
A Practical Introduction to Metropolis Light

Transport

David Cline∗

Brigham Young University

Parris Egbert†

Brigham Young University

May 6, 2005

Abstract

Most descriptions of Metropolis Light Transport (MLT) currently in the liter-

ature focus on theoretical completeness rather than readability. In fact, the core

concepts of MLT are not difficult to understand, but available descriptions of these

concepts tend to be steeped in statistical terminology and light transport jargon.

In this paper, we take a different approach, concentrating on giving a working un-

derstanding of the algorithm rather than theoretical concerns. It is hoped that this

work will help to uncover the simplicity of MLT, and serve as a tutorial for those

wishing to implement the algorithm or understand its theoretical underpinnings.

1 Introduction

One of the most interesting global illumination algorithms to emerge in the past decade

is Metropolis Light Transport. First introduced by Veach and Guibas in 1997 [8],

MLT uses a statistical integration technique called Metropolis Transport [5] to solve

the general global illumination problem. The main strength of MLT lies in its ability

to explore local portions of the space of light paths in an unbiased way. This makes

MLT particularly attractive for hard sampling problems in global illumination such as

caustics and light shining through small aperatures.

Since the original paper, several papers have been published that extend the basic

MLT algorithm. Pauly, Kollig and Keller [6] show how Metropolis Light Transport can

be used to render scenes with participating media such as smoke and fog. Kelemen et

al. [3] improve the convergence characteristics of MLT by creating a novel mutation

strategy. Other work that has been done, such as that by Ashikim et al. [1] seeks

to describe the statistical properties of the Metropolis algorithm. In addition to these

works, Pharr [7] recently published an excellent tutorial on Metropolis Sampling.

Despite the popularity of MLT as a discussion topic, relatively few implementa-

tions of it exist compared to other global illumination algorithms such as standard path

∗e-mail: cline@rivit.cs.byu.edu
†e-mail: egbert@cs.byu.edu

1

tracing or photon mapping. Futhermore, while good practical tutorials exist on how to

implement other global illumination algorithms, simple descriptions of how to imple-

ment MLT seem hard to come by. Instead, most treatments of the MLT tend to take a

rigorous theoretical approach, which makes them inaccessible to those not well versed

in statistical and light transport terminology. This is unfortunate, since the core con-

cepts of MLT are not difficult to understand once the terminology in which they are

cast is understood.

With this paper we attempt to strip away some of the more difficult terminology,

and instead concentrate on giving a working knowledge of the concepts needed to

implement MLT. Our hope is that after reading this paper, a student who has previously

implemented a basic path tracer will have no trouble extending it to do bidirectional

path tracing and Metropolis Light Transport. The paper should also serve as a primer

for those wishing to understand the theoretical underpinnings of MLT.

The remainder of the paper will be presented as follows: we will first present the

idea of Metropolis Transport in the context of image sampling, and then expand this

idea to produce a version of MLT based on standard path tracing. We then give an intro-

duction to bidirectional path tracing, which is used as the underlying sampling mecha-

nism for MLT. Finally, we show how to link bidirectional path tracing and Metropolis

sampling to produce a complete implementation of MLT.

2 Metropolis Transport

Suppose that you want to approximate a function f . One way to do this is to produce

a sampling distribution proportional to f and then make a histogram of samples taken

from the distribution. The resulting histogram will be proportional to f (obviously), so

it only needs to be scaled to approximate f . Metropolis Transport uses this method to

approximate functions, and can be summarized as follows:

• Create a sampling distribution proportional to f .

• Make a histogram of samples taken from the sampling distribution.

• Scale the histogram to approximate f .

In the case of an image, f is defined on some subset of R
2, and the histogram contains

one bin for each pixel in the image approximation. The scale factor, s, needed to make

the histogram approximate f is the ratio of the average value of f over the sampling

domain, fave, to the average number of samples per bin in the histogram, have:

s = fave/have (1)

In practice, fave can be estimated by averaging a large number of samples selected at

random from the sampling domain.

2

2.1 Creating a Sampling Distribution

Detailed balance. The Metropolis algorithm uses an idea called detailed balance to

create a distribution proportional to f . An intuitive way to think about detailed balance

is to imagine that a histogram proportional to f already exists. This distribution of

samples is called the stationary distribution. Now imagine that a transition function

exists that allows samples to flow between bins in the histogram. The stationary distri-

bution will be maintained as long as the number of samples flowing from one bin in the

histogram to another is the same as the number of samples flowing back. This property

is called detailed balance. We will use K to denote a transition function that obeys the

detailed balance condition. (See figure 1.)

K

x y
__

Figure 1: Detailed balance. The desired (stationary) distribution will be maintained as

long as the number of samples flowing between any two bins x̄ and ȳ in the histogram

is balanced. In other words K(ȳ|x̄) = K(x̄|ȳ).

