
SIGGRAPH 1996

Course Notes

Implicit Surfaces for Geometric Modeling
and Computer Graphics

Co-Chairs

Jai Menon
IBM T.J. Watson Research Center

Brian Wyvill
University of Calgary

Lecturers

Chandrajit Bajaj
Purdue University

Jules Bloomenthal
Microsoft Corporation

Baining Guo
York University

John Hart
Washington State University

Geo� Wyvill
University of Otago

}

SIGGRAPH 1996

Implicit Surfaces for Geometric Modeling and Computer Graphics

Welcome to Implicit Surfaces for Geometric Modeling and Computer Graphics.

In this course we will survey implicit surfaces, discuss their usefulness, describe their advantages

and disadvantages relative to other modeling techniques, and present the latest techniques for

their design. Until recently, implicit surfaces have received little attention, partly due to the

di�culties in visualizing them interactively. From the moment one realizes that it is easier to

draw a circle with (r cos �; r sin �) than it is with (x2 + y
2 = r

2), one is slowly led away from

the world of implicit surfaces.

Welcome back!

Implicit surfaces are di�erent from parametric surfaces: the latter, in use in many commercial

modeling systems, are familiar to most of the computer graphics community. Implicit surfaces

aren't necessarily less practical; they are simply di�erent. They require di�erent techniques for

their creation, modi�cation and visualization and have di�erent properties and applications

from their parametric counterparts.

The speakers in this course will discuss their current work in developing techniques to make

implicit surfaces practical in modeling and animation. By de�nition, implicit surfaces embrace

an extremely large set of surfaces. Undoubtedly, as they receive increased use in computer

graphics, concepts will be developed that unify and distinguish various implicit forms. We

hope the variety of approaches, applications and results presented in this course will stimulate

interest in this exciting branch of modeling.

Courses on Implicit Surfaces were previously o�ered at SIGGRAPH in 1990 and 1993, co-

organized by Jules Bloomenthal and Brian Wyvill.

Jai Menon, IBM T.J. Watson Research Center

Brian Wyvill, University of Calgary

1996

SIGGRAPH 1996

Implicit Surfaces for Geometric Modeling and Computer Graphics

Speaker Biographies

Chandrajit Bajaj

Professor

Department of Computer Science

1398 CS Bldg

Purdue University

West Lafayette, IN 47907

http://www.cs.purdue.edu/people/bajaj

bajaj@cs.purdue.edu

Chandrajit Bajaj graduated from the Indian Institute of Technology, Delhi in 1980 with

a Bachelor's Degree in Electrical Engineering. Subsequently he received his M.S. and Ph.D.

degrees in Computer Science from Cornell University, Ithaca, New York in 1984. Bajaj is cur-

rently a Professor in the Computer Science Department of Purdue University, West Lafayette,

Indiana and directs the Collaborative Modelling and Visualization Laboratory which houses

the SHASTRA projects. He also directs the Purdue Center of Computational Image Analysis

and Data Visualization. His research are in the areas of Computational Geometry, Geomet-

ric Modeling, Computer Graphics, Scienti�c Visualization and Distributed and Collaborative

Synthetic Environments.

Jules Bloomenthal

Member, Advanced Technology

Microsoft Corporation, Building 10N

1 Microsoft Way, Redmond, WA 98052

julesb@microsoft.com

Jules Bloomenthal studied computer graphics at the University of Utah, and recently re-

ceived his Ph.D. from the University of Calgary. Dr. Bloomenthal has conducted research at

the New York Institute of Technology and at Xerox PARC, and has taught computer graphics

at George Mason University and UC Santa Cruz. He is presently with Microsoft Corporation.

Contending that implicit blends usefully represent natural forms, Dr. Bloomenthal has

published on several implicit surface topics, including uniform and adaptive polygonization

methods, polygonization of non-manifold surfaces, convolution of skeletons, bulge elimination

in implicit blends, speci�cation of volume/surface blends, de�nition of branching structures,

interactive design and display techniques, and procedural methods.

http://www.cs.purdue.edu/people/bajaj

Baining Guo

Assistant Professor

Department of Computer Science

York University

North York, Ontario

CANADA M3J 1P3

guo@cs.yorku.ca

Baining Guo is currently an assistant professor in the Computer Science Department at

York University in Toronto (CANADA). He received his B.S. from Beijing University (PRC) in

1982 and his M.S. and Ph.D. from Cornell University in Ithaca, New York (USA) in 1989 and

1991. Prior to joining York, he worked for France Telecom (FRANCE) and The University of

Colorado (USA). Guo was a visiting assistant professor at the University of Toronto, in the

Department of Computer Science, where he still actively participate research activities.

Guo's research interests include volume visualization, geometric modeling, and computer

vision. In geometric modeling, his work addresses issues in modeling with low degree implicit

surfaces for CAD/CAM applications. In volume visualization, he is developing structure-

based volume rendering techniques that combine volume rendering with feature extractions.

Recently, he has started to construct direct solvers for early vision problems. Guo is a member

of ACM.

John Hart

Assistant Professor

School of EECS

Washington State University

Pullman, WA 99164-2752

hart@eecs.wsu.edu

John C. Hart is an Assistant Professor in the School of Electrical Engineering and Computer

Science at Washington State University. Hart received his B.S. in Computer Science from

Aurora University, and his M.S. and Ph.D. in Computer Science in the Electronic Visualization

Laboratory at the University of Illinois at Chicago. He also interned in Alan Norton's group

at the IBM T.J. Watson Research Center, and at AT&T Pixel Machines (R.I.P.).

In 1993, Dr. Hart received an NSF Research Initiation Award to explore new modeling,

rendering and animation techniques for implicit surfaces. This research resulted in new tech-

niques for rendering skeletal models, volume visualization, implicit modeling of geometric detail

and the interactive modeling of implicit surfaces. His implicit surface rendering algorithm was

used to demonstrate the removal of a 720� twist in a ribbon in the SIGGRAPH '93 Electronic

Theater animation \Air on the Dirac Strings." Dr. Hart is a co-chair of Implicit Surfaces '96

| the 1996 Eurographics/SIGGRAPH Workshop on Implicit Surfaces. He is also a member of

ACM, SIGGRAPH and the IEEE Computer Society. At the time of this writing, he serves on

the SIGGRAPH Executive Committee as a Director-at-Large, and is a candidate for Director

of Communication.

Jai Menon

Project Leader, 3D Exploitation

IBM T.J. Watson Research Center

P.O. Box 704

Yorktown Heights, NY 10598

menon@watson.ibm.com

Jai P. Menon is a Project Leader at the IBM T.J. Watson Research Center, where he

currently manages R&D on geometry-based and image-based graphics systems { the (IBM 3D

Interaction Accelerator) and (IBM SurroundVR) respectively { with a focus on PC platforms.

Menon received his B.Tech. from the Indian Institute of Technology (Delhi), his M.S. and Ph.D.

from Cornell University, and joined IBM Research immediately after. He is also an Adjunct

Professor at the New York Polytechnic University. He serves on an industrial advisory board

at the University of Wisconsin (Madison), and is a member of a doctoral thesis committee at

SUNY (Stony Brook).

Menon's research interests lie in four broad areas. His work on \implicit surfaces" has

focused on algebraic patches, where he has pioneered their use in exact CSG schemes. In his

work on \massively parallel processing" for solid modeling, he has developed (in collaboration

with Cornell and Duke Universities) custom-VLSI RayCasting Engine (RCE) and ray-rep tech-

nologies to support hitherto intractable applications, such as general sweeps, and Minkowski

operations. His work in \manufacturing" has produced the P2NC automatic veri�cation sys-

tem (from Cornell) for Numerical Control (NC) machining programs. His work on \polyhedral

graphics" (at IBM) has resulted in two releases of the IBM 3D Interaction Accelerator (3DIX)

product for real-time visualization of and communication with complex (multi-million polygon)

databases. He has authored several patents and has received several IBM awards for his work

on the 3DIX system. He has participated in the production of IBM TV Olympic commercials

aired on ABC, NBC, and so forth.

Menon has published a number of papers in all these areas. He serves as an area chair at the

1996 ASME Design for Manufacturing Conference, and is general co-chair at the 1997 confer-

ence. He has been invited to the editorial board of the International Journal of Manufacturing

Engineering and will be a guest editor for the Computer-Aided Design journal. He serves on

an ASME Executive Committee, and is a member of Phi Kappa Phi, ACM, SIGGRAPH and

the IEEE Computer Society.

Brian Wyvill

Professor

Dept. of Computer Science

University of Calgary,

2500 University Dr. NW

Calgary, Alberta, T2N 1N4, Canada

blob@cpsc.ucalgary.ca

Brian Wyvill is a full professor in the Department of Computer Science at the University

of Calgary where he heads the GraphicsJungle research group. After gaining his PhD in the

UK in 1975, he worked at the Royal College of Art as a post doc. in London to produce a

computer animation system. Since coming to Calgary in 1981, Brian's research has concen-

trated on building the Graphics and Animation and visualization system. Brian has directed

several animations (two shown at SIGGRAPH) that feature implicit surfaces. Recent work

is in the areas of implicit surface modeling, animation techniques and scienti�c visualization.

Currently he is interested in very e�cient adaptive tiling algorithms for implicit surfaces and

CSG, as well as new techniques for warping, blending and collision detection using implicit

surfacs. Brian is a member of ACM, SIGGRAPH, and on the editorial board of the Visual

Computer as well as the Journal of Animation and Scienti�c Visualization.

Geo� Wyvill

Associate Professor

Department of Computer Science

University of Otago

Box 56, Dunedin

New Zealand

geoff@otago.ac.nz

Geo� Wyvill is an Associate Professor at the University of Otago, New Zealand and Direc-

tor of Animation Research Limited. He is known for pioneering work in polygonizing implicit

surfaces and ray tracing, especially the e�cient ray tracing of CSG systems. He is an Exec-

utive editor of 'Virtual Reality' and serves on the editorial boards of 'The Visual Computer',

'Computer Graphics Forum' and 'Vizualisation and Computer Animation'. He contributed to

the �lms 'Soft' (1985) 'Great Train Rubbery' (1988) and 'Fashion Show' (1992) as well as nu-

merous TV commercial and channel animations. His company, ARL, has won eleven national

and international awards for animation all of which has been produced using 'Katachi' Geo�'s

CSG, ray tracing and animation software. He has a BA in physics from Oxford University and

MSc and PhD degrees in computer science from the University of Bradford.

SIGGRAPH 1996

Implicit Surfaces for Geometric Modeling and Computer Graphics

Table of Contents

SECTION A: Basic Building Blocks
A1-1 to A1-14 An Introduction to Implicit Techniques

by Jai Menon

A2-1 to A2-6 Intuitive Implicit Skeletal Design

by Jules Bloomenthal

A3-1 to A3-38 Representation Schemes & Impact on Algorithms

by Jai Menon

SECTION B: Implicit Algebraic Methods
B1-1 to B1-18 Free-form Modeling with A-Patches

by Chandrajit Bajaj

B2-1 to B2-38 CSG Constructs for Free-form Solids Bounded

by Implicit Algebraic Patches

by Jai Menon

B3-1 to B3-18 Dual Control Polygons for Implicit Splines

by Baining Guo

SECTION C: Beyond Low Degree Algebraics
C1-1 to C1-26 Tiling Techniques for Implicit Skeletal Models

by Brian Wyvill and Kees van Overveld

C2-1 to C2-20 Animation and Design Systems for Skeletal Models

by Brian Wyvill

C3-1 to C3-6 Implicit Blends and Skeletal Methods

by Jules Bloomenthal

C4-1 to C4-18 Implicit Skeletal Models and CSG

by Geo� Wyvill

C5-1 to C5-14 Texturing Implicit Models

by Geo� Wyvill

C6-1 to C6-32 Sphere Tracing: A Geometric Method for the

Antialiased Ray Tracing of Implicit Surfaces

by John Hart

C7-1 to C7-16 Guaranteeing the Topology of an Implicit

Surface Polygonization

by Barton Stander and John Hart

Color Images: An Implicit Gallery

Tom Berryhill
These items are clickable.

SECTION A

Basic Building Blocks

Abstract

The �rst section will build some basics. It will contrast implicit and

parametric methods, and overview the broad range of implicit surfaces

used today. It will develop fundamental properties of quadratic implicit

polynomial surfaces, and illustrate how these surfaces have been tra-

ditionally used in CAD systems for handling \prismatic" objects (e.g.

piston rods), and how recent research on algebraic patches has extended

their power to now support \free-form" objects (e.g. bones). This is

followed by an introduction to the class of implicit skeletal methods that

build shapes using distance functions and blends. As a new twist, this

section will develop formal notions of representation schemes (partic-

ularly, Brep and CSG), conversions (fundamental problems of sepa-

ration and describability), and their impact on rendering algorithms.

This leads to an exercise in designing direct rendering hardware for

quadratic surfaces, both for Brep-based and CSG-based parallel pro-

cessing. In particular, the architecture of the prototype RayCasting

Engine (RCE), with over 2K parallel processors, for direct CSG ray-

casting will be discussed.

}

An Introduction to Implicit Techniques

Jai Menon

IBM T.J. Watson Research Center

Abstract

This chapter provides an introduction to implicit techniques used in geometric modeling
and computer graphics. We begin by contrasting implicit and parametric methods. We then
summarize three classes of techniques { algebraic, blobby, and functional. Functional (F-rep)
techniques represent some of the recent work on using a single function to represent complex
shapes.

1 Introduction

There are two main techniques for representing surfaces in geometric modeling and computer

graphics { parametric and implicit. Parametric representations typically de�ne a surface as a

set points p(s; t), i.e.

p(s; t) = (x(s; t); y(s; t); z(s; t)): (1)

Implicit representations typically de�ne a surface as the zero contour of a function F (p) = 0, i.e.

F (p) = F (x; y; z) = 0: (2)

Parametric methods (such as non-uniform rational B-splines or NURBS) were motivated by

properties of coordinate system independence, single-valued functions, ease of handling vertical

slopes, and e�cient evaluation of points on the surface ... the last being critical for image rendering;

ergo its popularity in computer graphics [7]. Implicit methods, however, provide mathematical

tractability and are becoming extremely useful for modeling operations such as blending, sweeping,

metamorphosis, intersections, boolean operations, ... and even image rendering.

Explicit methods that express, for example, y = f(x) and z = g(x) are quite limiting. For

example, it is impossible to get multiple values of y for a given x; hence circles and ellipses must be

represented with multiple curve segments. Furthermore, such representations are not rotationally

invariant and describing curves with vertical tangents is di�cult, because a slope of in�nity is

di�cult to represent [7]. This leaves parametric and implicit methods are the two key approaches.

In this chapter, we will take a brief tour through some of the key concepts of three major lines

of work in implicit methods:

� algebraic surfaces (Section 2),

� blobby objects (Section 3), and

� functional representations (Section 4).

2 A1

2 Algebraic Methods

Algebraic methods describe surfaces as implicit polynomials, i.e. F (x; y; z) is a polynomial in

x; y; and z. These are typically low degree (2, 3, 4) polynomials, and the most popular ones are

quadratic implicit (degree 2) surfaces, often referred to as \quadrics". We will �rst make some

observations on converting from parametric to algebraic representations and then devote the rest

of this section on some basic concepts of quadrics.

2.1 A Note on Parametric Surfaces

We observe that parametric surfaces can be implicitized, i.e. converted to an implicit polynomial

(or algebraic form) [17]. However, the resulting algebraic equation F (x; y; z) = 0 could have a

degree as high as 2mn for a tensor product patch with rational functions of degree m and n, or n2

for a triangular patch with rational functions of degree n. For example, a bi-cubic tensor-product

patch could yield an algebraic patch of degree 18, and a quadratic triangular (Steiner) patch could

yield a quartic (degree 4) algebraic equation.

In general, the intersection of a degree m algebraic surface with a degree n algebraic surface

could result in a curve of degree mn. Hence the intersection of two bi-cubic patches could result in

a curve of degree 324. Similarly for curve/patch intersections: Bezout's theorem states that a space

curve of degree l intersects an algebraic surface of degree n in exactly ln points (counting complex,

in�nite, and multiple intersections) or else it intersects the surface in�nitely often, i.e. a component

of the curve lies entirely in the surface [18]. Since the implicit representations of parametric patches

are usually of high degree, even the simplest curve/patch intersection is expensive to compute (for

example, a line can intersect a bi-cubic patch in 18 points).

This explains why parametric patches (such as NURBS), albeit popular and
exible, are

computationally so intractable. Parametric patches are often `tamed' using linear (tesselated)

approximations.

2.2 Basics of Quadric Surfaces

A quadric surface is the set fx j F (x) = xTQx = 0g, where

Q =

2
6664

A D E G

D B F H

E F C J

G H J K

3
7775 and x =

2
6664

x

y

z

1

3
7775 : (3)

Expanding the equation xTQx = 0, we get

Ax2 + By2 + Cz2 + 2Dxy + 2Exz + 2Fyz + 2Gx + 2Hy + 2Jz + K = 0 (4)

which is a polynomial of degree 2. Nine popular types of quadric surfaces produced by varying

the coe�cients of this algebraic equation are sketched in Fig. 1. These are: ellipsoid, elliptic

cone, cylinder (elliptic, parabolic, hyperbolic), hyperboloid (of 1 sheet, of 2 sheets), and paraboloid

(elliptic, hyperbolic). These are referred to as general quadrics. Certain combinations of coe�cients

of the polynomial equation can also result in non-curved shapes (point, plane, parallel planes,

coincident planes) or in invalid shapes (imaginary quadric, intersecting imaginary planes, imaginary

parallel planes).

A1 3

Ellipsoid
Cone

Cylinders:

Hyperboloids: Paraboloids:

Elliptic Parabolic Hyperbolic

1 sheet 2 sheets Elliptic Hyperbolic

Figure 1: Sketches of general quadric surfaces.

4 A1

(a) (b)

Figure 2: Quadric surfaces may be used to describe (a) prismatic part (pump assembly) { traditional

uses, or (b) free-form object (vase) { modern uses.

A particular subset of general quadrics is called natural quadrics; these include sphere (special

case of ellipsoid), right circular cone (special case of elliptic cone), right circular cylinder (special

case of elliptic cylinder), and planes. Natural quadrics are by far the most popular set of quadric

surfaces used in modeling systems. Objects modeled with natural quadrics are often referred to as

\prismatic" solids, such as in Fig. 2a, used mainly in mechanical CAD domains. Free-form objects

were traditionally not modeled with quadric surfaces; in fact, parametric (NURBS) patches were

most popularly used. Recently however, there has been a growing body of work on using subsets

of general quadric surfaces { called algebraic patches { pieced together with tangent plane (G1)

continuity to create free-form shapes, as shown in Fig. 2b [11, 9, 12, 13].

2.3 Properties of Quadric Surfaces

General quadrics exhibit several interesting mathematical properties; a few of which are summarized

below; see [5, 10] for more details. Let M denote an a�ne transformation describing transformed

coordinates B in terms of reference frame A. Furthermore, let QA denote the matrix representing

a quadric surface in frame A, and similarly QB in frame B. Then, the following describes the

transformation relation for quadrics:

QB = MTQAM: (5)

Let Qu denote the upper-left 3x3 sub-matrix of Q, i.e.

Qu =

2
64
A D E

D B F

E F C

3
75 : (6)

The ranks of both Q and Qu are invariant under a�ne transformations. Furthermore, the type of

quadric surface is invariant under a�ne transformations. The quadric surfaces are invariant under

rigid motions, and in particular, the characteristic functions

Det(Q � �I); and Det(Qu � �I) (7)

A1 5

are invariant under rigid motion (\Det" denotes \determinant of").

Invariance of the characteristic equation provides algebraic methods for classifying the type

of quadric surface. Speci�cally, the expansion of the characteristic equations yields coe�cients

D1; D2; D3; D4 and T1; T2; T3 as follows.

Det(Q � �I) = �4 + D1�
3 + D2�

2 + D3� + D4 (8)

where

D1 = A + B + C + K (9)

D2 = AB + BC + CK + AK + AC + BK

� D2 � E2 � F 2 � G2 � H2 � J2 (10)

D3 = ABC + ABK + ACK + BCK + 2(DEF + FGJ + DGH + EHJ)

� (C + K)D2 � (A + K)E2 � (B + K)F 2

� (B + C)G2 � (A + C)H2 � (A + B)J2 (11)

D4 = Det(Q) (12)

Similarly, the following relations follow for the Qu submatrix.

Det(Qu � �I) = �3 + T1�
2 + T2� + T3 (13)

where

T1 = A + B + C (14)

T2 = AB + BC + AC � D2 � E2 � F 2 (15)

T3 = Det(Qu) (16)

From the invariance property, these coe�cients can be used to determine the type of quadric

surface, using a decision tree due to Levin [10], shown in Fig. 3.

Certain quadric surfaces have the property that a family of straight lines can be found which lie

entirely on the quadric surface. Such surfaces are called ruled quadric surfaces. Cylinders and cones

are common examples of ruled quadric surfaces (Fig. 1). We leave it as an exercise to determine the

family of straight lines that show how a hyperboloid of one sheet as well as a hyperbolic paraboloid

are ruled quadrics.

If F1(x; y; z) and F2(x; y; z) are two quadric surfaces, there exists a family of quadric surfaces

which are linear combinations of the two surfaces. This family constitutes the pencil of the two

original surfaces, and is described by F1(x; y; z) + �F2(x; y; z) where � is an arbitrary real scalar.

Since every point on the curve of intersection of F1 and F2 has to satisfy equations

F1(x; y; z) = 0 and F2(x; y; z) = 0 (17)

it follows that the equation

F1(x; y; z) + �F2(x; y; z) = 0 (18)

is satis�ed at the curve of intersection for all values of �. In other words, every quadric surface

in the pencil intersects the surfaces F1 and F2 along their curve of intersection. Another property

of interest is that there is at least one ruled quadric in the pencil of any two general quadrics.

This property is useful because ruled quadrics are easily parameterized and the quadric surface

intersection curves can be expressed parametrically using the parameterization scheme for the

ruled quadric in the pencil.

6 A1

QUADRIC SURFACES conic sections

HYPERBOLOID
OF 2 SHEETS

HYPERBOLOID
OF 1 SHEET

CONE

ELLIPSOID

POINT

INVALID

ELLIPTIC
PARABOLOID

HYPERBOLIC
PARABOLOID

HYPERBOLIC
CYLINDER
hyperbola

PARABOLIC
CYLINDER
parabola

ELLIPTIC
CYLINDER
ellipse

INVALID
invalid

SINGLE
PLANE
single
line

PARALLEL
PLANES
parallel
lines

COINCIDENT PLANES
coincident lines

INVALID
invalid

INTERSECTING
PLANES
intersecting
lines

LINE
point

T2 > 0 &
T1 T3 > 0

T3 0

truefalse

D4− +

0

D4− +

0

D4 0−

+

D3

0

T2 +−

0

T2 +−

0

T10

T1 D3 +− G = H = J = 0
true false

D2 +−

0

+

+

+

Figure 3: Levin's decision tree for classifying quadrics.

A1 7

Type Point Vectors Scalars

plane on the plane normal none

sphere center none radius

cylinder on the axis axis direction radius

cone vertex (tip) axis direction half-angle

Table 1: Geometric representations of natural quadrics.

2.4 Representation of Quadric Surfaces

Traditionally, there have two competing representation techniques for quadric surfaces { algebraic

and geometric [8].

The algebraic approach represents the ten coe�cients A; B; C; D; E; F; G; H; J; K of

the quadratic implicit polynomial equation F (x; y; z). The advantage of such this approach is

that a common set of routines can be written for handling all types of general quadric surfaces.

The major disadvantage is the lack of computational robustness. In this approach, certain critical

decisions are based on
oating point data of imperfect accuracy, e.g. the determination of the type

of quadric surface (Fig. 3) depends critically on whether certain invariants are positive, negative,

or zero. The algebraic model also, generally speaking, lacks internal consistency. For example, if

a rigid transformation is applied to a cylinder to position it in space and then if an inverse of the

same rigid transformation is applied, one would not necessarily get back the original cylinder due

to round-o� (or other) errors.

In the geometric approach, every quadric surface can be represented by:

(1 point, 2 orthogonal unit vectors, 3 scalars).

The point �xes the position of the surface, the vectors de�ne its orientation or axes, and the scalars

determine its dimensions. For example, an ellipsoid can be completely described by specifying

its center (a point), two of its three orthogonal axes (two orthogonal unit vectors), and the three

lengths (radii) along its three axes (three scalars). Table 1 gives a geometric description of the

natural quadrics. It is worth noting that the main advantages of the geometric approach over the

algebraic approach are its robustness and internal consistency. The disadvantage, however, is that

a large number of routines are needed to handle all the special cases that arise as a result of each

type of surface being treated as a separate entity (e.g. a problem of combinatorial explosion in the

number of intersection routines).

2.5 Applications of Quadric Surfaces

As noted earlier, surface/surface or curve/surface intersection calculations are much more

computationally (numerically as well as topologically) tractable as compared to parametric patches.

For example, the intersection of a line L with a quadric surface F (x; y; z) can be computed by

substituting the parametric equation of the line L : (x(t); y(t); z(t)) in the implicit representation

of the surface, to get F (x(t); y(t); z(t)), which reduces to a uni-variate quadratic G(t). Roots of

G(t) can now be found using well known closed form solutions for a uni-variate quadratic function.

This simplicity has, for example, made it possible to architect and implement a quadric-based

special purpose custom-VLSI highly parallel computer { the RayCasting Engine (RCE) { that

e�ciently processes complex geometries composed of quadric surfaces [6, 14]. With the use of

8 A1

recently developed quadratic algebraic patch based methods for meshing tiny subsets of quadric

surfaces with smooth continuity, this technology has been seamlessly extended to support complex

free-form shapes [11, 12, 13].

3 Blobby Methods

One way to think about blobby objects it to begin with physical ball-and-stick models for molecules.

From physics, we know that electron clouds around each atom are not spherical, but rather are

distorted by the electron clouds around other atoms. To generate iso-surfaces (those with identical

electron densities), one would therefore have to consider the e�ects all neighboring atoms.

The computation of exact iso-surfaces is expensive, and several good approximations have been

made. Blinn [3] used exponentially decaying (with distance) �elds created by each atom, and

de�ned the iso-surface as those points where a \density" function D equals some threshold amount

T , i.e.

F (x; y; z) = D(x; y; z) � T: (19)

The function D took the form

D(x; y; z) =
X
i

bi e
�air

2

i : (20)

The exponential term is a simple Gaussian bump centered at ri, with height bi and standard

deviation ai. Di�erent e�ects of \blobbiness" can be achieved for the same arrangement of atoms

by adjusting the ai and bi parameters. Similar methods were also developed independently by

Nishimura et. al. for use in the LINKS project[15].

Wyvill et. al. modify Blinn's method and create \soft objects" by distributing �eld sources in

space and computing a �eld value at each point of space. The �eld value is a sum of �eld values

contributed by each source and the value from each source is a function of distance only. This

function C(r) of distance r decays completely in a �nite distance R, unlike Blinn's exponentially

decay, with the properties [20]:

C(0) = 1; C(R) = 0; C0(0) = 0; C0(R) = 0; and C(
R

2
) = 0:5: (21)

Thus the �elds have �nite extent, and smooth joints are obtained when the functions are blended

together. They compute a number m, such that the volume of the set where C(r) � m is exactly

one-half the volume of the set where 2C(r) � m. This property implies that the level-m iso-surface

computed from two sources at the same location has twice the volume of the iso-surface for a single

source. Thus when soft objects are merged, their volumes add. Furthermore, if two sources are far

apart, the iso-surface may have two disconnected pieces.

Field sources could be points, or lines, or more complex geometric structures. Iso-surfaces

are computed by algorithms that resemble the marching cubes techniques used frequently in

computer graphics. A closely related method are \distance constrained" implicit models [4] that

use skeleta (points, lines, curves, and such) and de�ne surfaces in terms of distances to the skeleta.

Skeletal design provides an intuitive and interactive speci�cation for many forms found in a natural

environment. Implicit techniques are particularly suited for relating the skeleton to the surface;

they enable the smooth, seamless, bulge-free blend of components. Skeletal design also permits the

smooth embedding of volume within a surface, given certain extensions to implicit techniques.

Implicit surfaces of the blobby kind are rendered typically after polygonization or via ray tracing;

Fig. 4 provides two examples of complex shapes modeled using CSG combinations of implicit soft

objects and other primitives.

A1 9

(a) (b)

Figure 4: Objects resulting from a CSG combination of implicit soft objects and other primitives.

4 Functional Methods

4.1 What is F-rep?

The function representation (or F-rep) de�nes a whole geometric object by a single real continuous

function of several variables as F (X) � 0 [1]. F-rep is an attempt to step to a more general

modeling scheme using real functions. Functions are not restricted very much - they only have to

be at least C0 continuous. The function can be de�ned by a formula or by an evaluation procedure.

In this sense, F-rep combines many di�erent models like classic implicits, skeleton based implicits,

set-theoretic solids, sweeps, volumetric objects, parametric and procedural models [1].

4.2 Basic operations

� Set-theoretic operations are closed on this representation with the use of R-functions - Ck

continuous de�nitions introduced by Rvachev [16] (see survey in [1]). The main restriction of

well-known min/max operations is that they are C1 discontinuous. This can yield unexpected

results in further operations on the object.

The simplest R-functions are

f1&f2 = f1 + f2 �

q
f2
1
+ f2

2
(22)

for the intersection of two objects described by f1 and f2, and

f1&f2 = f1 + f2 +
q
f2
1
+ f2

2
(23)

for the union. Note that these function have C1 discontinuity only in the points where

f1 = f2 = 0. There are Ck continuous R-functions as well.

10 A1

� Blending set-theoretic operations generate smooth edges of constructive solids with

added or subtracted material. These are proposed to be

B(f1; f2) = R(f1; f2) + d(f1; f2); (24)

where R(f1; f2) is a corresponding R-function and d(f1; f2) is a Gaussian-like displacement

function with three parameters controlling the overall shape.

� O�setting generates a constructed or expanded version of an initial object. Pasko et. al.

discuss in [1] its three di�erent de�nitions: iso-valued o�setting de�ned as f1+const, o�setting

along the normal de�ned as f1(X + N) (where N is a gradient vector) and constant radius

o�setting de�ned as a maximal function value on a sphere of a given radius.

� Cartesian product is a dimension increasing operation. It is possible to generate a 3D solid

as a Cartesian product of a 2D solid (plane area) and a line segment. It can be expressed in

terms of R-functions as

f3(x; y; z) = f1(x; y)&f2(z) (25)

where f1(x; y) describes a 2D solid and f2(z) = (z � z1)&(z2 � z) describes a segment [z1; z2]

on z-axis.

� Bijective mapping serves for deformation of initial objects. The transformed object is

described as f1(T
�1(X)), where T�1 de�nes arbitrary inverse space mapping. Savchenko et.

al. have developed a method to control the deformation by arbitrary control points linked

to the features of the object. A volume spline is used to interpolate the displacements of the

control points.

� Metamorphosis produces an intermediate shape between two given objects. With real

functions it can be expressed as the weighted interpolation between two de�ning functions.

4.3 Advanced topics

� Relations Inclusion (binary) and membership (in/boundary/out) relations for a point and an

object can be directly expressed in terms of the de�ning function. The intersection (collision)

relation can be evaluated as a non-emptiness of the intersection of two objects.

� Sweeping by a moving solid is one of the long standing problems in solid modeling. The

problem of a swept solid description has been reduced to a one-dimensional global extremum

search by a parameter of movement. It allows the user to apply arbitrary variable-shape and

CSG solids as generators, arbitrary parameterized movement and self-intersections.

� Deformation with algebraic sums Algebraic sums are used to control deformations by

positions of arbitrary points (not their displacements):

f3(x; y; z) = f1(x; y; z) + disp(x; y; z); (26)

where disp is a displacement function and disp(xi; yi; zi) = �f1(xi; yi; zi) in every control

point. Di�erent interpolation techniques are used to ensure this property of the displacement

function. This de�nition allows the new surface to pass through all given control points.

Subtle local deformations, pinching, pricking and scratching e�ects can be handled in this

way.

A1 11

(a) (b)

Figure 5: F-rep: An original set-theoretic solid and its twist with an inverse mapping.

� Three-dimensional texture modeling is based on the extensive use of the solid noise

primitive de�ned by well-known solid noise functions. If a solid noise function is continuous,

it de�nes some 3D primitive which can be an argument of all operations closed on F-rep.

Thus, di�erent 3D textures can modeled: moss, snow, fur or hair [10]. Di�erent hairstyles

have been modeled by procedurally de�ned real functions with the use of \solid noise", sweep-

like technique, o�setting and set-theoretic operations, and non-linear space mappings.

� Visualization An algorithm of iso-surface polygonization is implemented for rendering [2].

It is free of topological ambiguities essential to the marching cubes algorithm. Trilinear

interpolation is used for the hyperbolic arcs detection at faces of a cubic cell and for the

construction of the edges connection graph. Its parallel version has been implemented on the

workstations network with PVM system. Traditional ray-marching algorithms are also used

to generate halftone images.

� Interaction A high-level modeling language is used to support so-called exploratory (or

empirical) style of geometric modeling. The language provides full system extendibility by

symbolic input of de�ning functions for new primitives and operations.

Figs. 5 { 7 give some examples of objects modeled with F-rep techniques.

5 Conclusions

This chapter provided a brief introduction to some of the main areas of work in implicit techniques

for geometric modeling and computer graphics. These were presented in an order that is not

only consistent with the chronology of development, but also with the mathematical complexity

of the basic implicit equation F (x; y; z), i.e. we progressed from algebraic to blobby to functional

approaches.

An interesting twist is the combination of generalized interval arithmetic and implicit surface

rendering techniques to \plot" 2D graphs, resulting in images such the one in Fig. 8 [19]. Implicit

methods continue to stir interest in the research community, and could one day become as popular

as (if not supersede) parametric patch methods used so rampantly in contemporary modeling and

graphics systems.

12 A1

(a) (b)

(c) (d)

Figure 6: F-rep: Frames of metamorphosis.

(a) (b) (c)

Figure 7: F-rep: Hairstyles modeled with solid noise function, sweep-like technique, set-theoretic

operations and non-linear mappings.

Figure 8: Combining interval arithmetic and implicit rendering techniques.

A1 13

6 Acknowledgements

The author would like to thank Herb Voelcker and Gene Hartquist of Cornell University for introducing him
to the theoretical and practical aspects of quadratic surfaces. Many thanks to Geo� Wyvill (University of
Otago, New Zealand) and Brian Wyvill (University of Calgary, Canada) for providing the images for the
soft objects. The author also thanks Alexander Pasko (University of Aizu, Japan) and his collaborators {
V. Adzhiev (Moscow Engineering Physics University, Russia), V. Savchenko (University of Aizu, Japan),
and A. Sourin (Nanyang Technological University, Singapore) { for providing a description of their work on
F-reps.

14 A1

References

[1] Pasko A., Adzhiev V., Sourin A., and Savchenko V. Function Representation in Geometric Modeling:
Concepts, Implementation and Applications. The Visual Computer, 11(8):429{446, 1995.

[2] Pasko A., Pilyugin V.V., and Pokrovskiy V.V. Geometric Modeling in the Analysis of Trivariate
Functions. Computers and Graphics, 12(3/4):457{465, 1988.

[3] J.F. Blinn. A Generalization of Algebraic Surface Drawing. ACM Transactions on Graphics, 1(3):235{
256, 1982.

[4] J. Bloomenthal. Poligonisation of Implicit Surfaces. Computer Aided Geometric Design, 5:341{355,
1988.

[5] A. Dresden. Solid Analtic Geometry and Determinants. John Wiley and Sons INc., New York, 1930.

[6] J.L. Ellis, G. Kedem, T.C. Lyerly, D.G. Thielman, R.J. Marisa, J.P. Menon, and H.B. Voelcker.
The RayCasting Engine and Ray Representation: A Technical Summary. International Journal of

Computational Geometry and Applications, 4(2):347{380, December 1991.

[7] J. D. Foley, A. van Dam, S. K. Feiner, and J. Hughes. Computer Graphics: Principles and Practice.
Addison-Wesley, Reading, Mass., 1992.

[8] R. N. Goldman. Two Approaches to a Computer Model for Quadric Surfaces. IEEE Computer Graphics

and Applications, pages 21{24, 1983.

[9] B. Guo and J.P. Menon. Local Shape Control for Free-Form Solids in Exact CSG Representation.
Computer Aided Design, to appear, 1996. (also available as IBM Research Report 20051, IBM T.J.
Watson Research Center, 1995.).

[10] J. Levin. Mathematical Models for Determining the Intersections of Quadric Surfaces. Computer

Graphics and Image Processing, pages 73{87, 1979.

[11] J.P. Menon. Constructive Shell Representations for Free-form Surfaces and Solids. IEEE Computer

Graphics & Applications, 14(2):24{36, March 1994.

[12] J.P. Menon and B. Guo. Free-form Modeling with Low Degree Algebraic Patches in Bilateral Brep
and CSG Schemes. IEEE Transactions on Visualization and Computer Graphics (submitted), 1995.
(available as IBM Research Report RC 20050, IBM T.J. Watson Research Center, 1995.).

[13] J.P. Menon and B. Guo. A Framework for Sculptured Solids in Exact CSG Representation. In CSG96:

Set-theoretic Solid Modeling Techniques and Applications, pages 141{157, Winchester, U.K., April 17-19
1996. Information Geometers Publishers.

[14] J.P. Menon, R.J. Marisa, and J. Zagajac. More Powerful Solid Modeling Through Ray Representations.
IEEE Computer Graphics & Applications, 14(3):22{35, May 1994.

[15] H. Nishimura, H. Ohno, T. Kawata, I. Shirakawa, and K. Omura. LINKS-1: A Parallel Pipelined
Multimicrocomputer Syetem for Image Creation. In Tenth International Symposium on Computer

Architecture, ACM SIGARCH Newsletter, pages 387{394, 1983.

[16] V. L. Rvachev. Methods of Logic Algebra in Mathematical Physics. Naukova Dumka Publishers, Kiev,
Ukraine (in Russian), 1974.

[17] T.W. Sederberg. Techniques for Cubic Algebraic Surfaces: Tutorial Part Two. IEEE Computer Graphics

and Applications, 10(5):12{21, September 1990.

[18] J. G. Semple and L. Roth. Introduction to Algebraic Geometry. Clarendon Press, Oxford, UK, 1949.

[19] J. A. Tupper. Graphing Equations with Generalized Interval Arithmetic. In MS Thesis, Computer

Science, University of Toronto, 1996.

[20] G. Wyvill, C. McPheeters, and B. Wyvill. Data Structure for Soft Objects. The Visual Computer,
2(4):227{234, April 1986.

Intuitive Implicit Skeletal Design

Jules Bloomenthal

In this course notes chapter we relate several forms observed in nature to methods of representation using an inner structure, or
skeleton. We develop techniques to define both manifold and non-manifold implicit surfaces skeletally. Along the way we
demonstrate the techniques with example surfaces that are smooth.

In this course notes chapter we relate several forms observed in nature to methods of representation using an inner structure, or
skeleton. We develop techniques to define both manifold and non-manifold implicit surfaces skeletally. Along the way we
demonstrate the techniques with example surfaces that are smooth.

* Warning *

"Biological Diversity Makes a World of Difference"
U.S. Park Service

Heinrich Hertel

understanding a shape and, subsequently,

"Creative imagination is still of first importance to
the design engineer, and it should be fully developed.
Here, Nature is the great master teacher."

Observations of Nature

"Schematization of information is the essence of

representing it in terms of its skeleton."

Dan Russell

smooth
complex
dynamic
detailed

Design of Natural Forms

Form is essence of experience

Form design important to industry

Characteristics

Motivation

Implementation

easier transfer of intuitive understanding

easier control, articulation and metamorphosis

blending

fleshing

Skeletal Design

2

Skeletal Progression: Straight, Curved, and Tapered

Contour
Line Drawing

Ray-
Tracing

Direct Imaging

Skeleton

many natural forms
are smooth, and

some natural forms
are flat, but . . .

Motivation

Implicit modeling indifferent to topology

Skeletal Design :: Implicit Modeling

Skeletons imply volume, f(x, y, z) < 0

Difficulties

Details
Mixed Dimensions
Control
Texture

Reasonable to tile (non-adaptive)

2b

2a

3a 4

5a

5b

6 i

1 3b

i7

p
q

f(p) = max (flimb (p, parent),
n

Σ
i

 flimb (p, childi))

Ramiform Definitions

surface

lofted
surface

parametric

flimb (p, limb) =
||p−q|| 2

rlimb
2

implicit

scultped

‘Flat’ Leaves are Not

3

Leaf Cross-sections

vein

blade

above

below
inside

SurfacesBlend FunctionsSchematics

topological

botanical

surface f (p) < 0

f (p) > 0

Visualization: Binary Sectioning

1

2

Implicit Surface Theorem

applicable if surface
separates inside

from outside

if f is continuous and
changes sign whenever zero,

then the surface defined by f is a manifold

Manifold

Terminology

Manifold with Boundary Non-Manifold

surface

(side view)

vertex

1. continuation

2. decomposition

3. polygonization

surface

{ab, bc, bd}

{ad, bd, bc, ac}

{ab, ac, cd, bd}

{ab, ac, ad}

{ab, ad, ac}

{ab, ad, cd, bc}
{ab, bd, cd, ac}

{ab, bd, bc}
{cd, ac, bc}

{ac, cd, bc}

{ad, ab, bc, cd}

{ad, ac, bc, bd}

{bd, ad, cd}

{bd, cd, ad}

a

b c

d

case {d}
case {c}

case {cd}

case {b}

case {bd}
case {bc}

case {bcd}

case {a}

case {ad}
case {ac}

case {acd}

case {ab}

case {abd}

case {abc}

tetrahedron table

Polygonization

surface

?

?
?

object partitioning sampling

Possible Implicit (f(p) = 0) Definitions

inside/outside no inside/outside
manifold

min (f1, f2) f1 max (f1, f2) abs (f1) - min (0, f2)

two circles: f1 =
||p-c1||

r1
 - 1 and f2 =

||p-c2||
r2

 - 1

inside/outside
manifold

no binary sectioning

f

Non-Degenerate and Degenerate Volumes

(subtraction) non-negative

manifold w/ bound.

(union)

4

1
3

4

side view

1

3

4

2

intersection boundary
edgeedge

Non-Manifold Implicit
Definition and Surface

Complications

need for face vertex

need for multiple edge vertices

need for inner vertex

need for disjoint surfaces

1

3

4

Surface / Volume Blend

region = 1 if || p || < r
or, e.g., h (|| p ||) > c

p

p’

pxy

hard edge

region = 1
if h (|| pxy ||) > pz
(h is cubic poly.)

o

blend

1

1

h

pz

Implicit Definition

Must specify non-manifold and
manifold with boundary

Must accommodate binary sectioning

Polygonizer

Must accommodate above definition

Requirements for Non-Manifold
Implicit Surfaces

Summary

Integer-valued implicit surface function

Surface defined as separation
between arbitrary regions

Parametric surfaces good for
tangential and positional control

Surface defined as separation
between arbitrary regions

Represent sheets except where in volume

2

30

1Saucer

5

1
2

3

4

p

q

given q on patch nearest p

1 if h (|| p ||) > || p - q ||
2 if q on patch boundary
3 or 4 determined by surface normal at q

Blend to Bicubic Patch

Closest Point on Patch

above

start
start

inside

edge

off

p

q

determine q’, point on mesh nearest p
calculate (s, t) from barycentric coordinates of q’
compute (∆s, ∆ t) from projection of q’ - p
iterate until (∆s, ∆ t) negligible

Distance to Patch

(∆s, ∆ t)

q’

Bubble-Patch

6

References

Much of the above material may be found in my own works, the most relevant of which are listed below. In these works are found
numerous references to related material.

A detailed review of skeletal methods:

 Skeletal Design of Natural Forms by J. Bloomenthal
 Ph.D. Dissertation, University of Calgary, 1995.

Implementation details for implicit surface polygonizers (manifold and non-manifold):

 Polygonization of Non-Manifold Implicit Surfaces
 by Jules Bloomenthal and Keith Ferguson
 SIGGRAPH’95. In Computer Graphics 29, 4.

 An Implicit Surface Polygonizer, by J. Bloomenthal
 in Graphics Gems IV (Paul Heckbert, editor)
 Academic Press, New York, 1994.

 An Evaluation of Implicit Surface Tilers
 by Paul Ning and Jules Bloomenthal
 Computer Graphics and Applications, Nov., 1993.

 Polygonization of Implicit Surfaces
 by Jules Bloomenthal
 Computer Aided Geometric Design 5, 4, Nov., 1988.

Detailed discussions of implicit surface blends:

 Convolution Surfaces
 by Jules Bloomenthal and Ken Shoemake
 Proc. SIGGRAPH’91. In Computer Graphics 25, 4.

 Bulge Elimination in Implicit Surface Blends
 by Jules Bloomenthal
 Computer Graphics Forum (to appear, 1996).

Some useful techniques for spline based skeletons:

 Calculation of Reference Frames along a Space Curve
 by Jules Bloomenthal
 in Graphics Gems (Andrew Glassner, editor)
 Academic Press, New York, 1990.

An early example (the tree trunk) of implicit and skeletal techniques:

 Modeling the Mighty Maple
 by Jules Bloomenthal
 Proc. of SIGGRAPH’85. In Computer Graphics 19, 3.

Representation Schemes and Impact on Algorithms

Jai Menon

IBM T.J. Watson Research Center

Abstract

This chapter develops formal concepts of complete representation schemes, and explains the

two { Constructive Solid Geometry (CSG) and Boundary representation (Brep) { that are used

most frequently. Auxiliary representations, computed typically from complete representations,

are used to support a variety of applications. The chapter explains the theory of two closely

related auxiliary representations { z-bu�ers and ray-reps { that are used frequently in computer

graphics and geometric modeling applications respectively. A case study of a particular

parallel hardware architecture { the RayCasting Engine (RCE) { is presented as a contrast

to contemporary polygon-pushing based 3D graphics hardware; the RCE processes CSG of

implicit quadratics to produce ray-reps, while polygon-pushers process (loosely) Breps of linear

polyhedra to produce z-bu�ers. The chapter concludes with a plethora of applications supported

with ray-reps, and two speci�c case studies { one for Numerical Control (NC) machining and

another for molecular modeling in chemistry.

1 Introduction

Surfaces de�ned using implicit or parametric techniques are combined typically in some manner to

represent more complex shapes. When these shapes correspond to solid objects, the representation

schemes must be rich enough to capture the physical properties of rigidity, boundedness and so forth.

The �eld of solid modeling refers to the theory, techniques and systems that provide unambiguous

or informationally complete representations of solids. A complete representation is one that permits

any well de�ned geometric property to be computed automatically (or at least in principle) [16].

Complete representations are processed subsequently to compute auxiliary representations,

which in turn support target applications; see Fig. 1. For example, the two most popular complete

representation schemes are: Boundary representation (Brep) and Constructive Solid Geometry

(CSG). Graphics rendering algorithms, typically z-bu�er based display hardware, in essence process

Breps of polyhedra (
at-faced objects), and compute an auxiliary representation { the z-bu�er {

which represents the �rst intercept along every ray from the eye into the scene. Hidden surface

(occlusion) calculations in turn are based on simple z sorting.

In this chapter, we will study:

� what are the key complete representation schemes?

they are Brep and CSG (Section 2).

� what are the close counterparts of the z-bu�er auxiliary representation in geometric modeling?

they are ray-reps (Sections 3, 4).

� how do complete representations in
uence processing hardware?

we will examine a CSG-based parallel processing engine, called RCE, that processes implicit

quadratic algebraics to compute ray-reps (Sections 5, 6).

2 A3

implicit
surfaces

complete
representations

auxiliary
representations applications

quadratic
algebraic
surfaces CSG ray−rep

Brep z−buffer

mass properties
sweeping
Minkowski operations
Gouraud shading
ray tracing
Monte Carlo (fog, ...)
etc.

hidden surface
 elimination

EXAMPLE

Figure 1: Implicit surfaces are embedded in a higher logic of complete representation schemes.

Complete representations are often converted to auxiliary representations, which in turn support a

wide variety of applications.

� what are the applications of ray-reps?

we will see how ray-reps are versatile for a whole range of applications in geometric modeling

and computer graphics (Sections 7, 8).

2 Complete Representations

The following progression serves as a useful framework for understanding how solids are represented

in the computer, and how computational algorithms are implemented to achieve target applications

[17, 23].

P̂ 7! M̂ 7! R̂ 7! Â (1)

Here P̂ is the physical space of real-world objects, M̂ is the space of mathematical models,

R̂ is the space of complete representations, and Â is the space of computational algorithms.

Thus math models are representation-free (existential) elements whose mathematical properties

capture important physical properties of solids objects in P̂ . Complete representations are symbol

structures, e.g. Brep or CSG, that designate elements of M̂ . Every complete representation in R̂

unambiguously corresponds to one and only one element in M̂ , although an element in M̂ can have

several non-identical representations in R̂. Finally, computational algorithms in Â depend on the

particular representation scheme in R̂.

For example, if A is a block, then A can be represented as:

� CSG1(A), which is the intersection of six linear halfspaces, or

� CSG2(A), which is the intersection of two larger blocks, or

� Brep(A), which is the collection of six square faces.

This example shows that A could not only have two di�erent kinds of representations (Brep and

CSG), but also have non-identical representations within a single scheme (CSG). The following

sections will provide a brief overview of M̂ , R̂, and Â.

A3 3

physical mathematical

entity set of points in En

rigidity shape invariance (�xed

distances and signed angles

between all pairs and

triples of points)

solidity homogeneous interior

boundedness �nite size

Boolean closure regularized operations

Table 1: Conditions established from point-set topology.

2.1 Math Models ^M

The elements of M̂ are sets of points (often called point sets) in n-dimensional Euclidean space

(En). To model rigid solids, the following mathematical criteria restrict the admissible point sets

to those that capture the physical essence of a solid [16, 23].

The conditions in Table 1 are established from the theory of general point-set topology, and

result in restricting M̂ to the set of compact regular sets, with associated operations consisting of

rigid motions (translation, rotation) and regularized set union, intersection and di�erence. Compact

regular sets are bounded, closed and regular. Closed regular sets satisfy:

X = kiX = rnX (2)

where X is regular in En, i denotes interior, and k is a topological closure operator which, in

essence, adds limit points to iX . The notation rn denotes a regularization operator denoting the

ordered application of i then k in a topological space of dimension n. Intuitively, a regular set has a

homogeneous \solid" interior covered with a tight bounding \skin". The operator rn regularizes a

non-regular set by trimming subsets that have no interiors in the usual topology of En (\dangling"

points, edges or faces), and then supplying a boundary for the open set that remains.

Regular sets are not algebraically closed under conventional set operations (\;[;�). To

guarantee algebraic closure, we use regularized Boolean operators \n;[n and �n, where

A opn B = rn(A op B); op 2 f\;[;�g: (3)

Two more properties in Table 2, drawn from combinatorial topology, adds to those in Table 1

to complete the mathematical modeling space M̂ for solids. However, compact regular sets do not

meet these new criteria, and smaller classes { semi-analytic compact regular sets { are needed. This

class of semi-analytic compact regular sets is dubbed r-sets, and serves as the most widely used

mathematical model for solids. Semi-analytic (or semi-algebraic) sets can be thought of as Boolean

compositions of halfspaces whose boundaries are de�ned by analytic or algebraic functions, and

thus do not vary \wildly". An algebraic halfspace is the set f(x; y; z) j f(x; y; z;) � 0g, where f

is a polynomial function.

R-sets are generally accepted as suitable math models for solids, although some prefer the more

restrictive sub-class of r-sets that are manifolds. Each edge of a manifold solid is shared precisely

by two faces, and each vertex has precisely one \cone" of adjacent faces. Manifold models are a

restricted class of r-sets that is not closed under regularized or conventional set operations.

4 A3

physical mathematical

�nite describability �nite triangulability, in

the sense of simplicial

complexes

boundary determinism a set X in En is

determined uniquely by

@X , its boundary

Table 2: Conditions established from combinatorial topology.

M : r−sets
representation
scheme

R : syntactically correct
 representations

D : domain of s

representable elements of M

V : range of s

valid elements of R

s

Figure 2: Math models to complete representations

In summary, it is worth observing that point-set topology and combinatorial (or algebraic)

topology provide complementary perspectives and tools for solid modeling [23]. Regularity is de�ned

naturally in either perspective, and is consistent across both. In practice, combinatorial notions

are useful in dealing with Breps and intrinsically topological properties such as connectedness and

number of connected components. The local, neighborhood view provided by point-set topology is

useful for establishing properties for closed regular sets, and in designing CSG algorithms.

2.2 Representation Schemes ^R

The mapping from M̂ to R̂ is illustrated in Fig. 2, and the formal de�nable properties for

representations are summarized in Table 3 [23]. These properties are discussed in details in

[16, 17], together with properties of consistency and equivalence for multiple representations and

such informal properties as conciseness and e�ciency.

Completeness is the most important property, and six known schemes [17] for unambiguously

representing solids have been developed, and a seventh one (Sreps) [14] has recently begun to evolve.

� Primitive Instancing: a solid is represented as a particular member of a family (e.g. bolt

with hexagonal head) of parts, by specifying values for certain family-speci�c parameters

(e.g. diameter and height).

� Sweeping: a solid is represented as the spatial region swept out by a generator (e.g. cutter)

as it moves on a spatial trajectory, called the director (e.g. cutter feed path).

A3 5

property description

domain D is the set of entities

describable in scheme s

validity elements r 2 V are valid

representations, i.e. image of

elements of D; other elements,

while syntactically correct,

represent invalid solids

uniqueness a scheme s is unique if s is a

function, i.e. each m 2 D has but

a single corresponding r 2 V

completeness a scheme is complete or

unambiguous if s�1 is a

function, because each r 2 V then

associates with a single m 2 D

Table 3: Properties of representations.

� Spatial Enumeration: a solid is usually approximated as a union of quasi-disjoint box-shaped

cells of uniform (e.g. voxels) or varying (e.g. derived from recursive space partitioning in

quadtrees and octrees) sizes.

� Cell Decomposition: a solid is again represented as a union of quasi-disjoint cells, this time

each cell has a distinct shape (e.g. triangulations or �nite-element meshes).

� Boundary Representation (Brep): a solid is represented by the set of bounding faces that

enclose the solid.

� Constructive Solid Geometry (CSG): a solid is represented as a binary tree whose nodes are

regularized Boolean operators (\n;[n;�n) and leaves are simple primitives (blocks, cylinders,

..., or just halfspaces).

� Sampling Representation (Srep): a solid is represented by a set of spatial samples (e.g. line

segments) augmented with some symbolic data (e.g. halfspace equations at endpoints).

Of these, the Brep and CSG schemes, illustrated in Fig. 3, are the most popular ones, and

used most frequently. In the 1970s, most modeling system architectures fell into one of two

categories: (1) single representation, using either Brep or CSG as its primary scheme, or (2)

dual representation using both [Brep,CSG], supporting CSG-to-Brep conversion. These evolved

into multi-representation systems, using auxiliary representations (e.g. planar approximations, or

approximate spatial enumerations) to support a variety of applications. As these systems evolved

into the 1990s, they support editing in one or two primary schemes, usually Brep or CSG. The

key issue continues to be the development of representation conversion modules that maintain

consistent Brep and CSG schemes, in particular when the CSG representation is maintained as a

Boolean composition of halfspaces.

6 A3

un

dif

Solid

Constructive Solid Geometry (CSG) Boundary Representation (Brep)

Figure 3: CSG and Brep schemes.

2.3 Algorithms ^A

The algorithms that implement target application functions depend very closely on the

representation scheme. Consider the problem of classifying a line l against a solid A to determine

the portion of l that lies inside A, denoted linA, and that lies outside A, denoted loutA. Refer to

Fig. 4. Below, we sketch the algorithm for CSG(A) and Brep(A) respectively.

CSG's natural divide-and-conquer recursive classi�cation algorithm [21] �rst computes

classi�cation results with respect to the leaves of the CSG tree. Then the algorithm ascends

the tree by combining classi�cation results of the subtrees, based on the Boolean operation at

every node. This is illustrated through a simple two-leaf CSG tree in Fig. 4b, where line/primitive

classi�cation yields linB and linC for the two leaves B and C. The combination of these results

linA is merely their set union, since the node is a union operator.

