 

require perfectly spherical balls 

• How to determine "sphere-ness"? 

• Procedure: 

• Measure coordinates of points on surface 

• Compute smallest annulus containing points S 

("smallest" = smallest width) 

• Definition annulus:  

   region between two concentric spheres (circles)
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• Cases that can occur in 2D(!): 

1. Couter touches 3 points, Cinner touches 1 point 

2. Couter touches 1 points, Cinner touches 3 point 

3. Couter touches 2 points, Cinner touches 2 points 

• Remember: centers of both spheres are 

"connected" 

• In all cases, read "x points or more" 

• In 3D, there are more cases
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• Observation: once the center c of the annulus is found, 

the radii follow from S 

• Case 2: c is closest point to 3 points of S ⟶ 

• Case 1: c is farthest point to 3 points of S ⟶ 

• Case 3: c is closest to 2 points of S and farthest to 2 

points of S ⟶ 

261

c sits on a node of farthest-point Voronoi diagram of S

c sits on a node of the Voronoi diagram of S

c sits on an edge of VD and on an edge of farthest VD of S
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The Farthest-Point Voronoi Diagram

• Just like the VD over n points, except ... 

• Voronoi region of a point p ∈ S  =  intersection of n-1 half-spaces where we 

take the "other" side of the bisectors! 

• Thus, 

• Some properties are similar, some different: 

• Farthest-point Voronoi regions are convex 

• Nodes of the farthest-point VD are farthest away from 3 Voronoi sites/generators 

(i.e., they have the same and maximal distance from 3 Voronoi sites) 

• Some points p ∈ S don't have a Voronoi region!
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<latexit sha1_base64="+rKynk/DtDV9f/B88psxopAre7U="></latexit>

R(p) = { x 2 R
d | d(x , p) = max

q2S
d(x , q) }
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Solution Method to the Problem of Finding the Smallest Annulus

• Compute VD(S), the Voronoi nodes are the candidates of center c of Cinner, 

find farthest point of S w.r.t. each c ⟶ smallest annulus for case 2 

• Compute farthest-point VD(S), the Voronoi nodes are the candidates of 

center c of Couter, find closest point of S w.r.t. each c ⟶ smallest annulus for 

case 1 

• Overlay VD(S) and farthest-point VD(S),  

compute intersection points of all pairs of edges,  

each is a candidate c for case 3  

⟶ pick smallest annulus 

• Runtime: O( n + n + n2 )
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VD(S)

Farthest 
VD(S)
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Protein Structure Analysis

• Question:  

• What does the active surface (= interface) of a molecule look like? how big is it? 

• Which atoms could interact with atoms from the environment? 

• One solution: 

• Randomly place atoms around  

the given molecule 

• Calculate the Voronoi diagram  

of all points 

• Interface = Voronoi facets between  

molecule and surrounding atoms
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Improvements

• Use power diagram or Voronoi diagram with 

additive weights 

• Weight = atomic radius 

• Calculate "depth" per atom: 

• Atoms with a Voronoi facet outward = depth 1 

• Traverse Delaunay graph breadth-first from 

outside to inside 

• The deeper an atom, the smaller its contribution 

to interactions
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Secondary Structure of Proteins

• Long proteins fold into helices, tangles, and 

surface pieces 

• Results in interactions between atoms (bonds) that 

are not seen in the chemical formula 

• Question: given the positions of the atoms, what 

does the secondary structure look like? 

• Which atoms are "adjacent", which are not 

• How strong is their adjacency? 

• Solution: Voronoi diagram 

• Adjacent = common Voronoi facet 

• Strength of the neighborhood = size of the facet
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Amino acids

HelixPlated sheet
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• Result: Adjacency-Matrix (gray/black = weakly/strongly neighboured)

268
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Appolonius Diagrams in 3D

269

Helps to determine the empty spaces in a molecule
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Application: the River-Mile-Coordinate System

• The River-Mile-Coordinate system: 

• Popularly used in large waterway systems 

• Coordinates of a point in the plane = (l, q) where 

l  = measured along a rivers center line, 

q = distance from point (l, 0) perpendicular to the tangent in (l, 0)  

• Property: coords reflect how much  

time it takes to get there along the river 

• Task:  

given a point (x,y) ⟶  

which coordinate does (l, q) have?
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Decomposition of the center line into a 
finely resolved polygon course Voronoi diagram for this
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Redistricting (Partitioning a Country into Electoral Districts)

• The fairness principle says: "one man, one vote" 

• Simple ... or is it? 

• A simple example: 

• Bylaws for redistricting in the US: 

• Same number of voters per district 

• Each district must be contiguous 

• Districts should be "compact" (but not precisely defined)
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Bad Example

273

"In gerrymandered 

election districts, the 

voters don't choose 

their politicians - the 

politicians choose their 

voters!"