An important consequence of detailed balance is that if a single sample is allowed

to migrate in the domain of f according to K, it will produce a distribution of samples

equal to the stationary distribution (proportional to the function we want to approxi-

mate). The strategy adopted by Metropolis Transport is to create a suitable K function

and then use it to migrate a single sample though the domain of f . As the sample

moves, a histogram is kept of its location, and this histogram is used to approximate f .

Defining the transition function. The function K is defined by using a tentative

transition function T , also known as a mutation strategy. T (ȳ|x̄) gives the probability

of choosing point ȳ as the proposed next sample location if x̄ is the current sample

location. To complete K, a tentative sample location ȳ is chosen based on T and x̄, f is

evaluated at x̄ and ȳ, and the next sample location either migrates to ȳ with probability

a(ȳ|x̄), or remains at x̄ with probability 1−a(ȳ|x̄), where

a(ȳ|x̄) = min

{

1,
f (ȳ)T (x̄|ȳ)

f (x̄)T (ȳ|x̄)

}

(2)

The makeHistogram function in figure 2 uses Metropolis Transport to copy an im-

age. (This is not a very useful way to copy an image, but it does provide a good example

of Metropolis sampling in action.) MakeHistogram uses a very simple mutation strat-

egy, namely choosing a random point on the image plane with a uniform probability,

3

void makeHistogram(float F[w][h], float histogram[w][h], int mutations)

{
int i, x0, x1, y0, y1;

float Fx, Fy, Txy, Tyx, Axy;

// Create an initial sample point

x0 = randomInteger(0, w-1);

x1 = randomInteger(0, h-1);

Fx = F[x0][x1];

// In this example, the tentative transition function T simply chooses

// a random pixel location, so Txy and Tyx are always equal.

Txy = 1.0 / (w * h);

Tyx = 1.0 / (w * h);

// Create a histogram of values using Metropolis sampling.

for (i=0; i < mutations; i++) {
// choose a tentative next sample according to T.

y0 = randomInteger(0, w-1);

y1 = randomInteger(0, h-1);

Fy = F[y0][y1];

Axy = MIN(1, (Fy * Txy) / (Fx * Tyx)); // equation 2.

if (randomReal(0.0, 1.0) < Axy) {
x0 = y0;

x1 = y1;

Fx = Fy;

}
histogram[x0][x1] += 1;

}
}

Figure 2: The makeHistogram function. This function uses Metropolis sampling to

make a histogram from an image passed in the F array. It is assumed that the his-

togram array is initialized to be all zeros. After the function returns, the histogram

can be scaled to approximate F. Below the code are several images created using the

makeHistogram function. The original image is approximated using an average of 1

(left), 8 (middle) and 256 samples per pixel (right).

4

but a wide range of transition functions can be used. Later we will see that the power

of MLT lies in choosing good mutation strategies.

Using detailed balance to produce the stationary distribution is very robust in the

limit. It will even work if f can only be evaluated statistically (i.e. f cannot be directly

evaluated but a random variable with expected value f can be). This will become an

important point when the Metropolis algorithm is adapted to handle light transport.

2.2 Color Images

Up to now we have only considered how to create grayscale images using Metropolis

sampling. However, the Metropolis framework can easily be extended to handle color

images by redefining the histogram to accumulate in color. The luminance of the color

samples at points x̄ and ȳ is used to define a(ȳ|x̄), and colors added to the histogram are

scaled to have a luminance of 1. Figure 3 shows how this might look in code. Note that

any additive color space can be used for the histogram. In the common case of RGB,

luminance is defined as (0.299 R + 0.587 G + 0.114 B).

DomainLocation X,Y;

.

.

for (i=0; i < mutations; i++) {
Y = mutateAccordingToT(X);

Tyx = T(Y, X);

Txy = T(X, Y);

colorY = F[Y.xloc][Y.yloc];

Fy = colorY.luminance();

colorY /= Fy; // scale colorY to have luminance 1

Axy = MIN(1, (Fy * Txy) / (Fx * Tyx));

if (randomReal(0.0, 1.0) < Axy) {
X = Y;

Fx = Fy;

colorX = colorY;

}
histogram[X.xloc][X.yloc] += colorX;

}

Figure 3: Accumulating in color. Compare to figure 2. The image and histogram have

both been converted to color arrays. Fx and Fy are redefined to be luminance values,

and colors added to the histogram have a luminance of 1. In addition, the mutation

strategy and pixel coordinates of each sample have been encapsulated. In the case of

MLT, the DomainLocation structure will not only contain a pixel location, but will

include an entire light path as well.

5

3 MLT Using Standard Path Tracing

Recall from section 2.1 that Metropolis Transport will work even if f can only be

evaluated statistically. This is exactly the situation presented by standard path tracing.