The basic procedure for classifying the line with respect to the Brep is to compute the

intersection of the line with every face in Brep(A), sort the list of intersection points padded

with �1, and infer the classi�cation from the sorted list as alternating \out" and \in" segments.

For example, in Fig. 4c, the intersection points are p1 and p2; the \in" and \out" segments follow

trivially after sorting.

This geometric query, termed line membership classi�cation (LMC), is a speci�c instance of set

membership classi�cation (SMC) [21], denoted asM. The classi�cation function

M(X;S) = (X inS;XoutS;XonS) (4)

partitions a candidate set X with respect to a reference set S into subsets that lie entirely inside

X inS, outside XoutS, or on XonS the reference set.

To be precise, X , the candidate set, is closed and regular in a topology W 0 of dimension m.

The reference set S is closed and regular in a topology W of dimension n, where n � m and

W � W 0. The classi�cation results are then de�ned mathematically as:

X in S = rm(X \ iS) (5)

A3 7

XXXX X X

A B

C

A

B C

un

l l

p2 p1

l in B

l in C

l in A

sort{ −inf, p1, p2, +inf}

{−inf, p2} out A

{p2, p1} in A

{p1, +inf} out A

(a) the solid A (b) CSG (c) Brep

Figure 4: A 2D example of line/solid classi�cation for CSG and Brep.

X on S = rm(X \ @S) (6)

X out S = rm(X \ cS) (7)

where @S denotes the boundary of S, and c denotes the complement of S. Thus, when X is a point,

the geometric query is called point membership classi�cation (PMC), and when X is a line, we get

LMC.

The \on" cases, i.e. XonS, are quite tricky. For example, consider the problem of PMC of a

point p with respect to a CSG tree A \2 B shown in the two cases in Fig. 5. While p is clearly

\out" of the solid for case 1, it is \on" for case 2. However, the results of primitive classi�cation

tells us that p is \on" A as well as \on" B. Combining the results of these \on/on" results is

therefore not possible by just looking at the classi�cation results with respect to the primitives.

In fact, we need additional information about points in the immediate vicinity of the point being

classi�ed. This leads to the de�nition of a regular neighborhood of a point p with respect to a set

S as

N(p; S; r) = B(p; r) \n S (8)

where B(p; r) is an open ball of radius r centered at p (see Fig. 5b). Thus for case 1 in Fig. 5a, the

regularized intersection of the two neighborhoods is null, thus classifying p as \out"; similarly in

case 2, the two neighborhoods overlap, their regularized intersection is a half closed ball, and p is

\on" the resulting solid.

Although general primitive classi�cations, e.g. point/primitive or line/primitive classi�cations,

cannot be combined in a divide-and-conquer manner, their neighborhoods can. This retains the

divide-and-conquer character of SMC for CSG.

In this section we have studied SMC as one class of geometric queries on complete

representations, and have seen how the algorithm for implementing SMC varies from one

representation to another. While there are a wide range of geometric queries that can (in principle)

be answered automatically from a complete representation, the general principle is that: algorithms

are designed on a representation-speci�c basis. Furthermore, SMC is also perhaps the most

8 A3

Bp

N(p, A)

N(p, B)

Case 1

A

B
p

N(p, A)

N(p, B)

Case 2

(a)

(b)

A

Figure 5: On/on ambiguities for point p with respect to the solid A \2 B, and their resolution

through neighborhoods.

frequently employed geometric query in modeling { we will illustrate this through the topic of

auxiliary representations and applications thereof in the following sections.

3 Auxiliary Representations

Geometric algorithms are run on complete representations to often compute intermediate auxiliary

representations that in turn support target applications. For instance, consider a grid G of parallel

rays (lines) shown in Fig. 6a. Now consider the set of \in" segments resulting from LMC of every

ray of G with respect to solid A, shown in Fig. 6b.

Rendering typically requires the computation of the �rst z intercept along the ray, cast from

the eye into the scene, for every pixel in the scene. Most z-bu�er based graphics hardware systems

essentially implement this technique on polyhedral models. Thus the z-bu�er would be nothing but

the set of �rst intercepts of linA for every l in G. The z-bu�er serves as an auxiliary representation

to do hidden surface elimination on a pixel-by-pixel basis, and obviates expensive polygon sorting

procedures.

If however, all the z-intercepts are retained, we get what is known as a ray-representation, or

simply ray-rep for brevity [10]. Ray-reps serve as auxiliary representations for geometric modeling,

because they not only support graphics rendering, but also prove extremely versatile for a wide

range of other applications, as explored in the following sections.

4 Ray-reps

The result of classifying a ray grid G (a rectangular array of �nitely spaced parallel lines) against

a solid A, M(G;A) is a set of \in", \on", and \out" segments of regularly spaced parallel lines.

A3 9

ray grid solid A

screen

ray−rep

RR(G,A)

z−buffer
view
direction

Figure 6: A 2D ray-rep.

The set consisting on GinA and GonA segments, whose endpoints lie in the boundary of the solid

(@A), is the ray-rep of A, denoted RR(G;A).

As we noted in the above section, \on" segment processing requires additional neighborhood

information, and so it is desirable that \on" segments are avoided for practical use. This is

accomplished through s a proper of ray direction; see [12] for details. Henceforth, we assume

that GonA = ;, i.e. RR(G;A) = GinA.

A ray-rep may also contain tags, i.e. descriptive symbolic information appended to the \in"

segments. Tags may be used to carry properties of the interior of the solid, or characteristics of

the solid's boundary in the region of the segment's endpoint, or for other purposes. Ray-reps have

several important properties [12], some of which are summarized below.

4.1 Boolean simpli�cation

A ray-rep of a Boolean composition of solids A and B in En can be obtained as

RR(G; A opn B) = RR(G; A) opr1 RR(G; B) (9)

where opn denotes a Boolean operation (\;[;�) on n-dimensional solids regularized in the topology

of En, n = 2; 3, and opr1 denotes op applied to \in" segments of each ray and regularized in

the 1D relative topology of the ray. For rays represented parametrically, 1D regularization can

be accomplished via simple sorting of parameter values. The Boolean simpli�cation property is

important because it reduces an n-dimensional (usually 3D) problem into a series of independent

1D problems.

10 A3

4.2 Rigid motions

Let M denote a rigid motion and @ denote application of the motion to a set. Then

RR(G; A@M) = RR(G@M�1; A)@M (10)

This is useful especially when the representation of A has a primitive large number of halfspaces,

each requiring transformation by M . For example, if CSG(A) has NA halfspaces, then computing

RR(G;A@M) would require NA rigid motion transformations, whereas G@M�1 and the �nal @M

transformations are single rigid motions.

4.3 Discrete translations

Intuitively, discrete translations are motions by integer distances that correspond to ray grid

spacings. Formally, let us de�ne grids G1 and G2 to be equivalent (G1 � G2) if their extended

in�nite versions are indistinguishable; a motion M is a discrete translation i� G@M � G. It is

easy to show that

G@M � G) RR(G;A@M) = RR(G;A)@M (11)

Note that the relation on the right hand side does not hold for an arbitrary rigid motionM , even if

M is a translation. But, for thoseM 's that can produce equivalent grids, this relation is important,

because it allows RR(G;A@M) to be computed from RR(G;A) through a simple shift of indices

and addition of a constant to every parameter value in RR(G;A); no new classi�cationM is needed.

4.4 Representation conversion and completeness

Approximate representations of solids can be constructed easily from ray-reps; columnar

decompositions, faceted Breps, and octrees are examples. As the spacing between the rays increases,

the quality of the approximation decreases and small features are lost. Less obviously, under suitable

conditions, ray-reps with tag information can be complete representations in the sense indicated

below, and as such may be members of a seventh family of unambiguous representations, called

sampling representations (Sreps) [14].

To see the implications, let CSGi(A) be a particular CSG representation of A, let f and g be

representation conversions, and let [X] denote the spatial set represented by X . Then, if RR(G;A)

is complete

[CSGi(A)] = [CSGj(A)]; (12)

where

CSGj(A) = g(RR(G;A)) (13)

and

RR(G;A) = f(CSGi(A)): (14)

A discussion of the conditions governing ray-rep completeness and the conversion g can be found

in [14].

5 Computing Ray-reps

Ray-reps can be computed from Breps or CSG, using the appropriate algorithm sketched in Fig. 4.

Contemporary graphics hardware that essentially scan convert Breps of polyhedra (
at-faced solids

A3 11

does not produce
any "in" segment

produces one
"in" segment

l1

l2

l1

l2

(a)

(b)

(c)

Figure 7: Resolving singularities through neighborhoods.

bounded by polygons) do in essence compute all the requisite z intercepts for the ray-rep. Broadly

speaking however, the following pieces of technology are currently missing for producing ray-reps

from such polygon rendering hardware.

� Multiple z-bu�ers to store all z intercepts for any ray.

� Techniques for handling singular points [18]. Intuitively, a singular point is one that generates

a z intercept, but does not contribute to the ray-rep. For example, a ray (l1 in Fig. 7a) passing

through the edges of a staircase produces z intercepts, but does not generate an \in" segment.

Resolution of singular points typically requires additional neighborhood processing [18]. For

example, the neighborhood of the intercept in Fig. 7c intersects l2, but not l1 in Fig. 7b.

Neighborhood information could be inferred from the sense of the face, i.e. from its normals,

as marked in Fig. 7b,c.

� Boolean operations between intermediate ray-reps, which essentially reduces to simple sorting

operations.

CSG processing would require hardware architectures quite di�erent from contemporary Brep

(boundary) based rendering machines. The next section provides an in-depth analysis of one such

CSG processing machine.

6 The RCE: Case Study of a CSG Processing Hardware

6.1 Hardware accelerator families

At least four known types of hardware accelerators are ostensibly applicable to geometric modeling

in general, be it based on Brep or CSG or any other representation scheme.

� Contemporary \3D graphics hardware" (both for PCs and workstations), that are nothing but

fast line- and surface-rendering display engines based on custom-VLSI chips for homogeneous

transformation and \polygon pushing" (scan conversion and such).

12 A3

� Smart frame bu�ers, as exempli�ed by the Pixel Planes machines [3], wherein a small amount

of processing power is assigned to each pixel.

� Octree machines, i.e. integer machines for parallel calculations on octree representations [5].

� Classi�cation machines, which are discussed below, and currently the RayCasting Engine

(RCE).

The �rst two families are display-oriented and linked intimately to Breps; they contribute

little to the central mathematical problems in solid modeling, such as swift evaluation of Boolean

compositions. The third family { octree machines { can provide some major speedups, but requires

a special approximate representation scheme to do so. The fourth family, classi�cation machines,

seems to o�er most promising possibilities, for reasons that will become evident.

6.2 Logical Evolution of the RCE

Fig. 8 summarizes the logical evolution of the RCE and provides a roadmap for the discussion

below. More details can be found in [1, 2].

6.2.1 Classi�cation Machines for CSG Solids

Many important calculations can be de�ned and implemented using set membership classi�cation,

and thusM(X;R) provides an obvious starting point for accelerator design studies. R is chosen to

be a solid S represented in CSG, because CSG's natural divide-and-conquer classi�cation algorithms

o�er great scope for parallelism. Speci�cally, from Tilove's work on set membership classi�cation

[21]:

Classify(X : X Rep, S: CSGsolid): X Subset Set;
begin

if (S is a Primitive) then return Prim(X,S)
else return Combine(Classify(X , S.Left), Classify(X , S.Right), S.Operator);

end

Prim(X : X Rep, H : Primitive); X Subset Set;
Classi�es the candidate X against the primitive solid H

Combine(M1, M2: X Subset Set, op: Operation): X Subset Set;
Computes the set operation op on the two sets M1 and M2 of X-subsets

An `unwinding' of the recursive algorithm shows that the candidate:primitive classi�cation

function Prim(X;H) must be evaluated for all primitives fHig in the representation of the solid.

Further, the classi�cation of X against a primitve Hi is independent of the classi�cation of X

against any other primitive Hj, hence all such calculations may be done in parallel. This suggests

a specialized computer acrhitecture in which a \Prim(X;H) processor" { or Primitive Classi�er

(PC) { is provided for every primitive in the representation of the solid. Further inspection of the

`unwound' algorithms shows that pairs of outputs from PCs are combined in parallel (function

Combine { and hence suggests \Classi�cation Combine (CC)" processors in the specialized

A3 13

GOAL: a computational
accelerator for solid modeling

M(X, R)

M(X, S) other reference sets

M(X, rep−?(S)) M(X, CSG(S))

generic (1 + log(N)) x N
array architecture

M(C, CSG(S)) other candidate sets

other C: parametric
and
ConS = null

PCs do M(C, H)

C: other C: line H: implicit quadratic H: other

regular grid
of lines

random
line

RCE

Figure 8: Logical evolution of the RCE architecture.

14 A3

A B

Cun

int

C

A B

un

int

CC

PC

log(N)

N

(a) (b)

(c)
(d)

Figure 9: Mapping a CSG classi�cation algorithm into hardware.

architecture. The combine step in each node of the CSG tree depends only on the results of

the combine steps at the left and right sub-trees, and therefore the combine computation can

be pipelined. The next section shows how these notions lead to a pipelined programmable tree

architecture.

6.2.2 Machine Architecture

Our design strategy was based on providing a programmably con�gurable tree of processors that

can mimic the CSG tree representing the reference solid S. For practical reasons dictated by VLSI

technology, the CSG tree is embedded in a grid of processors with all leaves of the tree on the edge

of the grid. Two key results drive the architecture:

� any CSG tree may be reorganized as a right-heavy tree, and

� the nodes of any N -leaf right-heavy tree may be mapped into an N x log2N grid.

Fig. 9 shows such a mapping. A CSG tree (Fig. 9a) is associated with a programmably

recon�gurable hardware tree (b) whose leaves are primitive classi�ers (PCs) and whose nodes are

classi�cation combiners (CCs); any CSG tree may be represented by a right-heavy tree as in (c),

and any N -leaf right heavy tree may be mapped into an N x (1 + log
2
N) array as in (d).

In the array architecture of Fig. 9d, each PC processes the candidate X simultaneously, and

classi�ed X-subsets are pipelined bottom-up through the grid. The result { the classi�cation of X

with respect to the CSG solid S { is `returned' by the root processor. The generic architecture has

two important properties.

1. E�cient communication: Data in the array
ow `up and left', to nearest neighbors, through

nodes that may operate as active CCs or passive conductors. Thus the data paths are `soft silicon'

customized for the particular reference solid, and more e�cient than paths in general purpose

A3 15

parallel computers.

2. Recirculation to process large CSG trees: The maximum practical size of an accelerator is

governed by VLSI technology and economics. While a machine may be large enough to process

some mechanical parts in a single pass through the machine, complicated parts and many assemblies

will exceed any reasonable machine size and hence cannot be handled in a single pass; they must

be segmented for sequential processing through a single hardware array, or for parallel processing

through several hardware arrays. Because a CSG tree may be partitioned easily into subtrees that

�t into the machine, classi�cations with respect to `large' objects may be accumulated by combining

`old' results with the current subtree classi�cation. The RCE employs a recirculation bu�er storage

and a direct-entry path into the CC-array for processing large CSG trees.

6.2.3 Curve/Solid Classi�cation

At this point we are about halfway down the decision tree in Fig. 8, and must now make decisions

about the candidate X . In principle, X could be solid, a surface or face, a curve, or a point:

important applications requiring the classi�cation of each of these entities are known. However,

our experience with algorithms led us to focus on curves, and thus we narrow the discussion to

curve/solid classi�cation { `CSC'. (Essentially all algorithms we know reduce classi�cation with

respect to a solid of another solid, or of a surface subset, to a series of simpler CSC problems, as

in, for example, boundary evaluation [18]. PMC is easy to implement through CSC.)

The next two decisions { that curve C be represented parametrically, and that ConS = ; { were

strongly driven by hardware considerations. A parametric representation of a curve is of the form

(x(t); y(t); z(t)), where t is the parameter along the curve. Curve segments are represented by two

numbers (endpoint t-values), and segments may be combined (unioned, intersected, di�erenced) by

operations akin to sorting that are easy to implement in hardware. The requirement that C have no

`onS' segments is more restrictive, and in the RCE described below requires special preprocessing

to ensure that it is met. Again, this requirement was driven by practical considerations. Proper

handling of `on' segments requires that domain-dependent neighborhood information (described

in earlier sections) be represented and processed in ways that complicate PC and CC hardware

considerably.

In return for these restrictions, we gain the following signi�cant properties for generic CSC

machines.

3. Domain independence of the CCs: The (log2N x N) grid of CC processors is independent of the

spatial domain, i.e. the particular type of curve being classi�ed and the particular primitives fHig

in the representation of S. This follows because the CCs need only do regularized set operations on

intervals represented by endpoints. (The CCs do some additional processing on `tags', as explained

later, but this also domain independent.)

4. Domain dependence of PCs: PCs must be designed to implement M(C; H), which mainly

requires that the intersection of curve C with primitive solid H be computed and regularized

in the relative (1-D) topology of the curve. The nature of C and H dictate the hardware design of

the PCs. Thus, the domain dependence of the architecture is concentrated in the N -array of PC

processors. The PCs must be customized to accommodate particular classes of curves and primitive

solids, but the CCs { which occupy the bulk of the silicon in any VLSI implementation by a factor

of log2N { need not be changed.

16 A3

6.3 A Specialized CSC Machine

We must now specify the geometric character of the curves and primitives that the PCs process.

Once the overall architecture has been set, these decisions embody the hard tradeo�s between

functionality and hardware complexity. To understand the issues, assume that the curve C is

represented parametrically by a polynomial of degre � n, and that every primitive H is a halfspace

whose boundary is de�ned implicitly by a polynomial of degree � m. The essential operation in

C/H classi�cation is intersection, and this requires that the equations be solved simultaneously {

typically by substituting the parametric equation into the implicit equation and �nding the roots of

the resulting polynomial of degree � mn. Thus one is faced with designing a hardware root-�nder

cheap enough to be replicated in each of the N PCs, and fast enough to keep the CC pipeline �lled.

(The CCs are fast because they do mainly comparisons of numbers.)

These are di�cult requirements, and given the experimental nature of the work, we opted for

a machine wherein

� n = 1, i.e. curves are straight lines, and

� m = 2, i.e. solids are bounded by quadric surfaces.

These decisions reduced the root-�nding problem to non-iterative quadratic-equation solving,

but this is still hardware-critical if one seeks to match the speed of the CCs. The key to PC speed

and simplicity lies in solving quadratic equations incrementally, through the di�erence equation

methods summarized below. The underlying principle is not to compute classi�cations for single

`random' lines, but rather to classify large grids of parallel lines. Most of the `heavy' quadratic

calculation can then be done once for the whole grid, as a preprocessing step, and only small

incremental calculations are needed for each line in the grid. This approach reduces the PC

hardware to a few adders and a square-root unit (no multipliers), and by careful design these

can be matched in speed to the CCs.

Thus evolved the RayCasting Engine (RCE), a machine for classifying grids of parallel lines

against solids represented in CSG that have quadratic bounding faces. The RCE is almost the

simplest CSC machine imaginable. (The simplest would be an RCE for
at-faced solids.) The

performance of the RCE relative to serial computation for a CSG tree of size NA � N range from

O(log2NA) to O(NA), while it is constant for asymptotically large (NA � N) CSG trees [9].

Some important technical characteristics are summarized below.

6.3.1 Primitive Classi�ers (PCs)

Each PC does line/halfspace classi�cation for each line lij in an n1 x n2 grid of lines. This grid

G = flij j i = 1 : : :n1; j = 1 : : :n2g is parameterized on t and indexed on (i; j). The grid has

its origin O = (ox; oy; oz) and a direction de�ned by the vector V = (vx; vy; vz): see Fig. 10.

Two vectors H = (hx; hy; hz) and S = (sx; sy ; sz) de�ne the spacing between parallel lines in

the grid. Thus every line lij in G can be described as follows

lij =

0
B@

vxt + hx(j � 1) + sx(i� 1) + ox
vyt + hy(j � 1) + sy(i� 1) + oy
vzt + hz(j � 1) + sz(i� 1) + oz

1
CA =

0
B@

x(t)

y(t)

z(t)

1
CA : (15)

Line/halfspace classi�cation is easily inferred from the set of line/halfspace-boundary

intersection points. To �nd these points, the parametric x(t); y(t); z(t) for the (i; j)th lines are

A3 17

1

2

n1

n2

V

H

S

O

x

y

z

Figure 10: A ray grid in 3D.

substituted into the implicit representation of the boundary to obtain a quadratic in t. The two

roots of the quadratic correspond to the the lead (Lij) and trail (Tij) for the line, i.e.

Lij = Fij �
q
Pij; Tij = Fij +

q
Pij; (16)

where Pij is the value of a second degree polynomial at one of a sequence of a equally spaced

points, and Fij is the value of a linear polynomial at the same point. It is easy to see that any

quadratic polynomial Pk and any linear polynomial Fk can be computed using �nite di�erences by

the following recurrence relations.

�Pk+1 = �Pk + �2P (17)

Pk+1 = Pk + �Pk+1 (18)

Fk+1 = Fk + �F (19)

Thus every line/halfspace classi�cation requires four additions, one subtraction and one square-

root operation. Each PC implements these calculation in �xed-point hardware using a square-root

unit, adders, comparators, I/O registers, and appropriate control logic.

6.3.2 Classi�cation Combiners (CCs)

The CCs do Boolean operations on intervals essentially by sorting the endpoints { the Lij ; Tij
tuples { of the `in' segments. The CC also supports a tag calculus for manipulating an integer tag

appended to each segment. Tags typically carry symbolic names of surfaces or solids.

6.3.3 Scaling

Current generation PCs and CCs use �xed-point arithmetic. This imposes a dynamic range (the

range of integers representable in the machine) within which all computations must proceed, and

a requirement that the following conditions be met.

18 A3

screen

ray grid
direction

dynamic range
for Brep

dynamic range
for CSG

Figure 11: Optimizing machine dynamic range with scaling: comparison of Brep and CSG

implications.

� The input data must be scaled to insure that all geometric calculations lie within the dynamic

range of the machine.

� The scaling must be optimized to insure e�cient use of the dynamic range, because overly

conservative scaling leads to serious loss of resolution.

Fig. 11 explains the scaling problem. Assume the ray direction to be along the z-axis. For

computing a ray-rep from the Brep, the dynamic range will correspond to the min/max z-

coordinates of the vertices, marked on the top. For CSG however, the min/max corresponds

to the min/max intercept that can be generated by any ray that intersects with the four linear

halfspaces, marked below. Thus the dynamic range computation is trickier in the case of CSG,

particular for curved (quadratic and beyond) halfspaces.

6.3.4 Programming the machine

The PCs and CCs operate asynchronously, and the classi�ed line-segments are pipelined bit-serially

bottom-up through the arrays using simple handshake protocols. The RCE system is programmed

by an address-tagged data stream which
ow upwards through the PCs into the CCs. The stream

carries the numeric constants needed to initialize each PC, and the CC control codes which specify

whether a particular CC is to be passive or do a speci�c set operation.

6.3.5 Status of the experimental machine

The RCE/1.0 at N = 256 (256 PCs, 2048 CCs) was running (at Cornell and Duke Universities)

from 1989-1994, and since then an experimental RCE/1.5 (with better I/O channels) has been

under study. A new Distributed RayCaster (DRC) currently implements an RCE-like architecture

A3 19

Figure 12: A six-legged walking machine constructed as a LEGO assembly with input torque

provided at the central gear on the horizontal shaft.

on a cluster of workstations using the MPI (Message-Passing Interface) protocols. MPI lets such an

implementation run on several individual workstations on a network, or on the IBM SP-2 distributed

parallel computer. The DRC implements RCE technology without the need for custom hardware,

and also provides a rich environment to experiment with more twists to ray-reps, e.g. sophisticated

tag calculus, dynamic load balancing, and so forth.

7 A Plethora of Applications

Ray-reps have a wide range of applications in computer graphics and geometric modeling. This does

not really depend on how the ray-reps were computed, or from what representation (e.g. Brep or

CSG) they were generated. While the RCE provides one convenient means of computing ray-reps

(from CSG trees of quadratic implicit surfaces), multiple z-bu�er based polygon rendering from

Breps could generate ray-reps as well. In fact, some of the alhpa-blending operations performed

in contemporary display hardware do, in essence, implement ray-reps. This section summarizes

several exemplary applications supported with ray-reps. We discuss these under three main topics:

� core geometric utilities,

� procedural geometry creation, and

� high-level applications (two case studies in Section 8).

Photographs of examples computed using ray-reps are accompanied by a halfspace count, e.g. 612h

in Fig. 13, which indicates the number of leaves in the CSG tree processed on the RCE.

7.1 Core Geometric Utilities

Basic graphics: Color-graphic renderings of solids are produced easily via simple algorithms,

e.g. Phong shading, on tiled ray-reps (Fig 12). \In"-solid segments along a ray provide su�cient

information for transparencies (Figs. 16, 18). Cross-sectioning is available at almost zero cost, and

approximate line drawings can be produced from ray-reps containing tags.

20 A3

Figure 13: A ray-traced non-rigid sweep. (612h)

Figure 14: A vase (free-form solid modeled with CSRs and implicit quadratic algebraic patches) in

participating media, rendered by solving a transport rendering equation. (2,880h)

Realistic rendering: Ray tracing is computationally intensive, and the RCE is not directly useful

as an accelerator because it cannot handle e�ciently collections of rays having di�erent directions.

However, the spatially discrete and indexable structure of ray-reps makes it easy to track rays using

2.5 dimension DDA (digital di�erential analyzer) techniques. The surface gradients that determine

the directions of re
ected and refracted rays may be estimated from tilings of the ray-rep of the

object being rendered, or may be computed more exactly from information contained in the the

tags (Fig. 13). Fast 2.5 DDA algorithms allows for more than one ray to be bounced o� a surface

point, which when coupled with a Monte Carlo logic for statistical particle tracing, supports more

realistic rendering (Figs. 14, 15) [24].

Mass properties: Integral properties { volume, centroid, moments of inertia, and such { are

calculated directly and swiftly from ray-reps by inferring a columnar decomposition that is natural

to ray-reps. The accuracy is governed by the grid density, with high accuracy being almost free on

the RCE. In addition, variation of material properties can be tracked via tags in ray-reps. Fig. 12

shows a mechanical assembly, and volumes and centroids of every gear and every support structure

A3 21

Figure 15: An exploded pump assembly rendered with hazy re
ections using Monte Carlo ray

tracing (one billion boundary samples) on its ray-rep. (200h)

Figure 16: Interference detection between two static objects. (462h)

in the assembly can be computed very swiftly.

Static interference detection: Interference between stationary objects A and B can be tested

by examining RR(G; A \3 B) for nullity. Tags in non-null ray-reps can be examined to localize

the intersection (Fig. 16). Coarse grids may sometimes yield erroneous results, but very sensitive

tests can be made by exploiting the RCE's variable grid and local bounding capabilities.

Tagging and graphic interaction: Tags in a ray-rep provide support for graphic interaction

(`screen poking'). They also provide mechanisms for distinguishing components in assemblies, for

detecting surface-surface mating conditions, and so forth.

Dynamic interference detection: The goal here is to determine whether two moving solids

collide, and the location and nature of the collision if one occurs. One solution is to implement this

as a series of static interference tests, using ray-reps, over a range of closely spaced instances of the

moving solids (Fig. 17). A much simpler method may be used when the relative motion between

the solids is a linear translation. Speci�cally, one need only examine a ray-rep of the union of the

solids in a grid aligned with the motion vector. Fig. 18a shows an example of the linear motion

problem, and Fig. 18b shows the computed solution.

22 A3

Figure 17: Six instances during motion. A static interference check at each instance helps to detect

dynamic interference. (3,414h)

(a) (b)

Figure 18: (a) The linear motion problem, and (b) the solution showing contact. (569h)

A3 23

(a) (b)

Figure 19: (a) Three instances during the sweep of a shifter link. (b) A swept shifter link with

rotations and translations, using 3.001 instances. (195,065h)

7.2 Procedural Geometry Creation

General sweeps: The Boolean simpli�cation property of ray-reps allows any solid that can

be modeled as Boolean compositions to be handled e�ectively via ray-reps. Repeated Boolean

operations arise in the mathematical de�nition of the sweep of a solid S (a generator) along some

rigid motion (a director) M(t) that is parameterized in time t. The swept solid Sweep(S;M) can

be de�ned as

Sweep(S; M) =
[
t

St =
[
t

S@M(t) (20)

which is an in�nite union of instances of S along M(t). The sweep may be approximated by the

following discrete union of a �nite number of instances of S

Sweep(S; M) �
[
i=1;k

Si (21)

Now the ray-rep of the sweep may be computed in a \brute-force" manner by applying the Boolean

simpli�cation property to the discrete union approximation, i.e.

RR(G; Sweep(S;M)) � RR(G;
[

i=1;k

Si) =
[

i=1;k

RR(G; Si) (22)

For example, Fig. 19a shows three instances during the sweep of a shifter link, and Fig. 19b

shows the sweep computed as the union of 3,001 instances (corresponding to a CSG tree with

195,065 halfspaces). A similar formulation is employed to permit the generator to deform during

a sweep as show, for example, in Fig. 20. Yet another example of deforming generator, or non-

rigid sweep is shown in Fig. 21 { here a sphere is shrunk during its sweep along a logarithmic

spiral and Boolean operations are performed subsequently on the swept solid in order to obtain the

disconnected component.

Minkowski operations: Minkowski additions and subtractions of solids create new solids that

are (loosely) `grown' or `shrunk' versions of the initial solids. The Minkowski sum (M-sum) of two

24 A3

(a) (b)

Figure 20: (a) An L-bracket, and (b) L-bracket sweep with sinusoidal deformation along directions

normal to linear translation. (90,015h)

Figure 21: A nonrigid sweep of a sphere along a logarithmic spiral, using Boolean intersection and

di�erence to produce the disconnected piece. (601h)

A3 25

sets A and B is the set A � B de�ned by

A � B = fa + b j a 2 A; b 2 Bg =
[
a2A

B@M(a) =
[
b2B

A@M(b) (23)

where a + b denotes vector addition of points a, b, and M(a) denotes a translation by vector a.

Its dual, called Minkowski di�erence (M-dif) and denoted A 	 B, is de�ned as

A 	 B =
\
b2B

A@M(B) = (Ac � B)
c
: (24)

An M-sum of two solids always results in a regular set, i.e. A � B will not have dangling

faces/edges. However, and M-dif of two solids could result in a nonregular set, the dangling

faces/edges of which are generally lost in the ray-rep scheme. Therefore, we introduce a new

operator, called the regularized Minkowski di�erence, denoted 	n, and de�ned as

A 	n B = rn (A 	 B): (25)

Regularized M-dif will eliminate all dangling faces/edges that may arise during M-dif.

When one of the sets (say, A) is a solid and the other (B) is a space curve, then their M-sum

corresponds to a translational sweep of generator A along director B. When both sets are solids,

the M-sum grows solid A by B, the M-dif shrinks A by B, and the regularized M-dif produces the

regularized version of A shrunk by B. In the special case where B is a sphere centered at the origin,

M-sum results in positive o�sets and (regularized) M-difs in (regularized) negative o�sets. When

A is an arbitrary solid and B a sphere centered at the origin, the sequences

Ar = (A 	 B) � B (26)

and

Af = (A � B) 	 B (27)

result in global blending of the solid. Speci�cally, Ar is a rounded version of A, and Af is a �lleted

version. Several applications, such as modeling tolerance zones, con�guration space modeling for

robot motion planning, and so forth, require Minkowski operations. A set-theoretic reformulation

of Minkowski operations is summarized in the algorithms Msum-solids and Mregdif-solids; see

[12] for details.

Msum-solids(A; B; Ms)

begin

Ms ;

C
S
a2@AB@M(a)

for every connected component Bi of B do

ki any point contained in Bi

Ms Ms [(A@ M(ki))

end for

Ms Ms [C

end

Mregdif-solids(A; B; Md)

begin

Md universe

26 A3

(a) (b)

Figure 22: (a) A simple path-planning environment with a cube-like robot and three obstacles. (b)

The M-sum of the robot and the cross-handle obstacle. (242,247h)

C
S
a2@AB@M(a)

for every connected component Bi of B do

ki any point contained in Bi

Md Md \n (A@ M(ki))

end for

Md Md �n C

end

Ray-reps are used to compute M-ops (M-sum and regularized M-dif) by exploiting its Boolean

simpli�cation property. In other words, the in�nite unions in the two algorithms above are replaced

by �nite unions, just as in the case of general sweeps. For example, Fig. 22b shows the M-sum

of the robot (bottom) and an obstacle (top) in Fig. 22a { these are used in con�guration space

based motion planning algorithms. Fig. 23 shows a blending operation, Fig. 24 shows a \non-rigid"

M-sum (analogous to non-rigid sweep in Fig. 20), and Fig. 25 shows an exhaust manifold modeled

as combinations of sweeps and M-ops (successive growing and shrinking on the blends).

8 High-level Application Case Studies

8.1 NC Veri�cation

Numerical Control (NC) machining programs essentially specify a sequence of commands to

control cutter motions. Cutters spin at speci�ed rotary velocities and are feed into a stock to

remove material and produce the �nal \machined" part. The machining process can be modeled

mathematically as:

Wi = Wi�1 �n Ci; (28)

where Wi represents a workpiece after the execution of the i-th NC command, Ci is the spatial

region swept by the cutter on the i-th command, and �n is the regularized set di�erence operator.

Fig. 26a,b shows an example for a single cut, and Fig. 27a,b shows the result of machining with

over 2,000 circular interpolation cuts { all calculations done with ray-reps.

A3 27

(a) (b)

Figure 23: A pumpbody in (a) which is blended automatically in (b) using successive growing and

shrinking by a sphere of blend-radius. (over 1 million halfspaces)

Figure 24: A nonrigid M-sum of a sphere with an L-bracket, with the sphere being scaled vertically

in a sinusoidal fashion. (65,015h)

Figure 25: An exhaust manifold modeled using sweeps for pipes and blends for the
ange weld.

(197,477h)

28 A3

(a) (b)

Figure 26: (a) A stock (union of a block and a hyperboloid of one sheet) with a �ve-axis cutter

swept region, and (b) the result of machining obtained by a Boolean subtraction.

NC programs may contain errors of several types. Errors may range from trivial syntax errors

to subtle interactions between objects, e.g. cutter/�xture collisions or over/under machining. Error

detection via \proo�ng" run on soft material such as wood or foam is not only time consuming

and expensive but also inadequate for predicting cutting forces and possible cutter breakage due

to excessive cutter de
ections. Hence there is a need for systems that verify NC programs by

determining computationally whether an NC program, when executed in a known machining

environment, will produce a speci�ed part from speci�ed stock without undesirable side e�ects.

We distinguish between NC simulators and NC veri�ers. The former uses primarily computer

graphics methods and relies on human interpretation and judgment to detect errors, while the

latter is more precise since it uses mathematical predicates that are tested automatically in order

to detect errors. Automatic NC veri�ers [4, 6, 22, 11, 13] are more comprehensive and reliable.

Furthermore, automatic predicate testing modules developed for an NC veri�er are also useful in

building robust process planning systems that automatically generate error-free NC programs. Four

classes of machining phenomena are addressed, and computations are done on ray-reps:

� nominal spatial,

� tolerance,

� dynamical, and

� on-line sensing.

Nominal spatial veri�cation does a �rst-order check to test for the following conditions: (a) stock

su�ciency, (b) cutter collisions with the �xture, (c) over-machining (gouging), (d) under-machining,

(e) cutter clearance, and (f) ine�ective machining (cutting \air"). For example, a cutter collides

with a �xture F during the i-th motion if the predicate

Ci \n F 6= ; (29)

is true. Observe that this test can be conducted without rendering; graphics would be used only as

an aid for visual understanding and subsequent problem resolution. For example, Fig. 28a shows

A3 29

(a) (b)

Figure 27: (a) Mid-way through a �nish pass showing previous roughing cuts, and (d) the �nal

machined surface after more than 2,000 cuts.

(a) (b)

Figure 28: Fixture collision detection: (a) the cutter swept region and the �xture, and (b) the

gouged �xture. Collision occurs if the Boolean intersection of the swept region and the �xture is

not null.

30 A3

(a) (b)

Figure 29: (a) A single NC cut showing start and end positions of the cutter with a transparent

swept region, and (b) variation of removal rates tracked within the cut. Peak removal rates, detected

here, could far exceed average estimates.

Ci and F , and Fig. 28b shows that the cutter would have collided with the �xture and removed

material (or broken) { this would be detected automatically since Ci \n F 6= ; in this case. One of

the research thrusts is to speed up these tests, especially for the case of �ve-axis machining that

generate complex cutter swept regions.

Tolerance veri�cation pertains to checking for second order variations arising from: (a) cutter

path approximation, (b) cutter envelope approximation, (c) cutter de
ections, and (d) process

uncertainties. While zones may be used sometimes to model permissible variations, the prediction

of actual deviations during machining is hard. A zone for a line segment may be constructed by

translating a sphere with radius corresponding to allowable tolerance along the segment. Similarly,

a part zone may be de�ned as
[
i

(fi �B(0; ti)) (30)

where fi is a face of the part, and � denotes the Minkowski sum of a face fi and a closed ball

B at the origin whose radius is the face tolerance ti. While computational zone-based tests are

still largely unsolved, special case solutions via surface discretization and linear approximation are

currently provided for single surface gouge determination.

Dynamical veri�cation predicts and checks applied and reactive forces associated with cutting. A

simple mathematical model starts with the assumption that the total energy to remove material

in one NC cut is directly proportional to the volume of the material removed. This leads to a �rst

order approximation

P � KpKcR ; P � Fcc (31)

for the machining power P . The �rst relation approximates the machining power as a product of

the material removal rate R and constants Kp, Kc found in machining handbooks. R is estimated

from the geometric model of the machining process. From this, the tangential or cutting force Fc is

estimated for a given cutting (or tangential or peripheral) speed c of the tool tip for the particular

A3 31

(a) (b)

Figure 30: Modeling touch-sense probing: (a) Free-form stock, and a probe at the beginning of

the probing motion; (b) Modeling physical contact between the probe and the stock, as the probe

moves in a speci�ed direction until it contacts the part.

NC command. This in turn provides an estimate for the magnitude of the cutter de
ection � as:

Ft � 0:5 Fc ; � =
FtL

3

3EI
; (32)

where Ft is the radial or thrust force (approximately half of Fc), L is the e�ective cutter overhang,

E is the elastic modulus of the cutter material, and I is the cross sectional moment of inertia of the

cutter. Thus simple estimates of the machining dynamics can be obtained for every NC cut, and

accurate variations of removal rates can be tracked within every cut (Fig. 29) using solid models.

On-line sensing commands are increasingly becoming part of NC code. These commands typically

contain instructions for touch-sense probes to establish a datum or �nd the center of a hole and

so forth. A probe is a precise and very sensitive electromechanical switch that is triggered upon

mechanical contact. Probe command veri�cation requires a solid model of the probe and a series of

spatial reasoning modules that: (a) compute the contact point(s) during probe motion (Fig. 30), (b)

check for collisions (just as in cutter collisions), (c) check for erroneous triggers due to supporting

rod contact or contact with unintended surface, and (d) check for orthogonal tip contact to be

consistent with calibrated values.

8.2 Molecular Modeling

Space �lling models are often invoked to rationalize the chemical behavior of proteins [19]. Prisant

and co-workers have shown how ray-reps can be adapted to the treatment of solid geometric

problems in molecular modeling [15].

Computation of Molecular Ray-Reps

The version of the ray-reps developed by Prisant's group for molecular modeling associates a

material tag with each ray entry and exit point. In a minimal implementation, the tag identi�es

which atom gave rise to a particular point by referencing an an Protein Data Bank (PDB) atom

32 A3

A B

Figure 31: LEFT: Construction of the ray-rep of a composite object from simpler primitives. The

torus ray-rep is computed by taking the ray by ray Boolean di�erence of two ellipses. RIGHT:

Examples of unsophisticated algorithms for calculating volume and surface area. A) \Pile-of-Bricks"

volume calculation and B) \Collocation of Tiles" area calculation.

identity number. In the present implementation, an extended tag also stores other information

derived from the parenting primitive including a surface normal and di�erential area.

Calculation of physical properties from the ray-rep is conceptually simple. Consider two naive

algorithms for volume and surface area of a compound object using the ray-rep. In the pile-of-

bricks volume calculation shown on the right side of Fig. 31A, the lengths of all line segments

connecting ray entry and exit points are computed. The scaled sum of these lengths estimates the

volume of the compound object. In the collocation-of-tiles area calculation shown in Figure 31B,

an area associated with each entry and exit points is derived from the placement of the point on

the parenting primitive. The sum of these tile areas estimates the surface area of the compound

object. In a similar fashion, visualization of the �nal ray-rep is straightforward because a surface

normal is associated with each point and the points are already sorted front to rear.

The Fused Sphere Model

The fused sphere model represents a protein molecule as a union of spheres. Each atom in the

molecule is taken to be a hard sphere of given van der Waals radius Fused-sphere models de�ne

a spatial boundary of a molecule or van der Waals exclusion volume with respect to non-bonding

interactions. This spatial boundary is an energy surface for non-bonding interactions within the

protein and with other molecules in the absence of solvent.

The straightforward algorithms presented in the previous section are the starting point for

simple, accurate, and rapid calculations. Prisant has written a short C program (< 300 lines of

code) to implement the ray-casting calculations. Program accuracy and timing are shown in Fig.

32 as a function of casting density for myoglobin, a 1261 atom protein. The bottom panel provides

timing information for the calculations on a 133 Mhz Pentium processor. Code execution time

is linear with respect to the number of non-empty rays and the average number of atom spheres

intersected by each ray. In general, the average number of atom spheres intersected by each ray

is independent of protein size. At a casting density of 25 rays=�A2, the ray-rep computation takes

approximately 10 seconds. This density provides accuracies of parts per million and parts per

thousand in volume and area calculations respectively.

A3 33

Figure 32: Ray-rep calculations of solvent accessible surface as function of grid density for

myoglobin. The top, middle, and bottom panels display respectively: Collocation of tiles area

calculation, pile of bricks volume calculation, and single processor computation times.

Solvent Exclusion Volume and Surface

The geometric construct of a surface boundary through which solvent cannot penetrate or solvent

exclusion volume is key to many descriptions of how a protein interacts with surrounding water

solvent. The surface of the fused sphere solid model of the protein does not correspond to this

outer solvent accessible boundary. This is because the solvent is of �nite size and therefore cannot

come into contact with all portions of the fused sphere solid model's reentrant surface.

Ray-rep formalism can greatly simplify computing the protein solvent exclusion surface. Fig.

33 shows the Minkowski dilation and erosion steps in the process [12]. The procedure begins with

the original collocation of fused van der Waals spheres. These atomic spheres are bloated by a

radius corresponding to a probe sphere of water. The bloating of these spheres by the radius of the

probe or solvent molecule �lls in all crevices which cannot accommodate solvent molecules. Next,

the bloated object is ray-cast and a casing of solvent spheres is located at the ray entrance and

exit points. A compound object corresponding to the union of these casing spheres is constructed.

Finally, a new ray-rep is computed by taking the Boolean di�erence of the probe sphere casing and

the bloated protein. This di�erence has the e�ect of blending re-entrant concave surfaces on the

protein according to the probe size while recovering the convex surfaces of the original unbloated

fused sphere model. The surface of the �nal blended object encloses the true solvent excluded

volume of the protein.

Computation times for the Minkowski procedure have a linear dependence on the number of

segments to be subtracted and thus a quadratic dependence on casting density. Single processor

execution times for myoglobin on a Pentium 133 range from 0:730 seconds at 4 rays=�A2 to 378:300

seconds at 100 rays=�A2. Volume calculations attain better than 5 parts per thousand convergence

at 25 rays=�A2 and area calculations at 44:5 rays=�A2.

Description of Internal Cavities

34 A3

A B C D

Figure 33: Pictorial depiction of the Minkowski operation: A) Fused VDW spheres are the starting

point; B) The spheres are bloated by the solvent radius; C) The bloated object is ray-cast and

a casing of solvent radius spheres are positioned at the ray entry and exit points; D) The casing

spheres are subtracted from the bloated object.

BA

Figure 34: A) Ray traversing one pair of entry and exit points contains solid space. B) Ray

traversing more than one pair of entry and exit points contains internal free spaces.

(a)

Solid

(b)Free

Free

Capt’d

Figure 35: (a) Solid segments. (b) Void segments are either captured or free.

A3 35

Figure 36: A transparent myoglobin, rendered from its ray-rep.

The Minkowski surface of a protein de�nes the protein's boundary and surface area with respect

to solvent. We are interested in learning about cavities in the protein contained by this Minkowski

surface. If totally enclosed, we might imagine that these cavities are important structural elements

in protein folding.

Ray-rep can be used to identify and describe cavities in the protein interior. As shown in Fig.

34, individual rays can be classi�ed by the number of times they enter and exit an object. If the

ray has 0 sets of entry and exit points, then it is empty. If the ray has 1 set of entry and exit

points then it is solid. If the ray has multiple sets of entry and exit points, then it contains void

segments.

As shown in Fig. 35, void segments can be further classi�ed into two categories according to

the neighborhood of the ray to which they belong. Void segments which overlap empty space on

adjoining rays are categorized as free void segments; those which do not overlap empty space are

categorized as captured segments. We are now ready to map out the enclosed and open caverns

in the protein. Algorithmically this means that segments which are connected through a series of

overlaps with neighboring segments can be grouped together using standard clustering algorithms

[20]. Each equivalence set of void segments de�nes a \cavern" in the protein. Now, if any one

void segment in an equivalence set overlaps empty space, then that cavern opens to the outside.

Conversely if no one void segment in an equivalence set overlaps empty space, then that cavern is

completely enclosed within the protein. (Fig. 36 shows an example of myoglobin, rendered from

ray-reps with transparency.)

9 Conclusions

This chapter formalized the notion of representations and made a distinction between complete

and auxiliary representation schemes. Two members of each kind were studied: Brep and CSG for

complete schemes and z-bu�er and ray-rep for auxiliary schemes. Algorithms and consequent

hardware architectures depend intimately on the representation scheme being employed. In

particular, we studied the RCE { a CSG based massively parallel machine that produces ray-

36 A3

reps. The broad range of applications supported by ray-reps (when processed on the RCE in this

case) showed how simple extensions to traditional z-bu�er graphics can be extremely versatile

in geometric modeling. The basic calculations are performed on quadratic implicit algebraic

surfaces. Recent work on dual [Brep,CSG] representations of free-form geometries [7, 8] modeled

with quadratic algebraic patches shows how all the techniques applied here can be extended in a

straight forward manner to more complex shapes.

10 Acknowledgements

The author would like to thank Herb Voelcker (Cornell University), Gershon Kedem (Duke University), and

their research teams for collaborative research on most of the topics presented here. Many thanks to Michael

Prisant (Duke University) for providing a description of his work on molecular modeling using ray-reps.

A3 37

References

[1] J.L. Ellis, G. Kedem, T.C. Lyerly, D.G. Thielman, R.J. Marisa, J.P. Menon, and H.B. Voelcker.

The RayCasting Engine and Ray Representation: A Technical Summary. International Journal of

Computational Geometry and Applications, 4(2):347{380, December 1991.

[2] J.L. Ellis, G. Kedem, R.J. Marisa, J.P. Menon, and H.B. Voelcker. Breaking Barriers in Solid Modeling.

ASME Mechanical Engineering, 113(2):28{34, February 1991.

[3] J. Goldfeather and H. Fuchs. Quadric Surface Rendering on a Logic-enhanced Frame-bu�er Memory.

IEEE Computer Graphics and Applications, 6(1):48{59, January 1986.

[4] E. E. Hartquist, J. P. Menon, and U. A. Sungurtekin. Solid Modeller Based Machining. In National

Machine Tool Builders' Association 4-th Biennial International Manufacturing Technology Conference,

pages 7.23{7.38, Chicago, Illinois, September 7-15 1988.

[5] D.J. Meagher. The Solids Engine: A Processor for Interactive Solid Modeling. In Nicograph '84, Tokyo,

Japan, November 1984.

[6] J.P. Menon. P2NC: Automatic NC Simulator/Veri�er. Technical Report CPA User's Manual UM-

11/2.2, Cornell University, 1988.

[7] J.P. Menon. Constructive Shell Representations for Free-form Surfaces and Solids. IEEE Computer

Graphics & Applications, 14(2):24{36, March 1994.

[8] J.P. Menon and B. Guo. A Framework for Sculptured Solids in Exact CSG Representation. In CSG96:

Set-theoretic Solid Modeling Techniques and Applications, pages 141{157, Winchester, U.K., April 17-19

1996. Information Geometers Publishers.

[9] J.P. Menon, R.J. Marisa, and H.B. Voelcker. Theoretical Relative E�ciency of the RayCasting Engine,

A Parallel CSG Classi�cation Computer. In CSG94: Set-theoretic Solid Modeling Techniques and

Applications, pages 225{250, Winchester, U.K., April 13-15 1994. Information Geometers Publishers.

[10] J.P. Menon, R.J. Marisa, and J. Zagajac. More Powerful Solid Modeling Through Ray Representations.

IEEE Computer Graphics & Applications, 14(3):22{35, May 1994.

[11] J.P. Menon and D.M. Robinson. Advanced NC Veri�cation via Massively Parallel RayCasting:

Extensions to New Phenomena and Geometric Domains. ASME Manufacturing Review, 6(2):141{154,

June 1993.

[12] J.P. Menon and H.B. Voelcker. Mathematical Foundations I: Set Theoretic Properties of Ray

Representations and Minkowski Operations on Solids. Cornell Technical Report CPA91-9, 1991. Cornell

University, Ithaca, NY.

[13] J.P. Menon and H.B. Voelcker. Toward a Comprehensive Formulation of NC Veri�cation as a

Mathematical and Computational Problem. Journal of Design and Manufacturing, 3(4):263{278,

December 1993. Chapman and Hall Publishers, London.

[14] J.P. Menon and H.B. Voelcker. On the Completeness and Conversion of Ray Representations of

Arbitrary Solids. In Third ACM/IEEE Symposium on Solid Modeling and Applications, pages 175{

186, Salt Lake City, Utah, May 17-19 1995.

[15] M. G. Prisant. Applications of the ray-representation to problems of protein structure and function. In

Proceedings of ACM Workshop on Applied Computational Geometry. ACM, May 1996.

[16] A.A.G. Requicha. Mathematical Models of Rigid Solid Objects. Technical Report Tech. Memo.

28, Production Automation Project, University of Rochester (available at CPA, Cornell University),

November 1977.

[17] A.A.G. Requicha. Representations for Rigid Solids: Theory, Methods and Systems. ACM Computing

Surveys, 12(4):437{464, December 1980.

38 A3

[18] A.A.G. Requicha and H.B. Voelcker. Boolean Operations in Solid Modeling: Boundary Evaluation and

Boundary Merging. Proceedings of the IEEE, 73(1):30{44, January 1985.

[19] F. M. Richards. Folded and unfolded proteins: An introduction. In Thomas E. Creighton, editor,

Protein Folding, pages 1{58. W. H. Freeman and Company, New York, 1992.

[20] Dietrich Stau�er and Amnon Aharony. Introduction to Percolation Theory. Taylor and Francis,

Washington, DC, 1992.

[21] R.B. Tilove. Set Membership Classi�cation:A Uni�ed Approach to Geometric Intersection Problems.

IEEE Transactions on Computers, 29(20):874{883, October 1980.

[22] H.B. Voelcker and J.P. Menon. Contemporary CNC Machining Technology. In International Symposium

on Steel Product-Process Integration, pages 12{33, Halifax, Nova Scotia, Canada, August 20-24 1989.

[23] H.B. Voelcker and A. A. G. Requicha. Research in Solid Modeling at the University of Rochester: 1972-

87. In Fundamental Developments of Computer-Aided Geometric Modeling, pages 203{254. Academy

Press Limited, 1993.

[24] J. Zagajac. A fast Method for Estimating Discrete Field Values in Early Engineering Design. Third

ACM/IEEE Symposium on Solid Modeling and Applications, May 1995.

SECTION B

Implicit Algebraic Methods

Abstract

The second section will focus on implicit algebraic methods that

build free-form surfaces using low degree (2, 3) algebraic patches in

the Bernstein-Bezier form. This section will provide techniques to con-

struct free-form solids through polyhedral smoothing, guarantee conti-

nuity between patches, and avoid topological anomalies, such as multi-

sheetedness. This leads to methods for maintaining dual Brep and

CSG representations for arbitrary topology in a consistent manner.

Concepts of trunctets, CSRs, �nite extent decompositions, and incre-

mental CSG updates under surface tweaking will be discussed. As a

consequence, bones, vases, and such free-form objects can be rendered

through either a Brep tesselation on contemporary workstations or di-

rect CSG processing on the RCE. Details on performing these shape

control operations are covered next, starting with a dual control poly-

gon model that establishes a relation somewhat similar to that between

NURBS surfaces and their control points/weights. Methods to obtain

local and global shape tweaking e�ects will be illustrated.

}

Free-Form Modeling with A-Patches

Chandrajit L. Bajaj �

Department of Computer Science,

Purdue University,

West Lafayette, Indiana 47907

http://www.cs.purdue.edu/people/bajaj

bajaj@cs.purdue.edu

1 Introduction

While it is possible to model a general closed surface of arbitrary genus as a single implicit surface

patch, the geometry of such a global surface is di�cult to specify, interactively control, and polygonize.

The main di�culties stem from the fact that implicit representations are iso-contours which generally

have multiple real sheets, self{intersections and several other undesirable singularities. In this chapter

I shall present details of several implicit polynomial surface splines (one is termed the A-patch) which

overcome the above di�culties, and show how these are used in C1 and C2 interpolation/approximation

and interactive free-form modeling schemes. The potential of implicit patch splines remains largely

latent and virtually all commercial and many research modeling systems are based on parametric spline

representations. An exception is SHASTRA which allows modeling with both implicit and parametric

splines [4].

The important issues in free-form patch modeling of shapes with arbitrary topology are:

1. the patch representation

2. the polynomial degree of the patches

3. the number of patches per face of some input or benchmarking polyhedron

4. functional connectivity and nonsingularity of the patches

5. conditions for the desired continuity between adjacent patches (How the patches \stitched" to-

gether to form a \smooth" surface)

6. curvature and higher derivative variation of the patches, especially around the \stitches"

A signi�cant amount of recent research has focussed on these questions with varying emphasis on

non-tensor product patches, multivariate generalizations B-splines, geometric continuity, approxima-

tion order, and the fairness of �t. Common free-form patch modeling patch schemes include convex

combinations of blending functions, and local interpolation of a mesh of curves, simplex and box based

schemes, and stationary / non-stationary subdivision. In this chapter I address these issues with dif-

ferent implicit surface patches in a variety of algorithms. There are three broad categories of implicit

�Supported in part by NSF grant CCR 92-22467, AFOSR grant F49620-94-1-0080, and ONR grant N00014-94-1-0370

1

http://www.cs.purdue.edu/people/bajaj

B1: A-Patches 2

Figure 2.1: C1 Implicit Splines over a Spatial Triangulation

patch schemes : curvlinear-mesh based, simplex or box based, and subdivision based. These make up

the three subsequent sections.

2 Curvlinear Mesh Scheme

Bajaj, and Ihm [3, 12] construct implicit surfaces to solve the scattered data �tting problem. The

resulting surfaces approximate or contain with C1 continuity any collection of points and algebraic

space curves with derivative information. Their Hermite interpolation algorithm solves a homogeneous

linear system of equations to compute the coe�cients of the polynomial de�ning the implicit surface.

Bajaj, Ihm and Warren [14] extend this idea to Ck (rescaling continuity) interpolation or least squares

approximation of a mesh of implicit or parametric curves in space. They also show that this problem can

be formulated as a constrained quadratic minimization problem, where algebraic distance is minimized

instead of geometric distance.

In a curvlinear-mesh based scheme, Bajaj and Ihm [13] construct low{degree implicit polynomial

spline surfaces by interpolating a mesh of curves in space using the techniques of [3, 12, 14]. They

consider an arbitrary spatial triangulation T consisting of vertices in IR3 (or more generally a simplicial

polyhedron P when the triangulation in closed) with possibly normal vectors at the vertex points. Their

algorithm constructs a C1 continuous mesh of real implicit polynomial surface patches over T or P .