1990 (?)
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• A possible, precise definition of district compactness: 

Let                                electoral districts. 

Each district contains a number of voters with locations pi , i.e., 

    Define the compactness of a district as 

 

 

 

    The total compactness of the redistricting is then
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<latexit sha1_base64="DLyZ+iXq9B470pdn5S660HOMbqc="></latexit>

c(D) =

jX

k,l=i

d(pk , pl )
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• Theorem (w/o proof): 

An optimal partitioning of the country into districts (wrt. the compactness 

measure just defined) can be derived from the power diagram. 

• Redistricting task: 

• For a given set of voters {pi} , construct a set of Voronoi generators and appropriate 

weights such that 

• The Voronoi sites can be the polling stations 

• Weights = measure for the population density in the districts (small weight = large 

density) 

• Approach: 

• Start with random sites and weights 

• Iteratively move the sites and change the weights until  c(D) reaches the min
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Similar Effect in the European Elections

• Votes of people from Malta or Luxembourg have about 10x more weight 

than those of German voters!
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State polulation (in millions)

Number of seats plotted against population of each state
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Visibility Sorting Using Voronoi Diagrams

• Reminder: BSPs for Visibility Sorting 

• Method: 

• Define a visibility relation on Voronoi regions 

 

 

each point of Voronoi cell R2 is hidden by a point of cell R1 with respect to 

viewpoint v 

• Now applies: 

 

• Proof: clear because R1 and R2 are completely on different sides of the bisector between 

R1 and R2.
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• Idea: 

• First cluster all polygons  

into Voronoi cells. 

• At runtime, sort only  

the Voronoi sites (incrementally). 

• Approach to Voronoi clustering: 

• Initialize: one cell per polygon with centroid as site. 

• Delete the smallest cell: 

• Recalculate Voronoi diagram locally 

• Assign polygons to the smallest neighboring cell 

• Abort if no cell can be resolved without creating a cyclic visibility order in a cell
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Voronoi Diagrams in Nature

279

Soap bubbles between two 
glass plates

Honey comb 
(centroidal Voronoi tessellation)

http://www.snibbe.com/scott/bf/index.htm
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Wings of dragonfly

http://www.snibbe.com/scott/bf/index.htm
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Voronoi Diagrams in Interactive Art
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Demo of Delaunay Triangulation in 2D

285

https://github.com/mapbox/delaunator
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Voronoi / Delaunay in 3D

• Delaunay tetrahedron 

• Bisectors = planes 

• Edge flip → becomes: 

• Replace 2 tetrahedra by 3 

(replace triangle by edge); or 

• Replace 3 tetrahedra by 2
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Voronoi edge

Voronoi site
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• Slivers in 3D Delaunay triangulations (tetrahedralizations): 

 

 

 

 

 

 

 

 

 

• Sad truth: the max-min-angle property holds only in 2D! ☹ 
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Imagine those two vertices 
slightly lower than the other 
two

Non- 
Delaunay

Delaunay

Sliver
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Example for NNG(S) ⊆ D(S)

288
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Distance Fields

289

2D Shape Shape’s distance field

Outside

Boundary of shape

Inside
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• Distance fields are C0-continuous everywhere 

• Distance fields are C1-continuous except at boundaries of Voronoi regions

290

Distance field is C0 continuous C1 continuous except at Voronoi boundaries
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• Adaptively Sampled Distance Fields (ADFs): sample at low rates where the 

distance field is smooth; sample at higher rates only where necessary (e.g., 

near corners)
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Detail-directed ADFBoundary-limited quadtree
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• Rendering ADF's using adaptive ray-casting:

292

Rendered via 
adaptively ray casting

Rays cast to render part 
of the image on the left
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• Point-based rendering of ADF's: 

• Seed each boundary leaf cell with randomly placed points, number of points 

proportional to cell size 

• Relax the points onto the ADF surface using the distance field and gradient 

• Optionally shade each point using the field's gradient
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Original points seeded 
in boundary leaf cells

Points after relaxation 
onto the surface
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An ADF 
rendered as 

points at 
two 

different 
scales
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A Continuum of Geometric Data Structures …

295

Quadtree K-d tree BSP tree BV hierarchy

Range tree

Meshing, 
terrain 
visualization, 
iso-surface 
generation, 
Ray casting, 
distance fields.

Nearest-
neighbor search, 
texture 
synthesis, 
shape matching, 
ray tracing.

Boolean 
operations, 
rendering, 
(Shadows), 

Occlusion 
culling, 
ray casting, 
hierarchical 
coll. 
detection.

Range queries

Convex 
hull

Voronoi Delaunay
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Thanks Folks!
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