The values of f (light intensities at particular pixels in the image) cannot be computed

directly. Instead, a path tracer evaluates light paths in the scene in such a way that

the expected value (average) of paths contributing to a given image pixel is equal to

the intensity of light reaching that pixel on the image plane. In other words, a path

tracer can be thought of as a machine that uses some sampling procedure in path space

to create a random variable in image space, X f , with expected value equal to f . (i.e.

E[X f (i, j)] = f (i, j)) MLT is nothing more than a version of Metropolis Transport that

evaluates light paths (X f) instead of directly evaluating image pixel values (f).1 Figure

4 gives pseudocode for an implementation of MLT.

for (i=0; i < mutations; i++) {
Y = mutateAccordingToT(X);

Tyx = T(Y, X);

Txy = T(X, Y);

colorY = evaluateLightPath(Y); // evaluate X f

Fy = colorY.luminance();

colorY /= Fy;

Axy = MIN(1, (Fy * Txy) / (Fx * Tyx));

if (randomReal(0.0, 1.0) < Axy) {
X = Y;

colorX = colorY;

}
histogram[X.xloc][X.yloc] += colorX;

}

Figure 4: Pseudocode for Metropolis Light Transport. This procedure will work

equally well for MLT defined using standard or bidirectional path tracing.

3.1 Sampling Light Paths in Path Tracing

Before we can discuss MLT mutation strategies, we must first review the sampling pro-

cedure that path tracing uses to generate light paths. By light path, we mean a path in

ray space that connects a light source to the eye point through a number of scattering

events (reflections, refractions, etc.). We will use Heckbert’s regular expression nota-

tion to refer to different types of light paths [2]. In his notation, L stands for a light

source, D is a non-specular surface, S is a specular surface, and E is the eye point. As

1The description we are using here is a departure from that used by Veach and Guibas [8]. Instead of

describing light paths in terms of a random variable on the image plane, they use the path integral formulation

of light transport, and describe the set of all light paths as an abstract space with high dimensionality. We

believe our description to be a little more intuitive because it more closely resembles the implementations

found in most path tracers.

6

an example, the light path LDS∗E begins at the light source, and propagates through

one diffuse and zero or more specular bounces before joining with the eye point.

In a path tracer the light paths are generated by casting rays from the eye point into

the scene. These eye subpaths (sometimes called lens subpaths) are then allowed to

bounce around in the scene according to some probability distibution (PDF). Complete

light paths are created from the eye subpaths in one of two ways. First, an eye subpath

may just happen to hit a light source. We call this kind of light path an implicit light

path. A second kind of light path is created when the end of an eye subpath is connected

directly to a point on a light source. We call these explicit light paths. (See figures 5

and 6.)

Although a theoretically complete path tracer can be made using just implicit or just

explicit light paths, typical path tracers leverage the strengths of both these path types.

For example, explicit light paths are often used to compute direct lighting, whereas

implicit paths are better at computing caustics and reflections of light sources.

What is being computed? When a light path is evaluated by a path tracer, it actually

computes a probabilistic estimate of the light intensity (power / area) flowing to the eye

point along the first leg of the light path, L(x1,x0). This estimate, which we will call

LP(x1,x0), includes the contributions of all light sources and possible scattering events,

even though only one light source and one set of scattering events is being sampled. To

put it in statistical terms, the average or expected value of a light path is equal to the

intensity of light flowing along the first leg of the path:

E[LP(x1,x0)] = L(x1,x0) (3)

A path tracer achieves this feat by cleverly combining the light scattering properties of

surfaces in the scene (BSDFs) and the sampling distributions used to choose directions

in path space (PDFs). To illustrate how this is done, we will give examples for both

implicit and explicit light paths.

Evaluating implicit light paths. An implicit light path is evaluated by multiplying

the intensity of the light source, Le, by the product of the bidirectional light scattering

(BSDF) evaluated at the interior vertices of the path, and dividing by the probability

(PDF) that the path was chosen by the sampling procedure.2 Figure 5 gives an example

of how this is done. Note that the path value is divided by the probability that a path of

that length was created by the sampling procedure, Plen.

Evaluating explicit light paths. Explicit light paths are evaluated in nearly the same

way as implicit paths, except the calculation starts with the power output of the light,

P, instead of Le as with an implicit light path. For a diffuse emitter, P = A×Le where A

is the surface area of the light source. To evaluate an explicit light path, the eye subpath

is evaluated as in the implicit case, and a deterministic connection is made from the eye

2A subtle point here is that the BSDF and PDF do not actually evaluate to the bidirectional scattering

or probability. Instead they give the density of these values. However, since the BSDF and the PDF are

proportional to bidirectional reflectance and probability, their ratio can be used directly to evaluate the light

path.