The scheme is local (each patch has independent free parameters) and there is no local splitting. The

algorithm �rst converts the given triangulation or polyhedron into a curvilinear wireframe with at most

cubic parametric curves which C1 interpolate all the vertices. The curvilinear wireframe is then
eshed

to produce a single implicit surface patch of degree at most 7 for each triangular face T of P . If the

triangulation is convex then the degree is at most 5. Furthermore, the C1 interpolation scheme is local

in that each triangular surface patch has independent degrees of freedom which may be used to provide

local shape control. Extra free parameters may be adjusted and the shape of the patch controlled by

using weighted least squares approximation from additional points and normals, generated locally for

each triangular patch. See also Figure 2.1. Similar techniques exist for parametrics[23, 36, 43] however

B1: A-Patches 3

Figure 3.2: The construction of a simplicial hull and C1 cubic A-patches interpolating the vertices of

the input icosahedron.

the geometric degree of the solution surfaces tend to be very high.

3 Simplex and Box Based Schemes

In a simplex based approach one �rst constructs a tetrahedral mesh (called the simplicial hull) conform-

ing to a surface triangulation T of a polyhedron P . See Figure 3.2. The implicit piecewise polynomial

surface consists of the zero set of a Bernstein-B�ezier polynomial de�ned within each tetrahedron (sim-

plex) of the simplicial hull. A simplex based approach enforces continuity between adjacent patches by

enforcing that vertex/edge/face-adjacent trivariate polynomials are continuous to each other.

Similar to the trivariate interpolation case, Powell-Sabin or Clough-Tocher splits are used to in-

troduce degree-bounded vertices to prevent the continuity system from propagating globally. Such

splitting, however, could result in a large number of patches. A full trivariate Clough-Tocher split

would split a tetrahedron into 12 sub-tetrahedra. However, as only the zero set of the polynomial

is of interest, one does not need a complete mesh covering the entire space. Furthermore, a vertex

does not need to be fully covered by the trihedral corners of the incident tetrahedra. A \incomplete"

vertex helps introduce degree-bounded vertices as well. An e�ective simplicial hull construction of this

kind �rst appears in Dahmen [19], and subsequently developed and used by Guo, Lodha, Dahmen and

Thamm-Scharr, Bajaj, Chen and Xu[9, 20, 24, 29].

Given a triangulated polyhedron, the simplicial hull construction builds a tetrahedron on each

triangular face (sometimes a pair of tetrahedra one on each side of a face). See Figure 3.4. The surface

B1: A-Patches 4

3000
2100

1200

0300

0210

0120

0030

0021

0012

0003

1002

2001

2010

1020

0102

0201

1011

1110

0111
1101

negative control point

free control point

positive control points

zero control point

P

P

P

P

0

1

2

3

negative control point

free control point

positive control points

zero control point

p

p

p

p

4

3

2

1

0300

0210

0120

0030

3000

2100

1200

2001

1002

0003

0012

0021

0102

0201

2010

1020

1101

1011 0111

1110

(a) (b)

3000
2100

1200

0300

0210

0120

0030

0021

0012

0003

1011

0102

0201

1110

0111

negative control point

free control point

positive control points

zero control point

2001

1002

2010

1020

1101

P

P

P

P

2

3

1

0

3000
2100

1200

0300

0210

0120

0030

0021

0012

0003

1011

0102

0201

1110

0111

negative control point

free control point

positive control points

zero control point

2001

1002

2010

1020

1101

P

P

P

P 2

3

1

0

(c) (d)

Figure 3.3: A-patches de�ned by a single change of coe�cients in preferred directions. (a) A three

sided A-patch tangent at p1; p2; p3. (b) A degenerate four sided A-patch tangent to face [p1p2p4] at

p2 and [p1p3p4] at p3. (c) A three sided A-patch interpolating edge [p2p3]. (d) A three sided A-patch

interpolating edges [p2p3] and [p1p3].

is set to interpolate the three \bottom" vertices of the face tetrahedron. Hence a tetrahedron (over

an edge) is enough to �ll in the gap between tetrahedra built on adjacent faces. See Figure 3.2. The

\top" of a face tetrahedron is thus degree-bound to just four. Hence, a face Powell-Sabin split or a face

Clough-Tocher split (the bivariate analogue to the trivariate case), su�ces. In a face Clough-Tocher

split, a tetrahedron is split into only 3 sub-tetrahedra and therefore the number of micro patches are

greatly reduced. An edge tetrahedron is usually split into two in a C1 or C2 scheme.

A disadvantage of an interpolating simplicial hull is that, as the surface is pinned to the vertices of

the hull, a modi�cation of the surface would involve both changes of the coe�cients and the simplicial

hull, whereas if the surface does not have to pass through any hull vertex, surface modi�cation can be

done solely by changing the coe�cients of the polynomial.

3.1 Smooth Interpolation of a Polyhedron with C1 A-patches

Dahmen [19] presents a simplicial hull scheme for constructing C1 continuous piecewise quadric surface

patches for a triangulation T of a polyhedron P . In his simplicial hull construction, each triangular face

is covered by a tetrahedron. Similar to the Powell{Sabin split [40], the tetrahedron is then face-split

and replaced by six subtetrahedra, each of which de�nes a micro quadric triangular patch. Additional

B1: A-Patches 5

p

p

pp

p p

q
q

q

1

2

3

44

1

44

’

’
’’

’

1

p"1

p

p

pp

p p

q

1

2

3

44

1

4

’

’

p"1

(a) (b)

Figure 3.4: The construction of double tetrahedra for (a) adjacent `non-convex'/`non-convex' faces and

(b) `convex'/`non-convex' faces

simplices are then used to �ll in the gaps between the simplices built on adjacent triangular faces.

Dahmen's technique however works only if the original triangulation of the data set allows a transversal

system of planes, and hence is quite restricted. A major contribution of this scheme, however, is the

construction of the simplicial hull.

Guo [24] uses cubics in an interpolating simplicial hull approach, to create free{form geometric

models and enforces monotonicity conditions on a cubic polynomial along the direction from one

vertex to a point of the opposite face of the vertex. This condition is di�cult to satisfy in general,

and even if this condition is satis�ed, one still cannot avoid singularities on the zero contour. A face

Clough-Tocher split is used to subdivide each tetrahedron of the simplicial hull. Dahmen and Thamm-

Scharr [20] independently develop a similar scheme utilizing a single cubic patch per tetrahedron at

the cost of less locality and extra perturbation when adjacent faces of P are coplanar.

Moore and Warren [33] extend the marching-cubes box based scheme to a generic simplex-based

scheme, and compute a C1 piecewise triquadratic B-spline approximation. An e�ective technique

called \signed distance" is used to prevent the multiple-sheeted problem with implicit surfaces when

employing least square approximation. Auxiliary data points are evenly added in the domain dpace

with values being the signed distances to the input data points. The technique, although a heuristic

rather than a guarantee, works quite well in preventing unwanted branches. However, the auxiliary

data points with values of signed distances forces the surface patch to be monotonic in one direction,

a condition which is not necessary and overly constraining.

Lodha [29] constructs low degree surfaces with dual parametric and implicit representations and

investigates their properties. A method is described for creating a quadratic triangular parametric

B�ezier surface patch which is the parametric dual of an implicit quadric surface. Another method is

described for creating a biquadratic tensor product B�ezier surface patches which is the parametric dual

of an implicit cubic surface. The resulting patches satisfy all the standard properties of parametric

B�ezier surfaces, including interpolation of the corners of the control polyhedron and the convex hull

property.

Papers [13, 19, 20, 24, 25, 33], propose heuristics based on trivariate coe�cient monotonicity, and

least square approximation of convex quadrics to circumvent the multiple sheeted and singularity

problems of implicit patches. Bajaj, Chen and Xu [7, 9] construct 3- and 4-sided A{patches that are

implicit surfaces in Bernstein{B�ezier(BB) form that are guaranteed smooth and single-valued. See

Figure 3.3. For a three{sided A-patch any line segment passing through a vertex of the tetrahedron

and its opposite face intersects the surface patch at most once ; and for a four{sided A-patch where

any line segment connecting two points on opposite edges intersects the patch at most once. Instead

B1: A-Patches 6

p

p

p"p’

qq’ q"

2

3

4

4 4

p
4

0003 3000 0003

3000

3000

0300

1200

21000210
0120

0030 1020
2010

1110

0201

1101

20011011

0021

0102

1002
0012

0003
0003

3000

2010 1011

11012100

1020

1110

1200

10022001

0111

1

1

V

W
W

V

V

W W

V’

’’

’

2
1

1

1

12

2

2 ~

~

~ ~

~

~

~
~

f

f’

g’ g’

f’

f

g
g

2

2

2 1

1

1
2

~ a

~ c

~ d ~d

~ c

~ a

~ b
~ b

2

2
1

1

1

12

2
1

p’

p
1

1

negative control point

positive control points

zero control point

sign undetermined

10

9

7 5

9

8

0

1 1

6

6 4

4
4

1 1

0

0
1

1

1

1
1

1
2

1

3

3 3

3

3

Figure 3.5: Adjacent double tetrahedra, coe�cient signs and C1 continuity relations for two cubic

A-patches de�ned on non-convex adjacent faces

of having patch coe�cients be monotonically increasing or decreasing there is now only a single sign

change condition. There are also free parameters for both local and global shape modi�cation of the

patch. Papers [7, 9] also show how A-patches of cubic degree can be used to interpolate the vertices of

any polyhedron P and yield a globally C1 surface. This scheme is also extended to a C2 version using

A-patches of degree �ve [8]. Details are provided in the next subsection.

In these algorithms [9, 7] they �rst specify unique \normals" (tangent planes) on the vertices of P ,

then build a simplicial hull surrounding the surface triangulation T of P and satisfying vertex tangent

plane containment, and �nally construct cubic A-patches within each tetrahedron of the simplicial hull.

Di�erent con�gurations of vertex \normals" for edges and faces of T are categorized as `convex' and

`non-convex' . The edges and faces together with their normals are thus tagged as `convex' and `non-

convex' . As part of the simplicial hull, a single tetrahedron is constructed for a `convex' face while a

pair of tetrahedra are constructed (one on each side of the face) for a `non-convex' face (Figure 3.4). C1

continuity conditions are next set up and satisifed between coe�cients (control points) of all adjacent

tetrahedra in the simplicial hull. Figure 3.5 shows the control points, their signs and their relations (like

numbers) by C1 continuity conditions in neighboring edge and face tetrahedra for the most di�cult of

cases, viz. two adjacent `non-convex' faces. The C1 continuity conditions are all linear and shown to

be always satis�able while maintaining the single sign change conditions of the A-patches. Details are

in [9]. The resulting mesh of A-patches is thus guaranteed to be globally C1 continuous. They also

show how to adjust the free parameters of the A-patches to achieve both local and global shape control

(bottom of Figure 3.6).

They use a single cubic A-patch per face of T except for the following two special cases. For a

`non-convex' face, if additionally the three inner products of the face normal and its three adjacent

face normals have di�erent signs, then in this case one needs to subdivide the face using a single

face Clough-Tocher split, yielding C1 continuity with the help of three cubic A-patches for that face.

Furthermore for coplanar adjacent faces of T , they show that the C1 conditions cannot be met using

a single cubic A-patch for each face. Hence for this case they again use face Clough-Tocher splits for

the pair of coplanar faces yielding C1 continuity with the help of three cubic A-patches per face.

3.2 Smooth Interpolation with C2 A-patches

B1: A-Patches 7

Figure 3.6: A face triangulated polyhedron, the simplicial hull and di�erent interpolating C1 cubic

A-patches. Shape modi�cation is achieved by adjusting the free parameters of the A-patches.

0

1

1
1

1

1

1 1

2 2

2

2

2

2

2

2 2

2

2

2

22

2

22

2 2 2

22

22

3

3

3

444

5

66 666

7 77 7
7

8

9999

10101010
10

10

11 111111 11 1111

12
1213

10

141414141414

1515 1515 1515

161617 1717 17 1717

p

p

p

p

p

1
’

2

1

4
p’4 1

3

0500
1400

2300
3200

50000410 1310
2210

3110
4010

3020

2030

1040

0050

4100

0320
1220

2120

0230
1130

0140

04011400
0401

40013101

1301

0041

0005

3002

1112

0032

0023

0014

0104

0203

0302

0212

0122

0311

0221

0131

1211

1121

2111
3011

1031

0113

0302 2300 13011301

0203 1202 2201 3200 2201 1202

0104
4100 3101 2102 1103

0212 1211 1211

0005
5000

3110

q’4

q4

1202
2102

1

2

9

12

16

1

2

9

12

16

2

1

0

16

13

9

2

1

0

0

1
2 2 1

p"

12200221

a (1)

(2)
a

bb

c

c

(2) (1)

(1)

(2)

q
1

"

dd
(1)

(2)

2210

dependent conrol point

free control point

Figure 3.7: Adjacent double tetrahedra, coe�cient signs and C2 continuity relations for two quintic

A-patches de�ned on `non-convex' adjacent faces

B1: A-Patches 8

Figure 3.8: Interactive deformation of a sphere de�ned by C2 continuous quintic A-patches.

Bajaj, Chen and Xu [8]. present a scheme for building a C2 patch complex with quintic A-patches.

Similar to the C1 scheme, a simplicial hull � is constructed conforming to a face triangulated polyhedron

P and a quintic A-patch is de�ned within each tetrahedron of � and made C2 continuous across their

share boundaries. The one-sign change condition, which is used in the C1 scheme, turns out to be too

constraining, and is thus relaxed by subdivisions for the C2 case. The C2 continuity conditions are

all linear and involve groups of coe�cients (control points) across common tetrahedral vertices, edges

and faces. Figure 3.7 shows the control points, their signs and their relations (like numbered control

points) by C2 continuity conditions in neighboring edge and face tetrahedra for the most di�cult of

cases, viz. two adjacent `non-convex' faces.

The number 0, 1, and 2 coe�cients are given by the C2 data values at the vertices. The number

4, 5, 6, 7, 9 , 11, and 17 coe�cients are determined by C2 continuity conditions and involve all the

tetrahedra surrounding the vertex or edge. The number 3, 8, 12, 13, and 16 coe�cients can be freely

speci�ed and adjusted for local or global shape control.

The number 0, 1, and 2 coe�cients are given by the C2 data values at the vertices. The number

4, 5, 6, 7, 9 , 11, and 17 coe�cients are determined by C2 continuity conditions and involve all the

tetrahedra surrounding the vertex or edge. The number 3, 8, 12, 13, and 16 coe�cients can be freely

speci�ed and adjusted for local or global shape control. One approach to setting default values for all

the free coe�cients is to �rst construct a desirable C1 surface with cubic A-patches. Next one degree-

raises the entire simplicial hull to quintic patches. These values become default for all the control

points, some of which are subsequently modi�ed by the C2 continuity conditions as speci�ed above.

Figure 3.8 shows the modeling and interactive deformation of a sphere de�ned by C2 continuous quintic

A-patches by adjusting groups of free control points. Starting from the free-form model of the sphere,

Figure 3.8 (a) the surface is �rst pulled towards a vertex of the cube (Figure 3.8 (b)). The Mean

B1: A-Patches 9

curvature map is displayed. The surface is next pulled towards an edge of the cube (Figure 3.8 (c)).

The Gaussian curvature map is displayed. The surface is subsequently pulled towards a face of the

cube showing the Mean curvature map and then towards all the other faces (Figure 3.8 (e)) showing

the Gaussian curvature map. Figure 3.8 (f) show the �nal deformed surfaces with shades highlighting

the C2 continuous A-patches.

3.3 Smooth Reconstruction from Scattered Data

The problem here is the reconstruction of surfaces and scalar �elds de�ned over it (surface-on-surface),

from scattered trivariate data. The data points are assumed sampled from the surface of a 3D object,

and the sampling is assumed to be dense for unambiguous reconstruction. Laser range scanners are

able to produce a dense sampling, usually organized in a rectangular grid, of an object surface. Some

3D scanners are also able to measure the RGB components of the object color (i.e. three scalar �elds)

at each sampled point. When the object has a simple shape, this grid of points can be a su�cient

representation. However, multiple scans are needed for objects with more complicated geometry, e.g.

objects with holds, handles, pockets cannot be scanned in a single pass. Other applications, for example

recovering the shape of a bone from contour data extracted from a CT scan, require reconstruction

of a surface from data points organized in slices. The approach of considering the input points as

unorganized has the advantage of generating cross-derivatives by a uniform treatment of all spatial

directions.

Bajaj, Bernardini and Xu [6] reconstruct the sampled surface using A-patches. Their scheme

e�ectively utilizes an incremental Delaunay 3D triangulation for a more adaptive �t; the dual 3D

Voronoi diagram for e�cient point location in signed distance computations and cubic implicit surface

patches. Furthermore, in the same time they also compute a C1 smooth approximation of the sampled

surface-on-surface. Bajaj, Bernardini and Xu [5] have also developed a similar method based on tensor-

product Bernstein-B�ezier patches.

A di�erent, three-step solution is given by Hoppe et al.[27, 28, 26]. In the �rst phase, a triangular

mesh that approximates the data points is created. In a second phase, the mesh is optimized with

respect to the number of triangles and the distance from the data points. A third step constructs a

smooth surface from the mesh.

The problem of modeling and visualizing function-on-surface arises in several physical analysis

application areas: characterizing the rain fall on the earth, the pressure on the wing of an airplane

and the temperature on the surface of a human body. A number of methods have been developed for

dealing with this problem.

Currently known approaches for approximating function-on-surface data however possess restric-

tions either on the domain surfaces or the surface-on-surface. The domain surfaces are usually assumed

to be spherical, convex or genus zero. The function-on-surface is not always polynomial [16, 35], or

rather higher order polynomial [42], or a large number of pieces [1] compared to the approach of [6].

The method of [1] is a C1 Clough-Tocher scheme that splits a tetrahedron into 4 subtetrahedra, uses

quintic polynomials and requires C2 data on the vertices of each subtetrahedron. Another Clough-

Tocher scheme [44] requires only C1 data at the vertices, for again constructing a C1 function which

is a cubic polynomial over each subtetrahedron, however splits the original tetrahedron into 12 pieces.

A C1 scheme [42] that does not split each tetrahedron uses degree 9 polynomials and requires C4 data

at the vertices. In extending the method of [42] to a C2 scheme, requires degree 17 polynomials and

C8 data at the vertices of each tetrahedron. Compared to these approaches, the C1=C2 construction

of [15] has no splitting and uses much lower degree polynomials (cubic/quintic) requiring only C1=C2

data respectively, at the vertices of each tetrahedron.

B1: A-Patches 10

(a) (b) (c)

(c) (d) (e)

Figure 3.9: Jet engine model and associated pressure (scalar) �eld reconstruction from scattered data

(a) Input point data (b) reconstructed model with cubic A-patches within a 3D triangulation (c)

reconstructed model with bicubic A-patches over a box decomposition (d) isocontours of a pressure

�eld displayed on the jet engine surface (e) reconstructed model of the pressure �eld with bicubic

A-patches over a box decomposition (f) pressure �eld with iso-contours displayed surrounding the jet

engine

B1: A-Patches 11

Figure 4.10: Corner Cuts, Inner Simplicial Hull and C1 smooth A-patches

4 Subdivision Based Schemes

The third class of popular approaches of free-form modeling of shapes are in conjunction with subdivi-

sion methods. The input mesh is averaged and split before surface patches are �t in. The subdivision

steps are sophistically designed so that the surface patches are bereft of di�culties such as curve

compatibility and/or vertex enclosure. The idea behind subdivision is somewhat similar to that of

Clough-Tocher and Powell-Sabin interpolants: introducing new vertices that are degree-bounded. The

earliest of these approaches are the recursive subdivision schemes of Chaikin, Doo, Sabin, Catmull and

Clark [17, 18, 21, 22]. These algorithms generate C1 surfaces that interpolate the centroids of all faces

at every step of subdivision.

Nasri [34] describes a recursive subdivision surface scheme that is capable of interpolating points on

irregular networks as well as normal vectors given at these points. The subdivision scheme developed

by Loop [30] splits each triangle of a triangular mesh into four triangles. Each new vertex is positioned

using a �xed convex combination of the vertices of the original mesh. The �nal limit surface is tangent

plane continuous. Hoppe et al. [26] extends Loop's method to incorporate sharp edges into the �nal

limit surface. The vertices of the initial polyhedron are tagged as belonging on a face, edge, or vertex of

the �nal limit surface. Based on this tag di�erent averaging masks are used to produce new polyhedra.

Reif [41] presents a uni�ed approach to subdivision algorithms for meshes with arbitrary topology

and gives a su�cient condition for the regularity of the surface. The existence of a smooth regular

parameterization for the generated surface near the point is determined from the leading eigenvalues

of the subdivision matrix and an associated characteristic map.

As subdivision techniques do not necessarily yield surfaces with analytical representations. How-

ever, by careful arrangement, after initial steps of subdivision, the mesh can be used as control nets

for piecewise parametric B�ezier patches or B-splines [31, 32, 37, 38, 39] or using implicit surface A-

patches[10, 11]. The subdivision
avor is thus \taken over" by the subdivision algorithms of the

particular parametric representation.

Bajaj, Chen and Xu [10, 11] construct an \inner" simplicial hull after one step of subdivision of the

input polyhedron P . See Figure 4.10. Similar to traditional subdivision schemes, P is used as a control

mesh for free-form modeling while an inner surface triangulation T of the hull can be considered as the

second level mesh. Both a C1 smooth mesh with cubic A-patches and a C2 smooth mesh with quintic

A-patches can be constructed to approximate the given polyhedron P . See Figures 4.11, 4.12.

Also similar to traditional schemes, simple editing of P can impose some interesting constraints

on the surface, such as interpolating a line or a region. Furthermore, the free wieghts of neighboring

patches and cutting ratios control how deep a corner is smoothed. For a trihedral corner, we control the

B1: A-Patches 12

Figure 4.11: Smoothed Octahedron, icosahedron, dodecahedron and stellated dodecahedra using cubic

A-patches. Corners of the dodecahedron are trihedral. Those of the others are non-trihedral.

B1: A-Patches 13

Figure 4.12: Subdivision based smoothing of a satellite-like object with cubic A-patches. Upper right

also shows the simplicial hull, while bottom right shows the individual cubic A-patches.

B1: A-Patches 14

(a) (b) (c)

(d) (e) (f)

Figure 4.13: Modeling with singular A-patches. (a) Interpolating a vertex with a singular point.

(b) Interpolating two vertices. (c) Interpolating an edge with a singular edge on the surface. (d)

Interpolating two edges. (e) Interpolating a face of a cube. (f) The A-patch surface degenerates into

the cube. All the edges are now singular.

B1: A-Patches 15

shape of the neighboring surface by changing only the free weights in the face patch built at the corner

and the surrounding edge patches. For a non-trihedral corner, we control the shape of the neighboring

surface by changing the corner cutting ratio. See Figures 4.11 and 4.12. C0 and C1 features can be

mixed into the same model, by allowing zero cutting ratios and patches with singular vertices/edges

(weights around the vertices/edges are all zero, compared to coincident control points in the parametric

case). Figure 4.13 shows how C0 and C1 features can be mixed to approximate a cube in di�erent

shapes.

5 Conclusion

All the algorithms of the previous sections have been implemented in the SPLINEX and SHILP toolkits

of the distributed and collaborative geometric design environment SHASTRA [2]. SHILP is an X11 and

Motif based, interactive solid modeling system, which is used to create a simplicial (face triangulated)

polyhedral model of a desired shape. This model could also be the triangulation of an arbitrary surface

in three dimensions. This triangulation is C1 smoothed by client/server calls to SPLINEX processes

using inter process communication. SPLINEX is an X11 and Motif based, interactive surface modeling

toolkit for arbitrary algebraic surfaces (implicit or parametric) in BB form. It allows for the creation

of simplex chains (for example, the simplicial hull of the triangulation) and the interactive change

of control points of the A-patches for shape control. SPLINEX also has the ability to distribute its

rendering tasks (for the display of the individual A-patches) on a network of workstations, to achieve

maximal display parallelism.

References

[1] P. Alfeld. A trivariate Clough-Tocher scheme for tetrahedral data. Computer Aided Geometric

Design, 1:169{181, 1984.

[2] V. Anupam and C. Bajaj. SHASTRA: Collaborative Multimedia Scienti�c Design. IEEE Multi-

media, 1(2):39{49, 1994.

[3] C. Bajaj. Surface �tting with implicit algebraic surface patches. In H. Hagen, editor, Topics in

Surface Modeling, pages 23{52. SIAM Publications, 1992.

[4] C. Bajaj. The Emergence of Algebraic Curves and Surfaces in Geometric Design. In R. Martin,

editor, Directions in Geometric Computing, pages 1{29. Information Geometers Press, 1993.

[5] C. Bajaj, F. Bernardini, and G. Xu. Adaptive resconstruction of surfaces and surface-on-surface

from dense scattered trivariate data. Technical Report Computer Science Technical Report, CS-

95-028, Computer Sciences Department, Purdue University, 1994.

[6] C. Bajaj, F. Bernardini, and G. Xu. Automatic reconstruction of surfaces and scalar �elds from

3D scans. In R. Cook, editor, Annual Conference Series. Proceedings of SIGGRAPH 95, pages

109{118. ACM SIGGRAPH, Addison Wesley, August 6-11 1995.

[7] C. Bajaj, J. Chen, and G. Xu. Free form surface design with A-patches. In Proceedings of Graphics

Interface '94, Ban�, Canada, pages 174{181, 1994.

[8] C. Bajaj, J. Chen, and G. Xu. Free form modeling with C2 quintic A-patches. Presented in the

Fourth SIAM Conference on Geometric Design, September 1995.

B1: A-Patches 16

[9] C. Bajaj, J. Chen, and G. Xu. Modeling with cubic A-patches. ACM Transactions on Graphics,

14(2), April 1995.

[10] C. Bajaj, J. Chen, and G. Xu. Smooth Low Degree Approximations of Polyhedra (Part 1).

Manuscript, September 1995.

[11] C. Bajaj, J. Chen, and G. Xu. Smooth Low Degree Approximations of Polyhedra (Part 2).

Manuscript, September 1995.

[12] C. Bajaj and I. Ihm. Algebraic surface design with Hermite interpolation. ACM Transactions on

Graphics, 11(1):61{91, January 1992.

[13] C. Bajaj and I. Ihm. C1 Smoothing of Polyhedra with Implicit Algebraic Splines. SIGGRAPH'92,

Computer Graphics, 26(2):79{88, July 1992.

[14] C. Bajaj, I. Ihm, and J. Warren. Higher order interpolation and least squares approximation using

implicit algebraic surfaces. ACM Transactions on Graphics, 12(4):327{347, Oct. 1993.

[15] C. Bajaj and G. Xu. Modeling Scattered Function Data on Curved Surface. In J. Chen, N.

Thalmann, Z. Tang, and D. Thalmann, editor, Fundamentals of Computer Graphics, pages 19 {

29, Beijing, China, 1994.

[16] R. E. Barnhill, K. Opitz, and H. Pottmann. Fat surfaces: a trivariate approach to triangle-based

interpolation on surfaces. Computer Aided Geometric Design, 9:365{378, 1992.

[17] E. Catmull and J. Clark. Recursively Generated B-spline Surfaces on Arbitrary Topological

Meshes. Computer Aided Design, 10(6):350{355, 1978.

[18] G. Chaikin. An algorithm for high-speed curve generation. Computer Graphics and Image Pro-

cessing, 3:346{349, 1974.

[19] W. Dahmen. Smooth piecewise quadratic surfaces. In T. Lyche and L. Schumaker, editors,

Mathematical Methods in Computer Aided Geometric Design, pages 181{193. Academic Press,

Boston, Massachusetts, 1989.

[20] W. Dahmen and T-M. Thamm-Schaar. Cubicoids: modeling and visualization. Computer Aided

Geometric Design, 10(2):89{108, Apr. 1993.

[21] D. Doo. A Subdivision Algorithm for Smoothing Down Irregular Shaped Polyhedrons. In Pro-

ceedings of Interactive Techniques in Computer Aided Design, Bologna, pages 157{165, 1978.

[22] D. Doo and M. Sabin. Behaviour of recursive division surfaces near extraordinary points. Computer

Aided Design, 10(6):356{360, November 1978.

[23] G. Farin. Triangular Bernstein-B�ezier Patches. Computer Aided Geometric Design, 3(00):83{127,

1986.

[24] B. Guo. Surface generation using implicit cubics. In N.M. Patrikalakis, editor, Scienti�c Visual-

izaton of Physical Phenomena, pages 485{530. Springer-Verlag,Tokyo, 1991.

[25] B. Guo. Non-splitting Macro Patches for Implicit Cubic Spline Surfaces. Computer Graphics

Forum, 12(3):434 { 445, 1993.

B1: A-Patches 17

[26] H. Hoppe, T. DeRose, T. Duchamp, M. Halstead, H. Jin, J. McDonald, J. Schweizer, and W. Stuet-

zle. Piecewise smooth surface reconstruction. Computer Graphics, 28:295{302, 1994.

[27] H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, and W. Stuetzle. Surface reconstruction from

unorganized points. Computer Graphics, 26(2):71{78, 1992.

[28] H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, and W. Stuetzle. Mesh optimzation. Computer

Graphics, 27:19{26, Aug 1-6 1993.

[29] S. Lodha. Surface Approximation with Low Degree Patches with Multiple Representations. PhD

thesis, Computer Science, Rice University, Houston, Texas, 1992.

[30] C. Loop. Smooth Subdivision based on triangles. Master's thesis, University of Utah, 1987.

[31] C. Loop. A G1 triangular spline surface of arbitrary topological type. Computer Aided Geometric

Design, 11:303{330, 1994.

[32] C. Loop. Smooth Spline Surfaces over Irregular Meshes. In Proceedings of SIGGRAPH'94, pages

303{310, July 1994.

[33] D. Moore and J. Warren. Approximation of dense scattered data using algebraic surfaces. In Pro-

ceedings of the twenty-fourth Hawaii International Conference on System Sciences, volume 1, pages

681{690, Kauai, Hawaii, 1991. IEEE, IEEE Computer Society Press, Los Alamitos, California.

[34] A. Nasri. Surface interpolation on irregular networks with normal conditions. Computer Aided

Geometric Design, 8:89{96, 1991.

[35] G. Nielson, T. Foley, B. Hamann, and D. Lane. Visualizing and Modeling Scattered Multivariate

Data. IEEE Computer Graphics And Applications, 11:47{55, 1991.

[36] J. Peters. Smooth interpolation of a mesh of curves. Constructive Approximation, pages 221{246,

July 1991.

[37] J. Peters. Free-form surface splines. Technical Report CSD-TR-93-019, Computer Sciences De-

partment, Purdue University, March 1993.

[38] J. Peters. Smooth free-form surface over irregular meshes generalizing quadratic splines. Computer

Aided Geometric Design, pages 347{361, October 1993.

[39] J. Peters. C1 surface splines. SIAM Journal of Numerical Analysis, 32(2):645{666, April 1995.

[40] M. Powell and M. Sabin. Piecewise quadratic approximations on triangles. ACM Transactions on

Mathematical Software, 3:316{325, 1977.

[41] U. Reif. A uni�ed approach to subdivision algorithms. Technical report, Mathematisches Institut

A, Universit�at Stuttgart, 1992. Preprint 92-16.

[42] K. Rescorla. C1 Trivariate Polynomial Interpolation. Computer Aided Geometric Design, 4:237{

244, 1987.

[43] R. Sarraga. G1 Interpolation of generally unrestricted Cubic Bezier Curves. Computer Aided

Geometric Design, 4(00):23{29, 1987.

B1: A-Patches 18

[44] A. Worsey and G. Farin. An n-dimensional Clough-Tocher element. Constructive Approximation,

3(2):99{110, 1987.

CSG Constructs for Free-form Solids Bounded by

Implicit Algebraic Patches

Jai Menon

IBM T.J. Watson Research Center

Abstract

This chapter covers dual-representation [Brep, CSG] systems and summarizes algorithms for
converting between Brep (Boundary representation) and CSG (Constructive Solid Geometry).
Hard problems (such as separation) in Brep-to-CSG conversion, and the lack of exact CSG
support for free-form solids are identi�ed as the key limitations that led to the decline of
dual [Brep, CSG] systems. The chapter then addresses these limitations and covers in details
the topics of exact CSG and e�cient Brep-to-CSG conversion for free-form solids bounded by
implicit algebraic patches. A related CSG construct { Constructive Shell Representation (CSR)
{ provides an alternate complete representation scheme with potential applications that exploit
CSR's hybrid Brep/CSG character. All CSG constructs can now be processed on massively
parallel machines based on a CSG-architecture, In particular, several applications are run on the
RayCasting Engine (RCE), including shading, Monte Carlo based realistic rendering, Booleans,
sweeping, Minkowski operations, and Numerical Control (NC) machining.

1 Introduction

Free-form (sculptured) surfaces are modeled typically as a �nite union of patches represented in

the traditional parametric or the recently developed algebraic form. Parametric surfaces can be

implicitized, but this results in surfaces of extremely high degrees, for example, a degree 18 algebraic

surface from a bi-cubic parametric patch [26]. As a result, computing on parametric patches

poses fundamental problems. For example, the intersection of two bi-cubic patches (degree 18

algebraic each) could result in a space curve of degree 18 x 18 = 324. Similar problems arise during

curve/patch intersection calculations.

These and other limitations of parametric patches led to a recent line of work that seeks to

construct free-form surfaces as a collection of algebraic patches. Each patch is de�ned as a low-

degree implicit polynomial (degree 2 or 3) that is clipped by the walls of a tetrahedron, as shown

in Fig. 1a. Typically, the vertices of the tetrahedron and additional points in the boundary of the

tetrahedron prescribe the control points for the patch. A weight is associated with each control

point; for example, changing the weight controls the shape.

In this chapter, we will study:

� what are dual-representation systems, and why have these faded?

these systems support consistent [Brep, CSG] representation schemes; good in principle,

but faded away due to lack of appropriate technology, especially for free-form solids (Brep:

Boundary representation; CSG: Constructive Solid Geometry). (Section 2.)

� how does one interconvert between Brep and CSG?

through generic generate and test paradigms, with some subtleties. (Section 3.)

2 B2

trunctets

algebraic
patch

tetrahedron

(control point,
 weight)

2000

1001

0002

0011

0020

0110

0200
1100

0101

1010

u

t

v

V4

V3

V2

V1

(a)
(b)

Figure 1: (a) An algebraic patch and (b) associated trunctet solids.

� can dual-rep systems be resurrected for free-form solids?

yes (in principle); implicit algebraic patches can be used to construct Breps (we provide a

brief overview), and e�cient procedures can be developed to maintain consistent CSG (we

provide details in Sections 4 { 8).

� what are the applications of CSG constructs for implicit algebraic patches?

CSG constructs provide direct access to (for example) massively parallel processing on the

RCE (RayCasting Engine) for a wide variety of applications (shading, ray tracing, sweeping,

machining, etc.); furthermore, new techniques based on hybrid Brep/CSG processing on CSRs

(CSR: Constructive Shell Representation) support another class of applications. (Sections 9,

10.)

2 Modeling System Architectures

From the mid-1970s until the later 1980s, two generic architectures of solid modeling systems

predominated: systems in which all applications are based on Boundary Representations (Breps),

and systems maintaining two or more consistent representations, usually Brep and Constructive

Solid Geometry (CSG) [31]. Dual representation [Brep, CSG] systems were deemed promising

in the early 1980s since they exploit complementary strengths of Brep and CSG schemes [22].

For example, Breps provide natural means to interrogate or tweak (edit) boundaries, while CSG

alleviates the problems related to validity, non-manifold topology, and robustness. Yet, CSG and

[Brep, CSG] systems were abandoned commercially, mainly for the following reasons [31]:

Domain limitation: CSG technology could accommodate prismatic solids (e.g. piston rods), but

not free-form geometry (e.g. turbine blades). Parametric patches, used pervasively in Brep

B2 3

CSG

Brep

Define/
Edit

Applications

CSG

Brep

Define/
Edit

Applications

Define/
Edit

(a) (b)

Figure 2: Dual representation modeling system architectures: (a) unilateral, (b) bilateral.

systems, induce halfspaces of high implicit degrees (e.g. degree 18 halfspace for a bi-cubic

tensor product patch [26]), thereby leading to intractable separation [28], combinatorial, and

numerical problems in Brep-to-CSG conversion. This partially explains the surge in single-

representation Brep systems in the later 1980s and early 1990s.

System limitation: The development of reliable CSG-to-Brep conversion algorithms [23] spurred

the emergence of solid modeling in the 1970s, resulting in unilateral dual representation

systems with the architecture shown in Figure 2a. It was in the early 1990s that

mathematically sound inverse conversion algorithms were developed, and experimental

versions of bilateral dual representation systems (Figure 2b) are only now under development

[27, 28]. Yet, these systems are limited to prismatic solids bounded by natural quadrics.

3 Converting Between Brep and CSG

This section summarizes the key concepts for inter-converting between Brep and CSG representations.

3.1 CSG-to-Brep conversion

It is useful to distinguish between two forms [23]:

� boundary evaluation and

� boundary merging.

For a solid A, boundary evaluation does a CSG(A) ! Brep(A) conversion, i.e. it computes

a boundary representation of solid A from a CSG representation of A. Two forms of boundary

evaluators are worth distinguishing. The �rst operates on the CSG tree of A and its primitives,

and is called \non-incremental" boundary evaluation. The second is called \incremental", because

it uses information contained in the Breps of the subtrees of A. Incremental evaluation is more

suitable for interactive modeling, but non-incremental evaluation is appropriate when, for example,

a CSG de�nition is retrieved from archival memory.

Boundary merging computes (Brep(A), Brep(B), opn) ! Brep(A opn B), i.e. a Brep of a

regularized Boolean composition [22] from Breps of its operands. Here op denotes a conventional

set operation: [, \, or � (union, intersection, or di�erence).

The classical embodiment of boundary evaluation is a generate-and-test paradigm: to build a

Brep, generate a su�cient set of candidate entities from the CSG, and then test and trim each

4 B2

a

bc

(a) (b)

Figure 3: (a) Brep of a solid, and (b) cellular decomposition induced by halfspaces.

entity for inclusion in the resulting Brep. The candidates in this case are the boundaries of all

halfspaces hi in the CSG representation of A, because it is easy to prove that[
@hi � @A; 8 hi 2 CSG(A); (1)

where @ is the \boundary of" operator; thus @A denotes the boundary of A.

The critical calculation is the classi�cation [30] of a halfspace boundary, i.e. a surface, with

respect to a solid; see [23] for details.

3.2 Brep-to-CSG conversion

The key ideas follow from the observation that two linear halfspaces h1, h2 in E2 decompose the

world W into four cells, each described by a \product" term g1 \ g2, where gi 2 fhi; hig

and hi is the regularized complement of hi. Thus, the two linear halfspaces induce a disjunctive

decomposition of W as

W = (h1 \ h2) [(h1 \ h2) [(h1 \ h2) [(h1 \ h2): (2)

The cell-based method for converting from Brep-to-CSG follows immediately as [27]:

1. Induce a set of halfspaces H = fhig from the faces of the Brep.

2. Represent the cells of the disjunctive decomposition of W induced by H .

3. Classify each cell (e.g. by classifying any interior point) with respect to the Brep to determine

if the cell is \in" or \out" of the solid represented by the Brep (in Fig. 3b, only cells a, b, c

are \in").

4. Construct a canonic CSG representation as the union of the product terms representing the

\in" cells.

5. Simplify (minimize) the CSG representation using procedures in Boolean logic.

B2 5

h1

h2

g

(a) (b) (c)

A

Figure 4: (a) Two halfspaces, (b) the solid, and (c) an additional non-unique separating halfspace

necessary for describing the solid in CSG.

Subtleties arise for the case of curved solids. Fig. 4a shows two elliptical halfspaces h1 and h2
in E2. When they overlap, as in Fig. 4b, space is divided into six disjoint cells but the disjunctive

decomposition of W expressed as combinatorial intersections of the elliptical halfspaces (and their

complements) contains only four terms. Two of these { h1 \ h2 and h1 \ h2 { represent disconnected

regions which each contain two connected cells. As a consequence, the hatched cell A in Fig. 4b is

not representable in CSG using only fh1; h2; h1; h2g; an additional halfspace g (Fig. 4c) is needed

to separate the cells represented by h1 \ h2. Note that many halfspaces could play this role. The

requirement for separability dictates an expansion of Step 1 above, into three parts:

� Induce a set of natural halfspaces HN = fhig from the Brep.

� Construct a su�cient set of separating halfspaces HS = fgjg from HN (and the Brep, if

useful).

� Construct the set H as the union of HN and HS .

Finding good methods to constructHS is still a major research problem, and methods are known

only for some cases of quadratic implicit surfaces [28]. Methods for reducing the computation needed

in Steps 2, 3, and 5 of the above procedure are other research challenges.

4 Free-form Boundary Construction: A Quick Overview

This section develops the basic concept of an algebraic patch, and then brie
y summarizes the key

concepts for meshing these patches with prescribed continuity.

4.1 Bernstein-Bezier (BB) Form

Let N denote the degree of an implicit algebraic surface, e.g N = 2 for a quadric surface. Consider

a tetrahedron with vertices VN000,V0N00,V00N0, and V000N , where theVs are non-coplanar points

in E3 (Fig. 1a). Let (s; t; u; v) denote the barycentric coordinates in the tetrahedron. By de�nition,

the barycentric coordinates of a point q are the values of (s; t; u; v) such that

q = sVN000 + tV0N00 + uV00N0 + vV000N ; s+ t+ u+ v = 1: (3)

Let a(s; t; u; v) denote a polynomial scalar function. A contour surface of the function comprises

all points for which a is constant. The algebraic patch is de�ned as the zero contour of the function

6 B2

that is clipped by the tetrahedron. The Bernstein-Bezier polynomial provide a convenient basis

to control the behavior of the zero contour within the tetrahedron [25]. Speci�cally, a degree N

algebraic patch can be de�ned by �rst imposing a lattice of (N + 1)(N + 2)(N + 3)=6 control

points cijkl such that

cijkl =
i

N
VN000 +

j

N
V0N00 +

k

N
V00N0 +

l

N
V000N (4)

i; j; k; l � 0; i+ j + k + l = N:

Fig. 1a shows the lattice of control points for a quadratic algebraic patch. This lattice de�nes the

control net for the patch, and its convex hull is the tetrahedron itself. Next, we assign a weight

wijkl to each control point using Bernstein-Bezier basis functions as

a(s; t; u; v) =
X

i;j;k;l�0

wijkl

N !

i! j! k! l!
sitjukvl (5)

i+ j + k + l = N; s; t; u; v = 1� s� t � u � 0:

Non-tetrahedral techniques for constructing algebraic patches may also be used; this chapter

however focuses on tetrahedron-based patches.

4.2 Mesh of Patches

Algebraic patches are meshed together to form extended smooth surfaces. A Brep consisting

of algebraic patches is usually obtained by smoothing an input polyhedron P . Some methods

interpolate vertices and vertex normals of P (e.g. [16]), while others approximate P (e.g. [1]). In

this chapter, we shall focus on polyhedral smoothing via interpolation of vertices of P .

Most existing methods for meshing algebraic patches in the Bernstein-Bezier form (BB-form)

are tetrahedron-based: these methods �rst build a polyhedral hull [4] consisting of tetrahedra, and

then construct an algebraic patch inside each tetrahedron. Popular methods include the following:

� Quadratic methods: Dahmen uses quadratic patches to construct interpolants to the

vertices of a piecewise linear surface while matching prescribed normals [3]. He was the

�rst to present the idea of a polyhedral hull, an idea that has a fundamental in
uence on

later work. Unfortunately, Dahmen's quadratic method is based on `transversal systems',

which are di�cult to construct. We mesh quadratic patches with G1 continuity using the

method described in [8]. This method requires a set of compatible vertex normals.

� Cubic methods: Both [7] and [26] use Clough-Tocher splitting to construct piecewise cubic

interpolants. Dahmen and Thamm-Schaar show that the splitting can be avoided in many

cases [4]. A di�culty with cubic patches is that they can easily have multiple sheets inside

their bounding tetrahedra. To eliminate the extraneous sheets, Bajaj, Chen, and Xu introduce

the A-patch technique [1]. We mesh cubic patches with C1 continuity [10, 7].

The interpolative smoothing of P proceeds as follows. The sculptured surface S which

constitutes the Brep of solid A, denoted Brep(A), is constructed by interpolating the vertices

and vertex normals of an input polyhedron P having triangular faces. Figure 5a provides a simple

2D example. Given P , we build a polyhedral hull H as a triangulated polytope consisting of face

and edge (or wedge) tetrahedra associated respectively with the faces and edges of P , as shown

in Figure 5b. The hull is divided into exterior and interior parts, depending on the sense of the

B2 7

P

A

edge tetrahedronface tetrahedron

exterior

interior

(a) (b)

Figure 5: In 2D: (a) polyhedral smoothing, (b) polyhedral hull with face tetrahedra (exterior -

unshaded, interior - shaded) and gap-�lling edge tetrahedra (dotted).

tetrahedra relative to the material side of P . The control net for the surface consists of interpolative

control points (vertices of P) and non-interpolative control points (apexes of tetrahedra).

For the speci�c case of quadratic algebraic patches, we require compatible normals, i.e. the

average normal 1

2
(ni + nj) is perpendicular to the edge [vivj] of a triangle with vertices vk and

normals nk (k = 1; 2; 3). We use subdivision methods [16] to generate a new polyhedron bP with

more number of faces that: (a) retains the original vertices and normals of P , and (b) guarantees

normal compatibility.

The surface S is obtained by constructing algebraic patches inside the tetrahedra of H. A

polynomial ai(x) is de�ned on each tetrahedron Ti, and the polynomials of all tetrahedra determine

a piecewise polynomial function f with the following properties: (a) f is continuously di�erentiable

on H, (b) the boundary of A is S = fx 2 H j f(x) = 0g, (c) at each point x 2 S, the gradient

rf(x) points to the outside of A, and (d) at each vertex vi of the input polyhedron P , f(vi) = 0,

i.e. S interpolates the vertices of P . If a tetrahedron Ti of H contains a nontrivial portion of the

zero contour of the corresponding polynomial ai(x) (i.e. Ti \k�1 S(ai) 6= ;), then we say that Ti is

patch-containing; otherwise Ti is referred to as an empty tetrahedron. The algebraic patches inside

the face tetrahedra are called face patches, while those inside the edge tetrahedra are blend patches.

4.3 Hull Validity

Given a valid hull, constructing a G1 (C1) continuous mesh of quadratic (cubic) algebraic patches,

reduces to the determination of appropriate Bezier coe�cients of face and edge tetrahedra; see [16]

and references therein. However, constructing a valid polyhedral hull from P (and similarly frombP) that guarantees a sculptured surface to smooth a given P is a hard problem. We use local and

global constraints to guarantee this. While local constraints are necessary (except visibility), but

not su�cient, the combination of local and global constraints are su�cient but not necessary.

Local validity imposes the following three constraints related to tetrahedra that share a vertex

or edge of P (see Figure 6a). By symmetry, we list these only for the exterior hull; similar conditions

apply for the interior hull.

� Tangent containment: For each vertex xi of a face Fk of P , the apex v+k of the exterior face

8 B2

visibility

dividing

tangent

apex

clipping
min
dist

face of P

(a) (b)

Figure 6: In 2D: (a) local hull validity planes, and (b) global hull validity planes.

tetrahedron satis�es (v+k � xi) � ni > 0.

� Wedge validity: For each pair of faces Fi and Fk sharing an edge Eik, the corresponding

exterior face tetrahedra intersect only along the edge Eik.

� Visibility: For each pair of faces Fi and Fk, the corresponding apexes v
+
i and v+k are mutually

visible.

We construct a feasible apex set region from the tangent, dividing, and visibility planes that

are used to satisfy the above three conditions respectively; see Figure 6a. For each edge Eik of the

input polyhedron P , we set the dividing plane to pass through Eik and bisect the dihedral angle

formed by the two faces Fi and Fk sharing Eik. The visibility plane is chosen to pass through the

edge Eik and be perpendicular to the dividing plane. This leads to ten linear inequality constraints

(3-tangent, 3-dividing, 3-visibility, 1-face) for each face F of P . The apex of F is the point closest

to the centroid of F in the convex set de�ned by the ten linear inequality constraints. This apex

is found through solving a least-distance programming problem [10]. In case the apex reaches the

centroid, we elevate the apex slightly to avoid a
attened tetrahedron. In addition, the existence

of a valid polyhedral hull also requires the satisfaction of a linear form of Kuhn-Tucker conditions

for the interpolative control points [10]. If this condition is violated, we use subdivision methods

to \smooth" out the sharp features of P .

Global constraints require that all pairs of tetrahedra in the polyhedral hull be quasi-disjoint.

This guarantees that the free-form surface does not self-intersect and also simpli�es the CSG

computation (below). We use clipping planes, as shown in Figure 6b, to satisfy this global condition.

The goal is to select clipping planes that maximizes the volume of the polyhedral hull in order to

provide maximum freedom in constructing the free-form surface. For a pair of faces (or edges) of

P , we choose the clipping plane to be the perpendicular bisector of the line segment joining the

closest points on the pair.

5 Other Approaches for Free-form CSG

Very little of the work on parametric patches has proven applicable to CSG representations. The

main reason is that halfspaces induced via implicitization of parametric patches produce high

degree polynomials (e.g. a degree 18 halfspace for a bi-cubic tensor product patch [26]), leading to

B2 9

di�cult separation [28], combinatorial, and numerical problems in Brep-to-CSG conversions. Chan

[2] represents free-form solids by extending the leaves of CSG trees to include parametric patches,

but this hybrid representation fails to fully exploit CSG's elegant divide-and-conquer algorithms,

often degrading CSG's robustness. Dunnington, Saia and de Pennington [5] construct polyhedral

approximations using an Inner Set Outer Set (ISOS) approach, yielding polyhedra that are either

contained in the solid or that contain the solid. The ISOS methods are not applicable to free-form

solids of arbitrary topology because of the restrictions imposed by a `radial visibility criterion'.

Metaballs provide a di�erent approach for representing free-form shapes, with widespread

commercial implementation. However, metaballs have some limitations, since not every algebraic

surface can be represented therewith. Furthermore, we are not aware of direct low-degree algebraic

halfspace based CSG formulations using metaballs. As an example, Wyvill and Van Overveld [32]

use boolean combinations of `soft' objects (objects bounded by general implicit surfaces). They

demonstrate that the boundaries of solids in constructive `soft' geometry can be polygonalized

e�ciently. However, in general, bounding faces are not even algebraic (let alone high degree

polynomial), leading to complicated halfspace separation problems. Furthermore, primitives have

a global e�ect, thus making local shape control operations di�cult.

6 Free-form CSG Computation from Algebraic Patches

This section develops a general CSG solution and derives the trunctet-subshell conditions under

which CSG constructions become simple and e�cient. The general solution is complete in that it

will always provide a CSG representation for a solid (in both normal and abnormal constructions),

as long as the solid has a valid Brep and every patch satis�es an orientation consistency condition.

The trunctet-subshell conditions are found to be satis�ed in most examples, thus making CSG

computation simple and e�cient in practice. These conditions can either be built into the

algorithms for meshing algebraic patches, or can be applied dynamically.

6.1 Normal and Abnormal Constructions

Let the set of nonempty (patch-containing) tetrahedra be fTig. We distinguish between a normal

construction where all tetrahedra are quasi-disjoint (Ti \k Tj = ;; 8ij; i 6= j) and an abnormal

construction where at least one pair of tetrahedra overlap (Ti \k Tj 6= ;; for some i 6= j). A 2D

analog of a free-form solid with a normal construction that interpolates the vertices of a polygon is

shown in Figure 7a; the absence of blend patch constructs makes it easier to follow the �gure. For

clarity, we shall use mainly 2D illustrations henceforth, although all arguments hold for 3D solids,

including face and blend patches. Figure 7b thus gives an example of an abnormal construction.

6.2 Trunctets

Consider a tetrahedron T containing an algebraic patch eF belonging to the boundary of a free-

form solid A. This patch can be expressed as eF = S(a)\k�1 T , where S(a) is the algebraic surface

fx j a(x) = 0g and a(x) is a polynomial in BB-form. The tetrahedron T can be expressed in the

CSG scheme as the intersection of four linear halfspaces whose boundaries contain the triangular

faces of T . The algebraic surface S(a) decomposes the tetrahedron into two point sets: T \k A and

T \k A, where A = fx j a(x) � 0g is an algebraic patch halfspace (or simply algebraic halfspace)

and its complement A = fx j a(x) � 0g. Each point set may be viewed as a tetrahedron that is

truncated (or capped) by the patch, and therefore termed as a trunctet, denoted T (recall Figure 1).

Since our polyhedral smoothing procedure ensures that T \k A has the same sense as the inside of

10 B2

input
polyhedron

free−form
solid

construction
tetrahedra

tetrahedral
overlap

(a) (b)

Figure 7: (a) A normal construction, and (b) an abnormal construction in 2D.

the solid A, we de�ne patch eF to be associated with an inner trunctet IT = T \k A and an outer

trunctet OT = T \k A. Inner and outer trunctets are quasi-disjoint (IT \k
OT = ;) and their union

is the tetrahedron itself (IT [k
OT = T).

An algebraic patch eF on the boundary of the solid A is either a protrusion or a depression

relative to the input polyhedron P . The protrusions and depressions are associated with polyhedral

trunctets, each denoted as PT . A protrusion corresponds to the inner trunctet IT of an exterior

(face or edge) tetrahedron, while a depression corresponds to the outer trunctet OT of an interior

tetrahedron (see Figure 8). Two related concepts are inner polyhedral trunctet IPT and outer

polyhedral trunctet OPT , de�ned as follows.

IPT =

(
; if PT = OT
PT if PT = IT

and OPT =

(
; if PT = IT
PT if PT = OT

Thus a protrusion is always associated with a IPT and a depression with a OPT . While every

patch is associated with an inner, outer, and polyhedral trunctet, a patch cannot be associated

simultaneously with an inner and an outer polyhedral trunctet. We use underlines in the notation

to highlight this mutually exclusive character of trunctets.

6.3 Separation for Trunctets

In general, there is no restriction on the number of connected components of the zero contour of

a(x) in T . For example, T may contain 1 (Figure 1a), or 2 (T� in Figure 9a), or 4 (T+ in Figure 9a)

connected components of the zero contour. Of these, some connected components may be valid, i.e.

contribute to @A, while others may be extraneous (do not belong to @A), as shown in Figure 9a.

In cases of extraneous zero contours, additional separating halfspaces (e.g. G+; G� in Figure 9) are

required to describe the inner and outer trunctets in the CSG scheme.

In general, a cell induced from a set G = fH1; H2; � � � ; Hmg of halfspaces is de�ned as the point

set represented by the regularized intersection of the form G1 \k ::: \k Gm, where the halfspace

B2 11

inner polyhedral
trunctet

outer polyhedral
trunctet

outer polyhedral
trunctet

inner polyhedral
trunctet

overlap

(a) (b)

Figure 8: Polyhedral trunctets: (a) normal construction, and (b) abnormal construction where a

patch may not lie entirely inside or outside P .

Gi 2 fHi; Hig; i = 1; m. The following theorem [28] gives a condition for describing any solid in CSG

using the halfspaces in G.

Describability Theorem for CSG: Given a set G = fH1; H2; � � � ; Hmg of halfspaces,

and a solid B such that @B � @H1 [@H2 [� � � [@Hm, there exits CSG(B) if and only

if all connected components of the cells of B have the same classi�cation (`in' or `out')

with respect to B. For brevity, B is said to be describable by G.

When B is a polyhedron, G is simply the set of natural halfspaces, which in this case are the

linear halfspaces whose boundaries contain the faces of B. On the other hand, if B is a curved solid,

then G contains both the set of natural halfspaces and additional separating halfspaces, which are

needed to ensure that all connected components of a cell have identical classi�cation with respect

to B.

Figure 9 shows how additional separating halfspaces are used in CSG descriptions of trunctets.

Observe that trunctets may have multiple connected components, e.g. the inner trunctet of T+

in Figure 9b. In this example, G+ would have been unnecessary if there was no extraneous zero

contour in T+, even though the zero contour has several connected components in T+. The following

properties hold for separation in trunctets.