7

x 0

x 1

x 2

x 3

BSDF(x , x , x) 0 1 2

BSDF(x , x , x) 1 2 3

PDF(x , x , x) 0 1 2

 PDF(x , x , x) 1 2 3

L (x , x) e 3 2 LP(x , x) 1 0

LP(x1,x0) = BSDF(x0,x1,x2)
PDF(x0,x1,x2) × BSDF(x1,x2,x3)

PDF(x1,x2,x3) × Le(x3,x2)
Plen

Figure 5: An implicit light path is created when the sampling procedure is lucky enough

to hit a light source directly. The term Plen is the probability that the sampling proce-

dure chose to create a path of the given length. This term is needed because L(x1,x0)
describes all the light flowing to the eye point along x1 → x0 through any number of

scattering events. Since the light path only samples one set of scattering events, its

value must be “pumped up” by dividing by Plen.

subpath to a random point on the light source. This connection converts P to power per

unit area. Figure 6 shows this graphically.

Computing the ratio of the BSDF and PDF. Often the BSDFs and PDFs in a light

path can be made to cancel each other. For example, consider the case of an ideal

diffuse surface. The BSDF scatters light in a cosine-weighted distribution about the

surface normal. If directions are chosen according to a cosine-weighted PDF as well,

the cosine weights cancel out (BSDF/PDF), leaving the diffuse color of the surface.

Cancelling occurs for an ideal specular surface as well. For an ideal specular surface,

the BSDF is a delta function (it only scatters light in the reflected direction), and the

only PDF that makes sense is another delta function centered on the reflected direction.

The delta functions cancel out in the ratio, leaving the reflective color of the surface.

For surfaces that are a combination of different reflection modes, such as diffuse and

specular, the sampling procedure must choose which reflection mode to sample, and the

PDF of the chosen reflection mode is multiplied by the probability that the reflection

mode was chosen.

Light paths in a working path tracer. For efficiency reasons a path tracer usually

makes multiple light paths from a single eye subpath. At each intersection point in the

path, the sampling procedure decides whether the eye subpath will be considered an

implicit light path, and whether explicit light paths should be created by connecting to

light sources. A group of light paths created in this way serves as a better estimate of

L(x1,x0) than a single light path could.

Picking points on light sources. An optimization commonly used in path tracers is

to modify how points are picked on light sources. For example, if points are chosen

8

x 0

x 1

x 2

x 3

BSDF(x , x , x) 0 1 2

BSDF(x , x , x) 1 2 3

PDF(x , x , x) 0 1 2
L (x , x) e 3 2 {

d

V (x , x) 2 3 LP(x , x) 1 0

XA

LP(x1,x0) = BSDF(x0,x1,x2)
PDF(x0,x1,x2) × V (x2,x3)×BSDF(x1,x2,x3)×cosθ

πd2 × A×Le(x3,x2)
Plen×Plight

Figure 6: An explicit light path is created by connecting the end of an eye subpath

directly to a point on a light source. The term V (x2,x3) gives the visibility between

points x2 and x3, and θ is the angle between the surface normal at x3 and the direction

x3 → x2. Besides dividing by Plen, the value of an explicit path must be divided by

Plight , the probability that the particular light source was chosen by the sampling proce-

dure. As previously stated, the division allows the light path to account for all the light

reaching the eye point even though only one light source gets sampled.

at random on a spherical light source, roughly half of them will be on the back side

of the sphere, and therefore occluded. One solution to this problem is to only sample

points on the front side of the sphere. Another is to approximate the sphere with a disc

oriented towards the intersection point. In either case, the power of the light must be

scaled to reflect the new sampling strategy. In statistical terms, one random variable

is simply being replaced with another that has the same expected value but a lower

variance.

3.2 A First MLT Mutation Strategy

Now that we have explained how light paths are evaluated in a path tracer, we can

discuss MLT mutation strategies in the context of path tracing.

Restrictions on mutation strategies. There are two main restrictions on the types of

transition functions that can be used to form a mutation strategy. First, the transition

probabilities T (x̄|ȳ) and T (ȳ|x̄) or their ratio must be computable. Second, every part

of the space of light paths must be reachable from every other part. The second restric-

tion ensures the so called “ergodicity” condition, which means that the distribution of

samples will eventually converge to the stationary distribution.

Combining transition functions. It may be difficult to directly design a simgle mu-

tation strategy that efficiently samples all of the lighting in a particular scene. It is much

9

easier to design transition functions around specific sampling problems, and then com-

bine them to form a robust mutation strategy.

New path mutations. An obvious mutation strategy that fulfills both of the restric-

tions mentioned above is to create a new random light path at a random pixel location.

We call this a new path mutation. For a new path mutation T (x̄|ȳ) and T (ȳ|x̄) are

equal. New path mutations do not work well by themselves, but because they supply

the ergodicity condition, they are often used as part of a complete mutation strategy.

3.3 Mutation and Light Path Density

New path mutations work because they use the same sampling procedure as a path

tracer. However, many good mutations use different sampling procedures that tend to

skew the density of light path samples in path space. To compensate for this effect,

T (x̄|ȳ) and T (ȳ|x̄) must account for any changes in light path density that occur during

a mutation. The following rules will allow us to derive transition probabilities for the

mutations described in this paper:

• The transition probability T (ȳ|x̄) is directly proportional to the probability that

ȳ is chosen as the tentative next path from x̄, and inversely proportional to the

density of paths at x̄.

• Perturbing an angle at a diffuse surface changes the path density proportional to

the cosine of the angle between the surface normal and the perturbed direction.

• Explicit changes to the pixel coordinates of a path leave the path density un-

changed.

• Propagating a mutated path through specular bounces does not change the path

density.

• Connecting two diffuse vertices changes the path density by an amount propor-

tional to |cosθ1 cosθ2/d2|, where θ1 and θ2 are the angles between the surface

normals at the endpoints of the connection and the connecting segment, and d is

the length of the connection.

• If a connection is made in which one of the vertices is the eye point, the density

change is proportional to |cosθ2/(cos3 θ1d2)|, where θ1 is the angle between the

direction that the camera is facing and the connecting segment, with the other

variables defined as above.

3.4 Other Mutation Strategies

Mutations starting with the eye point. Veach and Guibas describe several mutations

that attempt to move the current light path starting at the eye point. The basic idea

behind these mutations, which are referred to as lens perturbations and multi-chain

perturbations, is to create a new light path by perturbing the pixel coordinates of the

current light path. This process can be summarized as follows:

10

• The pixel location of the original path is perturbed a random amount in a random

direction (no change in path density). See appendix 6 for details.

• Starting at the eye point, the new subpath is propagated through the same number

of specular bounces as the original path. The same reflection mode is used at

each path vertex as was used by the corresponding vertex in the original path

(reflection or refraction). Once again, there is no change in path density.

• For a lens perturbation, the first non-specular vertex (counting from the right)

is connected directly to the next vertex of the original path, which must also be

non-specular, or the light source. For example, in the path LDSSE, the suffix

DSSE is replaced by a new one of the same form, and the new subpath is con-

nected directly to the point L from the original path. This step causes a density

change proportional to |cosθ1 cosθ2/d2|. (Note that in a path such as LSSE, no

explicit connection is needed. The mutation simply stops when the light source

is reached, and the path density does not change.)

• In a multi-chain perturbation, the outgoing direction from the first non-specular

vertex (from the right) is perturbed by a random angle (density change propor-

tional to the cosine of the outgoing angle, φi). See appendix 6 for the details of

how this is done. The new subpath is then propagated through the same number

of specular bounces as the original path, arriving at the next non-specular surface.

If the vertex after this non-specular vertex in the path is also non-specular, the

new subpath can be joined back onto the remainder of the old path. Otherwise,

the path must be propagated through another chain of specular bounces. This

process repeats until the old path is exhausted, or a pair of non-specular vertices

is found. For example, consider the light path LDSSDSE. A new suffix of the

form DSE is generated starting at the eye point. The direction of the outgoing

ray from D is perturbed slightly and the path is propagated through two specular

bounces to form the subpath DSSDSE. Since the next vertex in the original path

is non-specular (L), the new subpath can be connected directly to the next vertex

of the original path, L. Figure 7 shows a multi-chain perturbation graphically.

S

D

E

S

L

Figure 7: A multi-chain perturbation modifies the current path starting at the eye point.

The pixel location is perturbed slightly, and the new lens subpath is propagated to

the first non-specular vertex. The outgoing direction from this non-specular vertex is

perturbed, and the new subpath is propagated through a specular chain looking for two

successive non-specular vertices, or the light source.

11

There are several reasons why a lens or multi-chain perturbation may fail to create

a new light path. For instance, one of the specular vertices of the original path may

migrate to a non-specular surface. Also, the new path may fail to hit the light source.

If either of these situations occurs, the mutation is rejected immediately. If a new light

path was successfully generated, it is evaluated in the same way as the original light

path (i.e. as implicit or explicit depending on the original).