Linear separation for trunctets: For an algebraic patch eF of any degree, there

exists a su�cient set of linear separating halfspaces for describing CSG(ANYT) and

CSG(ANYT).

Self-separating trunctets: For an algebraic patch eF of any degree, if a patch eF is

single-sheeted, no additional separating halfspace is required for describing CSG(ANYT)

and CSG(ANYT).

The linear separation property follows because the tetrahedron-based algebraic patch techniques

build patches whose edges are planar (e.g. an edge of eF lies in a face of T). For any solid whose

boundary faces have only planar edges, there exists a su�cient set of linear separators [28].

12 B2

Further simpli�cation can be achieved for algebraic halfspaces induced from single-sheeted

patches. Following Bajaj, Chen, and Xu [1], we de�ne a face patch eF bounded by a tetrahedron

T to be single sheeted if any ray �red from the apex of T intersects eF at most once inside T . A

single-sheeted blend patch is similarly de�ned; see [1] for details. When eF is a single-sheeted patch,

the corresponding halfspace A decomposes T into exactly two cells, and all connected components

of a cell either belong to an inner trunctet or an outer trunctet. This obviates the computation of

separating halfspaces, thus giving rise to self-separating trunctets.

6.4 Shells and Cores

A shell S is de�ned as the regularized union of trunctets, one associated with each patch, irrespective

of whether the trunctet is inner or outer. Similarly, we de�ne an inner shell IS, an outer shell OS,

and a polyhedral shell PS (e.g. IS = IT 1 [k
IT 2 [k � � � [k

IT n). An inner polyhedral subshell IPS

is the union of all the inner polyhedral trunctets, one may or may not be associated with a patch

(hence the underline). The outer polyhedral subshell OPS is similar. By de�nition, IPS � PS and
OPS � PS. Subshells are often quasi-disjoint (Figure 8a), although they could overlap sometimes,

i.e. IPS\k
OPS 6= ;, e.g. in Figure 8b. The subshell overlap region O is de�ned as O = IPS\k

OPS.

A shell is naturally associated with a core C, which is the region of solid A that is not contained

in the shell, and de�ned as C = A�k S. Thus, we have inner (
IC), outer (OC), and polyhedral (PC)

cores. Inner polyhedral (IPC) and outer polyhedral (OPC) subcores are similarly de�ned.

A Constructive Shell Representation of A is a CSG representation of a shell (not subshell):

CSR(A) = CSG(ANYS), (6)

which is the union of CSG representations of trunctets, one for every patch. CSR(A) is a complete

representation of A in that it can represent a free-form solid unambiguously and that it contains

su�cient information to answer any geometric query about A [12]. A CSR is a non-unique

representation, not only because it is a CSG tree [22], but also because the point sets represented

by CSRs (shells in this case) are also non-unique [12].

A CSR is a hybrid Brep/CSG representation since characteristics of both Brep and CSG schemes

are prevalent. Like CSG, it is a binary tree with primitive halfspaces for leaves and regularized

boolean operations for nodes. Like Brep, a CSR may be thought of as representing a `thick'

boundary of A. This hybrid Brep/CSG character allows us to exploit the algorithmic conveniences

of both schemes { speci�cally, the execution of boundary traversal algorithms (typical for Breps),

and the use of divide-and-conquer methods (typical for CSG). For example, a new algorithm for

classifying a line against CSR(A) exploits this hybrid Brep/CSG character [15], which in turn lends

to massively parallel processing for supporting graphics and modeling applications [13].

6.5 A General CSG Expression

We use the above concepts to derive a CSG expression of A. Observe that a free-form solid A

is constructed by essentially replacing the faces of the input polyhedron P by patches, with each

patch introducing a protrusion or depression relative to P . Our approach to constructing CSG

mimics this behavior, namely, we �rst union all protrusion trunctets (IPS subshell) to P , and then

subtract all the depression trunctets (OPS subshell) from the union. However, if the subshells

overlap (Figure 8b), subtracting OPS will remove some extra material (Figure 10a).

In general, we have

(P [k
IPS)�k

OPS � A (7)

(P �k
OPS)[k

IPS � A (8)

B2 13

extraneous
zero contour

extraneous
zero contour

valid
zero contour

G
−

G+

exterior
tetrahedron T +

interior
tetrahedron T

−

outer
trunctet

inner
trunctet

inner
trunctet

outer
trunctet

(a)

(b) (c)

Figure 9: (a) A pair of face-adjacent exterior and interior tetrahedra, with a valid zero contour,

and some extraneous zero contours. Separating halfspaces G
+; G� are required to describe the

associated trunctets. Speci�cally, (b) in the exterior tetrahedron: CSG(IT) = T+ \k A \k G
+,

CSG(OT) = (T+ \k A)[k (T
+ \k A\k G+), and (c) in the interior tetrahedron: CSG(IT) = (T� \k

A) [k (T
� \k A \k G

�), CSG(OT) = T� \k A \k G�.

14 B2

lost region
excess region

(a) (b)

Figure 10: (a) Overlapping subshells resulting in regions (b) (P [k
IPS) �k

OPS � A, or (c)

(P �k
OPS) [k

IPS � A.

as shown in the examples in Figure 10. It is worth observing that these containment relations

would not hold in extreme cases of inadmissible boundary tweaking that violate the orientation

consistency condition and
ip the sense of the patches (e.g. Figure 13b). Such con�gurations

are characterized mathematically by IPS �k
OPS 6� A or OPS �k

IPS 6� A. We guarantee the

containment relations in Eqs. 1 and 2 by using locally valid polyhedral hulls that do not permit

con�gurations with
ipped patch orientations (such as Figure 13b). By adding appropriate delta

terms to Eqs. 1 and 2, speci�cally �l for the `lost' region and �e for the `excess' region, we now

obtain a general expression for CSG(A) as:

CSG(A) = ((CSG(P) [k CSG(IPS)) �k CSG(OPS))| {z }
direct

[k CSG(�l)| {z }
delta

(9)

or similarly,

CSG(A) = ((CSG(P) �k CSG(OPS)) [k CSG(IPS))| {z }
direct

�k CSG(�e)| {z }
delta

: (10)

For the direct term, CSG expressions of IPS and OPS are obtained from their respective

de�nitions, and CSG(P) is computed from Brep(P) using known techniques (e.g. [28]). Computing

CSG(P) does not pose any additional separation requirements, since P is a polyhedron with linear

faces. The delta term is more complex, and we discuss it in the next section.

6.6 Delta Terms

Observe that the lost (excess) delta term recovers (removes) portions of the direct term that are

removed (added) when OPS (IPS) is subtracted (added). Hence the point sets represented by the

B2 15

delta-terms need not be unique, let alone the fact that their CSG expressions need not be unique.

We shall choose minimal (only what is required) delta point sets, that are also thereby unique.

Speci�cally, the lost-delta point set belongs to A and is quasi-disjoint with the direct term, i.e.

�l \k ((P [k
IPS)�k

OPS) = ;;�l � A; (11)

and the excess-delta point set does not belong to A but is contained within the direct term, i.e.

�e \k ((P �k
OPS)[k IPS) = ;;�e � A: (12)

An important property is that the delta point sets are contained in the subshell overlap region,

i.e.

�x � O; x 2 fl; eg: (13)

Hence the delta terms { CSG(�l) and CSG(�e) { can be recovered from the non-null intersection

(O) of the inner and outer polyhedral subshells. �l consists of those portions of O that are `in' A

and �e consists of those portions of O that are `out' A. Our approach for computing CSG(�x),

x 2 fl; eg, is to:

1. decompose O as a union of quasi-disjoint segments that are describable in CSG,

2. establish that every segment has a unique classi�cation with respect to A,

3. infer the classi�cation of every segment with respect to A, and

4. compose �l (�e) as the union of all those segments that are `in' (`out') A.

A solid bounded by n patches has n polyhedral trunctets, one associated with each patch. We

de�ne a segment �i to be the regularized intersection of n polyhedral trunctets or their complements,

i.e.

�i = xT 1 \k
xT 2 \k � � � \k

xT n;
x T i 2 f

IPT i;
IPT i;

OPT i;
OPT ig

such that �i \k �j = ;; i 6= j

Because individual polyhedral trunctets are representable in CSG, CSG(�i) can be found easily.

For n polyhedral trunctets, there are 2n distinct segments, many of which are empty point sets.

Since the subshell overlap O is describable in CSG as a boolean combination of polyhedral trunctets

(i.e. O = (IPT 1[k
IPT 2[k � � �)\k(

OPT 1[k
OPT 2[k � � �)), it follows from the Describability Theorem

that:

� each segment may be thought of as a cell that is induced from the setG = fPT 1;
PT 2; � � � ;

PT ng

of polyhedral trunctet primitives, and

� all connected components of a segment have unique classi�cation (`in' or `out') with respect

to O.

We use the notation M(X;R) = `in'/'on'/`out' to denote set membership classi�cation of

candidate set X with respect to reference set R [30]. Let us de�ne a delta-segment ��i to be

a segment that classi�es as `in' O, i.e. M(�i;O) = `in' { the pre�x `delta' signi�es that these

segments will contribute to the appropriate delta terms. Thus,

O = ��1 [k
��2 [k � � �

��l;

16 B2

inner
delta−segment

outer
delta−segment

outer
delta−segment

inner
delta−segment

inner
delta−segment

(a) (b)

Figure 11: Decomposition of subshell overlap (a) two segments, (b) three segments.

and the set f��i j i = 1:::lg of delta-segments may be viewed as the smallest spatial building blocks

that may be glued together to form the subshell overlap region. For example, Figure 11a,b shows

O decomposed into two and three delta-segments respectively.

For a valid input polyhedron (P), the faces do not inter-penetrate. Similarly, for a valid

Brep(A), the patches do not inter-penetrate. Consequently, the point sets represented by any

boolean combination of a pair of overlapping inner and outer polyhedral trunctets would be either

`in' A or `out' A, e.g. the two segments in Figure 11a. Through an inductive reasoning, this

holds for all intersection regions (having single or multiple connected components) of polyhedral

trunctets or their complements, e.g. the three segments in Figure 11b. Hence, segments have unique

classi�cation with respect to A, i.e. for every segment ��i, M(��i; A) = `in' or M(��i; A) = `out'.

A delta-segment is called an inner delta-segment I�� if M(��;A) = `in', otherwise it is an outer

delta-segment O��.

A CSG representation of the lost-delta �l (or excess-delta �e) region is now obtained by

appropriate set membership classi�cation tests of suitable point sets in known representation

schemes, as follows:

1. determine whether a segment is a delta-segment by the test

�i =
��i ,M(CSG(�i);CSG(O)) = `in',

2. determine whether the delta-segment is inner or outer by the test
��i =

I��i(
O��i),M(CSG(��i);Brep(A)) = `in' (`out'), and

3. assign

CSG(�l) = CSG(I��1) [k CSG(I��2) [k � � � CSG(
I��lI), and/or

CSG(�e) = CSG(O��1) [k CSG(O��2) [k � � � CSG(
O��lO),

where lI + lO = l.

Since every segment has a unique classi�cation with respect to O and A, points in the interior

of any segment de�ne an equivalence class. Instead of enumerating all the 2n segments and then

classifying them, the enumeration and examination of null segments can be obviated by resorting

to geometrical calculations that: (a) generate a characteristic point qi that belongs to the interior

B2 17

of the segment �i, and (b) determine segment type by the classi�cations M(qi;CSG(O)) and

M(qi;Brep(A)). One method to compute these points is to use o�set halfspace intersections [27];

another is raycasting [15].

In general, delta term computation poses two classes of problems: (a) a combinatorial problem

requiring the ability to reduce the processing of an exponential number (2n)of segments, and (b) a

numerical problem surrounding the generation of a su�cient set of characteristic points so as not

to miss a required delta-segment.

6.7 Properties

The bounding tetrahedra of algebraic patches provide an elegant space partitioning that con�nes

the e�ect of curved algebraic halfspaces to tetrahedra, and the separation problem outside the

tetrahedra has a linear character. Compared to the general Brep-to-CSG conversion algorithm in

[27], this partition signi�cantly alleviates the combinatorial explosion of cells: it not only reduces

the number, but also the degree1 of the halfspaces participating in the disjunctive decomposition

of space. Such bounding-box based spatial partitioning can be applied to convex hulls of general

(e.g. spline) patches.

Thus we obtain the following main properties of the general CSG solution.

Finite extent decomposition: For a free-form solid A whose boundary is composed

of algebraic patches f eFi j i = 1:::ng, CSG(A) can be computed without considering the

decomposition of space induced by Ai outside Ti.

Locally-separating solid: For a free-form solid A whose boundary is composed of

algebraic patches f eFi j i = 1:::ng, separation problems, if at all, need to be solved

locally for every (Ti; Ai) tuple.

Because all separation problems arising from curved faces are also localized to individual

tetrahedra (or convex hulls), it follows that Breps satisfying the self-separating trunctet condition

for every patch do not require any separating halfspace for CSG computation; such solids are called

self-separating solids.

6.8 Towards E�cient, Robust CSG Constructions

In general, we have the following algorithm for CSG computation.

if (O = ;)

CSG(A) is the direct term

else

CSG(A) is the combination of the direct and delta terms

Here we test whether CSG(O) represents a null set or not, in order to decide if the delta term

needs to be computed. In practice, nullity of CSG(O) can be computed swiftly on the RayCasting

Engine via ray-rep processing [18].

The general CSG solution simpli�es considerably if subshells do not overlap, since the delta

term would not need to be computed, namely,

O = ;) A = (P [k
IPS)�k

OPS = (P �k
OPS) [k

IPS:

1The number of cells in a disjunctive decomposition of Ek induced from a set of m algebraic halfspaces of degree
d is O(md)k [11].

18 B2

In such cases, CSG(A) can be obtained as the direct term in Eq. 3 or 4, thus obviating any

combinatorial or numerical problems associated with the segment method. We summarize this

important result as follows.

Quasi-disjoint subshells: Consider a free-form solid A whose boundary is composed

of algebraic patches f eFi j i = 1:::ng, such that inner and outer polyhedral subshells are

quasi-disjoint, i.e. O = ;. For such a solid, CSG(A) can be expressed as the direct term

in Eq. 3 or 4, thus obviating any delta term computation.

Note that O 6= ; does not always imply that a delta-term is required. We leave it as an exercise

to the reader to construct a solid A with overlapping subshells, such that A can be expressed in CSG

without a delta term (you may need �l or �e, but not both). In some situations (e.g. Figure 10),

the delta term cannot be avoided. We are currently exploring conditions under which a delta term

can be avoided even when subshells overlap.

Convex tetrahedral bounds on patches and trunctets can be exploited for reducing complexity

through spatial localization. For example,

Ti \k Tj = ;) PT i \k
PT j = ;;

and therefore polyhedral trunctets contained in disjoint tetrahedra need not be included in CSG(O)

or CSG(��). This is particularly useful for tackling the combinatorial problems associated with

delta term computation, since the number of segments is exponential in the number of polyhedral

trunctets.

Normal constructions guarantee quasi-disjoint subshells, and therefore never require delta term

computation. A di�erent approach, called shell/core method [12], for normal constructions gives

CSG(A) = CSG(IS) [k CSG(IC), where the �rst term is CSR(A) and the second term requires

Brep-to-CSG conversion of a polyhedron IC. Observe also that if subshells overlap, the given Brep

is an abnormal construction; the inverse is not true, i.e. an abnormal construction can have non-

overlapping subshells. Thus quasi-disjoint subshells provide a more relaxed condition for simple

and e�cient CSG computation since they accommodate several cases of abnormal constructions

that arise in practical applications.

Finally, by combining the above discussions with earlier ones, we conclude that the two trunctet-

subshell conditions:

� self-separating trunctets, and

� quasi-disjoint subshells

simplify CSG computation, by obviating: (a) separating halfspaces, and (b) delta term

computation. A seamlessly integrated bilateral [Brep,CSG] system would incorporate the trunctet-

subshell conditions as constraints in the Brep construction procedure { see Brep/CSG coupling

below.

6.9 Brep/CSG coupling

To maintain consistent [Brep, CSG] representations e�ciently, it is therefore desirable that the Brep

methods guarantee the trunctet-subshell conditions. The methods described in [10, 16] guarantee

this by

� using clipping planes for global hull validity to satisfy the quasi-disjoint subshell condition,

and

B2 19

� using appropriate apex weights to guarantee single-sheeted patches, which is turn provides

self-separating trunctets.

See also [17] for a coherent mathematical framework with details on the Brep/CSG coupling.

6.10 Advantages over the generic algorithm

It is instructive to compare the CSR based methods for CSG computation with the 5-step cell-based

generic Brep-to-CSG conversion algorithm, outlined in the beginning of this chapter. There are

three salient features of the CSR-based approach.

1. Natural halfspaces: algebraic patches induce low-degree (typically 2, 3) halfspaces, as opposed

to, for example, a degree 18 halfspaces induced from a bi-cubic parametric patch.

2. Local separation: the separation problem is localized to the construction tetrahedron for each

patch, and requires only linear separating halfspaces. Furthermore, self-separating trunctets

completely obviate the separation problem for CSG computation.

3. Finite extent decomposition: participation of halfspaces is localized to known regions in

space, speci�cally the tetrahedra. which contrasts with the general \in�nite" extent cell-

based disjunctive decomposition techniques. Finite-extent not only reduces the size of the

Boolean optimization problem for CSG computation, but also supports e�cient incremental

CSG updates using point-sampling reconstruction methods [14].

7 Shape Control

7.1 Dual Control Polygon

The control net of S is comprised of the interpolative (vertices of P) and non-interpolative (apexes

of tetrahedra) control points. For each face Fi of P , both apexes v+i and v�i (of the exterior and

interior tetrahedra respectively) have control weights

w+

i =
1

f(v+i)
and w�i = �

1

f(v�i)
(14)

where f denotes the piecewise algebraic function whose zero contour de�nes S. The interpolative

control points have weights 1. The control points de�ne the dual control polygons P+ and P�,

which are the boundaries of the exterior and interior hulls respectively.

The boundary of the sculptured solid can be edited with local support by tweaking control

weights associated with the non-interpolative control points or by moving the interpolative and/or

non-interpolative control points of the dual P+/P� polygons. A change of weight modi�es the

Bezier coe�cients of the associated face patch and its neighboring wedge patches (see [10] and

references therein). Moving a control point requires maintaining validity of the polyhedral hull,

which is obtained through a re-assertion of the hull validity constraints (below).

7.2 Re-asserting Hull Validity

A change of a non-interpolative control point (apex) triggers a local re-computation of the hull

to satisfy local hull validity constraints. The �nal apex point tends to the speci�ed position in a

least distance sense. When the user wishes to relocate an apex to a target position, our system

20 B2

consistent
orientation

consistent
orientation

subshell
overlap

(a) (b)

Figure 12: In 2D: (a) bean shaped solid with protrusions (dark), depressions (light), and (b) subshell

overlap (shaded) in a slightly tweaked solid.

[10, 16, 17] will move the apex as close as possible to the target without violating the ten linear

inequality constraints (Figure 6a) on the apex.

If a vertex v of the input polyhedron P is moved, then the linear inequality constraints for all

faces incident to v may be a�ected, thus, perturbing the apexes of these faces. In both cases, the

new apexes are found through solving a least-distance programming problem for every face.

7.3 Incremental CSG Updates

Given an initial CSG(A), incremental techniques are used for updating the CSG representation

during shape control.

� Change of apex weight in
uences the corresponding trunctet and its immediate neighbors,

thus a�ecting only CSG(IPS) or CSG(OPS) in the direct term.

� Moving non-interpolative control points requires trunctet updates, again a�ecting only

CSG(IPS) or CSG(OPS).

� Moving interpolative control points require incremental Brep-to-CSG conversion [28] on the

input polyhedron, i.e. the CSG(P) term. If apexes are moved as a side e�ect of re-asserting

hull validity, the subshell terms would also have to be updated.

� The delta term needs updating only if the subshell overlap has changed, e.g. if the solid in

Figure 12b is obtained as a result of apex movement on the solid in Figure 12a.

7.4 Analogy with Parametric Patches

Shape control with algebraic patches is somewhat similar to that with parametric patches. The

surface S follows the control points in an intuitive manner with local support, except S does not

interpolate a control point, unless it has a weight of 1. Increasing a control weight \pulls" the

surface towards the corresponding control point. Furthermore, the surface S always lies inside the

polyhedral hull. However, there are three main di�erences:

� While control points can be moved freely in the parametric case, apex movement for the

algebraic case is restricted to local hull validity constraints.

B2 21

?
?

?invalid
boundary

inconsistent
orientation

(a) (b)

Figure 13: Extreme cases of shape control in 2D: (a) invalid boundary, and (b) inconsistent

orientation for the shaded solid.

� Moving a control point does not have \side e�ects" on other control points in parametric

patches. However, for algebraic patches, movement of interpolative control points can cause

the non-interpolative (apex) control points to move during re-assertion of hull validity.

� The main di�erence however lies in the key observation that unlike parametric patches,

algebraic patches can support bilateral [Brep, CSG] dual-rep systems in a computationally

tractable manner.

8 Orientation Consistency

Boundary tweaking operations could result in transforming the solid in Figure 12a to that in

Figure 12b. If continued, this could result in an invalid boundary, as in Figure 13a, or even in

ipping the sense of the solid, as in Figure 13b. It turns out that the preceding CSG treatment

does not hold for such a
ipped solid. For example, Figure 14 shows the protrusion and depression

trunctets for the
ipped solid. Neither the direct nor the delta terms for the CSG expression applies

to this case, and this is true even if one uses the complements of the protrusion/depression trunctets

in Figure 14.

To formalize this behavior, we capture the relationship between the material sense of the input

polyhedron P , the faces of the sculptured solid A, and the trunctets. The orientation of P , which

is de�ned by the outward facing normals of its faces distinguishes between interior and exterior

tetrahedra. The orientation of A, determined by the outward facing gradients of the patches, gives

rise to the concept of inner and outer trunctets. We introduce an orientation consistency condition

that makes these orientations coherent.

To describe this condition, we observe that each tetrahedron of the polyhedral hull has vertices

not interpolated by the surface S. An edge tetrahedron has two non-interpolating vertices and a

face tetrahedron has one (the apex). For a tetrahedron T with inner trunctet IT and outer trunctet
OT , the orientation consistency condition states that:

22 B2

(a) (b)

Figure 14: In 2D: (a) protrusion trunctets of the
ipped solid, and (b) its depression trunctets.

if T is an exterior (interior) tetrahedron, then the non-interpolating vertices of T belong

to OT (IT).

Observe that this condition holds for the examples in Figure 12, but not for the one in Figure 13b.

Testing for orientation consistency for any surface S is therefore a linear-time algorithm in the

number of patches of S. Every patch uses a constant cost test, which reduces to a single point

membership classi�cation (M) if the patch is single-sheeted.

assume patch is consistently oriented
if T is a face tetrahedron then k 1 else k 2
if T is an exterior tetrahedron then g a else g a

for every non-interpolating vertex v
niv
k do

ifM(vnivk ; g) = OUT
then patch is inconsistently oriented; break

end for

Locally valid polyhedral hulls provide a built-in guarantee for orientation consistency. To verify

this, we observe that inconsistent patch orientations arise only when the bounding tetrahedra of

the patches overlap. Let T and T 0 be such bounding tetrahedra. If T and T 0 share no vertex of

the input polyhedron P , then the inconsistent orientation must be accompanied by an invalid Brep

(see Figure 13a). If T and T 0 share at least one vertex of P , then T and T 0 cannot overlap in a

locally valid polyhedral hull. Thus, cases as illustrated in Figure 13b will never arise.

9 Applications of CSRs

Recall that a Constructive Shell Representation of A is a CSG representation of a shell (not

subshell):

CSR(A) = CSG(ANYS), (15)

B2 23

which is the union of CSG representations of trunctets, one for every patch. CSR(A) is a complete

representation of A in that it can represent a free-form solid unambiguously and that it contains

su�cient information to answer any geometric query about A [12]. In this section we will brie
y

explore two applications of CSRs

� raycasting on CSRs (see [15] for details), and

� point sampling for Brep-to-CSG (see [14] for details.)

9.1 Raycasting on CSRs

The \in" segments resulting from the classi�cation of a line L with respect to CSR(A) yields

LinANYS { the portions of L2; L3 in the shaded areas of Fig. 15a, and L5 in Fig. 15b. Observe

that the end-points of LinANYS belong either to the tetrahedral planes or to the algebraic surface,

marked with \x" or \�" respectively in Fig. 15. This observation leads to the following simple

technique for inferring LinA from LinANYS.

1. Find LinANYS using divide-and-conquer on CSR(A).

2. Ignore all intercepts (\x") that lie in tetrahedral plane boundaries.

3. Infer LinA by alternating \in"/\out" classi�cations resulting from the remaining intercepts

(�) that lie in algebraic patch boundaries.

This algorithm can be used to make simple modi�cations to the RCE architecture, for parallel

processing of ray-reps (\in" segments resulting from classifying a grid of regularly spaced parallel

lines) directly on CSRs, thus obviating the need for exact CSG representation of A for ray-rep

purposes. Several subtleties related to singular point processing (p, q in Fig. 15a) and associated

impact on RCE processor modi�cations, to yield a new RCE�) are covered in [15].

9.2 Point sampling for Brep-to-CSG

The above procedure for generating ray-reps from CSRs, leads to a simple and e�cient means for

computing CSG(A) using a \point-sampling" approach. Fig. 16 gives a pictorial outline of the

technique for the case of normal constructions (no overlapping tetrahedra). The CSR (CSG of the

shell) is easy to compute, and we need only compute a CSG representation of the core so that

CSG(A) = CSR(A) [CSG(core). The main steps of the algorithm to compute CSG(core) are as

follows.

1. Compute a ray-rep of the shell from CSR(A) (Fig. 16a).

2. From this, infer the ray-rep of A using the raycasting on CSR method above (Fig. 16b).

3. Subtract the ray-rep of the shell from that of A to obtain a ray-rep of the core (Fig. 16c).

4. Pick a sample point (p1) in the ray-rep of the core and classify it against all the halfspaces

induced by the linear halfspaces of the tetrahedra (this set of halfspaces can be culled further,

if need be). This generates an \in"-cell (as in the cell-based Brep-to-CSG algorithm outlined

earlier in the chapter). Fig. 16d shows one in-cell (labelled a) generated in this manner. This

constitutes the \evolving" solid E.

24 B2

L1 L2 L3 L4

p

q

L5

(a) (b)

Figure 15: (a) Raycasting on normal constructions, and (b) abnormal constructions.

5. Two other cells (labelled b and c) constitute a \remainder" solid R. Check if R is null by

subtracting the ray-rep of E from that of the core (note that we have a CSG expression of

E, which can be processed on the RCE).

6. If the remainder solid R is not null, proceed with the above two steps, i.e. get another sample

point, and generate cells b and c, until the remainder solid R is null.

7. The union of CSG representations of all \in"-cells is the CSG representation of the core.

The same technique extends to the more complex case of computing the \delta" terms, without

combinatorial processing. Fig. 17 summarizes the technique, outlined below.

1. Compute the ray-rep of A from CSR(A).

2. Compute the ray-rep of the direct term.

3. Compute the ray-rep of �l by subtracting the ray-rep of the direct term from the ray-rep of

A.

4. Now use the ray-rep of �l to generate a sample point. This time, classify all the polyhedral

trunctets against this point to generate a CSG representation of an inner delta-segment.

5. Use the same notion of a remainder solid to determine when the algorithm terminates.

Thus, we can use point-sampling techniques to obviate combinatorial processing, especially for

the delta-term calculations. This is particularly e�ective when the calculations can be done on an

RCE (or RCE�) architecture. The results of the sampling technique are accurate to the spacing

between rays, i.e. cells smaller than the ray grid spacing could be missed. Finely spaced ray grids,

that are quite easily processed on the RCE, work well in practice.

B2 25

(a) (b) (c)

p1

a

b

c

R

a

b

c

Rp2

a

b

c

R = null p3

(d) (e) (f)

Figure 16: (a) Ray-rep of the shell, (b) of the solid (inferred from the ray-rep of the shell), (c) of

the core (shell subtracted from solid). (d) Cell-a, (e) cell-b, and (f) cell-c generation. Remainder

R is null at termination.

26 B2

(a) (b) (c)

b

R = null

a

b

R = null

a

b

R = null

a

(d) (e) (f)

Figure 17: (a) Ray-rep of solid, (b) of the direct term, (c) of the delta term (direct term subtracted

from solid). (d) No cells, remainder not null, (e) cell-a, and (f) cell-b generation. Remainder R is

null at termination.

B2 27

10 Sample Results

Fig. 18 shows the con�guration of our experimental system [16]. Representation schemes are shown

in boxes, conversions between representations are shown between arrows, and applications are

shown in italics. The system has been decomposed into four logical components.

Algebraic Brep: Sample points and normals, generated from various sources, e.g. a Coordinate

Measuring Machine (CMM), are smoothed to obtain tangent-plane continuous boundaries of

free-form solids.

Algebraic CSG: CSRs are computed from the above Breps to be subsequently: (a) used in

computing exact CSG representations for processing on the RayCasting Engine (RCE), or

(b) processed directly on the RCE�. The RCE uses massively parallel computation [6] to

classify dense grids of parallel lines against CSG trees (recall, a CSR is also a CSG tree) and

produces a set of `in' solid segments, called `ray-rep'. Ray-rep based application modules [18]

are used to support a variety of applications, few examples of which are presented below.

Polyhedral Visualization: Direct triangulation of the quadratic algebraic patches, based on

Warren and Moore's algorithms [21], produces a linear triangulated approximation with exact

vertex normals. These are imported into the IBM 3D Interaction Accelerator [24] or the

IRIS Inventor systems for interactive visualization and Virtual Reality applications, e.g. for

producing animations and video clips.

Parametric Brep: The bridge to existing parametric Brep technology is the key to the practical

acceptance and applicability of the technology presented here. One-way bridge from quadratic

algebraic to NURBS has been solved exactly: each quadratic algebraic patch we generate is

a single sheet of surface without disconnected components or holes [9], and using a technique

developed by Teller and Sequin [29], we can easily represent such a quadratic algebraic patch

as a trimmed NURBS patch. The other way bridge is currently handled by sampling a

NURBS surface to obtain a set of points and normals, which are subsequently approximated

using the Algebraic Brep modules summarized above.

Figs. 19 { 31 show a range of examples generated in this system environment. Artifacts of

�xed-point computation of the RCE may sometimes be visible in some of the photographs. We

summarize these examples below; the �gure captions contain more details.

� Fig. 19 shows how polyhedral smoothing is used to create free-form solids.

� Fig. 20 shows how trunctets are induced from algebraic patch halfspaces, and how these are

maintained under shape control operations.

� Fig. 21 shows how the association between a free-form surface and its shell, represented as a

CSR.

� Fig. 22 shows a simple example of CSG computation.

� Fig. 23 shows individual patches and resulting deformations during a simple shape control

operation.

� Fig. 24 shows how the interpolation of the same polyhedron can result in normal or

abnormal constructions, depending on the apex heights of the construction tetrahedra.

CSG formulations presented here provide methods to handle both normal and abnormal

constructions.

28 B2

Brep−to−CSR

trimmed
NURBS

sampling

boundary
evaluation

triangulation

CSR

CSG

Ray−rep

CSR−to−CSG

RCE

Modeling applications
(sweeping, Minkowski, NC, ...)

sample pts, nmls

Brep(algebraic)

smoothing

various sources
(CMM, scanner, ...)

Brep(parametric)

NURBS applications

Parametric Brep

Brep(polyhedra)

IBM/3DIX, IRIS/INVENTOR
(visualization, VR, ...)

Polyhedral visualization

Algebraic Brep

Algebraic CSG

Figure 18: An overview of the experimental system.

B2 29

Figure 19: Free-form solid creation via interpolative polyhedral smoothing. The initial polyhedron

(left) is used to construct a polyhedral hull (center). Algebraic patches are de�ned inside some of

the tetrahedra of the hull and meshed with tangent plane continuity to produce a free-form solid

(right) { a smoothed version of the input polyhedron (left).

� Fig. 25 shows the internal structure of trunctets, and how graphic rendering { transparencies

or complex ray tracing { can be applied easily to such objects using CSG constructs.

� Fig. 26 shows an example of a shape control operation on the vase.

� Fig. 27 shows three examples of complex free-form solids constructed entirely with quadratic

algebraic patches.

� Fig. 28 shows swept solid computation using the RCE and ray-rep technology [18] { this was

feasible only because of the CSG constructs that could be computed easily using Brep-to-CSG

conversion methods presented earlier.

� Fig. 29 shows Minkowski sum computation using the RCE and ray-rep technology [18] { again

feasible because of the CSG constructs.

� Fig. 30 shows the application of CSG constructs in an NC machining simulation program

[20, 19].

� Fig. 31 shows the application of CSG constructs in an NC probing simulation run [20, 19].

11 Conclusions

This chapter �rst covered the topic of dual representation [Brep, CSG] systems, and summarized

known algorithms to inter-convert between Brep and CSG. While conversion from CSG to Brep is

relatively straight forward, the inverse (Brep-to-CSG) is much harder particularly because of an

additional problem of \separation" introduced by curvature. The lack of powerful Brep-to-CSG

conversion, especially for the case of free-form solids was identi�ed as one of the key reasons for

the decline for dual-representation systems.

The chapter then provided a detailed explanation of new results on exact CSG for free-form

solids, and e�cient Brep-to-CSG conversion for such solids. Implicit algebraic patches of low

degrees (typically quadratic or cubic) are meshed together smoothly (typically G1 or C1 continuity

respectively) and algorithms are developed to e�ciently compute the CSG representation and to

update the CSG under shape control operations.

30 B2

(a) (b)

(c) (d)

Figure 20: (a) A quadratic algebraic patch and its trunctet, along with prescribed control points;

(b) the associated halfspace (ellipsoid). (c) A tweaked patch, and (d) the associated halfspace (a

hyperboloid of two sheets).

(a) (b)

Figure 21: (a) A free-form surface with 26 quadratic algebraic patches, and (b) a \thick shell"

represented by the CSR.

B2 31

(a) (b)

Figure 22: (a) A free-form solid, whose boundary is modeled with 32 quadratic algebraic patches.

(b) The input polyhedron and a portion of the inner polyhedral (protrusion) subshell { the CSG

representation of the solid is the union of the subshell and the input polyhedron.

(a) (b)

Figure 23: Shape control on a 32-patch mesh of quadratic algebraic patches: (a) sphere, (b)

tweaked sphere. Exact CSG representations of the solids were processed on the RCE to produce

these images.

32 B2

(a) (b)

Figure 24: An inner shell for a surface with 204 quadratic algebraic patches: (a) normal

construction, (b) abnormal construction.

(a) (b)

Figure 25: (a) A vase modeled with 336 quadratic algebraic patches, rendered with transparency

to show some of its trunctets. (b) The same vase in an environment with multiple light sources

and participating media { rendered with Monte Carlo ray tracing.

B2 33

Figure 26: Local shape control operations to tweak the vase (modeled with 336 quadratic algebraic

patches).

(a) (b) (c)

Figure 27: Some complex free-form solids modeled with algebraic patches: (a) a genus �ve solid

with 2,400 quadratic algebraic patches, (b) a bone head, the entire bone was modeled with 5,696

quadratic algebraic patches, and (c) a knot modeled with 6,912 quadratic algebraic patches.

34 B2

(a) (b)

Figure 28: Sweeping a free-form solid using the repeated union formulation of ray-reps, implemented

on the RCE: (a) three instances along sweep, and (b) the swept solid (9,576 halfspaces).

(a) (b)

Figure 29: (a) A free-form solid and a block, and (b) their Minkowski sum computed with the

repeated union formulation of ray-reps, implemented on the RCE (123,660 halfspaces).

B2 35

(a) (b)

Figure 30: NC machining of (a) a free-form stock created from a block and a mesh of quadratic

algebraic patches, and (b) rough machining of a spherical pocket in the stock.

(a) (b)

Figure 31: Simulating touch-sense probing: (a) free-form stock and a probe at the beginning of

probing motion, and (b) contact between probe and stock as the probe moves in a speci�ed direction

until it contacts the stock.

36 B2

The CSG constructs make it possible to directly access the massively parallel processing power

of the RayCasting Engine (RCE) for a wide variety of applications (rendering, sweeping, machining,

etc.). A new representation scheme for such solids { Constructive Shell Representation (CSR) {

was introduced, and applications for direct hybrid Brep/CSG processing on CSRs were explored.

In particular, CSRs provide one way of handling \quadratic tesselations", and the RCE� provides

one hardware architecture for processing these tesselations.

Can quadratic tesselations replace today's linear tesselations? Observe that they (quadratic

tesselations) require lesser number of `triangles' than conventional linear tesselations, e.g. a cylinder

is a quadric to begin with, and a NURBS patch could be sampled and meshed smoothly with a few

quadratic algebraic patches. Hence they produce lesser data to be stored and consequently can be

processed e�ciently. Continuing research may yield answers to these and related questions, and we

might see practical systems that fully exploit the power of implicit algebraics in shape modeling.

12 Acknowledgements

The author would like to thank Herb Voelcker (Cornell University) for his advise and encouragement during
the course of this work, as well as Gene Hartquist (Cornell University) for several technical discussions and
useful feedback. Many thanks also to Baining Guo (York University, Canada) for close collaboration on
many aspects of algebraic patch meshing.

B2 37

References

[1] C. Bajaj, J. Chen, and G. Xu. Free Form Surface Design with A-patches. In Graphics Interface '94,
pages 174{181, Ban�, Canada, June 1994.

[2] K-C. Chan. Solid Modeling of Parts with Quadric and Free-form Surfaces. PhD thesis, Department of
Mechanical Engineering, University of Hong-Kong, November 1987.

[3] W. Dahmen. Smooth piecewise quadric surfaces. In Mathematical Methods in CAGD, pages 181{193,
eds. T. Lyche and L. Schumaker, Academic Press, 1989.

[4] W. Dahmen and T.-M. Thamm-Schaar. Cubicoids: Modeling and Visualization. Computer Aided

Geometric Design, 10:89{108, 1993.

[5] A. Dunnington, D.R.and Saia and A. de Pennington. Constructive Solid Geometry with Sculptured
Primitives using Inner and Outer Sets. In Theory and Practice of Geometric Modeling, pages 127{142,
eds. W. Strasser and H.P. Seidel, Springer-Verlag, 1989.

[6] J.L. Ellis, G. Kedem, T.C. Lyerly, D.G. Thielman, R.J. Marisa, J.P. Menon, and H.B. Voelcker.
The RayCasting Engine and Ray Representation: A Technical Summary. International Journal of

Computational Geometry and Applications, 4(2):347{380, December 1991.

[7] B. Guo. Modeling Arbitrary Smooth Objects with Algebraic Surfaces. PhD thesis, Cornell University,
August 1991.

[8] B. Guo. Representation of Arbitrary Shapes Using Implicit Quadrics. The Visual Computer, 9:267{278,
1993.

[9] B. Guo. Avoiding Topological Anomalies in Quadric Surface Patches. In Mathematical Methods in

CAGD III, eds. M. Daehlen, T. Lyche and L. Schumaker, Academic Press, 1995.

[10] B. Guo and J.P. Menon. Local Shape Control for Free-Form Solids in Exact CSG Representation.
Computer Aided Design, to appear, 1996. (also available as IBM Research Report 20051, IBM T.J.
Watson Research Center, 1995.).

[11] J. Heintz. De�nability and Fast Quanti�er Elimination in Algebraically Closed Fields. Theoretical

Computer Science, 24:239{278, 1983.

[12] J.P. Menon. Constructive Shell Representations for Free-form Surfaces and Solids. IEEE Computer

Graphics & Applications, 14(2):24{36, March 1994.

[13] J.P. Menon. Massively Parallel Hybrid Brep/CSG Processing for Geometric Modeling and Graphics.
SIGGRAPH 94 Technical Sketches, July 1994. (available as IBM Research Report RC 19669, IBM T.J.
Watson Research Center, 1994.).

[14] J.P. Menon. Incremental Brep-to-CSG Conversion for Free-form Solids Using Point-sampling Methods.
International Journal of Shape Modeling (submitted), 1996. (available as IBM Research Report, IBM
T.J. Watson Research Center, Yorktown Heights, NY, 1996.).

[15] J.P. Menon. Ray-reps for Free-form Modeling: Line Membership Classi�cation on CSRs. In Implicit

Surfaces '96: The Second Eurographics Workshop on Implicit Surfaces (submitted), Netherlands,
October 1996. (available as IBM Research Report, IBM T.J. Watson Research Center, Yorktown
Heights, NY, 1996.).

[16] J.P. Menon and B. Guo. Free-form Modeling with Low Degree Algebraic Patches in Bilateral Brep
and CSG Schemes. IEEE Transactions on Visualization and Computer Graphics (submitted), 1995.
(available as IBM Research Report RC 20050, IBM T.J. Watson Research Center, 1995.).

[17] J.P. Menon and B. Guo. A Framework for Sculptured Solids in Exact CSG Representation. In CSG96:

Set-theoretic Solid Modeling Techniques and Applications, pages 141{157, Winchester, U.K., April 17-19
1996. Information Geometers Publishers.

38 B2

[18] J.P. Menon, R.J. Marisa, and J. Zagajac. More Powerful Solid Modeling Through Ray Representations.
IEEE Computer Graphics & Applications, 14(3):22{35, May 1994.

[19] J.P. Menon and D.M. Robinson. Advanced NC Veri�cation via Massively Parallel RayCasting:
Extensions to New Phenomena and Geometric Domains. ASME Manufacturing Review, 6(2):141{154,
June 1993.

[20] J.P. Menon and H.B. Voelcker. Toward a Comprehensive Formulation of NC Veri�cation as a
Mathematical and Computational Problem. Journal of Design and Manufacturing, 3(4):263{278,
December 1993. Chapman and Hall Publishers, London.

[21] D. Moore. Simplicial Mesh Generation with Applications. PhD thesis, Cornell University, August 1992.

[22] A.A.G. Requicha. Representations for Rigid Solids: Theory, Methods and Systems. ACM Computing

Surveys, 12(4):437{464, December 1980.

[23] A.A.G. Requicha and H.B. Voelcker. Boolean Operations in Solid Modeling: Boundary Evaluation and
Boundary Merging. Proceedings of the IEEE, 73(1):30{44, January 1985.

[24] B-O Schneider, P. Borrel, J.P. Menon, J. Mittleman, and J. R. Rossignac. BRUSH as a Walk-Through
System for Architectural Models. In Fifth Eurographics Workshop on Rendering, pages 389{399,
Darmstadt, Germany, June 1994.

[25] T.W. Sederberg. Piecewise Algebraic Surface Patches. Computer Aided Geometric Design, 2:53{59,
1985.

[26] T.W. Sederberg. Techniques for Cubic Algebraic Surfaces: Tutorial Part Two. IEEE Computer Graphics

and Applications, 10(5):12{21, September 1990.

[27] V. Shapiro and D.L. Vossler. Construction and Optimization of CSG Representations. Computer-Aided

Design, 23(1):4{19, Jan/Feb 1991.

[28] V. Shapiro and D.L. Vossler. Separation for Boundary to CSG Conversion. ACM Transactions on

Graphics, 12(1):35{55, January 1993.

[29] S. Teller and C.H. Sequin. Modeling Implicit Quadrics and Free-form Surfaces with Trimmed Rational
Quadratic Bezier Patches. Technical Report UCB/CSD90/577, Computer Science Division, University
of California at Berkeley, 1990.

[30] R.B. Tilove. Set Membership Classi�cation:A Uni�ed Approach to Geometric Intersection Problems.
IEEE Transactions on Computers, 29(20):874{883, October 1980.

[31] H.B. Voelcker. New Directions in Solid Modeling? In International Conference on Manufacturing

Automation, pages 157{168, eds. N.W.M. Kuo and S.T. Tan, University of Hong Kong, August 1992.

[32] B. Wyvill and K. van Overveld. Constructive \Soft" Geometry: A Uni�cation of CSG and Implicit
Surfaces. Preprint, Department of Computer Science, 1995. University of Calgary.

Dual Control Polygons for Implicit Splines

Baining Guo

Department of Computer Science, York University

Abstract

We present a shape control scheme for free-form surfaces represented by low-degree algebraic
patches. In this scheme, we can create manifold surfaces of arbitrary topology through polyhe-
dron smoothing, and the resulting shapes may be modi�ed by changing control points and/or
control weights, with each control point/weight having a local e�ect. A key ingredient of the
scheme is an algorithm that uses Kuhn-Tucker conditions to e�ciently compute valid control
points.

1 Introduction

Shape control is important in free-form geometric modeling, and is becoming increasingly popular

as the performance of graphics workstations continue to improve. In parametric surface design, a

common technique is to specify a control polygon that generates an initial shape, which is then

re�ned into the �nal desired shape through interactive adjustments of control points and/or weights.

In principle, this technique works well for a variety of modeling tasks.

We present a shape control scheme for implicit splines, i.e., free-form surfaces represented by low-

degree algebraic patches. Our scheme extends the control polygon based techniques for parametric

surfaces to implicit surfaces. As in parametric surface design, we create free-form implicit surfaces

of arbitrary topology through polyhedron smoothing, and re�ne the resulting shapes into desired

ones by changing either control points or weights. Between implicit surfaces and their control

points/weights, we establish a relation somewhat similar to that between NURBS surfaces and their

control points/weights [Pie89]. In particular, the e�ects of control points/weights are guaranteed

to be local.

As is described in [Guo91, Men94], there is a rudimentary shape control scheme for an implicit

spline surface (see slide \early shape control methods" in Appendix B). An implicit spline surface S

lies inside a \polyhedral hull", whose vertices include the so-called \apexes". Within the polyhedral

hull, it is straightforward to modify the shape of S by changing the control weights associated with

the apexes. However, shape modi�cations with control weights alone are not su�cient for free-form

shape design { the situation is similar to designing a NURBS surface without the ability to change

its control points [Pie89]. To overcome this limitation, we develop a scheme that uses the vertices

of the polyhedral hull as control points, thus allowing shape control with both control points and

weights.

A main di�culty with changing control points is that of ensuring a valid polyhedral hull, which

is crucial for the smoothness of the implicit splines. Given arbitrary target locations of the control

points, we cast the control points computation as a series of least distance programming problems of

small size [LH74]. With these problems in hand, we use the fundamental Kuhn-Tucker conditions

from nonlinear programming [BS93] to move the control points as close to their target positions as

2 B3

possible under polyhedral hull validity constraints. When creating an initial free-form surface via

polyhedron smoothing, we also use least distance programming to produce a valid polyhedral hull.

This work is motivated by our research on bilateral Brep/CSG schemes for free-form solids

[GM95, MG96]. Recently, Wyvill and Van Overveld [WVO95] present a method for modeling with

CSG combinations of virtually unlimited variety of \soft" objects (objects bounded by general

implicit surfaces; see also [Duf92]). They demonstrate that implicit surfaces in this constructive

\soft" geometry can be e�ciently polygonized. In general, primitive soft objects are not localized,

as such their combinations can produce a variety of interesting and subtle shape e�ects. On the

down side, modifying a primitive may have a global e�ect.

The shape control scheme we derive uses a few results from previous research. For creating an

initial surface, we use a surface �tting method due to Dahmen and Thamm-Schaar [DT93]. Similar

tetrahedron-based surface �tting methods have been explored by others [Sed85, Guo91, BC94]. In

particular, we mention the polyhedron smoothing method by Bajaj, Chen, and Xu [BC94] that

guarantees \hull validity" [BC94]. As an alternative to tetrahedron-based methods, Middleditch

and Dimas have developed a promising heptahedron-based technique [MD94].

The remainder of this note is structured as follows. After introducing the shape control scheme

in Section 2, we address the key issue of computing valid control points in Section 3. We then provide

examples and discussions in Section 4. Appendix A gives details on polyhedral hull existence,

whereas Appendix B includes slides for the course presentation.

B3 3

2 Meshing Algebraic Patches

To design a free-form shape, we �rst use polyhedron smoothing to construct an initial surface S,

which is then re�ned into the �nal shape through a sequence of \sculpting" operations.

Notations: We use lower case boldface for vectors, lower case italics for scalars, capital italics for

point sets in R3, and calligraphics for collections of sets in R3. For example, jjxjj = (x � x)1=2 is

the length of vector x, and rf is the gradient of a scalar function. We use [v0:::vk] to denote the

k-simplex spanned by a set of points fv0; :::;vkg, e.g. [v0v1] for an edge.

2.1 General Concepts

A collection C of simplices forms a simplicial complex if it satis�es the following conditions: (a)

for a simplex K of C, the boundary simplices of K are in C, and (b) for two simplices of C, their

intersection is also a simplex in C. Two simplices satisfying the condition (b) are referred to as

properly joined (see [HY61]). A simplicial complex C can have a subcomplex C 0, which is a simplicial

complex satisfying C0 � C. The underlying space jCj of a simplicial complex C is the union of all of

its simplices.

We call a tetrahedron over which a polynomial in Bernstein-Bezier form (BB-form) has been

de�ned a Bezier tetrahedron. A simplicial complex whose tetrahedra are Bezier tetrahedra is a

Bezier simplicial complex. Two tetrahedra of a Bezier simplicial complex are smoothly joined if,

on their common boundary simplex, their polynomials meet with continuous function value and

gradient. A Bezier simplicial complex B is smoothly joined if every two simplices of B are smoothly

joined. We regard a smoothly joined Bezier simplicial complex B as a smooth piecewise polynomial

function f(x) de�ned on the underlying space jBj.

2.2 Initial Free-form Surface

We construct the initial surface S from a simplicial polyhedron P (a manifold) whose vertices are

fx1; :::;xng, with a normal nk prescribed at each vertex xk (k = 1; :::; n). The construction produces

as output a smooth surface S that interpolates both the vertices of P and the prescribed normals.

The construction uses a surface �tting method due to Dahmen and Thamm-Schaar [DT93], which

takes the following steps: (a) build a polyhedral hull H, and (b) de�ne a trivariate function f(x)

whose zero contour is S � jHj.

First, consider building the polyhedral hull H, which is a simplicial complex consisting of face

tetrahedra, wedges, and their boundary simplices. The face tetrahedra and wedges are obtained as

follows:

face tetrahedra Let Fi = [xi1xi2xi3] be a face of P , with the face normal nFi
pointing to the

outside of P . A pair of face tetrahedra are built on each side of the plane hFii that contains

Fi. One is the exterior face tetrahedron 4i = [xi1xi2xi3v
+

i], which is a pyramid using v+i as

its apex and Fi as its base. The term exterior indicates that the apex v+i lies on the side of

hFii pointed to by nFi
. The other tetrahedron is the interior 5i = [xi1xi2xi3v

�
i], which is

similar to 4i except the apex v
�
i lies on the side of hFii pointed to by �nFi

. The point v+i
(v�i) is called the exterior (interior) apex of Fi.

wedges A pair of wedges are situated between the exterior face tetrahedra4i and 4k of two faces

Fi = [xi1xi2xi3] and Fk = [xk1xk2xk3] sharing an edge [xi2xi3] = [xk2xk3]. These wedges are

_ik = [m+

ikxi2xi3v
+

i] and _ki = [m+

kixk2xk3v
+

k], with the wedge splitting point m+

ik = m+

ki

4 B3

face tetrahedron
wedge

(a) (b)

face tetrahedron

(c)

Figure 1: Understanding a polyhedral hull: (a) the polyhedron P , (b) the face tetrahedra { with

the interior face tetrahedra shaded, and (c) the polyhedral hull H.

being in the interior of the line segment [v+i v
+

k]. Similarly, a pair of interior wedges ^ik and

^ki are between the interior face tetrahedra 5i and 5k.

Figure 1 provides a 2D analogue of the above construction. The two wedges _ik and _ki may be

combined into a single wedge, but doing so complicates the construction of surface S (see [DT93]).

It remains to de�ne the function f(x) whose zero contour is the �nal surface S. For this, a cubic

polynomial is constructed inside each tetrahedron of H. The constructions of cubic polynomials

inside the tetrahedra of H ensure that on the entire underlying space jHj, the function f(x) is

not only well de�ned, but also continuously di�erentiable. Consequently, the zero contour of f(x),

S = fx 2 jHj j f(x) = 0g, is a tangent-plane continuous surface. In order for S to interpolate

both the vertices of P and the prescribed normals, the function f(x) must satisfy the interpolation

condition: f(xk) = 0 and rf(xk) = nk (k = 1; :::; n).

The interpolation condition and the tangent-continuity of S do not completely determine f(x).

For every face Fi of P , both f(v+i) > 0 and f(v�i) < 0 are left as free shape parameters that

can be adjusted for shape control (in fact, this leads to the rudimentary shape control scheme

in [Men94]). Knowing the shape parameters, we can set the other free parameters in f(x) using

the approximating quadrics technique: on each tetrahedron of H, f(x) is made to approximate a

quadratic polynomial [DT93]. The purpose of approximating quadrics is to ensure that the surface

patch inside each tetrahedron ofH is single sheeted and is free of shape defects. While this technique

provides no theoretical guarantee (there are methods that do [BC94]), it has been observed to work

well in practice. In the following, we will assume that the surface patches inside the tetrahedra of

H are single sheeted.

To summarize, we say that the �rst step builds a polyhedral hull H, and the second step turns

H into a Bezier simplicial complex f(x) that is smoothly joined and satis�es the interpolation

condition. In this note, we concentrate on the problem of building an initial polyhedral hull

and maintaining its validity during shape control. We will not discuss the construction of f(x);

procedures for �nding the initial interpolant and for local updating of f(x) during shape control

can be derived from [DT93] quite easily.

2.3 Dual Control Polygons

Now we are ready to describe our scheme for shape control. The set of control points of S consists

of the vertices of the polyhedron P and the apexes of the polyhedral hull H. The vertices of P are

B3 5

(a) (b) (c)

Interpolated Control Point

v+ V
+

V
+

Spline Surface

Figure 2: (a) A free-form surface obtained through smoothing a polyhedron. This polyhedron,

drawn with dotted lines, has v+ as one of its exterior apexes. (b) The result of increasing the

weight of v+ while keeping v+ stationary. (c) The result of moving v+. In both (b) and (c), we

draw the dual control polygons with dotted lines (beware that the 2D drawing has a misleading

e�ect: the interpolated control points appear to be inside the polyhedral hull, even though in 3D

they are actually on the polyhedral hull boundary).

interpolated (S passes through these vertices). For each face Fi of the polyhedron P , both apexes

v+i and v�i have control weights, derived from the shape parameters of S as follows:

w+

i =
1

f(v+i)
and w�

i = �
1

f(v�i)
:

The interpolated control points have weights 1.

The control points determine two related polygons P+ and P�, which are the outer and inner

boundaries of jHj. The vertices of exterior (interior) control polygon P+ (P�) are the vertices of P

plus the exterior (interior) apexes (we ignore the wedge splitting points since they do not in
uence

the shape of H). The polygon pair P+ and P� are symmetric with respect to P and meet at the

vertices of P . We call this pair the dual control polygons of S and S. Figure 2 illustrates the dual

control polygons and the e�ect of control weights/points.

The relation between S and its control points/weights is somewhat similar to that between a

NURBS surface and its control points/weights. For example,

� Control points: The surface S follows the control points in an intuitive manner (but S does

not interpolate a control point unless it has weight of 1).

� Control weights: Increasing a control weight \pulls" the surface S towards the corresponding

control point.

� The polyhedral-hull property: The surface S always lies inside the polyhedral hull.

While these similarities re
ect no connections between the underlying mathematical models, they

do allow the user to apply control polygon based techniques to control the shape of S. In Section

4, we will discuss some limitations of our control points when compared to NURBS control points.

6 B3

The implementation of the dual control polygons raises several complicated issues, among which

the most challenging one is that of ensuring a valid polyhedral hull during shape control. We address

these issues in the follow sections.

B3 7

3 Control Points Computation

The most challenging problem in the implementation of the dual control polygons is that of �nding

the control points. When the user speci�es target positions for the control points, these positions

may or may not determine a valid polyhedral hull. The objective of the control points computa-

tion is to move control points as close as possible to their target positions without violating the

polyhedral hull validity constraints.

The constraints on the control points are global, nonlinear inequalities. For smoothing a poly-

hedron P , any set of apexes satisfying these constraints su�ces. To �nd such apexes, Dahmen

and Thamm-Schaar [DT93] �rst choose apexes satisfying a partial set of the constraints and then

traverse the faces of P in some �xed order, making corrections when necessary. Their experiences

indicate that after a few traversals, apexes are usually found to satisfy all the constraints.