Although it may be difficult to calculate the actual transition probabilities for lens

and multi-chain perturbations, we can use the rules from section 3.3 to define values

that are proportional to T (x̄|ȳ) and T (ȳ|x̄). First, it is easy to see that the probability

that path ȳ is chosen from path x̄ is equal to the probabilitiy that path x̄ is chosen from

path ȳ. Using this fact, and the path density changes mentioned above, the transition

probabilities for a lens or multi-chain perturbation are given by

T (x̄|ȳ) =

∣

∣

∣

∣

∣

d2

cosθ1 cosθ2
× ∏

1≤i≤n

1

cosφi

∣

∣

∣

∣

∣

(4)

T (ȳ|x̄) =

∣

∣

∣

∣

∣

d2

cosθ1 cosθ2
× ∏

1≤i≤n

1

cosφi

∣

∣

∣

∣

∣

Note that both transition probabilities are the same, except that T (x̄|ȳ) is evaluated on

path x̄ and T (ȳ|x̄) is evaluated on path ȳ. At this point, the acceptance probability

a(ȳ|x̄) is calculated, and based on this probability the current path either stays at x̄,

or transitions to ȳ. Finally, a sample is placed in the histogram at the current pixel

coordinates.

Mutations starting at the light source. Some lighting situations can be sampled

better by mutations starting at the light source instead of the eye point. Veach and

Guibas describe a mutation strategy called a caustic perturbation that moves the current

path starting at the light source. They use this mutation type to sample paths of the form

LS∗DE.

S

D

E

S

L

Figure 8: A caustic perturbation can efficiently sample paths of the form LS∗DE. The

subpath LS∗D is replaced starting at the light source. The direction L → S is perturbed

by a random angle, and the new direction is propagated through the same number of

specular bounces as the original path. The new subpath is then connected directly to

the eye point.

12

Caustic perturbations are created in much the same way as lens perturbations, ex-

cept that they start at the light source, or second diffuse vertex in the path (from the

right). The direction L → S perturbed by a random angle as in appendix 6, causing a

density change proportional to cosφ . The new subpath is propagated through the same

number of specular bounces as the original path, creating the subpath LS∗D or DS∗D.

This subpath is then connected directly to the eye point, causing a density change pro-

portional to |cosθ2/(cos3 θ1d2)|. Since the direction D → E has changed, the pixel

location of the new light path has changed as well. Appendix 6 explains how to find

the new pixel location. Figure 8 shows a caustic perturbation graphically.

Once again, we find T (x̄|ȳ) and T (ȳ|x̄) using the rules given in section 3.3. Apply-

ing these rules to a caustic perturbation yields

T (x̄|ȳ) =

∣

∣

∣

∣

1

cosφ
×

d2 cos3 θ1

cosθ2

∣

∣

∣

∣

(5)

T (ȳ|x̄) =

∣

∣

∣

∣

1

cosφ
×

d2 cos3 θ1

cosθ2

∣

∣

∣

∣

3.5 Estimating the Average Pixel Brightness

Recall from section 2 that once the histogram has been created, it must be scaled to

approximate f . To do this, the average pixel brightness is estimated by averaging a

large number of random light paths in the scene–say 10,000 or so. In our implementa-

tion, we simply take the average luminance of paths generated by new path mutations.

The histogram can then be scaled to approximate the desired image by using equation

1. Figure 9 compares standard path tracing to MLT using path tracing as the sampling

mechanism.

Figure 9: MLT using path tracing. The left image shows path tracing with 100 paths

per pixel. The right image was rendered in approximately the same time with a path

tracing version of MLT, using new path mutations, multi-chain perturbations and caus-

tic perturbations with equal probability. As suggested by Veach and Guibas, we use

standard path tracing to compute direct lighting.

13

4 Bidirectional Path Tracing

Bidirectional path tracing, developed nearly simultaneously by Lafortune and Willems

[4] and Veach and Guibas [9] forms the basis of the Metropolis Light Transport sam-

pling strategy. In this section, we give an introduction to bidirectional path tracing

sufficient to implement MLT.

4.1 Sampling Light Paths in Bidirectional Path Tracing

Like standard path tracing, bidirectional path tracing works by sampling light paths in

the scene to create a random variable with expected value equal to the desired image

brightness. Unlike path tracing, bidirectional path tracing creates light paths by starting

both at the eye point and the light source. As before, we will call the subpath starting

at the eye point the eye subpath, and the subpath starting at the light source the light

subpath.

We already discussed how to create the eye subpath in section 3.1. The light sub-

path is created in nearly the same way, but starting at a light source instead of the eye

point. First, a random point is chosen on a random light source in the scene. A random

direction also is chosen in a cosine-weighted distribution around the surface normal of

the light source. This initial ray is then sent out and allowed to bounce around in the

scene according to the same PDFs that would be used to create an eye subpath.

A bidirectional light path is made by connecting an eye subpath to a light subpath

in a deterministic step similar to the connection made for an explicit light path. The

connection is so similar that a bidirectional light path can be thought of as just an

explicit light path in which the light source has been allowed to stochastically migrate

through the scene. Based on this intuitive idea, it is not hard to see how to evaluate a

bidirectional light path:

• Determine the power of the light source, (P = A×Le).

• Caclulate the contribution of the eye subpath, (BSDFs/PDFs).

• Calculate the contribution of the light subpath, (BSDFs/PDFs).

• Connect the eye subpath and light subpath.

Figure 10 shows an example of a bidirectional light path. Note that the cosine term in

the connection step has been replaced by an evaluation of the BSDF function. For a

diffuse surface, the BSDF reduces to the cosine times the diffuse color.

4.2 Implementing a Bidirectional Path Tracer

As has just been illustrated, a bidirectional light path has many of the features posessed

by an implicit or explicit light path. In particular, all three light path types have the

same expected value, namely L(x1,x0). A bidirectional path tracer is implemented in

the same manner as a standard path tracer, by averaging a number of light paths at each

pixel location, except that the explicit and implicit light paths used by a standard path

tracer are replaced with bidirectional ones.

14

{

x 0

x 1

x 2

y 2

BSDF(x , x , x) 0 1 2

BSDF(x , x , y) 1 2 2

PDF(x , x , x) 0 1 2

d
LP(x , x) 1 0 y 0

y 1
BSDF(y , y , y) 0 1 2
PDF(y , y , y) 0 1 2

BSDF(y , y , x) 1 2 2 L (y , y) e 0 1 XA

V (x , y) 2 2

LP(x1,x0) = BSDF(x0,x1,x2)
PDF(x0,x1,x2) × V (x2,y2)×BSDF(x1,x2,y2)×BSDF(y1,y2,x2)

πd2 ×

BSDF(y0,y1,y2)
PDF(y0,y1,y2) × A×Le(y0,y1)

Plen×Plight

Figure 10: A bidirectional light path is created by connecting an eye subpath to a light

subpath. The light subpath can be thought of as a stochastic migration of the light

source. Compare to figure 6.

A typical implementation of a bidirectional path tracer optimizes the creation of

bidirectional light paths by connecting each vertex of the eye subpath to every vertex

of the light subpath. This is basically the same idea as producing many light paths from

a single eye subpath in standard path tracing. When this scheme is used, care must be

taken to ensure that the Plen terms are calculated correctly.

A problem occurs in bidirectional path tracing when the eye subpath has length

zero. Since the eye point is connected directly to the light subpath, it is unclear which

pixel the path should contribute to. This is the same problem that we encountered with

caustic perturbations, and it can be solved in the same way, as shown in appendix 6.

A second and more subtle problem is that since paths of this type are not sampled at a

specified density in screen space, their value must be scaled by

1

tan(θh/2) tan(θv/2)cos3 φ
(6)

to convert from world space area units to screen space area units, where θh and θv are

the horizontal and vertical field of view angles, and φ is the angle between the direction

that the camera is looking and the segment connecting the eye point to the light subpath.

5 A Full Implementation of MLT

It should be fairly obvious at this point that a full implementation of MLT can be created

by replacing implicit and explicit light paths with bidirectional ones in the Metropolis

framework. Thus, the pseudocode in figure 4 will work equally well whether standard

or bidirectional path tracing is used as the sampling mechanism. In addition, the muta-

tion types that we have presented (new path mutations, lens perturbations and caustic

15

perturbations) still apply, and the changes to path density are the same whether stan-

dard path tracing or bidirectional path tracing is used. Figure 11 shows several images

created using our implmentation of Metropolis Light Transport compared with bidirec-

tional path tracing.

Figure 11: Comparison of bidirectional path tracing to Metropolis Light Transport. In

this scene, the ring is faceted, creating detailed ray patterns in the caustics. The images

on the left were made with bidirectional path tracing using 100 paths per pixel. On

the right, the images were created with MLT using 100 mutations per pixel (approx-

imately the same number of ray queries). In the top row, bidirectional path tracing

achieves approximately the same quality as MLT. In the second row of images we have

zoomed in on one of the caustics. This has the effect of breaking down the ability of the

bidirectional path tracer to sample the caustic light paths. MLT is able to concentrate

more samples on the caustic, producing a much better result. As with figure 9, we used

standard path tracing to compute the direct lighting term.

5.1 More Mutation Types and Basic Optimizations

In their original paper, Veach and Guibas describe several mutation types that we have

not presented, along with some basic optimizations to the MLT algorithm. The opti-

mizations include using standard techniques such as path tracing to do direct lighting,

accumulating the expected sample in the histogram, and importance sampling of mu-

tation probabilities to increase the mutation acceptance rate. We refer the reader to [8]

for the details of these techniques.

16

6 Conclusion

In this paper we have given an alternate formulation of Metropolis Light Transport that

we believe to be functionally equivalent to the original. The new formulation relies on

a statistical description of the light paths generated by standard and bidirectional path

tracers rather than the path integral formulation of light transport. It is hoped that the

new description will aid those wishing to implement MLT or understand the algorithm

in more depth.