As our goal is to �nd control points close to their target positions while respecting the con-

straints, we handle constraints di�erently. First, we derive some constraints that involve the inter-

polated control points only (i.e. the vertices of P). We do so using a linear form of the fundamental

Kuhn-Tucker conditions from nonlinear programming [BS93]. The constraints on interpolated con-

trol points will be referred to as the existence conditions of polyhedral hulls, because the conditions

determine, from the polyhedron P and its vertex normals, whether a valid polyhedral hull H exists.

The existence conditions of polyhedral hulls are weak conditions that can be satis�ed for most

cases of practical importance. This enables us to move the interpolated control points to their exact

target positions. The next step is to �nd the apexes. We accomplish this step using a quadratic

form of Kuhn-Tucker conditions. More speci�cally, we �rst break the global, nonlinear inequalities

into local, linear inequalities and then we use least distance programming to move the apexes as

close as possible to their target positions under the local constraints. As a result, a target position

change will a�ect only the control points and (hence the trunctets) nearby.

Before we detail the control points computation, let us make a simple observation. A polyhedral

hull H has two subcomplexes: (a) the exterior hull Hext of exterior face tetrahedra, exterior wedges,

and their boundary simplices, and (b) the interior hull Hint of interior face tetrahedra, interior

wedges, and their boundary simplices. These two subcomplexes form a symmetric partition of H.

Because of this symmetry, we can concentrate on the exterior hull Hext in the following discussion.

3.1 Constraints on Control Points { General

In order to de�ne a valid polyhedral hull H, the control points must satisfy a set of constraints.

We will describe the constraints that determine a valid polyhedral hull according to the polyhedral

hull model of Dahmen and Thamm-Schaar [DT93], with minor modi�cations. The purpose of these

constraints is to achieve the proper joining of tetrahedra in H and facilitate surface construction

on jHj. We list in the following the constraints on Hext; similar constraints apply to Hint.

a) Tangent containment: for each vertex xi of a face Fk of P , the apex v
+

k of the exterior

face tetrahedron 4k satisfy condition (v+k � xi) � ni > 0.

b) Wedge validity: for each pair of faces Fi and Fk sharing edge Eik = Fi \ Fk , the

corresponding exterior face tetrahedra 4i and 4k intersect only along the edge Eik,

that is, 4i \ 4k = Eik.

c) Visibility: for each pair of faces Fi = [xi1xi2xi3] and Fk = [xk1xk2xk3] sharing a

common edge [xi2xi3] = [xk2xk3], the corresponding apexes v
+

i and v+k are mutually

visible, that is, the line segment [v+i v
+

k] lies outside P .

These constraints are illustrated in Figure 3a and b.

8 B3

tangent

edge gap

apex

apexnormal

visibilityface tetrahedron
edge tetrahedron

(a) (b)

apex

separating plane

x1

x2

x3

x
0

1

x
0

2

x
0

3

F

F3

F2

F1

x3

x1x2

(c) (d)

visibility plane

enlarge to (b)

Figure 3: Constructing the polyhedral hull H: (a) face tetrahedra and wedges, (b) the polyhedral

hull constraints, (c) the local geometry near face F , and (d) the visibility and dividing planes.

The �rst two constraints are necessary for building a polyhedral hull H whose tetrahedra are

properly joined and whose underlying space jHj contains the surface S. Speci�cally, the purpose

of the tangent containment is to ensure that jHj locally contains the tangent plane de�ned by the

prescribed normal at each vertex. Indeed, together with its counterpart for the interior hull Hint, the

tangent containment described above guarantees that at each vertex xi, there is some positive � such

that jHj contains a tangent disk D� centered at xi, where D� = fx j ni �(x�xi) = 0; jjx�xijj < �g.

As for the wedge validity, it is a prerequisite for constructing the wedges.

The visibility constraint, even though not necessary, provides a simple way for constructing

the wedges. More precisely, when the wedge validity and visibility constraints are satis�ed for

two faces Fi = [xi1xi2xi3] and Fk = [xk1xk2xk3] sharing edge [xi2xi3] = [xk2xk3], four tetrahedra

4i = [xi1xi2xi3v
+

i], 4k = [xk1xk2xk3v
+

k], _ik = [m+

ikxi2xi3v
+

i], and _ki = [m+

kixk2xk3v
+

k] are

properly joined for any point m+

ik =m+

ki in the interior of line segment [v+i v
+

k].

In theory, the above constraints do not guarantee that the exterior hull Hext is a simplicial

complex. Since the constraints only restrict the face tetrahedra of two faces sharing an edge, we

may �nd face tetrahedra 4i and 4k intersect in cases such as: (a) the corresponding faces Fi and

Fk share only a vertex, or (b) Fi and Fk are disjointed.

In practical terms, however, the above constraints have been observed to always restrict Hext

to a simplicial complex. The problems with the constraints can also be handled, at the expense

of increasing conceptual or computational complexity. Case (a) can be avoided rather easily by

replacing the second constraint with a more restrictive one, so that at each vertex of P , all incident

face tetrahedra and wedges are properly joined. In fact, this more restrictive constraint has been

implemented in our system { even though we �nd the constraint has little practical impact for

all the data that we have experimented with. Case (b) presents a problem that is intrinsically

global. A possible solution is to clip, without a�ecting the relevant surface patches of S, some face

B3 9

tetrahedra and wedges so that the clipped tetrahedra do not overlap.

3.2 Constraints on Interpolated Control Points

From the general constraints onH, we can derive a set of constraints that do not involve the apexes.

We call such constraints the existence conditions of polyhedral hulls. As is mentioned earlier, these

conditions determine, from the polyhedron P and the normals prescribed at its vertices, whether a

valid polyhedral hull H exists.

We study the existence conditions of polyhedral hulls for two reasons. First, these conditions

determine to what extent we can move the interpolated control points. Even though the existence

conditions are satis�ed in most practical cases, identifying these conditions has some theoretical

merits. The second reason for studying the existence conditions is that they form the basis of our

algorithm for e�cient computation of control points.

We start by considering a face F = [x1x2x3] of the polyhedron P and the local geometry near

this face. As is illustrated in Figure 3c, each edge Ek (k = 1; 2; 3) opposite to vertex xk is shared

by F with another face Fk of P . The vertices of Fk are those of Ek plus a new vertex x0k, and

the face Fk is separated from F by the dividing plane of Ek, P
k
s = fx j sk(x) = 0g, which passes

through Ek and satis�es conditions sk(xk) > 0 and sk(x
0
k) < 0. When the internal dihedral angle

formed by F and Fk is less than �, the visibility plane of Ek, P
k
v = fx j vk(x) = 0g, passes through

Ek and induces an open halfspace Hk
v = fx j vk(x) < 0g whose closure contains both F and Fk;

the visibility plane is not necessary if the dihedral angle is greater than �. Denoting the mid-point

of edge Ek by xk =
1

2

P
1�i�3; i6=k xi, we can rewrite the linear functions de�ning the dividing and

visibility planes as sk(x) = sk � (x�xk) and vk(x) = vk � (x�xk), where sk and vk are the normals

of P k
s and P k

v respectively.

Now we express the constraints of Section 3.1 in terms of the local geometry near face F . To

do this, we construct several cones for F . An open cone with vertex v0 is an open set C such that

� (x� v0) + v0 2 C for any x 2 C and � > 0 [BS93]. We construct the following cones:

a) Tangent cone: The tangent cone Ct is formed by the tangent planes: Ct = \1�k�3 H
k
t ,

where Hk
t = fx j nk �(x�xk) > 0g is an open halfspace bounded by a tangent plane.

b) Dividing cone: The dividing cone Cs is formed by the dividing planes: Cs =

\1�k�3 Hk
s , where Hk

s = fx j sk � (x � xk) > 0g is an open halfspace bounded

by a dividing plane.

c) Visibility cone: The visibility cone Cv is formed by the visibility planes: Cv =

\1�k�3 H
k
v , where H

k
v = fx j vk � (x� xk) > 0g is an open halfspace bounded by a

visibility plane.

Having constructed these cones, we can restate the constraints of Section 3.1 as follows: for every

face F of P , the apex v+F of the exterior face tetrahedron lies inside the feasible apex set AF =

Ct\Cs\Cv \HF . Here we use the open halfspace HF to specify that v+F is an exterior apex. With

face normal fF and centroid xF of F , HF may be written as fx j fF � (x� xF) > 0g.

Exterior hulls satisfying the constraints of Section 3.1 exist if and only if the feasible apex set

is nonempty for every face of P . This leads to the following

Existence conditions of polyhedral hulls: Exterior hulls satisfying tangent con-

tainment, wedge validity, and visibility constraints exist if and only if for each face F

of P , ak = bk = ck = d = 0 (k = 1; 2; 3) are the only non-negative constants sat-

isfying the following constraints: (a)
P

3

k=1(aknk + bkvk + cksk) + d fF = 0, and (b)

10 B3

P
3

k=1(aknk �xk+ bkvk �xk+ cksk �xk)+d fF �xF � 0. A similar statement can be made

about interior hulls.

In the Appendix, we prove the existence condition for exterior hulls using a linear form of Kuhn-

Tucker conditions.

The constraint (a) has an intuitive explanation. For a set of vectors y1; :::;yk, the cone spanned

by these vectors y1; :::;yk is the vector set fy j y = �1y1 + � � �+ �kyk; �1; :::; �k � 0g (e.g. see

[BS93]). Constraint (a) simply says that the cone spanned by fF and nk (k = 1; 2; 3) intersects

that spanned by �vk and �sk (k = 1; 2; 3).

Before leaving this section, we note that the above analysis applies to other models of polyhedral

hulls as well. For example, we may choose to drop the visibility constraint since it is not a necessary

one.

3.3 Initial Control Points and Updates

Now we are ready for the control points computation, which takes two steps: (a) determine the

interpolated control points, and (b) �nd the apexes. Determining the polyhedron P is simple if

we assume that P and its vertex normals satisfy the existence condition of polyhedral hulls, which

we do. As a vertex xk of P is changed during shape control, we only need to update the normal

nk. This is done with a simple averaging scheme: the new nk is set to a weighted average of the

normals of the incident faces, with each face normal inversely weighted by the area of the face.

This averaging scheme is also used when we are given an initial polyhedron P with no prescribed

normals at its vertices.

Finding the apexes is more complicated. Moving apexes to their exact target positions can

easily create an invalid polyhedral hull. Instead, we move apexes as close as possible to their

target positions under the polyhedral hull validity constraints. From Section 3.2, we see that the

computation of such apexes requires that we �nd, for each edge of P , a dividing plane and a

visibility plane. The �rst question is then: should we determine these planes before or during the

computation of the apexes?

Determining the dividing and visibility planes during the computation of the apexes presents a

fundamental di�culty, namely, that of solving a global system of nonlinear inequalities. With the

cones of Section 3.2 for every face, the global system relating the apexes, the dividing and visibility

planes can be easily derived. This system is global because the apexes are related through the

dividing and visibility planes, each of which is used by two faces of P . See Figure 3d. To verify

that the system is nonlinear, recall that in Section 3.2, the apex v+F satis�es constraints of the sort

sk � (v
+

F � xk) > 0 (k = 1; 2; 3). These constraints are nonlinear if both v+F and sk are unknowns.

We avoid the above di�culty by choosing dividing and visibility planes before the computation

of apexes. We call this a divide-�rst approach. For each edge Eik of P , we set the dividing plane to

pass through Eik and bisect the dihedral angle formed by the two faces Fi and Fk sharing Eik. As

for the visibility plane, we let it pass through Eik and have normal 1

2
(fi + fk), where fi and fk are

the unit normals of the faces Fi and Fk respectively. The dividing and visibility planes break the

global, nonlinear system into a series of local, linear systems, one for each face of P . For example,

the system for the face F = [x1x2x3] considered in Section 3.2 is fF �(v
+

F �xF) > 0; nk �(v
+

F �xk) >

0; sk � (v
+

F � xk) > 0; and vk � (v
+

F � xk) > 0 (k = 1; 2; 3). This system of constraints determines

the feasible apex set AF . In the following, we use the face F as an example to demonstrate the

computation of apexes.

Let v+t be the target position of the apex v+F . To move v+F as close as possible to v+t without

violating the polyhedral hull validity constraints, we compute the apex v+F by solving the following

B3 11

least distance programming (LDP) problem

Minimize jjv+F � v+t jj
2

subject to sk � (v
+

F � xk) � �; vk � (v
+

F � xk) � �; nk � (v
+

F � xk) � � (k = 1; 2; 3); and

fF � (v
+

F � xF) � �h

where � is a small positive constant. The constraints in this LDP problem model the feasible apex

set AF within an error tolerance of �, and the constant �h controls the minimum distance between

the apex v+F and the face F . We use an LDP algorithm by Lawson and Hanson, who also give their

FORTRAN code [LH74]. Like most algorithms for solving LDP problems, the Lawson-Hanson

algorithm uses a quadratic form of Kuhn-Tucker conditions and implicitly veri�es the existence

condition of Section 3.2 to determine whether the above LDP problem has solutions. For an initial

input polyhedron P with no target apex positions, we set v+t = xF , which has the e�ect of avoiding

\sharp" wedges.

We note that LDP can be e�ciently solved despite the fact that it is a form of quadratic

programming (QP), which minimizes a general quadratic function c � x + xMx subject to a set

of linear inequality constraints. The computational complexity of QP varies according to the

symmetric matrix M. QP is NP-complete if M is inde�nite [BS93]. A QP with positive semi-

de�nite M is referred to as a convex problem, and is solved in practice with e�cient methods

whose worst case behavior is exponential but whose expected running time is polynomial. Finally,

LDP has a positive de�nite matrix M and can be solved with methods that are e�cient in both

theoretical and practical senses [LH74]. Of course, our procedure for computing an apex takes

constant time because we solve an LDP of ten inequality constraints.

The procedure we have described so far is for computing the exterior apexes. A procedure for

computing the interor apexes can be obtained by what we call normal
ipping. Because of the sym-

metry between interor hulls and exterior hulls, we compute an interior hull by following the exterior

hull procedure with
ipped vertex and face normals, f�n1; :::;�nng and f�fF j F is a face of P g.

12 B3

Figure 4: Polyhedron smoothing examples. Left column: The initial polyhedra. Center column:

The initial polyhedra with polyhedral hulls. Right Column: Resulting spline surfaces.

4 Examples and discussions

Overall, our experiments indicate that the shape control scheme is e�ective, both in creating initial

shapes from polyhedron smoothing and in shape re�nements through adjustments of control points

and weights. Let us show some sample results. Figure 4 provides polyhedron smoothing examples,

with wireframe polyhedral hulls and Gouroud-shaded trunctets color-coded according to the faces

of the initial polyhedra. Note that objects of complicated topology (genus eight is the bottom

example) are handled easily. In Figure 5, the torus in Figure 4 is re�ned into di�erent shapes through

adjustments of control points/weights. A similar example is given in Figure 6. In all the examples,

the spline surfaces are tangent-plane continuous, but may contain curvature discontinuities.

The shape control scheme we derive does have some limitations when compared to its parametric

surfaces counterparts. First, the movements of our apexes (and, to some extent, the vertices of

P) are subject to the polyhedral hull validity constraints, whereas the control points of parametric

surfaces move freely. Second, the interpolated control points in our system have side e�ects. When

the user moves a vertex xk of P , the constraints for the apexes of all faces incident to xk (and only

these faces) change. If the change of constraints makes an apex violate the polyhedral hull validity

constraints, our system will move this apex to the nearest position where the validity constraints

are satis�ed. The control points of parametric surfaces do not have such side e�ects.

In the control points computation, we have assumed that the existence conditions of polyhedral

hulls are satis�ed for the polyhedron P and its (derived or prescribed) vertex normals. This

assumption holds in most cases { not only for the initial polyhedron but also for polyhedra in shape

B3 13

Figure 5: The torus re�ned into di�erent shapes, with the corresponding control polygons shown

in the left column. Many local shape control operations are combined to modify a half of the torus

(the bottom row) and the entire torus (the top row).

14 B3

Figure 6: Left: The original shape (obtained via polyhedron smoothing). Right: The result of

changing a control point (an apex) and its weight. In contrast to the torus examples, we see a

completely local shape e�ect here.

B3 15

Figure 7: Top left: A polyhedron needing subdivision. Top right: The subdivided polyhedron.

Bottom left: The subdivided polyhedron with a polyhedral hull. Bottom right: The resulting

spline surface.

16 B3

re�nements, if these polyhedra are obtained from the initial polyhedron through small adjustments

of vertices. However, there are cases in which our assumption fails, as is the case with the polyhedron

shown in Figure 7. To handle a polyhedron P of this sort, we have developed a successful heuristic

method. Because the apexes computation veri�es the existence conditions of polyhedral hulls for

each face of P (see Section 3.3), we can use the results of the veri�cation to locate the sharp features

in P that cause the violation of the existence conditions. We remove these sharp features by locally

applying a subdivision surface technique [Loo87]. See Figure 7. Of course, this is a heuristic method

and, like any other heuristic method, can be made to fail on pathological examples.

5 Acknowledgements

I would like to thank Jai Menon for being such a competent collaborator. Many thanks to Brian Wyvill for
sending me his paper on constructive soft geometry and for useful communications. As always, my work
bene�ts a great deal from the stimulating environment of the Dynamic Graphics Project, directed by Eugene
Fiume at the University of Toronto. Colleagues J�org Peters and Henry Moreton kindly supplied test data
for the algorithm presented here. Finally, I am grateful to the National Science Foundation (USA) for a
research fellowship.

B3 17

References

[BC94] C. Bajaj, J. Chen, and G. Xu. Smooth Low Degree Approximations of Polyhedra. Technical Report
TR-94-002, Department of Computer Science, Purdue University, 1994.

[BS93] M. S. Bazaraa, H. D. Sherali, and C. M. Shetty. Nonlinear Programming: Theory and Algorithms.
John Wiley & Sons, 1993.

[DT93] W. Dahmen and T.-M. Thamm-Schaar. Cubicoids: modeling and visualization. Computer Aided

Geometric Design, 10:89-108, 1993.

[Duf92] T. Du�. Interval arithmetic and recursive subdivision for implicit functions and constructive solid
geometry. Computer Graphics, 26(2):131-138, 1992.

[GM95] B. Guo and J. P. Menon. Local shape control for free-form solids in exact CSG representation.
Computer Aided Design, to appear, 1995.

[Guo91] B. Guo. Modeling Arbitrary Smooth Objects with Algebraic Surfaces. PhD thesis, Cornell University,
August 1991.

[HY61] J. G. Hocking and G. S. Young. Topology. Addison-Wesley, 1961.

[Loo87] C. Loop. Smooth Subdivision Surfaces Based on Triangles. M.S. Thesis, Department of Mathematics,
University of Utah, 1987.

[LH74] C. Lawson and R. Hanson. Solving Least Square Problems. Prentice-Hall, 1974.

[MD94] A. E. Middleditch and E. Dimas. Solid models with piecewise algebraic free-form faces. In pro-
ceedings of Set-theoretic Solid Modeling: Techniques and Applications { CSG '94, pages 133-148,
Winchester, UK, 1994.

[Pie89] L. Piegl. Modifying the shape of rational B-splines. Part 2: surfaces. Computer Aided Design,
21(9):538-546, 1989.

[MG96] J. P. Menon and B. Guo. A framework for sculptured solids in exact CSG representation. In
proceedings of Set-theoretic Solid Modeling: Techniques and Applications { CSG '96, Winchester,
UK, 1996.

[Men94] J.P. Menon. Constructive shell representations for free-form surfaces and solids. IEEE Computer

Graphics & Applications, 14(2):24{36, March 1994.

[Sch86] A. Schrijver. Theory of Linear and Integer Programming. John Wiley & Sons, 1986.

[Sed85] T.W. Sederberg. Piecewise algebraic surface patches. Computer Aided Geometric Design, 2:53{59,
1985.

[WVO95] B. Wyvill and K. van Overveld. Constructive \soft" geometry: an uni�cation of CSG and implicit
surfaces. Preprint, Department of Computer Science, University of Calgary, 1995.

18 B3

A Polyhedral Hull Existence

We prove the existence condition of polyhedral hulls stated in Section 4.2. The following theorem is taken
from [Sch86], page 95, (33).

Theorem 1 (Carver) For a matrix A, Ax > b has a solution, if and only if y = 0 is the only solution

for yA = 0; y � b � 0; y � 0.

The feasible apex set AF can be de�ned as follows:

fx j fF � (x� xF) > 0; nk � (x � xk) > 0; vk � (x � xk) > 0; sk � (x � xk) > 0 (k = 1; 2; 3) g

To see when AF is nonempty, we construct a 10� 3 matrix A whose row vectors are nk, vk, sk (k = 1; 2; 3),
and fF . We also construct two ten-component vectors

b = [n1 � x1; n2 � x2; n3 � x3; v1 � x1; v2 � x2; v3 � x3; s1 � x1; s2 � x2; s3 � x3; fF � xF]
y = [a1; a2; a3; b1; b2; b3; c1; c2; c3; d]

An application of Carver's theorem gives the existence condition for simplicial hulls.
Carver's theorem is a variant of the duality theorem of linear programming, which is a linear form

of Kuhn-Tucker conditions. Even though Kuhn-Tucker conditions only became well known through the
historical paper of Kuhn and Tucker in 1951 [BS93], Carver's theorem is part of a much earlier result,
namely, the fundamental theorem of linear inequalities due to Farkas, Minkowski, Caratheodory, and Weyl.
See page 209 of [Sch86] for historical notes. In particular, the connection between the duality theorem of
linear programming and Kuhn-Tucker conditions is discussed on page 220.

B Presentation Slides

 Dual Control Polygons for
Implicit Splines

 Baining Guo
 Department of Computer Science
 York University
Outline

¥ Motivation
¥ Meshing algebraic patches
¥ The dual control polygon scheme
 - constraints on control points
 - computation of control points

 - global and local shape effects
¥ Comparison with NURBS
¥ Main goal: shape manipulation with control
 polygon
¥ Desirable properties
 - local shape control
 - arbitrary topology

 - low-degree patches

 Motivation
 Splines as Finite Elements

¥ A simple example
 y 3 polynomial pieces

 o a b c x
¥ Domain decomposition: domain -> elements

[o c] -> [o a] + [a b] + [b c]
¥ Triangular (2D) and tetrahedral elements (3D)
¥ Problem: polyhedron smoothing
given : a polyhedron P with vertex normals

 find: an interpolative C1 mesh of algebraic
patches, each bounded by a tetrahedron

¥ Solution: construct finite elements on a poly hull

 Meshing Algebraic Patches
 Finite Element Construction

¥ Domain synthesis: tetrahedra -> poly hull
¥ Idea: build a Òthick shellÓ around P

(illustrated with a 2D analogue)

Pinitial polyhedron

Tom Berryhill
Click on the blue area to follow the slides.

¥ First, build face tetrahedra

apex

face tetrahedra
¥ Then, add wedges

¥ Now, finite elements can be adapted from
popular schemes (e. g. Clough-Tocher)

wedges
 Examples of Meshing
 Early Shape Control Methods

¥ Mainly based on apex weight

 apex weight
 - origin: from free parameters in FE
 - effect: patch push/pull
Shape Handles in Poly Hull

¥ Apex weights
¥ Vertices of polyhedral hull
¥ Apex weights only => limited shape effects
¥ Want a more comprehensive scheme
Dual Control Polygon Scheme

¥ Control polygons Òwrapped aroundÓ poly hull

 apex weight

¥ A weight assigned to each control point
- interpolated vertices: weight = infinity
 - changing a weight pulls/pushes a patch

Constraints on Control Points

wedge validity (WV)
 visibility (V)

 tangent containment (TC)

 apex
 Hard Constraints

¥ Non-empty feasible regions for apexes

 TC V VW

 feasible region

polyhedron P

TC V VW

¥ Existence of polyhedral hull
¥ Kuhn-Tucker conditions (for LP)

TC

V

WV
Soft Constraints

¥ Within hard constraints, apexes should best
approximate target locations

polyhedron P

target location
actual location

feasible region

apex
Apex Computation

¥ Linear constraints, quadratic objective
function => least distance program (LDP)

¥ LDP is efficiently computable, based on
Kuhn-Tucker conditions (for QP)

¥ Default target locations
Global and Local Shape Effects

¥ Individual control point/weight (local effect)
¥ Multiple control point/weights (global effect)
 - space warping
 - free-form deformation
¥ Examples
Similarity with NURBS

¥ Effects of control points/weights
¥ The polyhedral hull property (compared to
 the convex hull property)

Differences with NURBS

¥ Control points are subject to constraints
¥ Side effects of interpolated vertices

modifying affects nearby
Poly Hull Existance Revisited

¥ The scheme fails if poly hull doesnÕt exist
 (happens when P has sharp features)
¥ A heuristic cure: subdivide P
¥ Example
Conclusions

¥ Dual control polygons are effective
¥ Efficiently computable
¥ Less flexible than NURBS
Summary

¥ Poly hull synthesis as a key to patch meshing
¥ Hull manipulation using dual control polygon
¥ Hull existence and computation based on
 Kuhn-Tucker conditions

SECTION C

Beyond Low Degree Algebraics

Abstract

Progressing beyond implicit polynomial forms, the third section of

the course will cover several aspects of implicit skeletal methods, in-

cluding tiling techniques, creation of smooth volumes, bulge avoidance,

blending volumes with surfaces, direct CSG ray tracing, animation

design including space warping and metamorphosis, and surface and

solid texturing. This section will then show how common fractal rep-

resentations of rough surfaces can be reformulated into an implicit

de�nition. A new geometric rendering technique called sphere trac-

ing, that properly renders rough implicit surfaces, will be described.

Given the rough implicit surface model, the course will show how

many of the geometry processing operations applied to smooth surfaces

for computer-aided geometric design now extend to rough surfaces for

modeling natural phenomena, with an example of grafting a stem on a

leaf and merging a tree bark texture at a branch point. Switching the

focus to interactive rendering, a new technique based on gradient dy-

namical systems, that maintains correct topology of implicit surfaces

during direct manipulation, will be discussed for fast computation of

a polygonal representation of the implicit surface.

}

Tiling Techniques for Implicit Skeletal Models

Brian Wyvill and Kees van Overveld�

Abstract

An overview of implicit surface polygonization (tiling) techniques is presented and details of
two algorithms; uniform space subdivision and Shrinkwrap. The former performs well on gener-
alised skeletal data although it is non-adaptive. The latter is a fast adaptive surface following
technique which is limited to single sheet surfaces. A description is given of an extension to the
uniform algorithm which includes CSG operations between groups of blended primitives.

1 Introduction

Visualizing implicit surfaces is not straightforward. Traditional modelling methods such as para-

metric surfaces lend themselves to visualization since it is easy to iterate over points on the surface

which can be found directly from the de�ning equations. Implicit surface models (ISM's) are de�ned

by black box functions from which a value can be calculated for any point in space a scalar �eld.

The model is de�ned by an iso-surface in the �eld. Two main visualization methods are available,

direct visualization (i.e. ray tracing) and polygonization in which the surface is approximated by a

mesh of planar polygons. These methods involve sampling space at some chosen points, evaluating

a function to �nd a scalar value at that point and comparing the value to the iso-value to determine

if the point is inside or outside the surface.

There are two main approaches to solving the space search problem:

1. Space Partioning. Partioning space into manageable units such as cubes.

2. Non-space Partioning. The Shrinkwrap Algorithm.

In practice a designer wants to visualize an Implicit Surface Model (ISM) quickly, sacri�cing

quality for speed for interaction purposes. Algorithms for prototyping ISM's have been concerned

with producing a polygon mesh which can be rendered in real time on modern workstations. Finding

the polygonal mesh which best approximates the desired surface is referred to as polygonization or

surface tiling. For animation or for a �nal visualization where quality can be traded for speed ray

tracing implicit surfaces directly without �rst polygonizing produces excellent results. (See chapter

on ray tracing.)

For a detailed review of these techniques see [15] and [9].

2 Space Partioning

2.1 Exhaustive Search

A �rst approach to �nding the implicit surface might be to uniformaly subdivide space into a

regular lattice of cubic cells and calculate a value for every vertex (see [11]). Each cell is replaced

with a set of polygons that best approximates the part of the surface contained within that cell.

2 C1

The problem with this algorithm is that many of the cells will be completely outside or completely

inside the volume, thus many cells that contain no part of the surface are processed. For large grids

of data this can be very time consuming.

3 A Practical Method

The method described here is based on the data structures used in [22], with the addition of table

driven polygonization and tetrahedral decomposition. Working software was published in Graphics

Gems IV [2]. The algorithm is based on numerical continuation; it starts with a seed cube which

intersects part of the surface and builds neighboring cubes as necessary to follow the surface.

The algorithm has two parts. In the �rst, cubic cells are found that contain the surface, and, in

the second, each of these cells are replaced by triangles. The �rst part of the algorithm is driven by

a queue of cubic cells, each of which contains part of the surface; the second part of the algorithm

is table driven.

3.1 Continuation Algorithm

This algorithm subdivides space into a cubic lattice. Cubes that are examined by the algorithm

are stored in a hash table; initially the table is empty. The algorithm starts from a seed cube that

is found to contain part of the surface. The neighbors of the seed cube are examined. If any edge

has vertex values which are opposite in sign, then the surface cuts that edge. The cube containing

that edge will then be processed and all its neighbors and so on until the entire surface has been

covered. See �gure 1.

Each cube is indexed by an identifying vertex, which we de�ne to be the lower, left, far corner

(i.e. the vertex with the least x,y,z coordinate values; see Figure 2). The identifying vertex is

addressed by an integer i; j; k , computed from the x; y; z coordinate location of the cube such that

x = side � i etc. where side is the size of the cube. The identifying vertex of each cube may appear

in as many as eight other cubes, and it would be ine�cient to store these vertices multiple times.

Thus, the vertices are stored uniquely in a chained hash table.

Since most of the space does not contain any part of the surface, only those cubes which are

visited will be stored. The implicit function value is found for each vertex as it is stored in the

hash table.

Since the surfaces we deal with are closed, at some point a cube will be re-visited. It is necessary

to keep track of which cubes have already been processed. This could be done by keeping a separate

cube table, however, for space e�ciency a Boolean is stored in the hash table to indicate that the

cube indexed by the inentifying vertex has been visited.

To process a cube we examine each face. If any of the bounding edges have oppositely signed

vertices the surface will pass through that face and the face neighbour must be processed. When

this process has been competed for all the faces, the second phase of the algorithm is applied to

the cube.

3.1.1 Data Structures

The Hash Table entry holds �ve values:

� i; j; k lattice indices of the identifying vertex.

� f implicit function value of the identifying vertex.

C1 3

Surface Skeleton Voxel

-

+

Figure 1: A section through the cubic lattice

0 1

2 3

4 5

6 7

Top

Front

Right

0
1
2
3
4
5
6
7

00000001
00000010
00000100
00001000
00010000
00100000
01000000
10000000

0
01
010
011
100
101
110
111

Vertex If (+)

Figure 2: Cubic Cell Vertex Numbering

4 C1

begin
Set seed cube’s done flag to true
Add seed cube to the queue.
while queue is not empty do
begin

remove one cube from the queue
for each face of cube do
begin if surface intesects face then

begin select neighbour cube for that face
if neighbours done flag is not true then
begin set neighbours done flag to true

add neighbour to queue
end

end
end
Pass cube to second stage

end
end

Figure 3: Continuation Method Algorithm

� Boolean to indicate whether this cube has been visited.

The hash function computes an address in the hash table by selecting a few bits out of each of i; j; k

and ORing them together. For example, the 5 least signi�cant bits to produce a 15 bit address for

a table which must have a length of 215. (Speci�c details are given in Graphics Gems IV [2] and

[22]).

The Queue (FIFO list) is used as temporary storage to identify the neighbors for processing

(others have used a stack (LIFO list) although there is some evidence that the queue processes the

cubes in a more memory e�cient order). The algorithm begins with a seed cube that is marked

as visited and placed on the queue. The �rst cube on the queue is dequeued and all its unvisited

neighbors added to the queue. Each cube is processed and if it contains part of the surface output

to the second phase of the algorithm. The queue is then processed until empty. The continuation

algorithm proceeds as indicated in pseudo code see 3.

3.2 Polygonization Algorithm

The second phase of the algorithm treats each cubic cell independently. The cell is replaced by

a set of triangles that best matches the shape of the part of the surface that passes through the

cell. The algorithm must decide how to polygonise the cell given the implicit function values at

each vertex. These values will be positive or negative (ie less than or greater than the iso-value)

giving 256 combinations of positive or negative vertices for the eight vertices of the cube. Earlier

methods employed a table of 256 entries which provided the right vertices to use in each triangle

�gure 4. However this leads to ambiguities when opposite corners of a face (or the cube) have the

same sign and the other pair of vertices on the face the opposite sign (see Figure 5). This problem

is avoided by subdividing the cubic cell into tetrahedra. The tetrahedra can then be polygonized

unambiguously. Since there are four vertices in each tetrahedron, a table of sixteen entries will

provide the correct triangle information.

C1 5

0

1

2

3

255

254

253

252

Table 1 Table 2

1

3

No. of Polygons

V1

V2

V1

V2

V1

V2

No. of Edges

Polygon vertex
 numbers

Figure 4: Continuation Method Tables

+

-
-

-

-

-

-

+

-
-

-

-

+

-

-

-

-

-

++

-

-

-

-

-

+

-
+

-

+

Figure 5: Polygonization Given Cube Vertices

6 C1

Figure 6: Decomposing a cube into 5 or 6 tetrahedra

3.2.1 Subdividing a Cube

Without requiring additional cell vertices a cube may be decomposed into �ve [16] or six [7] tetra-

hedra as shown in Figure 6. These decompositions introduce diagonals on the cube faces, thus

determining the resulting face contours. The introduction of diaganol edges produces a higher

resolution surface compared with replacing each cube directly with triangles. However, the decom-

position into tetrahedra and the replacement of the tetrahedra with triangles are fast, table driven

algorithms which produce topologically consistent meshes.

3.3 Cell Polygonization

Two obvious problems emerge from the use of uniform space subdivision. The size of triangles

output by this algorithm do not adapt to the curvature of the surface and there are ambiguities

in the second part of the algorithm where cubic cells are replaced by polygons. A space sudivision

algorithm based on an octree was published in [1] which does adapt to the curvature of the surface.

Cells are subdivided into eight octants and cracks are avoided by using a restricted octree scheme,

i.e. neighbouring cells cannot di�ere by more than one level of subdivision. This indeed reduces

the amount of polygons generated, but full advantage of large cells can only be taken if the
at

regions of the surface happen to fall entirely within the appropriate octants. The algorithm proves

in practice to be considerably slower than the uniform voxel algorithm [22], and is very complicated

to implement. In [10] a method of decomposing cubic cells into �ve tetrahedra is described which

avoids some of the ambiguity problems. It should be made clear that a spatial grid stores a sample

of the implicit function at every vertex. If the function happens to vary considerably within a cell

the polygonal representation will not show such variations.

C1 7

4 Shrinkwrap

Most currently existing techniques for the polygonisation of iso-surfaces are based on data structures

that allow spatial indexing: either a voxel-based structure ([1]) or the hash-table structure of ([22])

may be used.

Some inherent disadvantages of these data structures exist:

First, the data structure comprises a partitioning of the space rather a tesselation of the surfaces

to be polygonalised. Especially in the case of animation (e.g. in the computer animation "The

great train rubbery", [19]), this is likely to cause geometric artefacts that are �xed with respect to

space, thus moving in an incoherent way over every moving surface.

Second, there is an apparent mismatch between the number of triangles that is generated by

these algorithms and the complexity of the surface that is approximated: even relatively smooth

and
at segments of an iso-surface usually result in large amounts of facets.

Third the ambiguious cases mentioned earlier in the case of cubic lattice methods.

In this work, a di�erent approach to the tesselation of a class of iso-surfaces is taken. This class

is de�ned in 4.2. The proposed approach is adaptive to the local behavior of the surface rather

than being imposed by an octtree with a priori de�ned cutting planes; this causes the tesselation

to move along with the surface in the case of (smooth) animations.

4.1 An algorithm to arrive at an adaptive triangulation for an iso-surface

First we de�ne the class of iso-surfaces for which our algorithm should produce triangulations. Next

the algorithm, together with an intuitive motivation are given, and some aspects are discussed in

further detail .

4.2 The de�nition of the iso-surface

An iso-surface is the collection of points r 2 IR
3 such

that a given function V (r) = V0. We consider the class of functions V where V (r) =
P

i
�i

jr�Rij
.

The summation over i indicates that the function is composed of a number of components with

relative strength (weight) �i. Components can be thought to be generated by di�erent types of

geometric primitives: points, line segments or convex polygons.

If a component is generated by a point, then Ri is the location of this point, and the set
�i

jr�Rij
= V0 designates a sphere with radius �i=V0 round Ri.

The element can also be a line segment, say ab. In that case Ri depends on r; Ri is the projection

of r onto ab and the set �i
jr�Rij

= V0 designates a cylinder with hemi-spherical caps with radius

�i=V0 and ab as the axis.

Similarly, elements can be triangles or other convex polygons in which case a projection of r

onto that polygon has to take place in order to obtain Ri. In these cases the designated surface is

an o�set surface of the original polygon with cylindrically rounded edges. Another way to envisage

the designated surface is as the Minkowsky sum of a sphere with radius �i=V0 and the geometric

object (point, line segment or convex polygon).

The collection of points, line segments and convex polygons that de�ne V (r) is called the

skeleton ; each geometric object in the skeleton is called a skeleton element.

The addition of the several components results in an iso-surface which is a smoothly blended

union of the several iso-surfaces associated with the individual skeleton elements.

8 C1

Figure 7: Implicit Contours

4.3 Intuitive introduction to the shrinkwrap algorithm

The basic idea that underlies the algorithm is that the iso-surface is to be sampled with su�cient

density in order to capture all shape detail; further, that these samples are connected by edges to

form a triangular mesh. In voxel-based methods, such edges result from intersecting the surface with

voxel boundaries, and hence their directions all lay in one of three orthogonal planes (the XY, YZ

or ZX planes of some world coordinate system). These directions have no apparent relations with

the iso-surface, and therefore many unnecessarily short edges, and consequently, small triangles,

result. In the algorithm proposed here, the edges should adjust themselves to the shape of the

surface. This means that e.g. in a cylindrical part of the surface, there should be relatively long

edges directed more or less along the axis of the cylinder and relatively short edges in directions

perpendicular to the axis. This allows for an adaptive triangulation. In order to let edges gradually

adjust themselves to the shape of the surface an iterative approach is adopted where the surface

develops in several steps from a sphere to the �nal shape. The original shape (a sphere) has uniform

curvature, and hence adaptivity plays no role there; the triangulation of a sphere in order to achieve

an initial estimate for the mesh topology is simple. There are two natural ways to have an iso-

surface develop itself from a sphere: One method operates by �rst collapsing the entire skeleton into

a point and gradually expanding back ("in
ating") to the desired skeleton geometry. The second

method ("shrinking"), which allows a slightly simpler mathematical analysis, and which will be

chosen therefore for our algorithm, is based on the following observation.

Figure 7 depicts a 2-dimensional cross section through a distribution of some point skeleton

elements; colors indicate the function value V (r) in a point. The iso-contour we are interested in

C1 9

is at the boundary between the yellow and the magenta regions. We observe that iso-surfaces

fr 2 IR
3
j
X

i

�i

jr �Rij
= V0g

with V0 < 1 have a shape which is less involved, whereas iso-surfaces with V0 > 1 are more involved.

An extreme case of the �rst example is V0 = 0, which produces a sphere with an in�nitely large

radius.

So an algorithm could start by setting V0 to a value close to 0, and providing a triangulation

for the resulting sphere. This triangulation should consist of approximately equilateral triangles,

since the curvature is the same anywhere.

Next the value of V0 should be increased, in a number of steps, and with each step the surface

shrinks a bit towards its �nal shape and size. With every shrink step, the vertices of the trian-

gulation should move towards the new surface. This is discussed in section 4.4. Also, in order to

meet with accuracy requirements it might be necessary to split edges and triangles. But we note

that edges and triangles are only split when necessary, so there should be fewer unnecessarily small

triangles at the end of the porcess than with voxel-based methods.

Of course, this gradually shrinking of the triangulation will only work as long as the topological

structure of the surface stays equivalent (homeomorphic) to the sphere that we start with. Details

of the proposed technique to deal with topological changes (ruptures and holes) is currently being

prepared.

4.4 getting the vertices onto the surface

Using the stepwise approach, and assuming the di�erence in iso-values V0 from one step to the next

su�ciently small1, a Newton-Raphson method is used to displace vertices. So we make use of a �rst

order Taylor expansion to compute a �rst estimate for the new location of a vertex when increasing

V0 to V0+�V , and, when necessary, iterate. Assume r is on the V = V0 surface: V (r) = V0. Next

we look for a new location, r + �, such that

V (r + �) = V0 +�V:

Taylor expansion round � = 0 gives:

V (r + �) = V (r) + (� � rV (r)) +O(j�j2) = V0 +�V;

or

�V � (� � rV (r)):

Of course, this does not tell us in which direction the step � should be taken. A reasonable choice

seems to be to set

� = �rV (r)

which gives

� =
�V

(rV (r) � rV (r))
:

So the new location is

r +
�VrV (r)

(rV (r) � rV (r))
(1)

1
and assuming that no topological changes occur between this step and the next

10 C1

4.5 The shrinkwrap algorithm

We are now able to write down the total shrinkwrap algorithm. Vertices are de�ned as tuples

(r;E; V; d) 2 IR
3
� IR

3
� IR� IR

3; the r-attribute is the location; E is the gradient rV (r); V is the

value of the function V (r), and d is the displacement vector that should apply to this vertex in

order to get it to the surface with next higher iso-value.

Edges contain two references e1 and e2 to the vertices in the extremes, and two references to

the two adjacent triangles. Furthermore, an edge has a boolean n to indicate if it is non-acceptable

(the acceptability of an edge is discussed in [18]) for now it su�ces to observe that edges should

be in some way close to the underlying surface in order to make quantitative statements about the

accuracy of the triangulation; this can be obtained by splitting edges that are non-acceptable).

The di�erence �V is an entire fraction of V0, say �V = V0=Nsteps, and for V0 the value V0 = 1

will be used. When using this convention, the interpretation of

the value �i is simply "the radius of the o�set surface if component i was the only one skeleton

element".

The issue of the number of steps Nsteps in relation to the robustness of the algorithm is discussed

in a report which may be obtained from the authors.

Initially, the set of vertices consists of the vertices in the initial object (a triangulated sphere

with more or less equilateral triangles); this object is assumed to be su�ciently large to be outside

the entire iso-surface even for iso-value V0 = 1=Nsteps. All vertices v have v:V = 0; v:E is pointing

radially outwards, and v:d is proportional to v:E=(v:E � v:E) (as derived in 4.4).

4.6 How to split edges

We have not de�ned yet what an acceptable edge is. For now it su�ces to state that an acceptable

edge should be short enough so that the surface cannot bend away too much between the two

extremes of the edge. Conversely, an unacceptable edge is an edge which is too long. So we see

that the remedy to an unacceptable edge is to split it, and to make sure that the new midpoint is

again on the iso-surface. (for details see [18]).

A naive way to do so is depicted in the left column of �gure 8 (a-d). The original edge is A�B1

in �gure 8-a; M1 = (A+B1)=2.

The array of dotted curves indicate the direction of the gradient of the function V (r) in the

neighbourhood of the iso-surface; the thick curve represents the iso-surface proper. If we move the

point M1 in accordance with the local gradient, we arrive in M 0

1
, as indicated by the dash-dotted

arrow. Note that although M 0

1 will be close to the surface, since we only use a linear approxi-

mation for V = V (r), it will not lie on the surface in general. In order to get it closer to the surface,

we have to iterate. Now M 0

1 will be a new vertex. The edge M 0

1 �B1 is very likely acceptable, but

it may be much shorter than needed. On the other hand, A�M 0

1 is probably still unacceptable. As

shown in �gure 8-b, we therefore have to repeat the process on edge A�B2 (B2 is the M
0

1 from the

previous phase), which yields M 0

2. As a result, we end up with a series of unnecessary short edges,

as depicted in �gure 8-d. The main cause for this unfortunate behaviour is that we use information

about the geometry of the function V (r) and its gradients in the points M1, M2, M3,, which

are possibly far from the surface. Evaluating the gradients in these points may yield misleading

information on the geometry of the iso-surface, causing a slow convergence and many unnecessary

short edges.

A more e�cient splitting strategy therefore should make use of reliable information only, that is

information in points that are already on the surface. In �gure 8-e, the same con�guration is shown

as in �gure 8-a. The dashed thick curve is a curve which passes through the extremes A and B

C1 11

A

A

A

B

B

B

B

B
B

M

M

M

1
1

1

1

2

2

2
3

3

A B

A B

A B

B
B

M

1

2
34

B4

M

M’

M’

M’

1

2

3

M’

C

n n
A B

a.1st subdivision

b.2nd subdivision

c.3rd subdivision

d.4th subdivision

e.subdivision using curve AMB

f. subdivision using curve AMC

M

M’

nC

12 C1

and is perpendicular to the normal vectors nA and nB, respectively. Moreover, it is the smoothest

curve with these properties. This curve serves to approximate a curve that lies in the iso-surface

V (r) = V0 through A and B, i.e. the thick solid curve in the �gure. Based on the dashed thick

curve, we propose point M , i.e. its parametric midpoint as a next point to evaluate the function's

gradient. Point M in �gure 8-e is likely to be closer to the iso-surface than M1 in �gure 8-a, so the

gradient computed in M is likely to be more adequate to get acceptable edges than the gradient in

M1. In this case, M � B already might be acceptable (the edge C �B in �gure 8-f); A�M (the

edge A� C in �gure 8-f) might need one more subdivision as depicted in �gure 8-f.

4.7 How to split triangles

In case one or more edges are unacceptable, they have to be split. Figure 9 shows a splitting scheme

which illustrates how a triangle can be subdivided into smaller triangles. In the top row one of the

edges is subdivided; the bottom row shows the case of three subdivided edges. In the case of two

subdivided edges, two possible schemes exist; in case jMAC � Bj < jMBC � Aj we choose the �rst

alternative; otherwise we choose the second one.

4.8 Remarks

The described algorithm has been implemented. In Figure 10, its qualitative behaviour is depicted:

while increasing V0 in 9 steps from 0.1 to 1.0, we see a penguin emerge from what starts of as a

feature-less large spherical shape. Note how gradually the details become visible, �rst the most

protruded ones (for this reason we equipped the penguin with an oversized bill), later on the more

subtle ones. Figure 11 shows the �nal object together with the triangle mesh. Here, the adaptiveness

of the algorithm is clearly visible, e.g. the bill consists of mostly very slender triangles, whereas

in the spherical part of the head we �nd more obtuse ones. Also, in the concave regions, having a

relatively high curvature, the triangle mesh has a much higher resolution than elsewhere.

The algorithm is adaptive and performs well compared with the uniform voxel algorithm. A

disadvantage of this algorithm, is that it can only cope with a single closed surface without holes.

However, an extension of this approach has been devised to solve this problem and will be available

shortly. Further details concerning the algorithm and the robustness of this approach are available

from the authors.

C1 13A
A

A A A

A A

B B

B B B

B B

C

C

C C

C

C

C

M
AC

M
AC

M
AC

M
AC

M
AC

M
AC

M
AC

MBC
MBC

MBC

MBC
MBC

OR

MAB

MAB

Figure 9: The triangle subdivision scheme

14 C1

Figure 10: Shrinkwrapping a penguin

C1 15

Figure 11: Penguin showing adaptive mesh

16 C1

5 Tiling CSG

Constructive Solid Geometry (CSG; [17], [12]) is a techniques that has been used to construct a

wide variety of non-trivial geometric objects. Due to the di�erence in nature from implicit surface

modelling, the application �elds of the two methods appears to be quite di�erent. An an algorithm

that combines these approaches. An earlier system that also combines CSG and implicit surface

objects was developed by Geo� Wyvill [21], using ray tracing to both traverse the CSG tree and

render the objects. In this work our approach is quite di�erent in that we do not use ray tracing,

instead we have developed a polygonizing algorithm to facilitate fast rendering and improve the

design cycle of such objects. The primitives in standard CSG, are a limited set of closed geometric

objects such as the sphere, cone, torus etc. Extended versions can also support primitives bounded

by free form surfaces, sweep surfaces, or other deformed primitives ([5], [8]).

Implicit surface systems also employ geometric primitives, known as skeletal elements, ([3]).

Skeletal elements are point sets that allow easy computation of a distance to a given point in

3-space.

Junctions in the boundary between surface fragments of di�erent CSG primitives are generally

not C1. It requires special primitives to obtain smooth blends ([13]). Alternatively, �lleting and

rounding operations may apply to the boundary representation of the CSG-object ([4]).

The implicit functions used in ISM that give rise to the resultant iso-surface are in general

di�erentiable everywhere in 3-space, so the surface is smooth everywhere. Since there is no notion

of explicitly represented junctions in ISM, it is not possible to get non-C1 boundaries anywhere.

(See however [6]).

CSG and implicit surface systems are similar in that the underlying model description has to

be visualized. There are two basic approaches for each type of representation:

� For CSG systems, �nd a boundary representation (b-rep) and render the model as boundary

fragments (mostly converted to polygon meshes), or alternatively, the object may be ray

traced while the CSG-expression evaluation takes place for each ray while being traced ([8]).

� An implicit iso-surface, once polygonized, is just a polygon mesh that can be rendered as

it stands. Alternatively, it may be rendered directly via ray tracing. Although this is often

too computationally expensive for many applications, it has been demonstrated that CSG-

type boolean combinations of several iso-surfaces can be obtained by evaluating the boolean

expressions along with the ray intersections in a manner similar to standard CSG [21].

Geometric primitives are complete ISM's, so a virtually unlimited variety of primitives is avail-

able. Next these primitives are assembled via the usual CSG-type boolean constructors. The

skeletal elements within one ISM primitive blend smoothly, so there are no visible non-C1 junc-

tions within those elements. On the other hand, two ISM primitives are combined in the CSG-sense,

and hence a visible junction arises there. So both types of junctions are supported within one sur-

face representation scheme. When ray tracing is employed for ISM's, CSG-type operations can be

berformed on-the-
y where the operands are individual ISM's [21], but ray tracing is computation-

ally expensive. On the other hand, when all ISM's are polygonized �rst, then CSG-type operations

can be performed afterwards on the resulting polygon meshes ([14]), since they are closed manifolds,

but this has a high complexity in terms of the number of triangles in the meshes involved: the fully

triangulated meshes of all input ISM's have to be available, even if a given ISM only contributes

for a small fraction of its surface. Also, this strategy cannot be used if one the participating CSG-

primitives (ISM's) is unbounded, as for instance when intersecting with a planar half space in order

to 'cut an object in half'. In the algorithm described we perform the CSG-operations on-the-
y

C1 17

!!
!!

!!
!!

!
!

!
!

!!
!!

!
!

!
!

@

Figure 12: A cubic voxel intersected by an iso-surface.

while polygonizing the resulting surface. This means that the complexity is linear in the number

of triangles of the resulting surface only, even if some of the contributing ISM's would have given

rise to much larger triangular meshes.

An example of combining an implicit surface model (ISM) and a CSG model is shown in �g. 12

spheres smoothly blend together di�erence operations are used to remove three blended cylinders,

a fourth cylinder is joined by union and the result is intersected with a plane. The ISM cylinder

primitive has hemispherical ends.

5.1 Voxel-based CSG-operations

Given a scalar �eld function f = f(x; y; z), the Uniform voxel Subdivision Algorithm of [22] es-

timates intersections of the iso-surface f(x; y; z)jf(x; y; z) = 0g, to be polygonized, with the 12

edges of a cubic voxel, on the basis of the f(xc; yc; zc) values, c = 0; � � � ; 7, in the 8 corner vertices

(xc; yc; zc) of that voxel. See �gure 12

Here, the front lower left corner vertex (solid circle) has f > 0 whereas the other corner vertices

(open circles) have f < 0. A vertex with f > 0 classi�es 'in' with respect to the iso-surface and a

vertex with f < 0 classi�es 'out'. In the case where an intersection of that edge with the iso-surface

exists, the extreme vertices of a voxel edge are classi�ed di�erently. Cases where an edge contains

one intersection are indistinguishable from cases where there are any odd number of intersections.

Similarly, the occurrence of an even number of intersections goes unnoticed.

In order to generalize towards CSG-expressions in iso-surfaces, we assume that instead of a

scalar function f(x; y; z), we have an n� component vector function fj(x; y; z); j = 0; � � � ; n � 1.

Each of the components fj gives rise to its own iso-surface, each iso-surface can be seen as the

boundary of one ISM primitive. The resulting BCSO surface has to be constructed such as to

bound the appropriate CSG-expression in each of the ISM primitives. In the sequel, the CSG-

operations are denoted as DIFF , UNION , and INTSCT , for di�erence, union, and intersection,

respectively. The arguments of these operators will be either numbers of ISM primitives (the above

j) or other CSG-operations.

In order to see how this works out, we study a 2-D version �rst (see �gure 13). Here C1 and

C2 are two iso-value contours that both intersect voxel edge A-B. They give rise to (estimated)

intersections p1 and p2, respectively. Suppose C1 is the boundary of ISM primitive 1 whereas C2

18 C1

B

C
C

2
1

A

BA
outin

inout

out in

object 1:

object 2:

DIFF(1,2)

p
1

p
1

p
2

p
2

p
2

Figure 13: Using vector functions to represent several ISM objects at once.

bounds ISM primitive 2, and we want to polygonize the boundary of the object DIFF (1; 2). It

can be seen from �g. 13 that p2 is the relevant intersection of the two.

In general, we observe that depending on the in- or out-classi�cations of each of the components

fj in A and B we can determine, for each of the operators DIFF , UNION , INTSCT , which of the

intersections is the relevant one. Note that there does not always have to be a relevant intersection:

if the resulting BCSO iso-surface does not pass through the edge AB, the 'relevant intersection' is

not de�ned. This information can be stored in a sixteen entry table providing an exhaustive list of

all possible in- and out-cases for two participating objects i and j (see [20])

Based on the table and on a straightforward binary tree-representation of the boolean expression,

an algorithm to compute the intersection point and in=out classi�cation of the resulting surface,

given the intersection points and in=out-classi�cations of the n ISM primitives, is readily obtained.

In ANSI-C, it reads as follows:

typedef struct B_EXP {

char kind; /* the kind of this operator node u,i,d or n for union,

* intersection, difference or primitive number */

int n; /* if kind=='n', the value of the primitive number */

struct B_EXP *se1, *se2;

/* if kind!='n', the first and second sub-expressions */

} B_EXP;

typedef struct {

int A_in,B_in;/* two booleans that indicate if the two

* extremes are inside */

float p; /* a number between 0 and 1, defined if (A_in!=B_in)

* indicating the relative position of

* the surface intersection */

}SEGMENT;

C1 19

x

x@@
@@

n2

p
2

p
12

p
1

n1

C2

C1
12n

c2

c1

n2

n1

p12

Figure 14: Approximating the intersection of two implicit contours

SEGMENT combine(SEGMENT s[],B_EXP *e) {

SEGMENT rs,ss1,ss2; /* if the expression is an operator,

* ss1(2) are its operands */

if(e->kind=='n') {

rs=s[e->n];

return rs;

}

ss1=combine(s,e->se1);

ss2=combine(s,e->se2);

switch(e->kind) {

case 'u':rs=form_union(&ss1,&ss2);break;

case 'i':rs=form_intersection(&ss1,&ss2);break;

case 'd':rs=form_difference(&ss1,&ss2);break;

}

return rs;

}

The functions form union(), form intersection(), and form di�erence() implement the instruc-

tions in the table. Before a call to combine is made, the caller has to set up the array s[] of segments,

one segment for each of the ISM primitives. This means that for each of the primitives the inter-

section point with the current voxel edge has to be computed, as well as the in=out classi�cation

for that primitive in both extremes of the voxel edge. The segment that is returned by combine()

contains the intersection of the resulting boundary surface of the BCSO-object with the current

voxel edge (if it exists), as well as the in=out classi�cation in both extremes of this edge.

So an existing implementation of the uniform voxel space-subdivision algorithm can be easily

extended by replacing the computation of the intersection by a loop that computes the intersections

for all ISM surfaces, and next perform a call to combine() to have the intersection with the resulting

surface computed.