References

[1] Michael Ashikhmin, Simon Premože, Peter Shirley, and Brian Smits. A variance

analysis of the Metropolis Light Transport algorithm. Computers and Graphics,

25(2):287–294, 2001.

[2] Paul S. Heckbert. Adaptive radiosity textures for bidirectional ray tracing. In

Computer Graphics (SIGGRAPH 90 Proceedings), volume 24, pages 145–154,

August 1990.

[3] Csaba Kelemen, László Szirmay-Kalos, György Antal, and Ferenc Csonka. A

simple and robust mutation strategy for the Metropolis Light Transport algorithm.

Computer Graphics Forum, 21(3):1–10, 2002.

[4] Eric P. Lafortune and Yves D. Willems. Bi-directional Path Tracing. In H. P. Santo,

editor, Proceedings of Third International Conference on Computational Graphics

and Visualization Techniques (Compugraphics ’93), pages 145–153, Alvor, Portu-

gal, 1993.

[5] N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller, and E. Teller. Equations

of state calculations by fast computing machines. Chemical Physics, 21:1087–

1091, 1953.

[6] Mark Pauly, Thomas Kollig, and Alexander Keller. Metropolis light transport for

participating media. In B. Peroche and H. Rushmeier, editors, Rendering Tech-

niques 2000 (Proceedings of the Eleventh Eurographics Workshop on Rendering),

pages 11–22, New York, NY, 2000. Springer Wien.

[7] Matt Pharr. Chapter 9: Metropolis sampling.

[8] Eric Veach and Leonidas J. Guibas. Metropolis Light Transport. Computer Graph-

ics, 31(Annual Conference Series):65–76, 1997.

[9] Eric Veach and Leonidas J. Guibas. Bidirectional estimators for light transport.

In Eurographics Rendering Workshop 1994 Proceedings (Darmstadt, Germany),

pages 147–162, June 1994.

17

Appendix A Projecting Points Onto the Image Plane

Given a point in world space, P = [x y z 1]T , we would like to find its pixel coordinates

in screen space. If the camera uses a lens model, a point Q is chosen on the lens, and

the pixel coordinates are found by solving for the intersection point of the ray Q → P

on the plane of perfect focus. On the other hand, if a pinhole camera model is used,

a matrix can be derived that will project P directly onto the image plane. One such

projection matrix is given as follows:

M =











w
2tan(θh/2)

0 −w/2 0

0 h
2tan(θv/2)

−h/2 0

0 0 1 0

0 0 −1 0



















Ux Uy Uz 0

Vx Vy Vz 0

−Nx −Ny −Nz 0

0 0 0 1

















1 0 0 −Cx

0 1 0 −Cy

0 0 1 −Cz

0 0 0 1









where

C is the location of the camera,

N is the direction that the camera is looking,

U is the horizontal axis of the camera,

V is the vertical axis or “view up” vector of the camera,

θh and θv are the horizontal and vertical field of view angles, and

w and h are the width and height of the image in pixels.

Appendix B Calculating a Pixel Offset

The pseudocode below moves the pixel location (x,y) by an exponentially distributed

random distance r between r1 and r2. In other words, r = r2 × e−ln(r2/r1)ξ , where ξ is

a random number between 0 and 1. This procedure is used to determine the new pixel

location for a lens perturbation.

void pixelOffset(float r1, float r2, float &x, float &y)

{
float phi = randomReal(0.0, 1.0) * 2 * PI;

float r = r2 * exp(-log(r2/r1) * randomReal(0.0, 1.0));

x += r * cos(phi);

y += r * sin(phi);

}

We use values of 0.1 pixels for r1 and 10% of the image width for r2. In our implemen-

tation, we do not define a lens subpath mutation. Instead, we use lens perturbations

again, but with larger radii, 1.0 pixels for r1 and 25% of the image width for r2.

18

Appendix C Calculating an Angular Offset

The following pseudocode perturbs the direction N by a random angle that is exponen-

tially distributed between θ1 and θ2. We assume that D is normalized and θ1 and θ2

are small. As suggested by Veach and Guibas, we use 0.0001 radians for θ1 and 0.1

radians for θ2.

void angularOffset(float theta1, float theta2, Point &N)

{
// Make a UVN coordinate system from N

Point U, V;

if (ABS(N.x) < 0.5) U = N.cross(Point(1,0,0));

else U = N.cross(Point(0,1,0));

U.normalize();

V = U.cross(N);

// Determine offsets using the approximation θ ≈ sinθ
float phi = randomReal(0.0, 1.0) * 2 * PI;

float r = theta2 * exp(-log(theta2/theta1) * randomReal(0.0, 1.0));

// Calculate the new direction

N = N + r*cos(phi)*U + r*sin(phi)*V;

N.normalize();

}

19