5.2 Arriving at non-smooth edges

20 C1

Figure 15: Wheel before and after postprocessing.

Unlike implicit blends, CSG operations should result in sharp contours between primitives. Again

we �rst study the problem in 2-D. Consider �g. 14. Here we have again the con�guration that

two iso-value contours, C1 and C2 intersect. The intersection point is x = (x; y; z), but this is of

course a priori unknown and we should try to �nd an approximation to it. Suppose that the CSG-

expression is DIFF (2; 1) where the interior region associated with curve C1 is on the left of C1

and the interior region associated with C2 is on the right of C2. Then the combine()-function from

Section 2 results in the two relevant intersections between the resulting contour and the voxel edges

p1 and p2, respectively. Following the uniform algorithm for inferring the contour from intersection

points, we would obtain the dashed line p1p2 as a segment of the contour. Since this is quite far

from the actual intersection point, the non-C1 junction is not very well reproduced. Instead we

observe that we should �nd an estimate for x such that f1(x) = f2(x) = 0 where f1 and f2 are the

scalar �eld functions for the two ISM primitives with contours C1 and C2, respectively. Assuming

we have a starting point which is not too far o�, say p12 =
p
1
+p

2

2
, we can apply �rst order Taylor

expansion to the di�erence n12 = x�p12. (see [20]for details) Figure 15 shows a wheel model before

and after the application of the edge enhancement described above. This image clearly shows the

improvement to the edges of the model with the additional polygons.

The image shows a wheel built from 14 BCSO primitives. These are combined to form seven

ISM's. For example, the seven spokes are blended together with the outer torus to form a single

ISM. Intersecting half planes are used to
atten the front and back and a di�erence operation was

used to subtract a torus from the
attened surface to form the decorative groove. The colours have

been chosen to illustrate the separate ISM's.

The co�ee grinder was constructed from 15 ISM's, composed of some 25 primitives. The table

and mirror frame were also modelled using BCSO's. Our polygonizer took about 1 minute on an

SGI Indy to convert the primitive description and boolean expression to about 1.5 million triangles.

There are 37 BCSO primitives in the co�ee grinder (14 blending groups), 17 primitives in the table

(10 blending groups) and 19 primitives in the mirror (16 blending groups). The polygonal scene

was ray traced.

C1 21

Figure 16: The Canmore co�ee grinder and friends.

22 C1

5.3 Building the Piano

An example of a more sophisticated BCSO object is shown in Figure 17 The piano body is made

from two cylinders, with a half space parametric curve subtracted from it. A piecewise planar

parametric cubic curve is de�ned along with an up direction and a normal in the plane of the curve

which points towards the positive side of the primitive. The curve is extruded in the up direction,

for example to form the curved side of the piano case. To extend the extruded piecewise curve

so that it forms a half space, a planar extension is added at each end. Each plane has the same

up as the curve and is de�ned by the last or �rst two control points along the curve. The piano

was designed using the polygoniser to prototype the model, it is a scale model of a 9ft. Steinway

Concert Grand. Figure 18 shows a diagramatic representation of a 2D slice through the primitives

that make up the piano body including the parametric curve. Two large cylinders form the basis for

the piano, the curve is subtracted to form the body. A smaller version of the body was also built and

subtracted from the outer body to give the side walls. The piano demonstrates blended primitives

as in the piano legs and pedals, and non-blended as in the keyboard. The plant in �gure 17 is not

a BCSO model but is de�ned by an L-system designed by Dr. Przemek Prusinkiwicz and Mark

Hammel at the University of Calgary.

C1 23

Figure 17: Model of Camille a Steinway Concert Grand

24 C1

Cylinders form the basis for the body

Parametric bounding curve

bounding planes

77777777777
77777777777
77777777777
77777777777
77777777777
77777777777
77777777777
77777777777
77777777777
77777777777
77777777777
77777777777
77777777777

Figure 18: Building the piano

C1 25

6 Acknowledgements

We would also like to thank Jules Bloomenthal for his encouragement and ideas over the years and for some
of the material which is part of a collaborative e�ort which will result in a book. We are particularly in debt
to Geo� Wyvill, who started the whole thing o� by solving a problem in scienti�c visualization, the solution
to which turned out to be so useful for building models. Thanks also to the Ban� Centre for Fine Arts for
letting Brian take accurate measurements of Camille, a Hamburg Steinway concert grand piano. We would
also like to thank the many students who have contributed so greatly to this research over the years.

This work is partially supported by the Natural Sciences and Engineering Research Council of Canada
in the form of a research grant and equipment grants.

26 C1

References

[1] Jules Bloomenthal. Polygonisation of Implicit Surfaces. Computer Aided Geometric Design, 4(5):341{
355, 1988.

[2] Jules Bloomenthal. An Implicit Surface Polygonizer. Graphics Gems IV, pages 324{349, 1994. Edited
by paul Heckbert.

[3] Jules Bloomenthal and Brian Wyvill. Interactive Techniques for Implicit Modeling. Computer Graphics,
24(2):109{116, 1990.

[4] H. Chiokura and F. Kimura. Design of Solids with Free Form Surfaces. Computer Graphics (Proc.

SIGGRAPH 83), 17(3):289{296, July 1983.

[5] G.A. Crocker and W.F. Rainke. Boundary evaluation of non-convex primitives to produce parametric
trimmed surfaces. Computer Graphics (Proc. SIGGRAPH 87), 21(4):129{136, July 1987.

[6] Marie-Paule Gascuel. An Implicit Formulation for Precise Contact Modeling Between Flexible Solids.
Computer Graphics (Proc. SIGGRAPH 93), pages 313{320, August 1993.

[7] G.M.Nielson, T.A.Foley, B.Hammann, and D.Lane. Visualizing and Modeling Scattered Multivariate
Data. IEEE Computer Graphcis and Applications, 11(3):47{55, May 1991.

[8] F.W Jansen. Solid Modeling with Faceted Primitives. PhD thesis, Delft University of Technology,
Netherlands, September 1987.

[9] A.D. Kalvin. A Survey of Algorithms for Constructing Surfaces from 3D Volume Data. Research Report,
January 1992. RC 17600 (#77606).

[10] A. Koide and K. Kajioka. Polyhedral approximation approach to molecular orbital graphics. Journal
of Molecular Graphics, 4(3), September 1986.

[11] W. Lorensen and H. Cline. Marching Cubes: A High Resolution 3D Surface Construction Algorithm.
Computer Graphics (Proc. SIGGRAPH 87), 21(4):163{169, 1987.

[12] Martti Mantyla. An Introduction to Solid Modeling. Computer Science Press, Rockville, Maryland
20850, 1988.

[13] A. Middleditch and K. Sears. Blend Surfaces for Set Theoretic Volume Modelling Systems. Computer

Graphics (Proc. SIGGRAPH 85), 19(3):161{170, 1985.

[14] B. Naylor, J. Amantides, and J. Thibault. Merging BSP trees yields polyhedral set operations. Computer

Graphics (Proc. SIGGRAPH 90), 224(4):115{124, August 1990.

[15] Paul Ning and Jules Bloomenthal. An evaluation of implicit surface tilers. IEEE Computer Graphics

and Applications, 13(6):33{41, November 1993.

[16] B.A. Payne and A.W. Tioga. Surface Mapping Brain Function on 3D Models. IEEE Computer Graphics

and Applications, 10(5):33{41, Sep. 1990.

[17] A.A.G. Requicha. Representations for Rigid Solids: Theory, Methods, and Systems. ACM computing

surveys, 12(4):437{464, December 1980.

[18] Kees van Overveld and BrianWyvill. Potentials, Polygons and Penguins. An e�cient adaptive algorithm
for triangulating an equi-potential surface . pages 31{62, 1993.

[19] Brian Wyvill. The Great Train Rubbery. SIGGRAPH 88 Electronic Theatre and Video Review, Issue
26, 1988.

[20] Brian Wyvill and Kees van Overveld. Constructive Soft Geometry: The uni�cation of CSG and Implicit
Surfaces. Technical report, University of Calgary, Dept. of Computer Science, 1995.

[21] G. Wyvill and A. Trotman. Ray tracing soft objects. Proc. CG International 90, 1990.

[22] Geo� Wyvill, Craig McPheeters, and Brian Wyvill. Data Structure for Soft Objects. The Visual

Computer, 2(4):227{234, February 1986.

Animation and Design Systems for Skeletal Models

Brian Wyvill

Abstract

A variety of techniques have been developed for animating implicit surfaces. In this chapter

we look at deformation, matamorphosis, blending, warping and making objects glow.

1 Introduction

In this chapter we look at some techniques for animating implicit surface models. In particular we

are interested in methods which show how a distinct advantage may be gained from using skeletal

implicit surface models. Skeletal implicit surfaces were initially developed in the early to mid 1980's,

in the
ying logos era, too many commercial animations consisted of a 3D model of someone's logo

spinning through space. By simply moving the individual skeletal elements an animation could be

created which showed a model changing shape over time. Since then a number of other techniques

have been developed which are particular to these models, some examples described in this chapter

are:

� Path Following

� Negative Primitives

� Metamorphosis

� Warping

� Glowing Objects

Traditional animators often criticize 3D computer generated animation for the stilted way in

which objects move. Computer generated objects or characters tend to lack the subtleties in

motion seen in traditional animation. Characters do not have to be humanoid, objects can be

given character such as the brooms in the Sorcerer's apprentice sequence from Disney's Fantasia. In

other words they are anthropomorphic. The motion of such objects is controlled to a �ne degree to

characterize their movement. Characters tend to bend as they move. At times, they must conform

to their surroundings: a �gure sitting in a chair for example, or
owing water. In computer

animation, popular modeling techniques such as polygon meshes or spline patches do not lend

themselves to the manufacture of models which can perform this type of motion. However implicit

surface models do lend themselves to certain kinds of shape change. The intention is to let the

animator design the skeleton of the character or object and then the system automatically clothes

this skeleton with a surface. If the skeleton moves then the surface changes its shape smoothly

to conform. If the skeleton undergoes metamorphosis to a totally di�erent skeleton or inbetweens

to a skeleton in a new position then a new surface is calculated at every frame. The surface is

represented in such a way that it maintains nearly constant volume as the skeleton moves, thus

providing convincing character coherence. This property of coherence is very important. Intuitively,

2 C2

Figure 1: Train Skeleton

it means that throughout metamorphosis, the model remains recognizable as the same character. A

model built from skeletal elements can be moved without shape change by maintaining the relative

spatial relationship between the elements, in the absence of any in
uencing �eld. Achieving shape

change without distorting the model beyond recognition requires that certain constraints be placed

on the animation system. The following techniques can be used to animate a model built from a

skeleton to achieve shape change:

� Geometric Transformation: motion of skeletal elements relative to each other.

� Altering the Field: in
uence of global or local �eld and warping.

� Altering parameters describing a skeletal element.

The following sections describe how these methods can be used by high level motion speci�-

cations to create the appropriate blended surfaces. It should be noted that this method does not

manufacture accurate human models. However it does provide a very fast way of producing blended

surfaces that can approximate a humanoid character. The methods described here are low level,

they a�ect individual skeletal elements or groups of skeletal elements. It is intended that they can

be assimilated into a higher level animation system.

1.1 The Implicit Function

The skeleton is surrounded by a scalar �eld Ftotal(P) (equation 1). The intensity of the �eld being

the highest on the skeleton, and decreasing with distance from the skeleton. The function Ftotal(P)

relates the �eld value (intensity) to distance from the skeleton, it has an impact on the shape of

the surface, and determines how separate surfaces blend together (see [2]). The surface is de�ned

by the set of points in space for which the intensity of the �eld has some chosen constant value (or

iso-value thus the name iso-surface). Fields from the individual elements of the skeleton are added

to �nd the potential at some chosen point. (Values can be negative or positive). The value at some

point in space is calculated as follows:

C2 3

Figure 2: Bending the train

Ftotal(P) =
i=nX
i=1

ciFi(ri) (1)

where P is a point in space

Ftotal(P) is the value of the �eld at P

n is the number of skeletal elements

ci is a scalar value (used for positive or negative elements)

Fi is the blending function of the ith element

ri is the distance from P to the nearest point Qi on the ith element.

The parameters listed above can be used to alter the shape of the surface. By changing one of

these over time animation can be achieved which involves shape change di�cult to achieve with

other modelling techniques.

2 Geometric Motion

By simply altering the relative spatial relationship between skeletal elements a surface can be made

to alter its shape. Figure 2 shows the train model with the position of the skeletal elements marked.

By moving the skeletal elements the surface blends smoothly and the train appears to bend.

2.1 Path Deformation

Motion paths are extremely useful when applied to the skeletal elements of an implicit surface

model. A cartoon-like character can be made to conform to its surroundings by using the shape

of an object to de�ne the path which a group of skeletal elements must follow. This e�ect was

demonstrated in the movie SOFT (see [6]). The character in this case was a group of letters

spelling the word \SOFT".

4 C2

A

P
2

P
1

C

P3

B

Figure 3: Line Primitive

Each letter was made from about 20 skeletal elements, the path was drawn up a
ight of stairs

by marking various positions and passing a spline through these points using a spline technique

similar to that described in [3]. Each skeletal element in the character is moved to the interpolated

path position at each frame. Each point along the path represents a position at a particular instance

in time. Rather than de�ne a separate path for each key, the skeletal elements are grouped so that

each group is moved together to the next point in the path. Normally a group is chosen according

to some spatial relationship, for example all skeletal elements within a speci�c range of z values.

To maintain \character coherence" the relative positions of the skeletal elements within a group

must be maintained within certain constraints. In this case the amount each group is allowed to

vary its position is constrained by the change along the path. Each skeletal element maintains its

position relative to the group. It is the origin of the group that follows the path. The positions

of the groups change relative to the other groups by an amount speci�ed in the path. Thus the

model undergoes the desired deformation but maintains the overall shape and retains the character

coherence property which distinguishes shape distortion from metamorphosis. When the letters are

moved up the stairs (see �gure 4) in the movie SOFT the direction of motion was along the (-)ve

z axis so the groups were chosen as skeletal elements with same z value. As each group advances

along the path the y value of the group was altered according to the path speci�cation. Figure 2

is another example of path animation. The train model is comprised of a number of elements

arranged in vertical columns (see �gure 1), each column is moved as a single unit to the next point

along the path.

2.2 Altering the Field

Implicit surface objects may also be animated by altering the �eld in which the objects exist.

Local deformation can be achieved by moving other skeletal elements relative to these objects, or

by placing some global in
uence into the �eld. Global deformation is more di�cult to specify in

C2 5

Figure 4: Frames from the animation SOFT

6 C2

a completely general way. The �eld itself could have some external in
uence such as a plane of

constant value. Objects approaching that plane will deform according to the value chosen. This

technique has been adopted along with warping, see section 4.

C2 7

3 Metamorphosis

One area in which implicit surface models are particularly useful is in metamorphosis. A method

suitable for two-dimensional (cartoon) models, would have the character drawn on a display in

two positions, and the inbetween frames interpolated by the system. The simplest way to do this

is to interpolate each point of the �rst (source) object to a corresponding point on the second

(destination) object. Di�culties arise if the number of points is di�erent on source and destination

objects. New points have to be created or several points have to collapse onto a single point. Even

if the number of points is the same on the two objects, if they are distributed in a di�erent way the

image will be scrambled as each point is interpolated. Implicit surface models always guarantee a

closed surface, so this problem does not arise. However, it is still easy to lose character coherence

in the inbetween versions.

This technique can also be used to show metamorphosis from one character to another. If the

characters are very di�erent in shape and number of skeletal elements, then the scrambling problem

is di�cult to avoid. Peter Foldes uses software by Burtnyk and Wein [1] in the �lm, \La Faim" and

exploits this technique to good advantage. However to avoid scrambling is a di�cult and tedious

task which requires very careful design of the skeletal element positions for inbetweening.

Burtnyk and Wein developed a computer version of this technique using skeletons. These skele-

tons de�ned a conformal mapping from one key frame to the next. The space itself was distorted,

thus any line within the space was similarly distorted according to the mapping function. In con-

trast, 3D computer generated characters are often moved by applying geometric transforms to the

di�erent parts, which changes their relative positions but do not necessarily give the character a

smooth change of shape as can be achieved using the 2D techniques. An e�ective way of produc-

ing shape change in 3D animation is to use the inbetween technique. However extending the 2D

technique to 3D introduces new problems. Reeves points out in [5] that it is di�cult to identify

corresponding points (and polygons) on di�erent characters. Even with functional representations,

the parameters from which a surface is manufactured must be chosen so that the source model

matches the destination model. Each of the parameters de�ning the source model must be changed

to one of the parameters de�ning the destination model. The matching process chooses the appro-

priate destination parameters corresponding to the source parameters. At each intermediate stage

during the inbetween, a model will be manufactured from an interpolated set of parameters.

In the following paragraphs several di�erent heuristics for matching the models are presented.

The shape of the intermediate models vary according to the chosen method, based on one or more

of the heuristics.

3.1 Heuristics for Point Matching in Metamorphosis

In this section four approaches are described that we have found useful for de�ning the matching

process. Although the implicit surface modeling system has been used to illustrate how these heuris-

tics may be applied, the methods are general and can be extended to other modeling techniques.

In practice an animator will want to experiment with di�erent combinations of these techniques to

arrive at the desired e�ect.

We start with two models; the source model and the destination model. The source model must

be made to change into the destination model. The models are de�ned as a set of skeletal elements

as described above. Although point primitives are used in the discussion on metamorphosis, these

techniques do have application using other geometric primitives. Each ellipsoid skeletal element

has the following properties:

Axes Vectors v1;v2;v3

8 C2

Position x; y; z

Force F

Each of these methods assumes that the objects have been pre-processed so that there are the

same number of skeletal elements de�ning each object. This may involve creating zero weighted

skeletal elements. A skeletal element can be weighted using the force, F, which scales the contri-

bution to the �eld, or by scaling the axes. A zero weighted element has its axis vectors set to zero

or F = 0. When a source element is inbetweened to a destination element, at each frame a new

element is chosen which has an interpolated value for position, axes vectors and force. The start

or �nish position of the new skeletal elements is chosen by the appropriate method.

3.1.1 Hand Matched

The simplest method of establishing which skeletal elements are to be interpolated is to to order

the source and destination skeletal elements by hand and to process each pair in turn. Since the

number of skeletal elements is small compared to the number of polygons in an equivalent model,

this method is feasible for some objects. However computer animation is generally moving towards

higher levels of control so this method is considered a last resort.

3.1.2 Hierarchical Matching

In this heuristic it is assumed that each model is represented by a hierarchy of skeletal elements.

Each node in the hierarchy has an arbitrary number of sibling nodes and one or zero child nodes.

Nodes are matched at the same level in the hierarchy. It is assumed that the hierarchies are designed

that each level of the source object has an equivalent level in the destination object. If a man is

to change into a rabbit the heads will be matched, the arms of the man can match the front legs

of the rabbit and so on The main problem with this approach is that the hierarchies have to be

constructed carefully. Not only do the levels have to match but within a level the nodes must either

be ordered or labeled to match. Despite these drawbacks this method is still preferable to ordering

all the skeletal elements by hand and for small sets of skeletal elements, with suitable interactive

tools quite acceptable.

3.1.3 Cellular Inbetweening

In this technique the models are matched corresponding to the space they occupy. The world is �rst

divided into a 3D grid of cells. This is done by �nding the extents of each model and manufacturing

the corresponding rectangular box. Each box is then divided along the x,y,z axes by some user

de�ned amount. The two boxes may be di�erent shapes but they are divided into an equal number

of cells. The skeletal elements are then sorted into the cellular grid and the skeletal elements in

each source grid cell are then interpolated to the skeletal elements in the corresponding grid cell of

the destination model. The objects can have di�erent sizes but the method tries to maintain some

sort of position coherence between source and destination objects. Figure 5 shows a 2D version of

how the skeletal elements are matched. Circles with similar shading patterns are matched between

source and destination. In the top diagram the points match exactly, for every element in every cell

in the destination object there is a corresponding element in the corresponding cell in the source

object. In the lower diagram there are some cells containing skeletal elements in the destination

object for which there are no skeletal elements in the corresponding cell in the source object. In

C2 9

A

B

C

A

B

C

Source Destination

Figure 5: Cellular Inbetweening

this case a zero weighted element (indicated as a small circle) will be manufactured in the source

object. Similarly skeletal elements which exist in the source object are grown in the destination.

3.1.4 Surface Inbetweening

In this method there is no matching necessary. All the skeletal elements from both source and des-

tination objects de�ne each intermediate model. However the force property of each source element

is weighted. The weighting is gradually changed from one to zero as the inbetween progresses. Also

dependent on time is a second weighting applied to the force property of the destination skeletal

elements. This value changes from zero to one. The shape of the weight value vs. time curve

controls the shape of the intermediate model. This is shown in �gure 6. A simple linear inter-

polation means that both source and destination objects are reduced to half the weight half way

through the simulation. In practice this gives poor results as the surfaces around each element no

longer merge. If the source is weighted by a cosine function and the destination weighted by a sine

function each object is never weighted by less than 1p
2
. The objects can still be matched by one

of the sorting techniques (hand, hierarchy, cellular), but the inbetweening process is di�erent using

surface inbetweening. An example is shown in [7].

4 Warping

A useful tool in our system is the ability to distort the shape of a surface, by warping space around

it. A warp is a continuous function, w , from IR
3 into IR

3. In the following section we suggest some

speci�c warp functions that are useful for producing some unusual animations.

The warped surface is de�ned from equation 1 above:

Ftotal(P) =
i=nX
i=1

ciFi(ri)

ri = fi(P) = dist(wi(P); Qi)

where wi(P) is the position of the point P in warped space. In fact each skeletal element may reside

in a di�erent warped space. So when evaluating the contribution from the ith skeletal element, P

10 C2

Time

Destination
 Object

Source
Object

0

1

Weight

Figure 6: Surface Inbetweening

is �rst warped to the appropriate position before evaluating the distance function. As a �rst

example, we study a warp function wi(P), which warps a point P to a point Q along a given vector

v; it may be given by the vector equation:

wi(P) = P � v̂(v:p)

where p is P � S0;i.

S0;i is the origin of the ith skeleton

v̂ = v
kvk

To understand how this a�ects the iso-surface consider P to be a point some distance from the

surface of a sphere, such that the point is warped in the direction of the center of the sphere, to

a position Q which is on the iso-surface. The value returned for P by the implicit function is the

value that would have been returned for Q if warping were not in e�ect. In this case that value

is the iso-value. Thus P becomes a point on the surface and the sphere is warped to an ellipsoid.

(See Figure 7)

Many kinds of warp are possible, by simply writing a function that transforms a point from

ordinary space into warped space. Each skeletal element contributes in a local way to the warped

space, since each has its own local warp function associated with it. John Lasseter notes [4] the

importance of squash and stretch in traditional animation. The example he gives is of a ball

traveling along a parabolic path and bouncing. The shape of the ball distorts into an ellipsoid to

give the feeling of speed, when it bounces the distortion changes so that the long axis of the ellipse

is parallel to the ground, in other words a squash e�ect.

C2 11

P

Q

V

Figure 7: P is warped to Q. The original sphere is warped to an ellipsoid.

To simulate the distortion of the ball to the ellipsoid, the usual computer graphics approach

would be to use a scale operation over time. Since the scale is in the direction of the velocity vector

v, two rotations are necessary, to �rst align the object with one of the major axes, then to rotate

back again. With a complex 3D object consisting of many skeletal elements, shape distortion using

a scaling operation may not be exactly what the animator requires. For instance on the impact

plane, the ball should
atten out and the distortion is di�erent from the deformation when the ball

is further away, an e�ect which cannot be achieved with linear transformations. By exaggerating

the non-linearity the ball could appear to be made of putty. Such a non-linear operation can easily

be achieved by a warp operation, as shown in the example below.

Figure 8 shows some frames selected from an animation showing the putty like ball bouncing.

This is implemented in the warp function in the following manner:

Let P be a point in space at which the implicit function is to be evaluated. For simplicity,

assume the collision plane to be the plane y = 0.

w(P) =

(
P � �v̂(v:p)� p #
S if P:y > 0

(P:x;1; P:z) otherwise

Here

p = P � S0
S0 = the origin of the skeleton

p # = (P:x; 0; P:z)

 = h
�
S0:y
y0

�
h
�
P:y
y0

�
h(t) = a decreasing di�erentiable function (e.g.a cubic polynomial) such that:

h(t) =

(
1 for t � 0

0 for t � 1

� = clamp(1� 2:0
)

12 C2

Figure 8: Frames from the bouncing ball animation.

C2 13

S = a parameter, typically around 0:5

The interpretation of the terms is as follows:

(P:x;1; P:z) guarantees that no part of the object protrudes below the collision plane.

�p #
S accounts for spreading out the lower part of the object (squashing). The vector p #

is parallel to the collision plane indicating that squashing should be a horizontally directed

e�ect. The factor
 assures that squashing increases near the collision plane. No squash is

applied if the center of the objects is higher than y0 or if P is higher than y0. The parameter

S controls the amount of squashing.

��v̂(v:p) is a modi�ed version of the simple linear velocity warping as discussed in section

4. The factor � is introduced to quench the velocity warping near the impact point, to avoid

discontinuities in the warp function.

At the point of impact, v undergoes a discontinuous change,

(v:x; v:y; v:z) ! (v:x;�v:y; v:z).

This would cause a discontinuous warp function if it was not compensated. The factor 2.0 in

the expression for � has been found experimentally to be a reasonable value. The function

clamp(..) clamps its argument value between 0 and 1.

This approach initially aligns the warp vector with the velocity vector of the ball in the bouncing

ball example. When the impact occurs the ball will start to deform in a non-linear oblate fashion

according to the �p #
S term. At the same time the linear prolate deformation (due to ��v̂(:p))

subsides. Our implicit surface models can be a collection of skeletal elements, rather than a single

spherical element, such as the ball. Thus we can easily apply this non-linear warp to a complex

shape. In �gure 8 some frames are shown from an animation which applies this method to a

bouncing ball (one soft primitive S = 0:25). The ball is distorted into an ellipsoid (Frame 1) whose

long axis grows as the vertical velocity increases (Frame 2). On impact the ball warps (Frame 3)

into a bulging shape. As the ball bounces it regains its ellipsoid shape and as its vertical velocity

decreases the ball remains stretched along the horizontal axis by an amount corresponding to its

horizontal velocity. The technique easily extends to skeletons consisting of many primitives.

In �gure 9 the same method is shown to work for Nelson, the jumping bear (consisting of 25 soft

primitives). The slug in Figure 10 is in fact a warp applied to three ellipsoid primitives. Warping

can be applied in space or time and may be non-linear, for example, a warp can be applied:

� To the space in which a model exists, then move the model.

� To the space over time, the model will change with time.

We have tried several di�erent types of warp and the outstanding problem is to present warping to

the animator with a consistent user interface, so that custom warps may be designed.

5 Ray Tracing Glowing Objects

Making an object glow is a useful e�ect in computer animation. This can be done relatively easily

with implicit surface models. A glow should be seen surrounding an object and fade to zero at

some distance away. A value for the brightness of the glow can be obtained as a function of the

�eld in which the model is de�ned.

14 C2

Figure 9: Frames from Nelson the bouncing bear animation.

C2 15

Figure 10: Frames from the slug animation.

16 C2

R0

M0

Rd
(Rd Unit Vector in the Ray Direction)

(Mo − Modeling Primitive Origin)

(Ro − Ray Origin)

P=R0+(Rd.(Mo−R0))Rd
(points are taken as vectors from the world origin)

Figure 11: Finding the nearest distance from a ray to an implicit surface primitive

This has been implemented as a part of a ray tracer. The nearest distance between each ray

and each primitive ellipsoid is calculated. The point on the ray is shown as P in �gure 11. One

way to calculate the glow is to take the value of P corresponding to the shortest of these distances

and pass it to equation 1 to obtain the implicit value, v. This is used to calculate the brightness of

the glow as follows:

G� = m�v
0 (2)

where

v0 =

8><
>:

0 if v < 0

0:5 if v > 0:5

v otherwise

(3)

and m��[0; 1] are scalars controlling the intensity of independent wavelengths.

There is a problem with this procedure. Consider two neighbouring rays, Ra and Rb. The

nearest primitive to Ra may be di�erent from the nearest primitive to Rb, thus returning two

di�erent points with correspondingly di�erent implicit values. Thus causing a discontinuity in

the glow. An obvious method around this problem would be to �nd the closest distance for each

primitive and sum the implicit values contributed by each primitive for each ray. Since each

primitive contributes a value between 0 and 1, the sum can be normalized by simply dividing by

the number of primitives. This procedure causes the glow to be very dense near to areas where there

are lots of primitives grouped together, but far too sparse in areas where there are few primitives.

For example �gure 12 shows a dinosaur model next to its glowing counterpart. The tail section

received no glow by this method. To achieve the even glow in the �gure the points along the

ray representing the closest point to each primitive are selected as above. The implicit values are

calculated as before but only the N highest values are used for the glow calculation. It has been

found empirically for our models that N = 3 is a reasonable number to choose. With N < 3,

discontinuities appear, with N > 3, no glow is seen where there are few primitives.

Figure 13 shows two rows of merging sphere primitives. The top row has been raytraced and

a texture applied. The bottom row is the same set of textured primitives with a glow added. The

advantage of using implicit surface models is that the glow can be calculated directly from the �eld

as shown above. The shape of the glow follows the zero contour. Values of the �eld greater than

zero are brighter than the background.

It is also possible to change the shape of the glow, by altering the blending function used in the

expression for Ftotal(P). For the dinosaurs we use the cubic (introduced in [8]). The glow �eld can

C2 17

Figure 12: When Dinosaurs Glowed!

be increased by using a function that falls to zero more slowly than the blending function for the

train model itself.

18 C2

Figure 13: Spheres Blending using the cubic blending function and demonstrating the glow.

6 Conclusions

In this chapter some techniques for animating implicit surfaces have been presented. Skeletal

Implicit Surface techniques have proved useful for designing models but still await widespread use

in the design community.

C2 19

7 Acknowledgements

I would like to thank the many students who have contributed so greatly to this research. In these notes

Andrew Guy helped with the proof reading and made the �st and Radomir Mech made the glass dinosaur

from one of my original models. I would also like to thank Jules Bloomenthal for his encouragement and

ideas over the years and to Kees van Overveld. I am particularly in debt to my brother, friend and colleague,

Geo� Wyvill, who started the whole thing o� by solving a problem in scienti�c visualization, the solution to

which turned out to be so useful for building models.

This work is partially supported by the Natural Sciences and Engineering Research Council of Canada

in the form of a research grant and equipment grants.

References

[1] N. Burtnyk and M. Wein. Interactive Skeleton Techniques for Enhancing Motion Dynamics in key Frame

Animation. CACM, 19(10):564, Oct 1976.

[2] Z. Kacic-Alesic and B. Wyvill. Controlled Blending of Procedural Implicit Surfaces. Technical Report

90/415/39, University of Calgary, Dept. of Computer Science, 1990.

[3] D. Kochanek. Interpolating Splines with local Tension, Continuity and Bias Control. Computer Graphics

(Proc. SIGGRAPH 84), 18(3):33{41, 1984.

[4] John Lasseter. Principles of Traditional Animation Applied to 3D Computer Animation. Computer

Graphics (Proc. SIGGRAPH 87), 21(4):35{44, July 1987.

[5] W. Reeves. Inbetweening for Computer Animation Utilizing Moving Point Constraints. Computer

Graphics (Proc. SIGGRAPH 81), 2:263{269, 1981.

[6] Brian Wyvill. SOFT. SIGGRAPH 86 Electronic Theatre and Video Review, Issue 24, 1986.

[7] Brian Wyvill, Jules Bloomenthal, Geo� Wyvill, Jim Blinn, John Hart, Chandrajit Bajaj, and Thad Bier.

Course Notes. SIGGRAPH '93, Course #25, Modeling and Animating with Implicit Surfaces, 1993.

[8] Geo� Wyvill, Craig McPheeters, and Brian Wyvill. Data Structure for Soft Objects. The Visual Com-

puter, 2(4):227{234, February 1986.

20 C2

Implicit Blends and Skeletal Methods

Jules Bloomenthal

In this course notes chapter we relate review several implicit blend methods, particularly those related to a defining skeleton. We
also examine in depth the related problem of surface bulge, and methods for its elimination.

In this course notes chapter we relate several forms observed in nature to methods of representation using an inner structure, or
skeleton. We develop techniques to define both manifold and non-manifold implicit surfaces skeletally. Along the way we
demonstrate the techniques with example surfaces that are smooth.

blend

fillet

round

blobby molecule

y

smooth

Blend of Primitives

sphere and torus

Distance to a Curve

3 linear segments 9 linear segments

Super-Elliptic Blend of
Sphere and Cylinder

2

y

x

zy

x

κ < 0 κ < 0
κ > 0

Super-Elliptic Blend of
Two Cylinders

d
x

y
h

p
h(d)

e-d 2/2

d

h =

1D

2D

Gaussian Kernels

The Superposition Property
of Convolution

bulge

desired

creased

cusp

Four Blends of Two Segments

evaluate as sum
evaluate as integral

Line Segment Skeleton
as a Set of Points

Two Segments and
their Convolution

3

 h(t)s (t)

f(t)
t

Convolution of a Box Function

y

x

z

segment 1
segment 2

Tee and Bulge

Union Surface, Convolution Surface,
and Combination

Trifurcated Ramiform with Bulge

y

x

z

z = rp

sum

segment 2
segment 1

segment 1

segment 2

x = 0

Analysis of Tee Bulge

p

d

n

evaluation

envelope
curve

surface

Branching Cylinder with Equal Radii

4

(oblique
view)

Polygonal Skeleton and
Convolution Surface

Overlapped and Contiguous Skeletons

Wyvill BSpline

width

Gaussian

height

Object Cross-Sections
for Various Kernels

Skeleton and Hand

2r

skeletal
polygon

two-dimensional
kernel

height

width

Kernel
Coverage
of Polygon

width > 2r

width < 2r

max.
thickness

width = 2r

Wide and Narrow Polygons

5

peak thickness
along segments

peak thickness
along strips

peak thickness
at single point

Effect of Polygon Width on Integration

1D, 2D, and 3D Skeletons

A Smoothly Folding, Bulge-Free Form

Bulge-Free, Circular
Voxel Blend

6

References

Much of the above material may be found in my own works, the most relevant of which are listed below. In these works are found
numerous references to related material.

A detailed review of skeletal methods:

 Skeletal Design of Natural Forms by J. Bloomenthal
 Ph.D. Dissertation, University of Calgary, 1995.

Implementation details for implicit surface polygonizers (manifold and non-manifold):

 Polygonization of Non-Manifold Implicit Surfaces
 by Jules Bloomenthal and Keith Ferguson
 SIGGRAPH’95. In Computer Graphics 29, 4.

 An Implicit Surface Polygonizer, by J. Bloomenthal
 in Graphics Gems IV (Paul Heckbert, editor)
 Academic Press, New York, 1994.

 An Evaluation of Implicit Surface Tilers
 by Paul Ning and Jules Bloomenthal
 Computer Graphics and Applications, Nov., 1993.

 Polygonization of Implicit Surfaces
 by Jules Bloomenthal
 Computer Aided Geometric Design 5, 4, Nov., 1988.

Detailed discussions of implicit surface blends:

 Convolution Surfaces
 by Jules Bloomenthal and Ken Shoemake
 Proc. SIGGRAPH’91. In Computer Graphics 25, 4.

 Bulge Elimination in Implicit Surface Blends
 by Jules Bloomenthal
 Computer Graphics Forum (to appear, 1996).

Some useful techniques for spline based skeletons:

 Calculation of Reference Frames along a Space Curve
 by Jules Bloomenthal
 in Graphics Gems (Andrew Glassner, editor)
 Academic Press, New York, 1990.

An early example (the tree trunk) of implicit and skeletal techniques:

 Modeling the Mighty Maple
 by Jules Bloomenthal
 Proc. of SIGGRAPH’85. In Computer Graphics 19, 3.

Implicit Skeletal Models and CSG

Geo� Wyvill

University of Otago

Abstract

Implicit equations de�ne the set of points inside an object. These sets can be added and

subtracted to form complicated objects and we can make pictures of these objects by ray tracing.

Blended implicit skeletal models can be combined with simple implicit shapes like spheres to

make a great variety of models.

1 Introduction

Constructive Solid Geometry (CSG) is a way to de�ne and represent models as a hierarchy of

combined implicit equations. The method has mostly been used for engineering models where it is

useful to include components like a cylinder with precisely known diameter. However, it also o�ers

a very general tool from which we can construct whole scenes and animation sequences.

1.1 Hierarchy

Spoke

Rim

Hub

Wheel

Pair of wheels

Matrix

Figure 1: Hierarchy.

Fig. 1 shows a pair of wheels with the associated data structure. Where is the top spoke of the left

hand wheel? The pair de�nition contains a matrix, L, to position the left hand wheel in the pair.

2 C4

The wheel de�nition contains a matrix, T , to position the top spoke. The position of the spoke in

the pair is de�ned by:

LT (1)

In a hierarchical modeling system, we can represent objects of arbitrary complexity. Everything

is de�ned in terms of something else until, at the lowest level, we must use some more basic object

that does not need the hierarchy to describe it. In hierarchical systems we call these bottom

level objects primitives. In most conventional systems the primitives are polygons or parametric

patches. In CSG systems, they can be implicit equations de�ning spheres, cylinders and other

mathematical shapes. The matrices at each level provide a translation from the coordinate system

of the component objects to that of the current object. We can process the structure in a top-down

traversal to �nd the coordinates of the basic points:

procedure generate(matrix, graph):

for each component of graph do

if component is a primitive then output(matrix, component)

else generate(matrix * component.matrix, component.graph)

(2)

1.2 Inverse operations

The procedure `generate' answers the question \Where is the top spoke of the left wheel?" In

interactive systems, we sometimes select a point in an image and would like the system to �nd out

which logical component we are selecting. This amounts to �nding the point within the de�nition

of wheel that translates to the given point. We do this using an inverse matrix. In some systems,

it is useful to create the inverse matrix for every primitive in the model. We can do this without

actually inverting any matrices, using the identity:

B�1A�1AB = I , the identity matrix (3)

This tells us that the inverse of AB is B�1A�1. If we store each matrix and its inverse with

each de�nition in the hierarchy, we can accumulate the inverse matrices in the same way and at

the same time as the original. Whenever we describe one of the basic transformations, the inverse

matrix is easy to �nd. If, for example, a matrix rotates through an angle �. Its inverse rotates

through ��.

This process of �nding all the inverse matrices is very e�cient. The cost is the time to construct

the inverse of each basic transformation plus one extra matrix multiplication for every node in the

traversal. When we traverse the graph using (2) we are, in e�ect, generating a tree. We are making

actual copies of the shared nodes to produce every primitive in our �nal model. The primitives

form the leaves of the tree. Now every tree with n leaves has fewer than 2n nodes. So instead of

inverting n matrices, we perform fewer than 2n extra matrix multiplications.

C4 3

2 CSG Graphs

Implicit representation means that we have a procedure that tells us whether a given point is inside

an object or not. Such a procedure, represents the solid; not just the bounding surface, but every

point within the solid too.

Since our solid objects are de�nitions of sets of points, it seems reasonable that we should be

able to perform the operations of set theory on them. This means that we can create holes in objects

by subtracting other objects from them. Fig. 2 shows how we can build a mug from elementary

cylinders, a block and a torus.

The data structure used to represent this kind of model is a directed graph. Like the structure

of Fig. 1, each node of the graph contains matrices of transformation. It also contains information

to say how the sub-graphs are to be combined. In Fig. 2, each node speci�es addition or subtraction

but other operations like set intersection can also be used.

The whole graph is an implicit model. It is possible to traverse the graph and determine whether

a given point lies inside the object de�ned. We can make a picture of the model by ray tracing the

graph directly.

+

- -

Figure 2: CSG operations.

2.1 Half spaces

We tend to think of a block or a cylinder with closed ends as a fundamental shape suitable to be

labeled primitive. But even these are not ideal as the most fundamental shapes. For example, we

can de�ne a cylinder,

x2 + y2 � r2 (4)

This cylinder is in�nite in extent along the z-axis. It is just as convenient a primitive as the

�nite cylinder and the procedures needed to represent it are simpler because it has such a simple,

mathematical de�nition. Similarly, we can de�ne a plane primitive,

z � 0 (5)

The cylinder with closed ends can be built from the in�nite cylinder by subtracting two planes.

So, given that the mechanism for subtraction is in the system anyway, these pure mathematical

primitives are su�cient.

4 C4

In some systems, the idea of a primitive block and closed cylinder is preserved because it is

more intuitive than handling in�nite objects. The word primitive is then used to describe standard

objects available to the user and the term half-space is used to describe the true primitives. The

term half-space re
ects their nature. They divide all of space into two regions: inside and outside.

CSG is a very attractive alternative to polygon or patch modeling because the models are truly

three dimensional. Volume calculations and interference tests are also possible with this structure.

In the next section we show how to extract high quality images by ray tracing.

C4 5

3 Ray tracing

What is the simplest way to produce an image of high quality from a computer model? The answer

is \use a ray tracer." We didn't use ray tracing in the early years of computer graphics because

the computers were too slow and most of us couldn't a�ord the expensive color displays anyway.

Because of this, ray tracing tends to get treated as an advanced technique. Nothing could be further

from the truth. A ray tracer is the simplest rendering program.

3.1 Just rays

The basic principle is shown in Fig. 3. We choose an eye point and erect a view plane in the space

of the 3D model. This viewplane represents our physical screen so we set up a grid on it dividing

it into little squares, one for each pixel on our intended output device. To make a picture we have

to color each pixel. We �nd the position for that pixel in the grid and generate a ray from the eye,

through the pixel position and into the 3D scene.

The rays, of course, represent light rays traveling backwards. We trace them backwards because

it would be di�cult to predict which rays leaving a light source would eventually �nd the eye via

a particular pixel. We follow the ray until it hits something and then try to work out what color

the hit point is.

object

view plane

ray

eye

Figure 3: Principle of ray tracing.

To �nd the color we apply a lighting model. This determines the brightness of the suface in

terms of the material properties and the incident light. Additional rays are cast at each light source

to see if the point is in shadow and more rays can be generated to produce re
ections and other

optical e�ects. To write a ray tracer, we must be able to determine the points of intersection of

rays with the primitive objects and also �nd the surface normals at the points of intersection.

3.2 Normals and smoothing

One way to ray trace CSG trees and other implicit models is �rst to convert to a polygon mesh.

But there are some very good reasons for not wanting to do this. An approximate model of a

sphere needs at least 1000 triangles before it looks anything like round and a simple model of a

human face needs over 15000. One popular way to improve the appearance of a polygon model is

to smooth the shading across each facet. To do this, we usually store a false surface normal at each

vertex. These vertex normals are then interpolated across the polygon to create the illusion of a

smoothly curving surface. When a ray intersects the polygon the illumination is calculated using

this interpolated normal. This works quite well most of the time but it leads to some odd e�ects,

particularly where the light meets the surface at a low angle.

In Fig. 4, the smoothed normal actually points away from the light source. This means that

careless application of Lambertian or Phong shading can produce negative illumination causing

6 C4

n

Figure 4: Smooth normal points away from light.

n

Figure 5: Surface is in shadow even though normal suggests otherwise.

colors to over
ow. In Fig. 5, the surface shadows itself. The point of interest is not illuminated

although the curved surface suggested by the normal would be. Some systems attempt to �x

these problems by using the true normal when the interpolated one gives trouble. But there is no

proper �x. The surface shape and normals are inconsistent and will give problems at some angles.

Re
ected rays can also be created that enter the surface they are re
ected from and refracted rays

may not lie inside the surface that they should have passed through. The commonest solution is

to adjust the position of lights or objects to eliminate the \bug".

3.3 Intersection tests

In a CSG system, we can �nd the intersection of a ray with a primitive object, directly. This does

mean that each type of primitive has to have its own intersection routine, but there are not so

many primitive types and the routines are straightforward. Here, for example, we deal with the

sphere.

For all intersection tests we represent the ray in vector form as:

p = u+ vt (6)

C4 7

u is the starting point and v is the direction of the ray. The variable t indicates how far down

the ray the point p is.

The equation of a sphere of unit radius centered at the origin of coordinates is:

x2 + y2 + z2 = 1 (7)

We can also express this in vector form:

p2 = 1 (8)

Where the ray meets the sphere p = u+ vt satis�es (8) and we have:

(u+ vt)2 = 1 (9)

or

u2 + 2u:vt+ v2t2 = 1 (10)

The dot products, u2, u:v, v2 are all scalars so (10) is an ordinary quadratic equation and we

can solve for t.

vt

u
p

Figure 6: Intersection with sphere.

3.4 Intersections with transformed objects

The transformation matrices are capable of expressing rotation, stretching and shifting operations.

How then do we make an intersection test with a shifted, stretched and rotated sphere? By far, the

simplest way is to apply an inverse transformation to the ray and then perform the calculation in

the original space. Suppose we start with a unit sphere at the origin as in section 3.3. If the sphere

is a primitive at the bottom level of a hierarchy, its �nal position rotation and stretch will all be

described by some matrix, S which is made by multiplying, in order, the matrices encountered as

the hierarchy is traversed. The matrix, S, describes the operation of transforming an arbitrary

point from the 'primitive' space in which the sphere has been de�ned into the 'world' space in

which the ray tracing takes place. The inverse matrix S�1 transforms points in the world space

into points in primitive space.

First �nd

up = S�1u and vp = S�1v (11)

8 C4

Then �nd t1, t2 as described in section3.3 using up + vpt as the ray. The values of t1, t2 are

the same in world space as in primitive space, so the intersection points can then be calculated as

before, directly in world space.

Calculating the surface normal is a little more tricky because although the transformations

preserve straight lines and planes, they do not preserve angles. The equation of a plane passing

through the origin can be written:

n:p = 0 (12)

where n is the normal to the plane. In matrix form:

ntp = 0 (13)

Suppose this is an equation in primitive space. Let q be the point corresponding to p in world

space.

q = Sp and p = S�1q (14)

so

ntS�1q = 0 (15)

This describes a plane in world space whose normal vector is ntS�1 but the normal of the

transformed plane is the correct transformation of the normal, nw.

nw = ntS�1 = S�1tn (16)

Thus the normal is put into world space using the transpose of the inverse matrix.

This result makes it easy to ray trace any transformation of a model for which we can ray trace

the original. Fig. 7 shows a collection of ladders arranged in a logarithmic spiral. Each ladder

is a di�erent transformation of a single original ladder. Indeed each ladder consists of di�erently

transformed cylinders. The ray tracer that produced this image works exactly as described above.

The cylinder routine works only for a standard cylinder in its primitive space.

Figure 7: Hierarchical example: Ladders.

C4 9

3.5 Ray tracing CSG models

In principle, we have to �nd the ray intersections with every primitive in the CSG model. They

are ordered according to their distance from the eye. How can we use the CSG tree to determine

the correct intersection point? This was �rst described by Roth [2] but the method described here

is taken from [1].

This is illustrated in Fig. 8. The ray from p to q �nds intersections with the various primitives

at a, b, c, d, e. The CSG graph is shown on the right. Which is the correct intersection point?

Points a and b are inside the subtracted plane primitive and c is inside the smaller, subtracted

sphere. Point d is where the ray enters the solid and e where it leaves. The nearest valid intersection

is, therefore, d. To determine this, we must traverse the CSG structure applying a set of logical

rules at each node. The rules are easy to understand. They are applied recursively so if they work

for primitives and they handle the joining of sub-graphs correctly, they will work in all cases.

a b c dp qe

Figure 8: Unraveling the CSG structure.

PLUS Node

Left branch

IN

OUT

BORDER

Right branch

IN OUT BORDER

IN IN IN

IN

IN

OUT BORDER

BORDER

MINUS Node

Left branch

IN

OUT

BORDER

Right branch

IN OUT BORDER

OUT IN BORDER

OUT

OUT

OUT OUT

BORDER

Figure 9: Combining rules.

The combining rules expressed in Fig. 9, work in a system of three value logic. Each primitive

has associated with it an inside/outside test which tells us whether a point is inside its volume or

not. The special value, border, is not returned by any of these routines. It is given only to the

particular instance of the primitive with which a particular intersection test has been done.

The algorithm is simple. If the current node represents a primitive, then apply the primitive

test. Otherwise get the values, recursively, from the sub-nodes and combine according to the table.

Here we deal only with \+" and \-" nodes, but any set operation is possible.

10 C4

3.6 Implicit skeletal models

Implicit skeletal models can be included as primitives in a CSG system. Here we look at the

simplest kind made from a collection of key points where each has a surrounding �eld of in
uence

expressed by a cubic function of distance from the key point, C(r). We assume that the value of

C(r) and its derivative vanish at a distance r = R, the radius of in
uence:

r

r = R

F = C (r 2)

Figure 10: A suitable soft �eld function.

Suppose p = u + tv is a point on a ray. Then the line from p to a given key point, k is

r = u+ tv � k (17)

and the �eld at p is given by:

F = C(r:r) (18)

This is easily seen to be a sixth order polynomial in t, Fig. 11.

Ray u + t v

Key k

p

r = u + tv - k

F = C((u + tv - k)), r ² R
F = 0, r > R

Figure 11: Field along a ray.

The �eld due to each individual key point has no in
uence beyond the distance, R, so the �eld

at any point on the ray is the sum of these sixth order polynomials taken for each key point that is

close enough. For each key point, we �rst �nd the intersections of the ray with a sphere of radius

R that surrounds the key point. Between these two intersection points, the key point is active and

we must include its e�ect in constructing our polynomial. Elsewhere the key has no in
uence and

we can ignore it. Fig. 12 shows a ray passing three key points with areas of in
uence A, B and C.

There are �ve separate regions where, in turn, the polynomial is a�ected by A, A and C, C, C and

B, then B. We solve the polynomial in each region.

Fig. 13 shows the distinction between CSG subtraction and the subtraction of �eld values. On

the left is a simple dumbell shape made from two key points. In the center, a raised copy of this

C4 11

A

B

C

Ray

Figure 12: Regions of in
uence.

Figure 13: CSG subtraction and �eld subtraction.

shape has been subtracted from the original (CSG). The right hand picture uses the same four key

points, but the upper two have negative �elds, creating a single blended object.

12 C4

4 E�ciency of ray tracing

Making pictures of high quality is inherently a slow process, and ray tracing has acquired a rep-

utation for being an expensive solution. Yet the comparisons made with other methods are not

usually very fair. Scan-line algorithms do not produce shadows or re
ections, so they don't even

do the same job. If you have a very simple model, then ray tracing is likely to be slow but, if your

algorithms are good, a ray tracer can prove faster than other methods when a large number of

objects is present.

4.1 Space division

The basic key to fast ray tracing is that you must not test every object against every ray. Some

form of sorting is needed so that objects that are well away from the path of a ray do not require

intersection tests.

One method of doing this is to divide the space of the model into a 3D grid of cubes and follow

the ray through the grid. If the amount of work done in following the ray is less than for the

intersection tests avoided, we get a speed up. Fig. 14 illustrates this e�ect dramatically. The ray

shown, gets intersected with only two of the objects. This is because the ray tracer only checks

for intersection with objects in the current space division cell. The line of the ray passes many

other objects but it doesn't enter a cell where these are present until after the intersection has been

found.

Figure 14: Space division.

To skip cells quickly requires a little cunning. Fig. 15 shows the geometry. A ray starts from

p and makes an angle � with the x-axis. The distances dx and dy, measured along the ray tell us

how far away is the next intersection with the y-axis and x-axis. If dx < dy then our next move

into a new cell will be in the x-direction. As soon as we make this move, we can �nd a new value

for dx:

dx := dx+
s

cos(�)
(19)

where s is the size of the grid cell. This means that we can again compare dx with dy to �nd

whether our next move is horizontal or vertical. The important thing to notice is that s

cos(�)
is a

constant calculated only once for each ray.

This idea readily transfers to the 3D case where we de�ne dx, dy, dz in the same way. Measured

along the ray, dz is the distance from p to the next intersection with the x/y-plane. With a few

re�nements, we can turn this into an algorithm that uses only half a dozen integer operations to

identify the next cell [1].

C4 13

We set up a data structure that represents a 3D array of cells where each array entry contains

a list of objects that need to be tested in that cell. With the very high speed of the cell-skipping

algorithm it is possible to use a �ne grid, say 100 � 100 � 100 cells. This can reduce the average

number of intersection tests per ray to two or three even if there are thousands of objects.

p

θ

dy

dx

Figure 15: Cell skipping algorithm.

4.2 Creating the space division

Separating objects into a grid is straightforward for explicit objects like triangles, but how do you

divide up a scene described by a single CSG tree? The single CSG tree can be replaced by a set of

reduced CSG trees, RCSGs, each of which describes only the subset of primitives present in each

cell.

There are many ways to do this, here we describe a simple, recursive algorithm based on the

idea of a octree. In our octrees each node represents a volume of space that:

� is full,

� is empty,

� contains one primitive surface,

� contains an RCSG or

� is divided into eight sub-volumes.

In Fig. 16, cell 4 contains an RCSG, cells 5 and 6 contain single cylinders and the other cells

are empty.

The algorithm works as follows:

1. If the CSG tree is a single primitive then do a primitive test to see if this volume is full,

empty or contains a surface. If it contains a surface then result is the single primitive.

2. Otherwise, recursively construct the RCSGs, left and right, for the left and right branches of

the CSG tree.

3. If right is empty then the result is left.

14 C4

0

1

6

2

4

5

7
0

1

2

3

4

5

6

7

Figure 16: Octree structure.

4. If the CSG operation at this node is "+" and left is empty, the result is right.

5. If the CSG operation at this node is \-" and right is full, the result is empty.

6. If the current cell volume is equal to the smallest allowed then combine right and left to make

an RCSG.

7. Otherwise divide the volume into eight sub-volumes and �nd the result in each recursively.

This algorithm is described in detail in [3].

4.3 Cylinder voxel test

The algorithm, above depends on having a test for each primitive to determine if a given cell is full,

empty or contains part of the surface. As an example, we outline this calculation for the cylinder

primitive.

As we traverse the CSG graph, we accumulate the matrices of transformation in exactly the

same way as in other hierarchies. Ultimately, we will be dealing with a stretched, rotated and shifted

cylinder whose de�ning equation is rather complicated. But we can apply the inverse matrix to the

vertices of the cube rather than cope with a transformed cylinder.

The cube is then out of shape but it is still a six-faced polyhedron with parallel faces. Project this

polyhedron and the cylinder onto the x/y-plane. The cylinder becomes a circle and the polyhedron

faces become parallelograms. We can distinguish �ve cases and test for each in turn (Fig. 17).

1. If all eight vertices of the polyhedron are inside the cylinder then the cube is full.

2. If some are inside the cylinder and some are outside, the state of the cube is border because

some edges must cross the surface.

3. When all the vertices are outside, even if there is no intersection of an edge with the circle,

the cylinder can still pass through one of the parallelogram faces. In this case, the center of

C4 15

1

2

3

4

5

Figure 17: Five cases of polyhedron and cylinder.

the cylinder passes through the face. So we perform an inside/outside test. If its center is

inside any face the result is border.

4. All vertices are outside but the circle is intersected by one or more edges. Result is border.

5. If none of the preceding four tests has established a result full or border, the result is empty.

4.4 Signatures and mailboxes

A minor problem with space division schemes is shown in Fig. 18 The rays shown may be tested

for intersection with the same primitive more than once. To avoid this we count the rays and

label every new ray with its number. This number can then be used as a unique signature for that

ray. When an intersection test is performed, the ray signature is stored in a 'mailbox' location

associated with the CSG node for that primitive. Before an intersection test is performed the

mailbox is checked to see if the value matches the ray signature. If it matches, then there is no

need to repeat the test.

Figure 18: Multiple intersection tests.

Unfortunately this doesn't work too well with the implicit skeletal models. Each blended object

needs a di�erent mailbox for each subset of keypoints, Fig. 12 So far, no one has suggested a good

solution to this problem and this slows down the ray tracing of these models quite a bit.

16 C4

4.5 Examples

Fig. 19 shows a full combination of blended and normal CSG objects. The X-wing, Fig. 20, shows

the high level of detail that can be achieved with CSG. The model has just 513 primitives.

Figure 19: Blended teapot and CSG mold.

Figure 20: X-wing model, 513 CSG primitives.

C4 17

5 Acknowledgements

I wish to thank George Sealy for the X-wing model. X-wing is a registered trademark of Lucas�lm Ltd.

References

[1] J. Cleary and G. Wyvill. Analysis of an algorithm for fast ray tracing using uniform space subdivision.

The Visual Computer, 4(2):65{83, July 1988.
[2] S. Roth. Ray casting for modeling solids. Computer Graphics and Image Processing, 18:109{144, 1982.
[3] G. Wyvill, T. Kunii, and Y. Shirai. Space division for ray tracing in csg. IEEE Computer Graphics and

applications, 6(4):28{34, April 1986.

18 C4

Texturing Implicit Models

Geo� Wyvill

University of Otago

Abstract

Texture mapping enables us to represent surface detail cheaply. But the very power of
implicit surface modeling creates extra problems. How can we �nd texture coordinates on a
deformable object whose topology can change? How do we �nd the correct color of a surface
produced by subtraction? How do we take advantage of the implicit form to allow texturing to
support the modeling process?

1 Introduction

The fundamental notion behind texture mapping is that we can separate the description of an

object into two parts. The �rst describes the major aspects of the shape and the second describes

a re�nement in terms of surface detail.

The reasons for the success of this separation are variously physical, perceptual and technical.

The physical justi�cation is that many objects are literally constructed in this way. A painted

object has its surface appearance uniformly modi�ed by the layer of paint; an otherwise
at water

surface is disturbed by surface ripples and so on. The perceptual aspect is connected with the way

in which we deduce surface detail from the visual appearance. At a distance, a slightly wavy or

bumpy surface is visible only because of the perceived color or shade di�erences produced by the

bumps. The technical reason is that we already have e�cient ways to model and render objects

of smooth, simple shapes and texture mapping allows us to extend this range of objects at low

computational cost.

Because CSG systems use sets of points in 3D space, the representation of objects is truly

volumetric. In principle, CSG gives us a full representation of a shape and not just its bounding

surfaces.

But this completeness of description is of no use unless it is exploited to provide information

not available from other kinds of model. We are particularly interested in cases where an object,

made of several pieces glued together, is cut or shaped so that the inner structure is revealed at

the surface of the cut. Fig. 1 shows such a model. It has been made by turning a layered wooden

billet. The layers are made by boring holes with a slight taper and �lling them with accurately

�tted plugs made of a contrasting wood. How do we represent models like this with CSG?

Most of the material in this chapter has been taken from [6] and [7], where a little more detail

can be found.

2 C5

Figure 1: The wooden eggcup.

2 Concept of texture mapping

The description of surface detail is called a texture map and it can be represented by mathematical

functions or tables. In the process of texture mapping we must relate each visible point on the

surface of an object to a point in the texture map. A \point" for this purpose, will correspond to

a pixel in the �nal image. The general method of doing this requires that we set up a co-ordinate

system on the object's surface. The method used to construct such a co-ordinate system depends

on the way the object is de�ned. If parametric patches have been used then each surface element is

already de�ned as a function of some s, t and the same s, t make convenient coordinates for texture

mapping. If the surface is de�ned by polygons, the simplest approach is to divide the polygons into

rectangles or triangles and then treat these as a special case of patches. Continuity at patch borders

is achieved by careful de�nition of the texture map, using complementary coordinates (1� s; 1� t)

in adjacent patches and other methods.

AAAAA
AAAAA
AAAAA
AAAAA

y

x

p

q

Figure 2: Texture mapping.

We can map a variety of information onto a surface. If, for example, we use our texture to

modify the surface normals, we produce the illusion of a bumpy surface [1].

Peachey [4] introduced the idea of using 3D coordinates of suface points for texture mapping.

This is equivalent to carving the object out of a non-uniform substance represented by the 3D

texture map. This is an excellent approach for modeling materials like wood and marble where the

surface is indeed the result of carving from a material patterned in 3D. Where this approach can be

used, there are advantages over the 2D method. Consistency of texture is achieved regardless of the

topology of the object. For most rendering techniques, the 3D coordinate values which correspond

C5 3

Figure 3: Bump mapping.

to a particular screen pixel have to be calculated anyway, so the coordinates for texture mapping

are available at no extra computational cost.

z

y

x

Figure 4: Solid texturing.

There are, however, cases where 3D texture mapping is unsuitable: surface marks on machined

objects, patterns on textiles and applied patterns like paintwork. In these examples the texture of

the object we are modeling is not a surface manifestation of a three dimensional structure so we

should not expect to be able to model it that way. Implicit skeletal models do not lend themselves

to solid texturing for di�erent reasons, explained below.

An excellent survey of texture mapping can be found in Heckbert [2].

4 C5

3 Texturing implicit skeletal models

Implicit skeletal models present a special problem for texture mapping. If we use a conventional,

two-dimensional map, we have to provide some sort of co-ordinate system on the surface of our

object. But this surface not only changes shape, it can change topologically. A torus can change

(nearly) smoothly into a sphere and as the hole closes up, we may not want an obvious discontinuity

in the texture.

It would seem that our only choice is to use a three-dimensional (solid) texture, but this, too,

is unsatisfactory for the following reason. Suppose we use a three-dimensional texture map which

is �xed in world space, then the texture of an object moving through space will change as it moves,

Fig. 5. One way to avoid this, is to tie the texture space to the object. That is, we use a co-ordinate

system in which the object is de�ned to be stationary and de�ne our texture map there. During

the rendering process, we must translate the coordinates of each surface component back into the

object's system before we look up the texture. This is a satisfactory solution for rigid objects, but

it fails in many cases for deformable objects.

AAAAAA
AAAAAA
AAAAAA
AAAAAA
AAAAAA

AAAAAAA
AAAAAAA
AAAAAAA
AAAAAAA
AAAAAAA

Figure 5: Object moving through texture space.

Figure 6 shows such a case. A large droplet splits into two smaller ones. If we regard the two

droplets as a single object, then the origin of the texture space will be at the center of gravity of

the large droplet. In the �nal frame, it will be mid-way between two separate objects traveling in

opposite directions. Each of these objects will be traveling through a texture space just as if it

were tied to the world coordinates.

Similar problems arise with rotation. If an object rotates without distortion, then the textures

on its surface should not change. This implies that the solid texture space must rotate with the

object. But with our skeletal models we do not refer to objects as such. We control the position of

key points and allow the surface topology to change as it will. It seems that whatever method we

choose, we can �nd an example where we do not get the e�ect we are seeking.

We need a method of setting up a texture map which refers only to key points and never to

objects. Each key point, therefore, is embedded in its own abstract texture space. This space is

used only as a device for assigning a value to every part of the surface. It need have no geometrical

signi�cance. There are many ways in which we can set up this abstract texture space, so let us

�rst demonstrate it by means of a simple example. Suppose a key point is considered to be at the

origin of an ordinary co-ordinate system. Then < x; y; z > is the name of a point in space de�ned

C5 5

a b c d

Figure 6: Nowhere to put the texture space.

with respect to this key point. In creating the coordinate system, we have also given the key point

a new property. It is no longer symmetrical. We can assign properties to the space surrounding

it and we have given meaning to the idea that the point itself can rotate: Rotation of a key point

implies rotation of these local coordinates. We de�ne the abstract texture space as follows:

f = F (x; y; z) (1)

h = H(x; y; z) (2)

c = C(x; y; z) (3)

< f; h; c > is the name of a point in abstract texture space and the functions F , H , C can be

chosen at will, depending on the application. In most of what follows, we simply set f = x, h = y,

c = z so that < f; h; c > can be regarded as a point in space in a system whose origin is a particular

key point.

For our purpose, we need to assign an < f; h; c > triplet to every point P , on the surface of a

soft object. We do this by means of a simple, weighted sum. Assume each key point i, contributes

an amount Qi to the �eld at P . If < fi; hi; ci > are the values of the abstract coordinates of P in

the system of i, then:

f =
�fiQi

�Qi

(4)

h =
�hiQi

�Qi

(5)

c =
�ciQi

�Qi

(6)

Of course, �Qi is equal to the �eld value at the surface.

Once we have de�ned < f; h; c > for a point on the surface, we can look up values in tables,

or apply functions to describe the texture and color at that point. Our textures become functions

of the three dimensional f -h-c space and we can perform solid texturing just as we would for a

conventional object in world space.

Fig. 7 shows the classical case of a sphere breaking into two droplets. The texture is a 3D

bump map. During animation, this texture changes smoothly as the droplets merge. In this case,

the f , h, c coordinates are the local coordinates of the two points. Note that the two spheres are

identically textured after they separate.

6 C5

Figure 7: Textured droplets.

Fig. 8 shows stages in animation as a sphere changes into an object with a hole in it. The

texture is also changing from 'tartan' to radial stripes.

Figure 8: Sphere to torus inbetweening.

The way the texture behaves in animation, depends on what we suppose the motion means.

Fig. 9 shows two ways to rotate a complicated object. The original object is on the left. In the

center, the object is shown rotated while the abstract space attached to each key point maintains

its orientation. The object on the right has been rotated by the same amount, but this time the

abstract space coordinates have been rotated as well. Because the object has not changed its shape,

we see this right hand object as the correct one. If we want to regard the motion of a collection of

key points as a rotation, then we must rotate the < f; h; c > space. Otherwise the texture behaves

as if the object has merely transformed to the new shape by distortion. There is nothing wrong

with the central object in Fig. 9. The animation represents a blob of soft material whose surface is

changing (perhaps because of some internal
ow of material). Only if we want to regard the motion

as a rotation without distortion need we deliberately rotate the abstract texture space.

We can, indeed, represent objects which both rotate and distort. In doing so, we make a

conscious choice about how to handle our abstract space. We are made to specify just how much

of the motion of key points is attributable to the rotation. What appeared to be an impasse, turns

out to be a need for more detailed speci�cation. The idea of an abstract texture space gives us a

simple tool with which to express that speci�cation.

C5 7

Figure 9: Two ways to rotate a textured object.

3.1 Choice of f-h-c space

Fig. 10 shows the droplets again, textured with stripes. In this case, identical F , H , C functions

are used for each of two key points, so when they are su�ciently separated, they appear as two

identical spheres. As the key points approach each other, parts of the surface acquire < f; h; c >

values interpolated by the weighted sum and the texture changes accordingly. Notice that at no

stage does the texture exhibit a sudden break. Even at the moment the two objects become one,

the texture retains its continuity. This is because the values of f , h and c change continuously both

as functions of time and as functions of position on the surface.

Figure 10: Texture stretching during animation.

There is, of course, distortion. In Fig. 10, the texture is de�ned as a pattern of colored slices in

f -h-c space. Because we are using F (x) = x, H(y) = y, C(z) = z, every < f; h; c > in the region

of an isolated key point is equivalent to a simple position in space and the isolated sphere appears

to have been carved from a solid mass with this texture. In the region where the droplets begin to

merge, < f; h; c > is interpolated between two values. One is characteristic of the top of the lower

sphere and the other is characteristic of the bottom of the upper sphere. Thus in a small region of

physical space there will be a rapid, continuous change in f -h-c space. This causes the texture to

appear stretched.

Such distortion is inevitable when we try to map a texture onto a surface which can stretch and

even change its topology, but if we know, in advance, what kind of relative motion of key points to

expect, we can take steps to minimise this. For example, we can de�ne:

8 C5

F (x) = x; H(y) = y; C(z) = z (7)

as before, for the top key point and:

F (x) = x; H(y) = y � R; C(z) = z (8)

for the lower point, where R is the radius of in
uence associated with these key points. The

e�ect of this is that the two spheres appear to have been carved out of di�erent parts of f -h-c

space, but when they merge, the parts of the surface most violently a�ected by the interpolation

are not too far apart in f -h-c space. This is illustrated in Fig. 11.

Figure 11: Stretching reduced by careful choice of f -h-c.

C5 9

4 Color and texture in CSG

In CSG systems, the shape of a surface is very often created by a subtraction. In Fig. 12, two holes

have been made in a rectangular block by subtracting cylinders. The surface of the hole on the left

is lighter. It has taken its color from the subtracted cylinder, not from the material of the block.

Figure 12: Two ways to drill a hole.

We expect the inside of the hole to have the color of the block because we think of color as a

property of the material of the block. If the color is merely painted on, we would expect the inside

of the hole to be di�erent. Some properties are logically inherited from surfaces. We could, for

example, texture the cylinder to represent surface scratches made by a drill. We would think it

logical for the surface to acquire such a texture from the cylinder. In our application, we want to

treat color as a property of volumes rather than surfaces.

To get the desired color and texture on a surface we have to build the concepts of volume and

surface properties into our data structure. In the CSG tree every leaf node carries a separate entry

for surface and volume properties. When the ray tracer �nds an intersection it applies the volume

properties of the left node and the surface properties from the right (subtracted node).

4.1 Space division

This has an interesting consequence for the space division algorithm [5]. Full cells have to carry a

pointer to say of what material they are full. In practice this is a pointer to the leaf node for that

primitive.

4.2 Asymmetric addition

Taking account of volume properties introduces another problem. When we add two overlapping

objects with di�erent material properties what should be the properties of the common volume?

Our solution is to regard the PLUS operator as asymmetrical, Fig. 13. The right hand operand

overwrites the left. This convention enables the user to specify exactly which parts of the model

have which properties. Using this feature of the CSG system, the eggcup design, Fig. 14 was created.

Including glue setting time, the real wooden eggcup took about four days to make. Without the

CSG design, there is no obvious way to predict the surface pattern.

10 C5

A B

A + B B + A

Figure 13: Asymmetric addition operator.

Given the correct inheritance of volume properties, the eggcup design, Fig. 14 is straight forward.

We build the billet by adding di�erently colored cylinders and subtract away the material around

the eggcup. The surface design appears automatically.

Figure 14: CSG design for the eggcup.

4.3 Using texture to modify shape

Figure 15: Leaves.

When objects are represented as an iso-surface of a �eld, we can cause actual change in shape by

applying a 3D texture function to modify the �eld value. This rather complicates the intersection

C5 11

calculations, but there are some special cases where this can be avoided.

The leaves in Fig. 15 were designed for a commercial animation. We were asked to make leaves

in a similar style to some exising art work except that ours had to be 3D objects. The basic leaf

shape is made by taking the intersection of a bounding ellipsoid with a thin cylindrical surface.

The ellipsoid is de�ned by:

ax2 + by2 = k (9)

where x, y are local coordinates and k is a constant. After �nding the intersection with the

cylinder, a noise texture function is added to k. The e�ect of this is to change the shape of the

ellipsoid and give the leaf a wavy edge. Of couse this technique could be used with non-implicit

models but in the CSG system all the mechanism is there already.

12 C5

5 Examples

Figure 16: Soft CSG teapot, textured.

For the coral, Fig. 17, the portion of each polyp is taken from the nearest point in a 3D grid. A local

coordinate system is set up around this point and the polyp is \grown" to meet its neighbours [3].

Figure 17: Coral.

C5 13

6 Acknowledgements

I wish to thank Nelson Max for the coral image, and Andrew Trotman for the teapot image.

References

[1] J. Blinn. Simulation of wrinkled surfaces. Computer Graphics (Proceedings SIGGRAPH '78), 12(3):282{
292, 1978.

[2] P. Heckbert. Survey of texture mapping. IEEE Computer Graphics & Applications, 6(11):56{67, 1986.
[3] N. L. Max and W. Geo�. Shapes and textures for rendering coral. Scienti�c Visualization of Physical

Phenomena [Proceedings of CG International '91], pages 333{343, 1991.
[4] D. Peachey. Solid texturing of complex surfaces. Computer Graphics (Proceedings SIGGRAPH '85),

19(3):279{286, 1985.
[5] G.Wyvill. Implicit skeletal models and csg. In J. Menon, editor, Implicit Surfaces for Geometric Modeling

and Computer Graphics, Siggraph '96 Course Notes, chapter C4, pages 13{14. 1996.
[6] G. Wyvill, W. Brian, and M. Craig. Solid texturing of soft objects. IEEE Computer Graphics and

applications, 7(12):20{26, December 1987.
[7] G. Wyvill and P. Sharp. Volume and surface properties in csg. New Trends in Computer Graphics:

Proceedings of CG International '88, pages 257{266, 1988.

14 C5

Sphere Tracing: A Geometric Method for the
Antialiased Ray Tracing of Implicit Surfaces

To appear: The Visual Computer

John C. Hart
School of EECS

Washington State University
Pullman, WA 99164-2752

(509) 335-2343
(509) 335-3818 (fax)
hart@eecs.wsu.edu

May 12, 1996

Abstract

Sphere tracing is a new technique for rendering implicit surfaces using geometric distance.
Distance-based models are common in computer-aided geometric design and in the modeling
of articulated figures. Given a function returning the distance to an object, sphere tracing
marches along the ray toward its first intersection in steps guaranteed not to penetrate the
implicit surface.

Sphere tracing is particularly adept at rendering pathological surfaces. Creased and rough
implicit surfaces are defined by functions with discontinuous or undefined derivatives. Current
root finding techniques such as L-G surfaces and interval analysis require periodic evaluation
of the derivative, and their behavior is dependent on the behavior of the derivative. Sphere
tracing requires only a bound on the magnitude of the derivative, robustly avoiding problems
where the derivative jumps or vanishes. This robustness and scope support sphere tracing as
an efficient direct visualization system for the design and investigation of new implicit models.

Furthermore, sphere tracing efficiently approximates cone tracing, supporting symbolic-
prefiltered antialiasing. Signed distance functions for a variety of primitives and operations are
derived and appear independently as appendices, specifically the natural quadrics and torus,
superquadrics, Bezier-based generalized cylinders and offset surfaces, constructive solid ge-
ometry, pseudonorm and Gaussian blends, taper, twist and hypertexture.

Keywords: area sampling, blending, deformation, distance, implicit surface, Lipschitz condi-
tion, numerical methods, ray tracing, solid modeling.

2 C6

1 Introduction

Whereas a parametric surface is defined by a function which, given a tuple of parameters, indicates
a corresponding location in space, an implicit surface is defined by a function which, given a point
in space, indicates whether the point is inside, on or outside the surface.

The most commonly studied form of implicit surfaces are algebraic surfaces, defined implicitly
by a polynomial function. For example, the unit sphere is defined by the second degree algebraic
implicit equation

x2 + y2 + z2 � 1 = 0 (1)

as the locus of coordinates whose hypotenuse (squared) is unity.
Alternatively, using a distance metric, one can represent the unit sphere geometrically by the

implicit equation
jjxjj � 1 = 0 (2)

as the locus of points of unit distance from the origin. Herex = (x; y; z) andjj(x; y; z)jj denotes
the Euclidean magnitude

p
x2 + y2 + z2: The implicit surface of (2) agrees with that of (1), though

their values differ at almost every other point inR3 : Specifically, (1) returnsalgebraic distance
[Rockwood & Owen, 1987] whereas (2) returnsgeometric distance.

A comparison of geometric versus algebraic representations of quadric surfaces preferred the
geometric representation [Goldman, 1983]. The parameters of a geometric representation are
coordinate-independent, and are more robust and intuitive than algebraic coefficients. Distance-
based functions like (2) are one method for representing implicit surfaces geometrically.

Distance-based models can be found in a variety of areas.Offsetsurfaces have become valu-
able in computer-aided geometric design for their use of distance to model the physical capabili-
ties of machine cutting tools [Barnhillet al., 1992]. Skeletalmodels, which in computer graphics
simulate articulated figures such as hands and dinosaurs, are equivalent to offset surfaces. Com-
puter vision’s medial-axis transform converts a given shape to its skeletal representation [Ballard
& Brown, 1982]. Generalized cylindersbegan as a geometric representation in computer vision
[Agin & Binford, 1976] but have also matured into a standard modeling primitive in computer
graphics [Bloomenthal, 1989] — special ray tracing algorithms were developed for their rendering
in [van Wijk, 1984; Bronsvoort & Klok, 1985].

1.1 Previous Work

Several methods exist for rendering implicit surfaces. Indirect methods polygonize the implicit
surface to a given tolerance, allowing the use of existing polygon rendering techniques and hard-
ware for interactive inspection [Wyvillet al., 1986; Bloomenthal, 1988]. Although polygonization
transforms implicit surfaces into a representation easily rendered and incorporated into graphics
systems, polygonizations are typically not guaranteed and may not accurately detect disconnected
or detailed sections of the implicit surface. Production rendering systems tend to polygonize sur-
faces, resulting in large time and memory overhead to accurately represent an otherwise simple
implicit model.

In an effort to combine speed and accuracy, [Sederberg & Zundel, 1989] developed a direct
scan-line method to more accurately render algebraic implicit surfaces at interactive speeds. Al-

C6 3

though slower, ray tracing provides a direct, accurate and elegant method for investigating a much
larger variety of implicit surfaces.

Let
r(t) = ro + trd (3)

parametrically define a ray anchored atro in the direction of the unit vectorrd: Plugging the ray
equationr : R ! R

3 into the functionf : R3 ! R that defines the implicit surface produces the
composite real functionF : R ! R whereF = f � r such that the solutions to

F (t) = 0 (4)

correspond to ray intersections with the implicit surface. Implicit surface ray-tracing algorithms
simply apply one of the multitude of numerical root finding methods to solve (4).

Whenf(x) = 0 implicitly defines an algebraic surface, (4) is a polynomial equation, and can
be solved by DesCartes’ rule of signs [Hanrahan, 1983], Sturm sequences [van Wijk, 1984], and
Laguerre’s method [Wyvill & Trotman, 1990].

Ideally, the root-finding procedure should only need the ability to evaluate the function at any
point. However, one can always construct a pathological function that will cause such a “blind”
technique to miss one or more roots, by inserting an arbitrarily thin region between samples where
the function zips off to zero and back (a point reiterated from [Kalra & Barr, 1989; Von Herzen
et al., 1990]). Hence, any robust root finder needs more information than simple function evalua-
tion.

The “Hypertexture” system used a brute-force blind ray-marching scheme, using only func-
tion evaluation [Perlin & Hoffert, 1989]. This supported the design of implicit surfaces without
regard to the analytic properties of the defining functions. Freed from such constraints, fractal and
hairy surfaces were modeled by implicit surfaces whose functions contained procedural elements.
The high frequencies produced by these geometric textures required fine sampling along the ray,
resulting in a rendering speed so slow as to necessitate parallel implementation.

Guaranted ray intersection requires extra information, which in most cases is produced by the
derivative of the function. Interval analysis finds ray intersections by defining the function and its
derivative on intervals instead of single values [Mitchell, 1990].

The LG-surfaces method imposed the Lipschitz condition onf to create an efficient octree
partitioning guaranteed to contain the implicit surface, and imposed the Lipschitz condition onF 0

to find ray intersections within each octree cell [Kalra & Barr, 1989].

1.2 Overview

Sphere tracing is a guaranteed technique for ray tracing implicit surfaces. Unlike LG-surfaces or
interval analysis, it does not require the ability to evaluate the derivative of the function. Instead,
it requires only a bound on the magnitude of the derivative — that the function be continuous and
Lipschitz. Thus, the derivative of the function need not be continuous, nor even defined.

Sphere tracing benefits from this relaxation by using the continuous but non-differentiable
minimum and maximum operations for constructive solid geometry instead of the commonly used
Roth diagrams [Roth, 1982]. Unlike typical ray tracers, Sphere tracing finds the first ray inter-
section, the least positive solutiont to (4). Typically, all ray intersections must be determined

4 C6

for constructive solid geometry [Roth, 1982]. Sphere tracing overcomes this requirement by us-
ing maximum and minimum operations to model the entire scene with a single, non-differentiable
function. This also supports the blending of non-differentiable CSG results.

Sphere tracing allows the efficient visualization a wider range of implicit surfaces than before
possible, including creased, rough and fractal surfaces. Like the slower brute-force rendering ap-
proach of the “Hypertexture” system [Perlin & Hoffert, 1989], sphere tracing frees the implicit
surface designer from many concerns regarding the analytic behavior of the defining function, fos-
tering more diverse implicit formulations. Moreover, structures in mathematics are often specified
as the locus of points that satisfy a particular condition. Sphere tracing visualizes such structures,
regardless of smoothness, extent and connectedness, given only a bound on the rate of the condi-
tion’s continuous changes over space. Sphere tracing provides a direct and flexible visualization
tool for the development of new implicit models.

Sphere tracing approximates cone tracing [Amanatides, 1984] to eliminate aliasing artifacts
and simulate soft shadows.

2 Sphere Tracing

Sphere tracing capitalizes on functions that return the distance to their implicit surfaces (Sec-
tion 2.1) to define a sequence of points (Section 2.2) that converges linearly to the first ray-surface
intersection (Section 2.3). Section 2.4 incorporates constructive solid geometry into sphere trac-
ing at the model level. Section 2.5 describes several enhancements to sphere tracing to hasten
convergence.

2.1 Distance Surfaces

This section defines and discusses functions that measure or bound the geometric distance to their
implicit surfaces. Such functions implicitly definedistance surfaces,as mentioned in [Bloomenthal
& Shoemake, 1991]. The appendices derive functions that measure or bound distances for a variety
primitives and operations.

Let the functionf be a continuous mappingf : Rn ! R that implicitly describes the set
A � R

n as the locus of points
A = fx : f(x) � 0g: (5)

The continuity off implies that it return zero on the boundary@A which forms theimplicit surface

of f: If f is strictly negative1 over the interior
�
A; then the multivalued function imagef�1(0)

concisely represents the implicit surface off:

Definition 1 The point-to-set distance defines the distance from a pointx 2 R
3 to a setA � R

3

as the distance fromx to the closest point inA;

d(x; A) = min
y2A

jjx� yjj: (6)

1Even if f is continuous, it need not be strictly negative over the interior. For example, the setA may be validly

represented by a continuous function that returns zero for every point in
�

A :

C6 5

Given a setA; the point-to-set distanced(x; A) implicitly definesA (from the outside) [Ka-
plansky, 1977]. Here, we are interested in the converse:Given an implicit function, what is the
point-to-set distance to its surface?

Definition 2 A function f : R3 ! R is asigned distance boundof its implicit surfacef�1(0) if
and only if

jf(x)j � d(x; f�1(0)): (7)

If equality holds for (7), thenf is asigned distance function.

Table 1 lists the primitives and operations for which the appendices contain signed distance
functions and bounds.

Primitive/Operation Signed Distance Function Signed Distance Bound
plane Appendix A
sphere Appendix A

ellipsoid [Hart, 1994] Appendix A & E
cylinder Appendix A

cone Appendix A
torus Appendix A

superquadrics Appendix B
generalized cylinder Appendix C

union Section 2.4
intersection Section 2.4
complement Section 2.4
soft objects Section D

pseudonorm blend [Rockwood, 1989] Appendix D
isometry Appendix E

uniform scale Appendix E
linear transformation Appendix E

taper Appendix E
twist Appendix E

hypertexture Appendix F
fractals Appendix F

Table 1: Directory of signed distance functions and bounds.

The Lipschitz constant is a useful quantity for deriving signed distance bounds to complex
shapes. Lipschitz constants have been used in computer graphics for collision detection [Von
Herzen & Barr, 1987] and rendering implicit functions [Kalra & Barr, 1989].

Definition 3 A functionf : R3 ! R is Lipschitzover a domainD if and only if for allx;y 2 D;

there exists a positive finite constant� such that

jf(x)� f(y)j � �jjx� yjj: (8)

6 C6

The value� is called theLipschitz constant.The function Lipf; returns the minimum Lipschitz
constant� satisfying (8).

A Lipschitz constant of the sum of two functions results from the sum of the functions’ Lip-
schitz constants. By the chain rule, a Lipschitz constant of the composition of functions results
from the product of the component functions’ Lipschitz constants.

The following theorem shows how to turn a Lipschitz function into a signed distance bound,
allowing sphere tracing to render any implicit surface defined by a Lipschitz function.

Theorem 1 Let f be Lipschitz with Lipschitz constant�: Then the functionf=� is a signed dis-
tance bound of its implicit surface.

Proof: Given a pointx; let y 2 f�1(0) be one of the points such that

jjx� yjj = d(x; f�1(0)): (9)

Then by (8) andf(y) = 0 it follows that

jf(x)j � � d(x; f�1(0)): (10)

Hence,��1f(x) is a signed distance bound for any Lipschitz functionf: (Compare Eq. (8) of
[Kalra & Barr, 1989]).2

If � = Lip f then an optimal signed distance bound results.

2.2 Ray Intersection

One intersects a rayr(t) with the implicit surface defined by the signed distance boundf(x) by
finding its least positive root (thefirst root) of F (t): This root is the limit point of the sequence
defined by the recurrence equation

ti+1 = ti + F (ti) (11)

and the initial pointt0 = 0: The sequence converges if and only if the ray intersects the implicit
surface. This sequence forms the kernel of the geometric implicit surface rendering algorithm in
Figure 1.

The convergence test� is set to the desired precision. The maximum distanceD corresponds to
the radius of a viewer-centered yonder clipping sphere, and is necessary to detect non-convergent
sequences.

The absolute value of the signed distance function can be considered the radius of a sphere
guaranteed not to penetrate any of the implicit surface. This sphere was called anunbounding
sphere in [Hartet al., 1989] (which used a distance bound to implicitly define and visualize 3-D
deterministic fractals) because the implicit surface is contained in the closed complement of this
sphere. Unlike a bounding volume which surrounds an object, an unbounding volume surrounds
an area of space not containing the object. The name “sphere tracing” arose from the property that
ray intersections are determined by sequences of unbounding spheres.

As did [Ricci, 1974], sphere tracing uses the minimum and maximum functions for constructive
solid geometry. These operations crease the implicit surface locally, such that the defining function

C6 7

Given signed distance boundf; ray r(t) and maximum ray traversal distanceD:

Initialize t = 0 and d = 0

While t < D

Let d = f(r(t))

If d < � then return t — intersection

Increment t = t+ d

return ; — no intersection

Figure 1: Pseudocode of the geometric implicit surface rendering algorithm.

Figure 2: A hit and a miss.

8 C6

remains continuous in value, but not in derivative. Derivative discontinuity can cause problems
with root finders, which must find all roots of the function and resolve the CSG operation using a
Roth diagram [Roth, 1982]. Sphere tracing operates independent of the derivative, given its bound,
and need converge only to the first root, even for CSG models.

2.3 Analysis

Root refinement methods, such as Newton’s method, converge quadratically to simple roots (where
the ray penetrates the surface), and linearly to multiple roots (where the ray grazes the surface)
[Gerald & Wheatley, 1989]. Root isolation methods which divide and conquer, such as LG-
surfaces [Kalra & Barr, 1989] and interval analysis [Mitchell, 1990], converge linearly since the
width of the intervals are reduced by a factor of one-half at each iteration. Root isolation methods
are allowed to converge only in the event of a multiple root, otherwise they pass control to a faster
root refinement method the moment they find a monotonic region straddling thet-axis.

Theorem 2 Given a functionF : R ! R with Lipschitz bound� � LipF; and an initial pointt0;
sphere tracing converges linearly to the smallest root greater thant0:

The sphere-tracing sequence can be written

ti+1 = g(ti) = ti +
jF (ti)j

�
: (12)

In this form, the similarities of (12) to Newton’s method are more visible. Letr be the smallest
root greater than the initial pointt0: SinceF (r) = 0 theng(r) = r; and at any non-rootjF j=� is
positive. Hence (12) converges to the first root.

Without loss of generality,F is assumed to be non-negative in the region of interest, which
eliminates the need for the absolute value. The Taylor expansion ofF (ti) about the rootr is

g(ti) = g(r) + (ti � r)g0(r) +
(ti � r)2

2
g00(�) (13)

for some� 2 [ti; r] andg0(r) = 1 + F 0(y)=�: The error term becomes

ei+1 = ti+1 � r = g(ti)� g(r) = g0(r)ei + higher order terms (14)

Sinceg0(r) is constant in the iteration, (12) converges linearly toy: 2

Corollary 2.1 Sphere tracing converges quadratically if and only if the function is steepest at its
first root.

In the eventF 0(r) = ��; the linear term of the error (13) drops out, leaving the quadratic and
higher order terms. 2

C6 9

2.4 Constructive Solid Geometry

Following [Ricci, 1974], the minimum and maximum operations on functions results in union and
intersection operations on their implicit surfaces. In the following equations, letfA; fB be signed
distance functions of setsA andB respectively. IffA or fB is a signed distance bound, then the
resulting CSG implicit function will be also be a bound.

The distance to the union ofA andB is the distance to the closer of the two

d(x; A [B) = min fA(x); fB(x): (15)

Similarly, the distance to a list of objects is the smallest of the distances to each of the component
objects.

The distance to the complement ofA takes advantage of the signed nature of the distance
function

d(x;R3 n A) = �fA(x): (16)

Although DeMorgan’s theorem defines intersection as the complement of the union of com-
plements, the minimum operators used in the union are not complemented properly. Instead, the
distance to the intersection is bound by the distance to the farthest component.

Theorem 3 The distance from a pointx to the intersection of two implicit surfacesA = f�1

A (0)

andB = f�1

B (0) defined by signed distance boundsfA; fB is bounded by

d(x; A \ B) � max fA(x); fB(x): (17)

Proof: By parts, as illustrated on a sample intersection in Figure 3.

A

B I

II

III

IV

Figure 3: Sample points illustrated a bound on the distance to the intersection between two sets.

Case I:x 2 A \ B: Both fA and fB are negative, and the larger of the two indicates the
(negative) distance to the closest edge of the intersection.

Case II:x 2 A;x 62 B: The functionfA is negative whereasfB is positive, hence the greater
of the two. The closest point onB to x may not be in the intersection, but there cannot be any
point in the intersection closer.

Case III:x 62 A;x 2 B: Symmetric with Case II.
Case IV:x 62 A [B: As before, the closest point in the intersectionA \ B can be no closer

than the farther of the closest point inA and the closest point inB: 2

From its definition, set subtractionA� B may be simulated asA \ (R3 nB); though yielding
only a signed distance bound due to the intersection operator.

The union and intersection operators are demonstrated in Figure 9 in Section 4.2.

10 C6

2.5 Enhancements

The following enhancements increase the efficiency of sphere tracing by reducing unnecessary
distance computations, which can be quite expensive and even iterative in some cases. The en-
hancements are evaluated and analyzed empirically in Section 4.3.

2.5.1 Image Coherence

An algorithm similar to sphere tracing has been developed for rendering discrete volumetric data
using the 3-Ddistance transform[Zuiderveldet al., 1992]. The distance transform takes a binary
“filled/unfilled” voxel array to a numerical voxel array such that each voxel contains the distance
to the closest “filled” voxel, under a given metric. We have also extended the concept of Lipschitz
constants to volume rendering [Stander & Hart, 1994], trading the distance transform for an octree
of local Lipschitz constants as in [Kalra & Barr, 1989], allowing distance-based accelerated volume
rendering of arbitrary isovalued surfaces while eliminating the need to recompute the preprocessed
data structure for each change in the threshold.

One enhancement in [Zuiderveldet al., 1992] kept track of the smallest distance encountered
by a ray that misses the object. Under an orthogonal projection, this smallest distance defines the
radius of a disk of guaranteed empty pixels surrounding the sample point. Under a perspective
projection, the minimumprojecteddistance must be computed (requiring ray-sphere intersection),
and this enhancement becomes less efficient. Initial tests have shown this enhancement to degrade
performance in the perspective case for typical implicit surfaces.

2.5.2 Bounding Volumes

Bounding volumes are a useful mechanism to cull processing of intricate geometries which are
irrelevant to the current task. Beyond their typical benefit of avoiding the casting of rays that miss
an object, they also help sphere tracing avoid distance computations for objects farther away than
others. The overhead of quick bounding-volume distance checks is, in most cases, a small price to
pay for the benefit of avoiding many expensive but useless distance computations.

First, the distances to each bounding volume in a union or collection of objects is computed.
Then in order of increasing bounding volume distance, the distance to the contents of each bound-
ing volume is computed until a content’s distance is less than the smallest bounding volume dis-
tance. This distance is then the point-to-set distance to the collection of objects. This process is
sketched in Figure 4.

A Lagrange multiplier method for finding the bounding parallelepiped of an implicit surface
appears in [Kay & Kajiya, 1986]. The signed distance bound has properties which might yield an
alternative implicit surface bounding volume algorithm, but this topic is left for further research.

2.5.3 The Triangle Inequality

When computing the shortest distance between a point and a collection of objects, one need not
compute the distance to objects whose last distance evaluation minus the distance traversed along
the ray since that last evaluation is still larger than the distance to the currently closest object. This
triangle inequality enhancement is implemented in Figure 5.

C6 11

Make a heap D of bounding volume distances to each object.

Initialize d =1:

Repeat

Let d be the lesser of d or the distance to the contents of the bounding volume
at the top of the heap.

Remove the top of the heap and re-heap.

Let dh be the distance to the bounding volume now at the top of the heap.

Until d < dh or the heap is empty.

return d:

Figure 4: An efficient algorithm for finding the closest object of a collection using bounding vol-
umes.

Given rayr(t), maximum distanceD and a collection of objectsO:

Initialize dlast = 0 and t = 0:

For each object o 2 O initialize od = 0:

Until dmin < � or t > D:

For each object o 2 O:

If od � dlast > dmin then
Update od = od � dlast:

Otherwise
Let d = d(r(t); o):

Reset od = d:

Update dmin = min(dmin; d):

End if.
Let dlast = dmin:

End for.

Update t = t+ dmin:

End until.

Figure 5: Triangle inequality algorithm for avoiding unnecessary distance computations.

12 C6

2.5.4 Octree Partitioning

Eliminating empty space certainly aids rendering efficiency, but the major benefit of partitioning
is that it allows the imposition of local bounds on the Lipschitz constants yielding more accurate
signed distance bounds. Octree partitioning has been used in the polygonization [Bloomenthal,
1989] and ray tracing [Kalra & Barr, 1989] of implicit surfaces. Sphere tracing reaps the same
benefits from spatial partitioning as did the root finding method in [Kalra & Barr, 1989], which
used the Lipschitz constant to cull octree nodes guaranteed not to intersect the implicit surface.

Ray intersection with an implicit surface defined by a signed distance bound is penalized by
the section of the domain where the gradient magnitude is greatest. Chopping an object into the
union of smaller chunks allows each chunk to be treated individually, penalized only by the largest
gradient within its bounds. Since the partitioning algorithm in [Kalra & Barr, 1989] required only
a bound on the Lipschitz constant of the function, the use of this octree in no way restricts the
domain of functions available for sphere tracing.

Octree partitioning further enhances sphere tracing of unions and lists by optionally storing an
index to the object closest to the cell. An object is closest to an octree cell if and only if it is the
closest object to every point in the cell. Under this definition, some cells may not have a closest
object. By the triangle inequality an object is closest to a cell if the distance from the cell’s centroid
to the object, plus the distance from the centroid to the cell corner, is still less than the distance
from the centroid to any other object.

2.5.5 Convexity

Knowing that an object is convex can make sphere tracing more efficient by increasing the step
size along the ray.

Theorem 4 LetA � R
3 be a convex set defined implicitly by the signed distance functionf: Then

given a unit vectorv 2 R
3 the line segment

[x;
f(x)

�v � rf(x)
v] (18)

does not intersectA except possibly at its second endpoint.

Proof: The gradient of a signed distance functionrf has the following properties on the com-
plement of a convex setR3 n A : (1) it is continuous; (2) its magnitude is one (the change in the
function equals the change in the distance); and (3) its direction points directly away from the
closest point on the implicit surface. Hence, for anyx 2 R

3 n A we know the closest point in A,
and its surface normal points towardx: SinceA is convex, it cannot penetrate the tangent plane to
x:

The intersection of a ray anchored atx and directionv with the tangent plane normal to the
vectorrf(x) a distance off(x) fromx is given by the second endpoint of (18). 2

Corollary 4.1 If rf(x) � v � 0 then the ray anchored atx and directionv does not intersect the
implicit surface off:

C6 13

Theorem 4 allows sphere tracing to make larger steps toward convex objects, and Corollary 4.1
allows sphere tracing to avoid computing the distance to convex objects it has stepped beyond.
The convexity enhancement likely causes sphere tracing to converge quadratically, because of its
similarity to Newton’s method, which also converges quadratically.

Bounding volumes are usually convex, and combining these two techniques can further reduce
the computation of unnecessary distances.

Knowledge of convexity becomes a necessity for rendering scenes with a horizon line. Con-
sider a ground plane and a ray parallel to it. Sphere tracing will step along this ray at fixed intervals
looking for an intersection that never happens. Corollary 4.1 avoids this situation whereas Theo-
rem 4 hastens convergence of rays nearly parallel to the ground plane.

3 Antialiasing

Tracing cones instead of rays resulted in an area-sampling antialiasing method in [Amanatides,
1984]. Cone tracing computed the intersection of cones with spheres, planes and polygons to
symbolically prefilter an image, eliminating the aliasing artifacts that result from point sampling.
Sphere tracing can detect and approximate cone intersections with any implicit surface defined
by a signed distance function. One must still implement the details of the cone tracing algorithm
to determine the shape of the cones as they bounce around a scene, but may rely on unbounding
spheres to increase the efficiency of computing cone intersections.

At some point along a grazing ray, the sequence of unbounding spheres shrinks, falling within
the bounds of the cone, then enlarges, escaping the bounds of the cone. This poses the problem of
“choosing a representative” [Amanatides, 1984] — a location to take a sample to approximate the
shading of the cone’s intersection with the surface.

A cover is a pixel-radius offset bounding an implicit surface on the inside and outside such
that a ray-cover intersection indicates a cone-object intersection [Thomaset al., 1989]. Given an
implicit surface defined by the signed distance functionf(x); its outer cover is the global offset
surface implicitly defined byf(x) � rp and its inner cover is the global offset surface implicitly
defined byf(x) + rp; whererp is the radius of a pixel (one-half of the diameter of a pixel [Hart &
DeFanti, 1991]). In other words, the outer cover is the surfacef�1(rp) and the inner cover is the
surfacef�1(rp): Instead of sphere tracing the implicit surface off(x); the antialiasing algorithm
sphere traces the inner cover — the implicit surface off(x) + rp:

The development of covers proposes the most representative choice for silhouette antialiasing
would be the point along the section of the ray closest to the surface. Hence, of the unbounding
spheres inside the cone, the center of the smallest sphere (with respect to pixel size) becomes the
representative sample. Though this sample is off the implicit surface, one assumes a reasonable
level of continuity in the gradient of the distance function to define a usable surface normal. The
sequence along the ray of unbounding spheres are related to a cone as shown in Figure 6.

For smooth implicit surfaces, one may assume local planarity. Hence the implicit surface is
assumed to cover the cross section of the cone with a straight edge of the given distance from the
cone’s center. The amount of influence this shaded point has, with respect to the points the ray
intersects further on, depends on the signed distance function evaluated at the representativef(x)

(the radius of the closest unbounding sphere) to the implicit surface. The fraction of coverage of a

14 C6

cone boundary

ray

cone intersection

representative
in

ne
r c

ov
er

su
rfa

ceou
ter

 co
ve

r

Figure 6: Sphere tracing approximates cone intersection. The ray intersects the original surface
but misses its inner cover. This cone intersection will account for more than half of the pixel’s
illumination.

disk of radiusrp by an intersecting half-plane of signed distancef(x) from its center is given by

� =
1

2
�

f(x)
q
r2p � f(x)2

�r2p
� 1

�
arcsin

f(x)

rp
(19)

and is derived in [Thompson, 1990].

Ray traversal proceeds in steps off(x) + rp (which may take it through the surface). The
percentage of coverage� represents the cone intersection of the grazing ray. It is treated as an
opacity and is accumulated and used to blend the shading of the current representativex with the
shading resulting from further near misses and intersections, using the standard rules of image
compositing [Porter & Duff, 1984].

For intersection edges, one must keep track of all signed distance functions whose unbounding
spheres fit within the bounds of the cone. Upon ray intersection approximation, the signed distance
functions of each of the intersecting surfaces provide the proportions for the proper combination
of their shading properties. The representative for intersection is the last point of the ray traversal
sequence, the point that satisfies the convergence test.

Often the signed distance function is too expensive to compute efficiently and a signed distance
bound is used. A bound may return unbounding spheres whose radii prematurely shrink below
the radius of a pixel, resulting in incorrect cone intersections. In this case, a separate distance
approximation may be useful. For example, [Pratt, 1987; Taubin, 1994] estimate the distance to
the implicit surface off with the first order approximationf=jjrf jj: In general, this approximation
is not necessarily a distance bound. Lemma 1 of [Taubin, 1994] asserts that this approximation is
asymptotic to geometric distance as one approaches the surface. Cone intersections can hence be
more accurately determined by this approximation than by the signed distance bound.

Cone tracing inhibits texture aliasing by filtering the texture based on the radius of the cone at
intersection, and extends directly to the sphere tracing method.

C6 15

4 Results

Sphere tracing simplifies the implementation of an implicit surface ray tracer, and runs at speeds
comparable to other implicit surface rendering algorithms.

4.1 Implementation

Sphere tracing has been implemented in a rendering system calledzeno. Inclusion of an implicit
surface intozeno requires the definition of two functions: a signed distance function for ray inter-
section, and a surface normal function for shading.

A new primitive or operation can be incorporated intozeno with no more than a distance
bound. The negative part of the signed distance bound is only necessary for some constructive
solid geometry and blending operations, and is not needed for the visualization of functions that
are zero-valued inside the implicit surface. The surface normal function can be avoided by using a
general six-sample numerical gradient approximation of the distance bound gradient. Since most
of the time is spent on ray intersection, the inefficient numerical gradient approximation has a
negligible impact on rendering performance.

The simplicity with which implicit surfaces are incorporated inzeno makes it useful for visual-
ization of mathematical tasks and investigation of new implicit surfaces. For example, a homotopy
that removes a720� twist from a ribbon without moving either end formed the basis for the ani-
mated short “Air on the Dirac Strings” [Sandinet al., 1993], for whichzeno rendered a segment.
This homotopy is based heavily on interpolated quaternion rotations and was easily incorporated
into zeno as a domain transformation after a quick search and analysis of the most extreme defor-
mation in the homotopy [Hartet al., 1993].

4.2 Exhibition

The three tori in Figure 7 are combined using the superelliptic blend described in Appendix D.2.
The tori all are of major radius one, and minor radius one-tenth. The blue-green blend is quadratic
extending along the tori a radius of0:5 from their intersection. The red-green blend also has radius
0:5 but is degree eight. The red-blue blend is also degree eight but has a radius of only0:2:

Sphere tracing rendered Figure 7 (left) in 12:47 at a resolution of only256�256 using prefilter-
ing to avoid the severe aliasing that ordinarily accompany such low sampling rates. Experiments
on the difference of execution using point sampling and area sampling show that the increased
execution time due to area sampling is negligible.

Although the superelliptic blend is implemented inzeno as a signed distance bound, it returns
an underestimated distance of no less than 70% of the actual distance which adequately indicated
cone intersections, as the enlargement demonstrates in Figure 7 (upper right).

The work image in Figure 7 (lower right) shows that sphere tracing concentrates on silhouette
edges. Blue areas converge from 10 iterations, green around 50 and red over 100.

Figure 8 demonstrates a generalized cylinder, from Appendix C, whose skeleton consists of a
space curve modeled with 14 Bezier control polygons. Sphere tracing can render this scene in as
fast as 5:30 using bounding spheres to eliminate unnecessary distance computations. The curved
horizon is an artifact of the yonder clipping sphere of radius1; 000 used to terminate ray stepping.

16 C6

Figure 7: Three blends of tori (left), blowup (upper right) and work image (lower right).

Figure 8: A logo forzeno.

C6 17

Figure 9: Creases created by blended edges.

Figure 9 demonstrates the robustness of sphere tracing on creased surfaces. Both images were
rendered with prefiltering at a resolution of512� 512; and in 16:48 for the cylinders, 12:36 for the
cube.

The creases were created as CSG unions and intersections, defined implicitly by the continuous
but non-differentiable minimum and maximum operations from Section 2.4. The resulting edge
was then merged into a third object using the pseudonorm blend from Appendix D.2. Such creased
surfaces appear periodically in a variety of shapes, particularly in the modeling of biological forms.

Figure 10: “Lava” (left) modeled as a sphere deformed by the noise function. “Muscle” (center)
modeled with� = 2 noise. “Rock” (right) modeled with� = 1 noise.

Figure 10 illustrates the “noise” range deformation described in Appendix F. The left image
uses a single octave of noise, whereas the next two use six octaves, whose amplitude was scaled
by 1=f 2 and1=f; respectively, yielding a muscle texture and a rocky surface. The three images

18 C6

were each rendered at a resolution of256� 256 in (from left to right) approximately five minutes,
half-an-hour, and two hours. The high variation of distance estimates prohibited prefiltering the
results of the noise function.

4.3 Analysis

Sphere tracing convergence is entirely linear whereas other general root finders, such as interval
analysis, have a linearly-convergent root isolation phase followed by a quadratically-convergent
root refinement stage. Work images, such as Figure 7 (lower right), show that ray intersection is
most costly at silhouette edges. When sphere tracing these edges, the distance to the surface is
only a fraction of the distance to the ray intersection which slows convergence. For other methods
like interval analysis, silhouettes are double roots (that prevent root refinement) and their neighbor-
hoods consist of closely-spaced pairs of roots. Such root pairs are costly for midpoint subdivision
root refinement methods to separate since the distance between the two roots can be several orders
of magnitude smaller than the initial interval.

scene execution time relative time enhancement

single sphere 2:00 100% none
1:23 69% convexity

9 spheres/plane 2:53 100% none
1:42 59% convexity
1:19 46% triangle inequality
1:10 40% both

zeno logo 26:29 100% none
19:23 73% triangle inequality
5:28 21% bounding spheres

“Lava” 4:37 1 (single noise)
“Muscle” 33:52 7.3 (1=f 2 noise)

“Rock” 2:06:56 27.5 (1=f noise)

Table 2: Comparison of execution times for enhanced sphere tracing of various scenes.

The convexity enhancement hastened convergence by 31% as shown in Table 2. With more
primitives, this same table shows the triangle inequality enhancement to more than double the
convergence rate, and when combined with convexity, enhances ordinary sphere tracing by 60%.

Table 2 also compares various enhanced rendering times for thezeno logo. The fact that
all 14 Bezier curves were nearly equidistant from the eye prevented the triangle inequality from
significantly reducing unnecessary distance evaluations until sphere tracing had traversed much of
each ray.

Figure 11 reveals the distribution of step sizes used in sphere tracing a ball. This histogram
counted only the distance evaluations used to intersect primary (eye) rays.

C6 19

1

10

100

1000

10000

100000

1e-05 0.0001 0.001 0.01 0.1 1 10 100 1000

of

 S
te

ps

Step Size

Unenhanced
Octree

Convex

Figure 11: Histogram of step sizes for sphere tracing a ball.

20 C6

Unimproved sphere tracing is evenly distributed, with a small hump in the middle. An octree
replaces the increased distance computation in this humped area with octree parsing overhead,
(which this histogram does not measure). Echoes of the octree bounds cause the oscillations
at the high end of its spectrum, whereas the low end adheres to the unenhanced performance.
Experiments on simple scenes failed to demonstrate any increased performance from the octree
enhancement, although more complicated scenes are likely to benefit from its use.

The convex histogram demonstrates the power of this enhancement. Its slope on the left con-
firms the expectation from Section 2.5.5 that it provides sphere tracing a faster order of conver-
gence. The right side of this histogram is significantly reduced, due to the cessation of stepping
after moving beyond the sphere.

The spike in the unenhanced and convex graphs indicates the distance from the eye to the
ball, which is the first step taken by every ray emanating from the eye-point. One can remove
these spikes from the graph by measuring this distance once and refer to it as the first step for rays
emanating from the eye-point, and likewise for the light sources. This “head start” barely improved
performance in experiments.

Similar histograms in [Zuiderveldet al., 1992] measured performance logarithmically in the
number of steps but linearly in step size. As a result, their graphs were more logarithmically shaped
than Figure 11.

The accuracy of the distance estimate is directly proportionate to the rate of convergence. Ex-
periments on a sphere show that half the distance doubles the number of steps. The step-size
histograms in Figure 12 reveals the effects of distance underestimation.

The relationship between distance accuracy and sphere tracing performance suggests that in
certain cases a slower signed distance function may perform better than a fast distance underesti-
mate. For example, consider the distance to an ellipsoid with major axes of radius 100, 100 and
1 modeled as a non-uniform scale transformation of the unit sphere. Section E yields a signed
distance bound which returns at best the distance to the ellipsoid, and at worst 1% of the distance,
in closed form, whereas [Hart, 1994] yields a signed distance function which returns the exact dis-
tance at the expense of several Newton iterations. In this case, the signed distance function would
likely result in better performance.

Finally, the Lipschitz constants of the noise functions are 3 for single noise, 6 for1=f 2 noise
and18 for 1=f noise (six octaves). The timings in Table 2 corresponding to the images in Figure 10
show that the1=f 2-noise rendering time was actually7:3 times (instead of the expected value of
twice) the single noise time. The likely reason is that the1=f 2 noise invokes the noise function six
times more than the single noise function (yielding an expected value of 12 times). The1=f -noise
rendering time was27:5 times longer than that of single noise (less than the expected 36 times),
and3:75 times longer than the1=f 2 noise (slightly larger than the expected value of 3).

5 Conclusion

Sphere tracing provides a tool for investigating a larger variety of implicit surfaces than before
possible.

With its enhancements and prefiltering, sphere tracing becomes a competitive presentation-
quality implicit surface renderer. In particular, the convexity enhancement greatly increases render-

C6 21

1000

10000

100000

1e+06

1e-05 0.0001 0.001 0.01 0.1 1 10 100 1000

of

 S
te

ps

Step Size

Full distance
Half distance

Quarter distance

Figure 12: Halving step sizes doubles convergence time.

22 C6

ing speeds, and the triangle inequality is quite effective for large assortments of objects. Bounding
volumes also increase rendering performance as expected. However, techniques based on image
coherence and space coherence (octree) did not perform as well.

Whereas sphere tracing performed significantly slower than standard ray tracing on simple
objects consisting of quadrics and polygons, it excelled at rendering the results of sophisticated
geometric modeling operations.

The geometric nature of sphere tracing adapts it to symbolic prefiltering, supporting antialias-
ing at a nominal overhead.

In lieu of direct experimental comparison, several theoretical arguments show sphere tracing
as a viable alternative to interval analysis and L-G surfaces.

5.1 Further Research

Sphere tracing demonstrates the utility of signed distance functions in the task of rendering ge-
ometric implicit surfaces. We expect these functions will similarly enhance other applications,
particularly in the area of geometric processing. As geometric distance becomes more important
in computer-aided geometric design and other areas of modeling, the demand for more efficient
geometric distance algorithms will increase.

In retrospect, the use of the Euclidean distance metric seems an arbitrary choice for sphere
tracing. The linear nature of the chessboard and Manhatten metrics may result in more efficiently
computed distances and ray intersection. “Cube-tracing” and “octahedron-tracing” algorithms are
left as further research.

5.2 Acknowledgments

Thanks to Tom DeFanti and Larry Smarr for procuring the support of the first year of this research.
This research was subsequently supported by the National Science Foundation under the Research
Initiation Award #CCR-9309210, and its implementation and distribution supported by a Research
Experience for Undergraduates extension. The research was performed at the Imaging Research
Laboratory, which is supported in part by NSF grants #CDA-9121675 and #CDA-9422044.

Special thanks to Alan Norton who, in 1989, encouraged me to apply sphere tracing to non-
fractal models. The task of tracking down and deriving the distances in the appendix was greatly
helped by conversations with Al Barr, Chandrajit Bajaj, Charlie Gunn, Pat Hanrahan, Jim Kajiya,
Don Mitchell and Alyn Rockwood. I would also like to thank the anonymous reviewers, especially
Jules Bloomenthal, for many insightful comments and recommendations. Brian Wyvill and Jules
Bloomenthal deserve special mention for inspiring this research by putting together an excellent
course on implicit surfaces at SIGGRAPH ’90.

References

[Agin & Binford, 1976] Agin, G. J. and Binford, T. O. Computer description of curved objects.
IEEE Transactions on ComputersC-25(4), Apr. 1976, pp. 439–449.

C6 23

[Amanatides, 1984] Amanatides, J. Ray tracing with cones.Computer Graphics18(3), July 1984,
pp. 129–135.

[Ballard & Brown, 1982] Ballard, D. H. and Brown, C. M.Computer Vision. Prentice-Hall, En-
glewood Cliffs, NJ, 1982.

[Barnhill et al., 1992] Barnhill, R. E., Frost, T. M., and Kersey, S. N. Self-intersections and offset
surfaces. In Barnhill, R. E., ed.,Geometry Processing for Design and Manufacture, pp. 35–44.
SIAM, 1992.

[Barr, 1981] Barr, A. H. Superquadrics and angle-preserving transformations.IEEE Computer
Graphics and Applications1(1), 1981, pp. 11–23.

[Barr, 1984] Barr, A. H. Global and local deformations of solid primitives.Computer Graphics
18(3), July 1984, pp. 21–30.

[Blinn, 1982] Blinn, J. F. A generalization of algebraic surface drawing.ACM Transactions on
Graphics1(3), July 1982, pp. 235–256.

[Bloomenthal & Shoemake, 1991] Bloomenthal, J. and Shoemake, K. Convolution surfaces.
Computer Graphics25(4), July 1991, pp. 251–256.

[Bloomenthal, 1988] Bloomenthal, J. Polygonization of implicit surfaces.Computer Aided Geo-
metric Design5(4), Nov. 1988, pp. 341–355.

[Bloomenthal, 1989] Bloomenthal, J. Techniques for implicit modeling. Technical Report P89-
00106, Xerox PARC, 1989. Appears in SIGGRAPH ’93 Course Notes #25 “Design, Visualiza-
tion and Animation of Implicit Surfaces”.

[Bronsvoort & Klok, 1985] Bronsvoort, W. F. and Klok, F. Ray tracing generalized cylinders.
ACM Transactions on Graphics4(4), Oct. 1985, pp. 291–303.

[Gerald & Wheatley, 1989] Gerald, C. F. and Wheatley, P. O.Applied Numerical Analysis.
Addison-Wesley, Reading, MA, 1989.

[Goldman, 1983] Goldman, R. N. Two approaches to a computer model for quadric surfaces.
IEEE Computer Graphics and Applications3(5), Sept. 1983, pp. 21–24.

[Hanrahan, 1983] Hanrahan, P. Ray tracing algebraic surfaces.Computer Graphics17(3), 1983,
pp. 83–90.

[Hart & DeFanti, 1991] Hart, J. C. and DeFanti, T. A. Efficient antialiased rendering of 3-D linear
fractals.Computer Graphics25(3), 1991.

[Hart et al., 1989] Hart, J. C., Sandin, D. J., and Kauffman, L. H. Ray tracing deterministic 3-D
fractals.Computer Graphics23(3), 1989, pp. 289–296.

[Hart et al., 1993] Hart, J. C., Francis, G. K., and Kauffman, L. H. Visualizing quaternion rotation.
Manuscript, in review, 1993.

24 C6

[Hart, 1994] Hart, J. C. Distance to an ellipsoid. In Heckbert, P., ed.,Graphics Gems IV, pp.
113–119. Academic Press, 1994.

[Hoffman, 1989] Hoffman, C. M.Geometric and Solid Modeling. Morgan Kaufmann, 1989.

[Kalra & Barr, 1989] Kalra, D. and Barr, A. H. Guaranteed ray intersections with implicit sur-
faces.Computer Graphics23(3), July 1989, pp. 297–306.

[Kaplansky, 1977] Kaplansky, I.Set Theory and Metric Spaces. Chelsea, New York, 1977.

[Kay & Kajiya, 1986] Kay, T. L. and Kajiya, J. T. Ray tracing complex scenes.Computer Graph-
ics 20(4), 1986, pp. 269–278.

[Lewis, 1989] Lewis, J. P. Algorithms for solid noise synthesis.Computer Graphics23(3), July
1989, pp. 263–270.

[Mitchell, 1990] Mitchell, D. P. Robust ray intersection with interval arithmetic. In Proc. of
Graphics Interface ’90. Morgan Kauffman, 1990, pp. 68–74.

[Nishimuraet al., 1985] Nishimura, H., Hirai, M., Kawai, T., Kawata, T., Shirakawa, I., and
Omura, K. Object modeling by distribution function and a method of image generation. In
Proc. ofElectronics Communication Conference ’85, 1985, pp. 718–725. (Japanese).

[Perlin & Hoffert, 1989] Perlin, K. and Hoffert, E. M. Hypertexture.Computer Graphics23(3),
July 1989, pp. 253–262.

[Porter & Duff, 1984] Porter, T. and Duff, T. Compositing digital images.Computer Graphics
18(3), 1984, pp. 253–259.

[Pratt, 1987] Pratt, V. Direct least-squares fitting of algebraic surfaces.Computer Graphics21(4),
July 1987, pp. 145–152.

[Ricci, 1974] Ricci, A. A constructive geometry for computer graphics.Computer Journal16(2),
May 1974, pp. 157–160.

[Rockwood & Owen, 1987] Rockwood, A. P. and Owen, J. C. Blending surfaces in solid model-
ing. In Farin, G., ed.,Geometric Modelling, pp. 367–383. SIAM, 1987.

[Rockwoodet al., 1989] Rockwood, A., Heaton, K., and Davis, T. Real-time rendering of
trimmed surfaces.Computer Graphics23(3), July 1989, pp. 107–116.

[Rockwood, 1989] Rockwood, A. P. The displacement method for implicit blending surfaces in
solid models.ACM Transactions on Graphics8(4), Oct. 1989, pp. 279–297.

[Roth, 1982] Roth, S. D. Ray casting for modeling solids.Computer Graphics and Image Pro-
cessing18(2), February 1982, pp. 109–144.

[Sandinet al., 1993] Sandin, D. J., Kauffman, L. H., and Francis, G. K. Air on the Dirac strings.
SIGGRAPH Video Review93, 1993. (Animation).

C6 25

[Schneider, 1990] Schneider, P. J. Solving the nearest-point-on-curve problem. In Glassner, A. S.,
ed.,Graphics Gems (I), pp. 607–611. Academic Press, Boston, 1990.

[Sederberg & Zundel, 1989] Sederberg, T. W. and Zundel, A. K. Scan line display of algebraic
surfaces.Computer Graphics23(3), July 1989, pp. 147–156.

[Stander & Hart, 1994] Stander, B. T. and Hart, J. C. A Lipschitz method for accelerated volume
rendering. In Proc. ofVolume Visualization Symposium ’94, Oct. 1994. To appear.

[Taubin, 1994] Taubin, G. Distance approximations for rasterizing implicit curves.ACM Trans-
actions on Graphics13(1), Jan. 1994, pp. 3–42.

[Thomaset al., 1989] Thomas, D., Netravali, A. N., and Fox, D. S. Antialiased ray tracing with
covers.Computer Graphics Forum8(4), December 1989, pp. 325–336.

[Thompson, 1990] Thompson, K. Area of intersection: Circle and a half-plane. In Glassner, A. S.,
ed.,Graphics Gems, pp. 38–39. Academic Press, Boston, 1990.

[van Wijk, 1984] van Wijk, J. Ray tracing objects defined by sweeping a sphere. In Proc. of
Eurographics ’84. Elsevier, 1984, pp. 73–82.

[Von Herzen & Barr, 1987] Von Herzen, B. and Barr, A. H. Accurate triangulations of deformed,
intersecting surfaces.Computer Graphics21(4), July 1987, pp. 103–110.

[Von Herzenet al., 1990] Von Herzen, B., Barr, A. H., and Zatz, H. R. Geometric collisions for
time-dependent parameteric surfaces.Computer Graphics24(4), Aug. 1990, pp. 39–48.

[Wyvill & Trotman, 1990] Wyvill, G. and Trotman, A. Ray tracing soft objects. In Proc. ofCom-
puter Graphics International ’90. Springer Verlag, 1990.

[Wyvill et al., 1986] Wyvill, G., McPheeters, C., and Wyvill, B. Data structure for soft objects.
Visual Computer2(4), 1986, pp. 227–234.

[Zuiderveldet al., 1992] Zuiderveld, K. J., Koning, A. H. J., and Viergever, M. A. Acceleration of
ray-casting using 3-D distance transforms. In Proc. ofVisualization in Biomedical Computing
1992, vol. 1808, Oct. 1992, pp. 324–335.

A Distance to Natural Quadrics and Torus

These appendices derive signed distance functions, bounds and Lipschitz constants and bounds
for a variety of primitives and operations in the hope that they will aid in the implementation of
sphere tracing, while also serving as a tutorial in developing signed distance functions, bounds and
Lipschitz constants and bounds for other primitives and operations.

Distances to the standard solid modeling primitives are listed below. The geometric rendering
algorithm is not as efficient compared to the standard closed-form solutions. Instead, these dis-
tances are useful when the primitives are used in higher-order constructions such as blends and
deformations.

26 C6

Plane The signed distance to a planeP with unit normaln intersecting the pointrn is

d(x; P) = x � n� r: (20)

Sphere A sphere is defined as the locus of points a fixed distance from given point. The distance
to the unit sphereS about at the origin hence given by

d(x; S) = jjxjj � 1: (21)

Through domain transformations (Section E, the radius and location of the sphere may be
changed. The sphere may even become an ellipsoid, though this reformulates the signed distance
function into one requiring the solution to a sixth-degree polynomial [Hart, 1994]. Through alter-
nate distance metrics (Section B), the sphere can become a superellipsoid. These techniques also
generalize the rest of the basic primitives as well.

Cylinder The distance to a unit-radius cylinder centered about thez-axis is found by projecting
into thexy-plane and measuring the distance to the unit circle

d(x; Cyl) = jj(x; y)jj � 1: (22)

Note that in (22), and throughout the rest of the appendix,x = (x; y; z):

Cone The distance to a cone centered at the origin oriented along thez-axis is

d(x; Cone) = jj(x; y)jj cos � � jzj sin �; (23)

where� is the angle of divergence from thez-axis. The trigonometry behind its derivation is
illustrated by Figure 13.

jj(x; y)jj � jzj tan �(x; y; z)
�

�

jzj tan �
jzj

jj(x;
y)jj c

os
��jz

j sin
�

Figure 13: Geometry for distance to a cone.

C6 27

Torus The torus is the product of two circles, and its distance is evaluated as such

d(x; T) = jj(jj(x; y)jj � R; z)jj � r (24)

for a torus of major radiusR and minor radiusr; centered at the origin and spun about thez-axis.

B Distance to Superquadrics

Superquadrics [Barr, 1981] result from the generalization of distance metrics. Distance to the basic
primitives all used thejj � jj operator. In two dimensions, this operator generalizes to thep-norm

jj(x; y)jjp = (jxjp + jyjp) 1p (25)

which, whenp = 2; becomes the familiar Euclidean metric whosecircle is a round circle. The
Manhattan metric(p = 1) has a diamond for itscircle. Taking the limit asp ! 1 results in the
chessboard metric

jj(x; y)jj1 = maxx; y (26)

where a square forms itscircle. The other intervening values forp produce rounded variations
on these basic shapes, and setting0 < p < 1 produces pinched versions. Generalized spheres,
so-calledsuperellipsoids,are produced by apq-norm as

jj(x; y; z)jjpq = jj(jj(x; y)jjp; z)jjq: (27)

The natural quadrics now generalize to superquadrics, and tori likewise become supertori,
whose distances are measured in the appropriate metric. One unifying metric space must be used
for the distances to be comparable. Hence,pq-norm distances must be converted into Euclidean
distances.

Let f(x) return apq-norm distance to its implicit surface. This distance defines the radius of
an unbounding superellipsoid. The radius of the largest Euclidean spherere inscribed within the
pq-norm superellipsoid of radiusrs (in thepq-norm metric) is given by

re =

(
rs=jj(

p
3

3
;
p
3

3
;
p
3

3
)jjpq if p < 2

rs otherwise
(28)

C Distance to Offset Surfaces

Given some closed skeleton geometryS � R
3 ; then theglobal offset surface is defined geometri-

cally by the implicit equation
d(x; S)� r = 0: (29)

Local offsets are defined parametrically using the normal of the skeleton geometry. Global offsets
are the more desirable representation [Hoffman, 1989], and in particular avoid interior surfaces
which can cause problems in ray-tracing and CSG [van Wijk, 1984].

28 C6

The offset of an algebraic implicit surface is algebraic, though of higher degree in general. Sev-
eral techniques have been developed to approximate offset surfaces with lower-degree representa-
tions. Treating offset surfaces geometrically overcomes the problems of dealing with high-degree
algebraic representations and the loss of precision of low-degree approximations.

One useful skeletal model is the generalized cylinder, such as the fixed-radius global offset
surface of a Bezier curve. Define the space curve parametrically as the image of the function
p : R ! R

3 : Without loss of generality, assume the point from which we want to find the distance
to the space curve is the origin.

Let p(u) define a cubic Bezier space curve. The point on the space curve closest to a given
pointx occurs either at one of the endpoints, or at pointp(u) on the space curve such that

(x� p(u)) � pu(u) = 0: (30)

Equation (30) can be converted into a degree-five 1-D Bezier curve [Schneider, 1990], and can
be solved efficiently using a technique described in [Rockwoodet al., 1989]. Such a generalized
cylinder is demonstrated in Figure 8 in Section 4.2.

D Distance to Blended Objects

Blends smoothly join nearby objects, and have found applications in image synthesis and computer
aided geometric design.

D.1 Soft Metablobbies

[Blinn, 1982] used a Gaussian distribution function to produce a blending function which has
come to be known as the “blobby” model. “Soft” objects approximate Gaussian distribution with
a sixth-degree polynomial to avoid exponentiation and localize the blends [Wyvillet al., 1986].
“Metaballs” approximate Gaussian distributions with piecewise quadratics to avoid exponentiation
and iterative root-finding [Nishimuraet al., 1985].

Following [Wyvill et al., 1986], the following piecewise cubic in distancer

CR(r) =

(
2 r3

R3 � 3 r2

R2 + 1 if r < R;

0 otherwise.
(31)

approximates a Gaussian distribution.
Reformulating this function to accommodate the implicit surface definitions in this paper, (31)

forms the basis for asoftimplicit surface consisting ofn key pointspi with radiiRi; and threshold
T; defined by the function

f(x) = T �
nX
i=1

CRi
(jjx� pijj) (32)

Negative keypoints are incorporated into the model by negating the value returned byCRi
():

Theorem 5 The distance to the implicit blendB defined by (32) is bounded by

d(x; B) � 2

3
f(x)

nX
i=1

Ri: (33)

C6 29

Proof: Repeated differentiation of (31) produces

C 0(r) = 6
r2

R3
� 6

r

R2
(34)

C 00(r) = 12
r

R3
� 6

R2
: (35)

SolvingC 00(r) = 0 yields the maximum slope, which occurs at the midpointr = R=2: Its Lipschitz
constant is given by

Lip C(r) = jC 0(R=2)j = 3

2R
: (36)

The Lipschitz constant of a sum is bounded by the sum of the Lipschitz constants, which gives the
above result.2

In practice, local Lipschitz bounds may be used for tighter distance bounds by taking the first
summation in (33) over keypointsi with non-zero contributions. Additional efficiency results from
the use of bounding volumes of radiusRi surrounding the keypointspi; as detailed in [Wyvill &
Trotman, 1990].

D.2 Superelliptic Blends

The pseudonorm blend of [Rockwood & Owen, 1987] returns thep-norm distance to the blended
union of implicit surfaces of signed distance functions. Hence, using the techniques from Ap-
pendix B, sphere tracing can render pseudonorm-blended surfaces, as demonstrated in Figures 7
and 9 in Section 4.2.

The pseudonorm blend creases the space surrounding the blend [Rockwood & Owen, 1987].
Such gradient discontinuities can be disastrous for some root finders, but do not impact sphere
tracing.

E Distances to Transformed Objects

Implicit surfaces are transformed by applying the inverse transformation to the space before apply-
ing the function. LetT (x) be a transformation and letf(x) define the implicit surface. Then the
transformed implicit surface is defined as the implicit surface of

f(T�1(x)) = 0: (37)

The Lipschitz constant of the composition is no greater than the product of the component Lipschitz
constants. We are concerned with the Lipschitz constant of the transformation inverse, which is
not necessarily the inverse of the Lipschitz constant of the transformation.

Isometry Isometries are transformations that preserve distances. IfI is an isometry, the distance
returned byf needs no adjustment

d(x; I � f�1(0)) = d(I�1(x); f�1(0)): (38)

Isometries include rotations, translations and reflections.

30 C6

Uniform Scale A uniform scale is a transformationS(x) of the form

S(x) = sx (39)

wheres is the scale factor. The inverseS�1 is a scale by1=s: Hence, the distance to a scaled
implicit surface is

d(x;S(f�1(0))) = sd(S�1(x); f�1(0)) (40)

and the Lipschitz constant of the inverse scale is1=s:

Linear Deformation The distance to the linear image of an implicit surface is found by deter-
mining the Lipschitz constant of the linear transformation’s inverse, which is also a linear transfor-
mation.

The Lipschitz constant of an arbitrary linear transformation is found by the power method,
which iteratively finds the largest eigenvalue of a matrix [Gerald & Wheatley, 1989].

Taper The taper deformation scales two axes by a functionr(�) of the third axis [Barr, 1984].
The taper is defined

taper(x) = (r(z)x; r(z)y; z) (41)

whereas its inverse differs only by usingr�1(�) instead ofr(�): The Lipschitz constant of the inverse
deformation is

Lip taper = min
z2R

r�1(z): (42)

In other words, the Lipschitz constant of the inverse taper is the amount of its “tightest” tapering.

Twist The twisting deformation rotates two axes by a linear functiona(�) of the third axis. Twist-
ing is defined

twist (x) =

0
B@ x cos a(z)� y sin a(z);

x sin a(z) + y cos a(z);

z

1
CA (43)

whereas its inverse differs only by usinga�1(�) instead ofa(�): Twisting is not Lipschitz onRn

since for any Lipschitz bound� one can find two pointsRn at a great distance from the twisting
axis that are transformed farther apart by a ratio greater than�: Thus, twisting must be constrained
to a domain where it satisfies the Lipschitz criterion. One such domain is the unit cylinder oriented
along the twisting axis. The Lipschitz constant of the twist is computed from the worst case
scenario within the bounds of the unit cylinder as illustrated in Figure 14,

Lip twist =

s
4 +

�
�

a0

�
2

: (44)

C6 31

21

twist

z z

�

a0

�

a0

Figure 14: Geometric calculation of the Lipschitz constant of the bounded twist deformation.

F Distance to Hypertextures

The use of sophisticated noise functions has greatly increased the power of procedural models for
making existing geometric representations more realistic. The recent work has applied stochastic
textures directly to the geometry instead of altering the shading [Perlin & Hoffert, 1989; Lewis,
1989].

The original “Hypertexture” system formulated implicit models for a variety of surface phe-
nomena, including hair and fire. This appendix focuses on incorporating hypertexture’s model of
noise into sphere tracing, though the same techniques can be used to adapt the other hypertexture
models as well.

“Hypertexture” treats solid procedural noise as a deformation, and was designed for use with
implicit surfaces. Its original ray-tracing algorithm stepped along the ray in fixed intervals. De-
termining a distance bound on a “hypertextured” shape allows sphere tracing to more efficiently
render its result.

Band-limited solid noise results from the smooth interpolation of a lattice of random unit vec-
tors. Condensing [Perlin & Hoffert, 1989], the noise function is given by

noise(x; y; z) =
bzc+1X
k=bzc

byc+1X
j=byc

bxc+1X
i=bxc

C1(jx�ij)C1(jy�jj)C1(jz�kj)�(i; j; k)�(x�i; y�j; z�k) (45)

whereCR is the cubic Gaussian approximation (31) used for soft objects, and� is an array of
random unit vectors. From Theorem 5, we know that LipC1 = 3=2: Two opposing vectors can be
neighbors in�; so Lip� = 2: Hence, their composition results in Lip noise= 3:

Fractal noise is formed by summing scaled versions of the noise function

noise�(x) =
n�1X
i=0

noise(2ix)
2�i

: (46)

overn octaves [Perlin & Hoffert, 1989].

32 C6

For� = 1; the amplitude decreases proportionately to the increase in frequency, so its Lipschitz
constant equals the sum of the individual noise functions,

Lip noise�=1 = 3n: (47)

Thus� = 1 noise is not Lipschitz, but its band-limited form for finiten is.
For� = 2 noise, the amplitude decreases geometrically as the frequency increases, resulting in

Lip noise�=2 = 3(2� 1

2n�1
) � 6: (48)

Hence, Brownian motion is Lipschitz (which can also be derived from the definition of Brownian
motion as the integral of white noise).

Sphere tracings of noise-textured spheres appear in Figure 10 in Section 4.2.

Guaranteeing the Topology of an Implicit Surface
Polygonization

Barton T. Stander John C. Hart
School of EECS

Washington State University
fbstander,hartg@eecs.wsu.edu

May 12, 1996

Abstract

An algorithm for guaranteeing topological correctness of the polygonization of an implicit
surface is presented, using the critical points of a function. The methodology is extended to
allow real-time guaranteed polygonized implicit surface modeling for simple scenes. For com-
plicated scenes, some topological changes can still be detected and repolygonized in real time,
but the guarantee is only re-established after a pause in user activity. The implemented system
currently handles blobby ellipsoids, but could be extended to include any smooth, bounded
implicit surface.

Keywords: implicit surfaces, polygonization, topology, critical points, interval analysis, interac-
tive modeling, particle systems.

1 Introduction

Implicit surfaces have some modeling advantages over their parametric counterparts including the
ability to easily be combined and blended in various fashions. Implicit surfaces are commonly
polygonized to simplify their display and interrogation. Much effort has been made to ensure
the consistency of the polygonization, to avoid surface holes, dangling polygons and other non-
manifold anomalies.

In each of the two-dimensional examples in Fig. 1, the connectedness of the surface is undis-
cernable from the point samples. Numerous techniques have been developed to resolve ambiguities
when the surface samples lack the necessary information to consistently select one configuration
over another [Ning & Bloomenthal, 1993]. These disambiguation techniques correctly discern the
configurations for only very low degree (linear, quadratic) surfaces. Interval analysis is capable
of detecting and correctly resolving such situations (to a given degree of accuracy), but only after
numerous subdivision steps over the entire surface [Snyder, 1992].

The topologyof an implicit surface refers to the number of disjoint components together with
thegenus(or number of holes) of each component. Thus, a topologically correct polygonization to

2 C7

-

+ -

+ -

+ -

+ +

+ +

+ +

+ +

+ -

- -

-

Figure 1: Cases where point samples provide insufficient information for correct topological iden-
tification.

an implicit surface must share the same number of components, each component having the same
genus as its corresponding component in the true surface.

Catastrophe theorydeals with cases where a small change in the domain space causes a signifi-
cant alteration in the resulting range space. Similarly, polygonization must accomodate the minute
surface details that completely change connectedness when perturbed.

TheCrowbar Principleof catastrophe theory [Gilmore, 1981] states that to pry the information
out of a problem, one needs to look at the “cracks” — the exceptions. To guarantee the topology of
an implicit surface polygonization, we look at the points where the gradient of the implicit surface
vanishes, thecritical points.

The analysis of topology using critical points is not entirely new to computer graphics. Crit-
ical points of vector and tensor fields are used to delineate topologically-distinct regions in the
visualization of flow [Helman & Hesselink, 1991; Delmarcelle & Hesselink, 1994].

Section 3 describes a technique that guarantees the topology of the polygonization matches the
topology of the implicit surface. An interval-analysis search finds the critical points of the implicit
surface. These critical points dictate the topology of the surface. During polygonization, these
critical points are used to correctly resolve topologically ambiguous cases.

Implicit surfaces are difficult to model in an interactive environment due to real-time display
problems and the indirect relationship between the control parameters and the resulting shape.
Witkin and Heckbert ameliorated these problems by representing the implicit surface with a collec-
tion of oriented surface particles [Witkin & Heckbert, 1994]. Oriented surface particles circumvent
the need for a topological guarantee. One infers a surface from their appearance, even though the
particles themselves are totally disconnected. The natural next step to this research is the real-time
polygonization of these particles, but this requires a topological guarantee.

Section 4 describes a technique for repolygonization of an implicit surface. Topological cor-
rectness requires not only the tracking of surface particles but also the tracking of critical points.
In fact, during manipulation, critical points are created and destroyed in pairs. The techniques in
this paper can track critical points and detect their destruction in real-time. The process of detect-
ing newly created critical points is numerically troublesome, and its searching step may require a
pause in user interaction to obtain a topological guarantee for complicated functions.

1.1 Implicit Surfaces

An implicit surface is the set of pointsx 2 R3 that satisfyF (x) = 0. We define implicit surfaces
such thatF (x) > 0 indicatesx is inside the surface, andF (x) < 0 meansx is outside. This

C7 3

convention agrees with popular implicit surface applications in image-synthesis, but is opposite of
the convention used in computer-aided geometric design.

This research focuses on the so-called blobby model as the basis of its implicit surface, although
it also applies to any continuously differentiable and bounded surface. The blobby model was
developed from a model of the electron density maps in molecular structures but has evolved into
a general modeling tool [Blinn, 1982; Wyvillet al., 1986]. It defines the implicit surface as the
solution of

F (x) = �1 +
nX

i=1

ekf(qi;x) = 0: (1)

where thef(qi;x) are then blobby primitives andqi is a vector of the primitives parameters. The
constantk is a negative number which determines the sharpness of the blend. Spherical primitives
are used for the sake of simplifying the discussion, but the current implementation readily handles
blobby ellipsoids. Spherical primitives are defined implicitly by the function

fi(qi;x) = (x� oi)
2
� r2i ; (2)

where the parameter vectorqi = (oi; ri) holds the sphere’s centeroi and radiusri:
Several variations on blobby surfaces use much faster piecewise polynomial approximations

of the Gaussian distribution [Nishimuraet al., 1985; Wyvill et al., 1986]. This research uses
the exponential form instead of the piecewise polynomial forms to better understand the analytical
properties of the critical points. The following methods require a function that is once differentiable
with respect to its control parameters and twice differentiable with respect to its spatial variable.
With careful tracking of the piecewise domains, the following techniques could be extended to
the polynomial approximations. Nonetheless, for the sake of simplicity and proof-of-concept, this
work focuses on the infinitely-differentiable exponential form and postpones its implementation
on piecewise domains for future work.

2 Previous Work

Our interactive repolygonization method for implicit surface manipulation combines tools from
several fields of research: polygonization, particle systems, and mesh optimization. We also review
other surface modeling strategies.

2.1 Voxel-Based Polygonization

Whereas parametric surfaces lend themselves to forward visible-surface algorithms, such as the z-
buffering, implicit surfaces are better suited for backward algorithms, such as ray tracing. As many
graphics workstations implement z-buffering in hardware but few similarly support ray tracing,
real-time manipulation demands forward rendering.

The implicit formulation enjoys many benefits, though its main drawback is that its surface is
difficult to interrogate. Hence fast “forward” rendering typically requires a polygonization step.

Polygonization algorithms typically interrogate implicit surfaces through spatial sampling.
There are several spatial sampling techniques for interrogating implicit surfaces, and all divide

4 C7

space into cells and search for only those cells that intersect the implicit surface. Ning and Bloo-
menthal review several variations on this theme [Ning & Bloomenthal, 1993], focusing on topolog-
ical consistency and correctness, although none of their surveyed algorithms guarantees topological
correctness.

Surface tracking techniques [Norton, 1982; Wyvillet al., 1986] partition space into small cells
and begin with a cell known to straddle the implicit surface (some vertices in, some out). The tech-
nique then recursively (or iteratively) finds straddling cells among its neighbors until all neighbors
have been checked, yielding a collection of cells enclosing the geometry of the implicit surface.

Spatial subdivision techniques [Bloomenthal, 1988; Kalra & Barr, 1989; Snyder, 1992] begin
with one large cell known to bound the implicit surface, then repeatedly subdivide cells intersecting
the implicit surface. Lipschitz bounds or interval analysis can guarantee that the implicit surface is
bounded by the resulting cells, hence yielding a guarantee on surface topology.

Spatial interrogation techniques, particularly in guaranteed form, remain too costly for real-
time use.

2.2 Particle-Based Polygonization

Reeves invented particle systems as a tool for modeling various natural phenomena such as fire,
clouds, and water [Reeves, 1983], and they have since been used in many other applications. When
modeling implicit surfaces, an alternative to spatial interrogation constrains a particle system to
the implicit surface. Such physically-based approaches tend to be much faster at interrogating an
implicit surface. The technique scatters particles randomly throughout space and then forces them
to migrate to the implicit surface using its defining function’s sign and gradient direction. Once
the particles reach the surface, they repel each other in order to achieve a more uniform sampling
distribution [Turk, 1991; Bloomenthal & Wyvill, 1990; de Figueiredoet al., 1992].

Szeliski and Tonnesen model free-form surfaces using oriented particles [Szeliski & Tonnesen,
1992]. Whereas particles in other systems stick to a mathematically-defined surface or to a polyg-
onal surface, their particles form surfaces in 3D space by aligning their orientations with that of
their neighbors. They also provide a toolkit to split, join, and otherwise manipulate their free-form
surfaces.

In an interactive environment, such sample points may “fall off” when the user quickly alters
the surface, and otherwise find it difficult to maintain a balanced distribution. Witkin and Heckbert
[Witkin & Heckbert, 1994] overcame these problems by solving for particle velocities in terms of
surface parameter velocitiesq: This resulted from the key observation that@F=@q is continuous.
This kept the particles on the surface, nearly eliminating the dependency on “feedback” terms.
They balance the distribution of sample points by introducing an intricate particle “birth and death”
scheme.

Witkin and Heckbert also provide a direct manipulation interface by allowing the user to choose
one or more “control particles” which also reside directly on the surface. The user drags or nails
these control particles, which in turn alter the actual surface parameters. They keep the surface
on the control particles by solving the reverse problem from above. That is, they solve for surface
parameter velocities in terms of control point velocities. In both cases, a differential equation
solver and a feedback term keep the particles and the actual surface exactly in sync.

The rendering technique used by Witkin and Heckbert’s algorithm consists of drawing each

C7 5

particle as a disk oriented tangent to the surface. This gives a somewhat useful representation of the
underlying surface, but it lacks the important depth cues of hidden surface removal, and topological
information is not always discernible. Furthermore, a topologically-interesting component such as
a disjoint piece or a hole inside of a known piece may be missed altogether if the initial set of
randomly placed particles never found it, or if it came into existence later at a place disjoint from
the known components.

Particle system approaches swiftly interrogate the surface with sample points, but “connect-
ing the dots” can easily kill an otherwise interactive environment. Figueiredo, for example, uses
Delaunay triangulation to build a polygonal mesh [de Figueiredoet al., 1992]. The result is not
interactive.

2.3 Other Surface Interrogation Techniques

Sederberg and Zundel used silhouette edges and surface intersection points to quickly render al-
gebraic surfaces of any degree using a scanline approach [Sederberg & Zundel, 1989]. Their
algorithm guaranteed correct topology, even where singularities occur.

Desbrun, Tsingos, and Gascuel interactively displayed surfaces generated by skeletons [Des-
brun et al., 1995]. Each skeleton sends out an ordered group of “seeds” which migrate along
predefined vectors until they intersect the surface. Where two skeletons intersect, some seeds
temporarily become invalid. The display can be either scales on the surface or a piecewise poly-
gonization. Their approach also lends itself to avoiding unwanted blending, and to partitioning the
surface into local bounding boxes. This method handles topology changes, though not necessarily
in a guaranteed fashion due to finite sampling.

3 Guaranteeing Topology

The critical points of a function completely determine the function’s qualitative properties [Gilmore,
1981]. This section introduces critical points and demonstrates how they are used to determine the
validity of a given polygonization of some function. The next section describes how critical points
are used to detect topology changes in an interactive environment.

3.1 Critical Points

The critical points of a function occur where its gradient

rF (x) = (Fx(x); Fy(x); Fz(x)) (3)

vanishes. The stability matrixV is the Jacobian of the gradient, defined

V (x) = J(rF (x)) =

2
64
Fxx(x) Fxy(x) Fxz(x)
Fyx(x) Fyy(x) Fyz(x)
Fzx(x) Fzy(x) Fzz(x)

3
75 : (4)

SinceFxy = Fyx; etc., the stability matrix is symmetric.

6 C7

Each critical point is either a maximum, minimum or a saddle point. Furthermore, In three
dimensions, saddle points come in two varieties, which we call type I and type II saddle points.
The critical points are classified based on the sign of the eigenvalues of the stability matrixV (x)
[Taylor, 1955].

Let l1; l2 andl3 be the three eigenvalues ofV evaluated at a critical pointx: Then

� x is a maximum point iff all three eigenvalues are negative.

� x is a type I saddle point iff only two of the eigenvalues are negative.

� x is a type II saddle point iff only one eigenvalue is negative.

� x is a minimum point iff all three eigenvalues are positive,

� If any of l1; l2 and l3 are zero then a critical point pair is created or destroyed, the critical
point is degenerate, and the results of this classification scheme are undetermined.

If any of the eigenvalues are zero, the critical point is degenerate. Degenerate critical points
signal a change in the number of critical points.

3.2 Finding Critical Points

An interval analysis search finds all of the critical points. Interval arithmetic operates on interval
numbers rather than on single values [Moore, 1966; Ratschek & Rokne, 1984]. In this manner,
large portions of space can be determined to have certain properties. An interval search can be
guaranteed to find all critical points in a given bounded domain.

The interval search for critical points starts with an initial box bounding the space of interest.
Blobbies are designed to have a limited range and then rapidly fall off to near zero, and hence their
area of interest is easily bounded (e.g. to three standard deviations [Witkin & Heckbert, 1994]).

A simple interval search for critical points eliminates large portions of space that cannot contain
a critical point. Given a boxX = [x0; x1] � [y0; y1] � [z0; z1] the algorithm checks whether the
intervals returned by any of the partial derivativesFx(X); Fy(X); Fz(X) might contain zero. If
not, thenX contains no critical points. If so, then the algorithm halvesX in its widest direction,
and tests each half separately.

Simple subdivision performs remarkably well, discarding large portions of space known not to
contain critical points. This technique eventually finds all critical points to any degree of accuracy
within a given bounding box. However, it is only linearly convergent.

When the box size is sufficiently small, a quadratically-convergent interval Newton method
refines or further subdivides the box to the desired numerical precision. Each iteration of the scalar
Newton’s method adjusts the previous guess by evaluating the function and following its slope
back to thex-axis. The three-dimensional interval version of Newton’s method determines “slope”
by inverting a3� 3 interval Jacobian matrix [Snyder, 1991; Hansen & Greenberg, 1983].

Given initial boxX; the algorithm successively seeks for smaller boxesX 0 � X such that any
roots ofrF contained inX are also contained inX 0: Taylor’s Theorem asserts that given 2 points
x;y there exist pointsz betweenx andy such that

rF (x) + V (z)(y� x) = rF (y); (5)

C7 7

whereV (the stability matrix) is the Jacobian ofrF: Let x be the midpoint of boxX;. The
algorithm seeksy 2 X such thatrF (y) = 0: Sincex andy are both inX; thez satisfying (5)
must be inX as well. Thus, solve

rF (x) + V (X)(y� x) = rF (y) = 0 (6)

for y: Since boxX is an interval vector, the solution setY containingy is also an interval vector,
so the actual equation to be solved is

rF (x) + V (X)(Y � x) = 0: (7)

for Y:
Any roots inX must also be inY; and the algorithm refinesX into X 0 = X \ Y: If X 0 = ;;

then there were no solutions inX: If X 0 = X then subdivideX and continue recursively1. This
iteration continues untilX reaches the desired precision.

Solving forY in (7) can be troublesome for two reasons. First, the diagonal elements of V(X)
might contain zero, resulting in the necessity of extending the interval arithmetic division operation
to correctly perform a division by an interval containing zero [Snyder, 1991; Hansen, 1978].

The second difficulty arises from the large numbers of interval operations involved, which can
lead to an “interval explosion” – a gross overestimate of the range of the result. The following
algorithm [Hansen & Greenberg, 1983] appears to work well, except for their “inner iteration
optimization,” which increased the execution time for blobby functions.

1. Let the real matrixVc; be comprised of the midpoints of interval matrixV (X):

2. ComputeB = V �1
c : (If Vc has no inverse, subdivideX and start over.)

3. Multiply both sides of (7) byB; obtaining

b = M(Y � x) (8)

whereM = BV (X) (which approximates the identity matrix), andb = �BrF (x):

4. Solve (8) forY using an interval version of the Gauss-Seidel method2

The second derivatives comprising the Jacobian of an exponential function can get quite large,
making the quadratically-convergent Newton’s method much slower than its performance on other
functions, such as polynomials. In fact, it performs worse than simple subdivision when the in-
tervals are not very small. For this reason, the simple subdivision method executes first until the
intervals subdivide down to a predefined width, at which point the interval Newton’s method takes
over the search.

1Snyder proves that ifY is a proper subset ofX thenX contains a unique solution torF [Snyder, 1991]. This
property can terminate the search early ifX contains a known critical point, but the experimental gain is minimal,
reducing the number of operations only by about 1%. Nonetheless, this result can prove that there are not two distinct
but extremely close critical points within an interval.

2It is recommended [Hansen & Greenberg, 1983] to solve the rows whose diagonal elements (intervals) do not
contain zero first to reduce the occurrence of semi-infinite intervals. When such an interval inevitably arises, its
intersection with X can yield two new boxes, both of which must be processed individually.

8 C7

Figure 2: Example of the interval critical point search convergence in two dimensions.

Interval arithmetic finds all critical points interactively for simple configurations. In the 2-D
example in Figure 2, the algorithm finds all 9 critical points in 1/18th of a second.

A common problem occurs when the desired point is exactly on an edge of the box. This can
result in the loss of quadratic convergence. Extending the intervals outward by small, random
amounts avoids this problem.

3.3 Determining Topology

The sign ofF at the critical points dictate the topology of the implicit surface. Assuming that
the system already has a consistent polygonization of one or more connected components, and
that each point of the polygonization is constrained to lie on the surface, the problem reduces to
determining if the components are topologically accurate.

The Jordan curve theorem determines if the critical points are inside or outside with respect to
the polygonization whereas simple function evaluation determines if they are inside or outside with
respect to the implicit surface. If a critical point’s status with respect to the polygonization dis-
agrees with its status with respect to the implicit surface, then the polygonization must be corrected
in the neighborhood of the critical point.

Table 1 enumerates all of the possible critical-point/sign combinations and their corresponding
implications on the implicit surface topology.

4 Interactive Repolygonization

The use of critical points simplifies topologically guaranteed, direct manipulation of implicit sur-
faces through a polygonal representation. The key to solving the topology problem is that a change

C7 9

Critical Point Sign Indication

Maximum - no component
Maximum + a component
Saddle (Type I) - disconnection of two components
Saddle (Type I) + connection of two components
Saddle (Type II) - a hole
Saddle (Type II) + no hole
Minimum - a hollow pocket
Minimum + no hollow pocket

Table 1: The affect of critical point sign on topology.

in the topology of a surface is always accompanied by a change in the sign of the function’s value at
one of the critical points (i.e., points where the gradient vector vanishes). By watching the critical
points, the heavy burden of detecting topological change is greatly simplified.

The interaction algorithm consists of an initialization stage followed by an interactive loop
of user input, model update, and model display. The system is initialized with several particles
distributed on each component of the true surface, correctly connected to each other to create
closed polyhedral components. The problem then becomes one of maintaining this correct picture
during user interaction.

For each time step, the interaction algorithm performs the following steps:

1. Allow the user to modify the surface with the mouse, and alter the implicit surface’s param-
eters accordingly [Witkin & Heckbert, 1994].

2. Solve for the updated positions of the particles so that they stay exactly on the updated
surface [Witkin & Heckbert, 1994].

3. Solve for the updated positions of the critical points (Section 4.1).

4. Delete pairs of critical point that collide.

5. Detect any topology changes using the list of critical points. That is, if the functional value
of any of them change sign over a time step then the topology also changes in the time step
about that point.

6. Correct any topology changes (Section 4.2).

7. Perform an interval analysis search for newly created critical points if time permits (Sec-
tion 3.2).

8. Maintain a consistent polygonization (Section 4.3).

9. Render the polygonized components.

During user interaction, the critical points move and change sign. Furthermore, one or more
of the eigenvalues of the stability matrix can change sign at some degenerate critical pointx,

10 C7

resulting in the creation or annihilation of a pair of critical points. Critical points annihilation is
easily detected as the collision of two tracked critical point particles. Critical point creation can
happen anywhere, and relies on the interval critical-point search for detection.

The interval critical-point search operates at interactive rates (10 frames per second) for sim-
ple scenes containing three or four blobby ellipsoids. For more complex scenes, this process is
performed only at initialization and when user activity subsides. The user is informed of the topo-
logical “honesty” of the polygonization by a “streetlight,” where a yellow light indicates caution
and a green light guarantees the topology of the displayed polygonization.

4.1 Tracking Critical Points

Altering the implicit surface parameters changes the positions of some or all of the critical points.
Local searching approaches to updating the critical point positions using gradient descent or New-
ton’s method fail to converge to the correct critical point when the step size is too large.

Instead, an extension of the techniques in [Witkin & Heckbert, 1994] solve for critical point
velocities in terms of parameter velocities. Letx be a particle constrained to follow one of the
critical points of the functionF from (1). Then its partial derivative with respect tox

Fx(x) =
nX

i=1

ekf(qi;x)kfx(qi;x); (9)

must be zero. LikewiseFy(x) = 0 andFz(x) = 0: (For spherical primitivesfx(qi;x) = 2(x�oix:)
As time t increases fromt0 to t1; some or all of the parametersq of F may change. In order

to constrain the particlex to track the critical point, its change_x must be expressed in terms of the
changes in the parameters_q:

In order to ensure that (9) remains constant (at zero), its derivative with respect to time

_Fx(x) =
nX

i=1

kekf(qi;x)
�
_fx(qi;x) + kfx(qi;x) _f(qi;x)

�
; (10)

must also be zero, where

_f(qi;x)) = 2(x� oix)(_x� _oix)� 2r _r; (11)
_fx(qi;x)) = 2(_x� _oix): (12)

Likewise _Fy(x) = 0 and _Fz(x) = 0: These three equations are linear in the three unknowns of_x;
and their solution yields the change in the critical points position.

Using these velocities, a differential equation solver (such as fourth-order Runge-Kutta) ap-
proximates the new location of the critical point, and Newton’s method refines the solution.

4.2 Correcting Topology

If it is determined that a critical point’s value changed sign, then the topology of the true surface is
also altered, and the polygonal approximation must be updated to reflect that change.

In two dimensions, whenever two components merge, or when one component separates, the
alteration always occurs about the saddle point. In both cases, exactly two segments become

C7 11

invalid (i.e., they attempt to approximate pieces of true surface which are no longer there). The
two offending segments are detected by examining all segments in the vicinity of the saddle point.
The four points involved are reconnected in the other direction (Figure 3).

Figure 3: In two dimensions, when the functional value of a saddle point changes sign from positive
(left) to negative (right), one component separates into two. The 4 nearby points are reconnected
to contain valid segments.

When a maximum point changes sign from negative to positive (this cannot happen with cir-
cle primitives, but can happen with ellipses) a new component is formed, and several connected
particles are placed on it. When a minimum point changes sign from positive to negative, a hole
is formed, and it is likewise seeded with a collection of connected particles (Figure 4). When a
component or a hole ceases to exist, all particles that were on it are deleted.

In three dimensions, the situation is the same when a maximum point’s value changes sign.
When a minimum point’s value goes negative, a hollow pocket is formed. This is different from a
torus-type hole (discussed shortly), and it cannot be observed unless front clipping is used.

When a type I saddle point’s value changes sign, two components are merged or separated.
Figure 5 shows a configuration involving four blobby spheres. There are 4 maximum points, 4 type
I saddle points and 1 type II saddle point. The value of the upper type I saddle point is positive,
so the two maximum points it lies between are connected into 1 component. The other three type
I saddle points have negative functional values, so the blobs they lie between are disconnected. If
all of the type I saddle points in Figure 5 were positive, and the type II saddle point were negative,
then the topology would be that of a torus. When a type II saddle point changes sign from negative
to positive, the torus hole is filled in, forming a disk. The type II saddle point will not become
positive until all of the maximum and type I saddle points surrounding it become positive first.

When a type I saddle point goes from negative to positive, two triangles are deleted and as few
as 6 new triangles can reconnect their particles. A sign change from positive to negative is handled
in the reverse manner, deleting the triangles connecting the components.

12 C7

Figure 4: In two dimensions, when the functional value of a minimum point changes sign from
positive to negative, a “lake” is created.

Figure 5: A three-dimensional critical-point example.

C7 13

When a type II saddle point goes from positive to negative, again, two triangles are deleted and
as few as 6 new triangles can reconnect their particles. The two deleted triangles remove the top
and bottom of the hole and the new triangles form the tube of the hole. When a Type II saddle point
goes from negative to positive, the process is reversed, deleting the triangles forming the hole and
reconnecting the two ends of the hole.

The eigenvectors of the stability matrix at the saddle points form one line and one plane (de-
pending on the type of saddle point) which intersect the polygonal regions that need to be re-
arranged. This simplifies the otherwise tedious task of finding the offending polygons.

4.3 Maintaining Geometry

If left unchecked, the geometry of the polygonal mesh degenerates as particles float about the
surface. The resulting triangulation becomes inefficient and sometimes corrupt.

Several researchers have developed mesh optimization schemes [Hoppeet al., 1993; Turk,
1992]. These techniques reduce the number of triangles in a polygonization while remaining true
to the original topology and close to the original geometry. They employ edge addition, edge swap-
ping, and edge deletion to optimize the polygonization. Where guaranteed bounds on geometry
are required, van Overveld and Wyvill provide an in-depth qualitative analysis of a triangulation’s
accuracy, including error bounds [van Overveld & Wyvill, 1993].

Such an optimization scheme involving edge splitting, collapsing, and swapping keeps the
geometry in good form [Hoppeet al., 1993; Welch & Witkin, 1994]. If one particle passes across
the opposite edge of one of its triangles, that triangle becomes invalid. This seldom happens when
time steps are small because the optimization algorithm performs a swap when a particle gets
close to an edge. Testing the sign of the dot product of the polygon normals with the normals of
the surface quickly identifies this kind of error.

Another error which is more difficult to detect occurs when a particle on one component jumps
to a nearby component, thus violating the integrity of mesh geometry and topology. This is mostly
avoided by taking small steps and by updating particles with a high order differential equation
solver such as Runge-Kutta.

In the current implementation, a particle’s movement is constrained to be less than the distance
to its closest neighbor. Experimentation indicates that this bound is sufficient to eliminate the
above problems, though a tighter and provably robust bound is desired.

5 Conclusion

In summary, the work presented here provides a guarantee of topological correctness of an implicit
surface polygonization. It also extends the interactive modeling system of Witkin and Heckbert
to include connectivity information. The final rendering consists of polygons instead of points or
disks, and with the guarantee (not necessarily interactively) that the topology of the polygonization
is consistent with the topology of the actual implicit surface.

Techniques for detecting and tracking the critical points of an everywhere-smooth exponential
function have been developed. Given enough time, the techniques can insure the topology of an

14 C7

implicit surface agrees with its polygonization, but can not currently maintain this guarantee in real
time.

5.1 Implementation

Interactive environments of well over 10 frames per second, including topology maintenance, were
obtained for simple scenes on a 200 MHz Silicon Graphics R4400 Indigo2 XZ24 workstation.
Scenes involving 6-8 blobby ellipsoids and two to three hundred particles run at about 2 frames
per second when immediate topology verification is on, but approach 10 frames per second with
topology verification suspended to when the user pauses.

5.2 Future Work

A robust and efficient method for avoiding the particle jumping problem of section section 4.3 is
under development.

We have implemented a four-dimensional version of this methodology, which actually solves
for the exact instant in time and location in space when the value of a critical point changes sign.
This solution is much cleaner because critical points do not have to be chased around. It never
misses a critical point’s value changing sign even when they appear and disappear. Unfortunately,
it is too slow to be interactive, largely due to the double root involved when demanding that a
function and its derivatives are simultaneously zero.

Future work also includes extending the environment to include additional kinds of implicit
surfaces. Given a degreed polynomial basis, tracking the critical points of itsd derivatives would
yield a topological guarantee without the use of interval analysis. However, the piecewise nature
of polynomial bases interferes with the analytic properties required by the current system.

5.3 Acknowledgments

This research was supported in part by the NSF Research Initiation Award #CCR-9309210. This
research was performed in the Imaging Research Laboratory. The authors would like to thank
the SIGGRAPH ’96 reviewers for rejecting this paper with constructive criticism and positive
comments. The simplest of these changes have already made it into this version of the manuscript.
Futher thanks are due to Dan Asimov, Jules Bloomethal and Jim Kajiya for there help in tracking
down theorems in Morse theory, differential topology and combinatorial topology.

References

[Blinn, 1982] Blinn, J. F. A generalization of algebraic surface drawing.ACM Transactions on
Graphics1(3), July 1982, pp. 235–256.

[Bloomenthal & Wyvill, 1990] Bloomenthal, J. and Wyvill, B. Interactive techniques for implicit
modeling. Computer Graphics (1990 Symposium on Interactive 3D Graphics), March 1990,
pp. 109–116.

C7 15

[Bloomenthal, 1988] Bloomenthal, J. Polygonization of implicit surfaces.Computer Aided Geo-
metric Design5(4), Nov. 1988, pp. 341–355.

[de Figueiredoet al., 1992] de Figueiredo, L. H., de Miranda Gomes, J., Terzopoulos, D., and
Velho, L. Physically-based methods for polygonization of implicit surfaces. InProceedings of
Graphics Interface ’92, May 1992, pp. 250–257.

[Delmarcelle & Hesselink, 1994] Delmarcelle, T. and Hesselink, L. The topology of symmetric,
second-order tensor fields.Proceedings IEEE Visualization ‘94, October 1994, pp. 140–147.

[Desbrunet al., 1995] Desbrun, M., Tsingos, N., and Gascuel, M.-P. Adaptive sampling of im-
plicit surfaces for interactive modeling and animation.Implicit Surfaces ’95 Proceedings, April
1995, pp. 171–185.

[Gilmore, 1981] Gilmore, R.Catastrophe Theory for Scientists and Engineers. John Wiley and
Sons, 1981.

[Hansen & Greenberg, 1983] Hansen, E. R. and Greenberg, R. I. An interval newton method.
Applied Mathematics and Computation12, 1983, pp. 89–98.

[Hansen, 1978] Hansen, E. A globally convergent interval method for computing and bounding
real roots.BIT 18, 1978, pp. 415–424.

[Helman & Hesselink, 1991] Helman, J. L. and Hesselink, L. Visualizing vector field topology in
fluid flows. IEEE Computer Graphics and Applications, May 1991, pp. 36–46.

[Hoppeet al., 1993] Hoppe, H., DeRose, T., Duchamp, T., McDonald, J., and Stuetzle, W. Mesh
optimization. In Kajiya, J. T., ed.,Computer Graphics (SIGGRAPH ’93 Proceedings), vol. 27,
August 1993, pp. 19–26.

[Kalra & Barr, 1989] Kalra, D. and Barr, A. H. Guaranteed ray intersections with implicit sur-
faces.Computer Graphics23(3), July 1989, pp. 297–306.

[Moore, 1966] Moore, R. E.Interval Analysis. Prentice Hall, 1966.

[Ning & Bloomenthal, 1993] Ning, P. and Bloomenthal, J. An evaluation of implicit surface tilers.
Computer Graphics and Applications13(6), Nov. 1993, pp. 33–41.

[Nishimuraet al., 1985] Nishimura, H., Hirai, M., Kawai, T., Kawata, T., Shirakawa, I., and
Omura, K. Object modeling by distribution function and a method of image generation. In
Proc. ofElectronics Communication Conference ’85, 1985, pp. 718–725. (Japanese).

[Norton, 1982] Norton, A. Generation and rendering of geometric fractals in 3-D.Computer
Graphics16(3), 1982, pp. 61–67.

[Ratschek & Rokne, 1984] Ratschek, H. and Rokne, J.Computer Methods for the Range of Func-
tions. John Wiley and Sons, 1984.

[Reeves, 1983] Reeves, W. T. Particle systems – a technique for modeling a class of fuzzy objects.
ACM Trans. Graphics2, April 1983, pp. 91–108.

16 C7

[Sederberg & Zundel, 1989] Sederberg, T. W. and Zundel, A. K. Scan line display of algebraic
surfaces. In Lane, J., ed.,Computer Graphics (SIGGRAPH ’89 Proceedings), vol. 23, July
1989, pp. 147–156.

[Snyder, 1991] Snyder, J. M.Generative Modeling: An Approach to High Level Shape Design for
Computer Graphics and CAD. PhD thesis, California Institute of Technology, May 1991.

[Snyder, 1992] Snyder, J. M. Interval analysis for computer graphics.Computer Graphics26(2),
July 1992, pp. 121–130.

[Szeliski & Tonnesen, 1992] Szeliski, R. and Tonnesen, D. Surface modeling with oriented parti-
cle systems. In Catmull, E. E., ed.,Computer Graphics (SIGGRAPH ’92 Proceedings), vol. 26,
July 1992, pp. 185–194.

[Taylor, 1955] Taylor, A. E.Advanced Calculus. Ginn and Company, 1955.

[Turk, 1991] Turk, G. Generating textures for arbitrary surfaces using reaction-diffusion. In Seder-
berg, T. W., ed.,Computer Graphics (SIGGRAPH ’91 Proceedings), vol. 25, July 1991, pp.
289–298.

[Turk, 1992] Turk, G. Re-tiling polygonal surfaces. In Catmull, E. E., ed.,Computer Graphics
(SIGGRAPH ’92 Proceedings), vol. 26, July 1992, pp. 55–64.

[van Overveld & Wyvill, 1993] van Overveld, C. and Wyvill, B. Potentials, polygons and pen-
guins: An efficient adaptive algorithm for triangulating an equi-potential surface.Proceedings
of the Fifth Western Computer Graphics Symposium, March 1993.

[Welch & Witkin, 1994] Welch, W. and Witkin, A. Free–Form shape design using triangulated
surfaces. In Glassner, A., ed.,Proceedings of SIGGRAPH ’94 (Orlando, Florida, July 24–29,
1994), Computer Graphics Proceedings, Annual Conference Series. ACM SIGGRAPH, ACM
Press, July 1994, pp. 247–256. ISBN 0-89791-667-0.

[Witkin & Heckbert, 1994] Witkin, A. P. and Heckbert, P. S. Using particles to sample and control
implicit surfaces. In Glassner, A., ed.,Proceedings of SIGGRAPH ’94 (Orlando, Florida, July
24–29, 1994), Computer Graphics Proceedings, Annual Conference Series. ACM SIGGRAPH,
ACM Press, July 1994, pp. 269–278. ISBN 0-89791-667-0.

[Wyvill et al., 1986] Wyvill, G., McPheeters, C., and Wyvill, B. Data structure for soft objects.
Visual Computer2(4), 1986, pp. 227–234.

An Implicit Gallery

... a collage of implicit techniques

(a) (b)

(c) (d)

(e) (f)

Figure 1: Examples generated using implicit techniques.

2 Color

(a) (b)

(c) (d)

Figure 2: More examples generated using implicit techniques.

	Implicit Surfaces for Geometric Modeling and Computer Graphics
	Welcome
	Speaker Biographies
	Chandrajit Bajaj
	Jules Bloomenthal
	Baining Guo
	John Hart
	Jai Menon
	Brian Wyvill
	Geoff Wyvill

	Table of Contents
	SECTION A: Basic Building Blocks
	An Introduction to Implicit Techniques
	Intuitive Implicit Skeletal Design
	Representation Schemes and Impact on Algorithms

	SECTION B: Implicit Algebraic Methods
	Free-Form Modeling with A-Patches
	CSG Constructs for Free-form Solids Bounded by Implicit Algebraic Patches
	Dual Control Polygons for Implicit Splines
	B Presentation Slides

	SECTION C: Beyond Low Degree Algebraics
	Tiling Techniques for Implicit Skeletal Models
	Animation and Design Systems for Skeletal Models
	Implicit Blends and Skeletal Methods
	Implicit Skeletal Models and CSG
	Texturing Implicit Models
	Sphere Tracing: A Geometric Method for the Antialiased Ray Tracing of Implicit Surfaces
	Guaranteeing the Topology of an Implicit Surface Polygonization

	An Implicit Gallery

