A

Vol. 3, No. 1: 1~14

Clustered Backface Culling

Andreas Johannsen and Michael B. Carter
Engineering Animation, Inc.

Abstract. This paper presents a simple, practical, and effective backface-culling
technique for clusters of polygons, as well as a method for generating efficient clus-
ters from a set of triangle strips. The cluster-backface test is directly derived from
the traditional single-polygon test, and has about the same complexity. Memory
requirements are 40 bytes per test. Cluster-backface tests may be arranged hi-
erarchically, and frontface tests added for symmetry. Experiments show graphics

performance improvements of up to 50 percent in terms of the number of effective
polygons rendered per second.

1. Introduction

Shaded rendering of polygonal models at interactive frame rates has been a
core research area of computer graphics since its inception. Contemporary
workstations and personal computers with hardware z-buffer graphics accel-
erators are capable of rendering several million triangles a second. However,
advances in graphics accelerators have constantly been outpaced by the de-
mands of applications; models with tens or hundreds of millions of polygons
are routinely encountered, for example, in the design and evaluation of me-
chanical systems such as cars and airplanes. Approaches to the large-model
rendering problem concentrate on identifying a minimal subset of polygons
that represents the given model, and rendering only this subset. One long-
used technique is backface culling, whereby only the polygons facing in the
direction of the viewpoint are rendered.

The rendering pipeline of common graphics accelerators consists, roughly
speaking, of two stages: a transform stage that transforms three-dimensional

© A K Peters, Lid.
;! 1086-7651/98 $0.50 per page

2 journal of graphics tools
vertex and normal data by a 4 x 4 matrix to view coordinates, and rasterizer
stage that produces shaded pixels and places them into a frame buffer. Alsg
polygonal data typically reside in RAM and have to be transferred to thé
graphics accelerator by some means, e.g. the system bus.

With respect to the transfer/transform/rasterizer pipeline, traditional
hardware-based backface culling operates after the transform stage and before
the rasterizer stage. Pipeline throughput is limited by its slowest stage; if thig
happens to be the rasterizer, then backface culling may improve overall graph-
ics performance by up to a factor of two, as half of all polygons face away from
the viewer on average. However, if the pipeline bottleneck is presented by the
transfer or transform stage, as is not uncommon for contemporary graphics
acceierators, then backface culling may have no effect on performance, or even
be detrimental. In these cases, it is desirable to perform backface culling on
the host CPU before sending data to the graphics accelerator. The traditional
single-polygon backface-culling test, however, takes time linear in the number
of polygons, and proves impractical for this purpose (even though the test
may be accelerated [Zhang, Koff 97)).

In order to perform backface culling in sub-linear time, it is necessary to
have a single test decide upon the orientation of a whole cluster of polygons.
Such a test has to be conservative and identify clusters that are guaranteed
to contain only back-facing polygons; any cluster for which this fact cannot
be established, or that contains at least one front-facing polygon, must bhe
rendered. Thus, culling effectiveness for clusters of polygons is smaller than for
single polygons, and polygons that are actually back-facing may erroneously
be sent to the graphics accelerator (but will consequently be culled by the
accelerator).

For simple models, clusters of back-facing polygons may be identified by
hand [Foley et al. 90]. Consider, for example, a cube centered at the ori-
gin, with faces perpendicular to the coordinate axes. If the eye point of a
perspective view is located in the positive octant, then the three faces with
negative normal coordinates are all back-facing. This relationship can easily
be established for each of the eight octants, and the result stored in a lookup
table. At rendering time, this table is indexed with the octant in which the
eye point is located.

Manually-constructed tables are clearly impractical for all but very simple
and/or symmetric polyhedra. Aspect graphs [Gigus et al. 91] subdivide space
into cells that correspond to eye-point equivalence classes with respect to face
visibility. However, for a polyhedron with NV faces, there are worst case O(N®)
cells, which makes such a general indexing technique impractical.

For convex polyhedra, Tanimoto suggests an algorithm that incrementally
updates the object-space outline separating back-facing and front-facing poly-
gons, using frame to frame coherency, [Tanimoto 7 7]. For general polyhedra,
Kumar proposes a cluster-culling test based on the explicit construction of

Johannsen and Carter: Clustered Backface Culling 3

an object-space cell that contains all eye points for which the cluster is back-
facing, [Kumar et al. 96]. Such a construction is awkward, and the ensuing
space subdivision consumes considerable time and memory.

This paper presents a simple, practical, and effective backface-culling tech-
nique for clusters of polygons. The cluster-backface test is directly derived
from the traditional single-polygon test, and has about the same complexity;
its operation is reminiscent of the simple cube example given above. Memory
requirements are 40 bytes per test, assuming single-precision floating point
data. Cluster-backface tests may be arranged hierarchically, and frontface
tests added for symmetry (consuming only an additional four bytes per test).
Experiments show graphics performance improvements of up to 50 percent in
terms of the number of effective polygons rendered per second.

2. Cluster-Backface Test

Let the eye point of a perspective view be given as e = [e, ¥, ez]T in world
coordinates. Any plane polygon with normal n and one vertex point p , also in
world coordinates, faces away from e iff n- (e — p) < 0. This is the traditional
backface-culling test. Now, consider a cluster of N polygons, with normals n;
and points p;; all polygons face away from e iff

n;-le—p;)) <0, forl1<i<N. (1)

2.1. Derivation

The goal is to derive one succinct test that uses precomputed quantities de-
pending on the n; and p;, but not e. The following simple inequalities are
needed for the derivation of the cluster-backface culling test:

max;(a; — b;) < max;(a;) — min;(b;) (2)
max;(a; + b;) < max;(0;) + max;(b;) (3)
max;(a;)k for k>0 (4a)
i(Gi, k) =
max; (@, k) {mim (@)k for k<0 (4b)

As a first step, the N inequalities of (1) are equivalent to the single inequality
max;[1; - (e — pi)] < 0. (5)

The lefthand side of (5) still contains e, but an upper bound may be found
as follows. Distributing the dot product and applying (2),

max;[n; - (e — p;)] € max;{(n; - e) — min;(n; « p;), (6)

4 Journal of graphics tools

which is a step in the right direction, as the minimum plane offset d = min; (n;-

pi) may be precomputed. Substituting d and expanding the dot product, we
can rewrite (6) as

max;[n; - (e — p;)] < max;(nfe® + n¥e? + nfe?) — d
and using (3), we get
max;[n; - (e — p;)] < max;(nfe”) + max; (n¥e¥) + max;(nfe”) —d.

If e lies in the positive octant, with all three coordinates e”, e¥, e* positive,
then (4a) applies to all max;() terms:

max;[n; - (e — p;)] < max;(nf)e” + max; (n?)e? + max,(ni)e* — d. (7

For any negative coordinate of e, the corresponding max; () term changes to a

min; () term according to (4b). This may be expressed in vector notation by
defining component-wise for ¢ € {z,y, 2},

o a® for e® < (.
Comp, (2, b)" = {bc for e¢ > 0

Then, expression (7) can be written as

max;[n; - (e - p;)] < Comp (N, M) - e — d,
with

N = [min; (nf), min;(n¥), min;(n?)]"
98

Considering that the righthand side of the inequality (7) is an upper bound
for max;[n; - (e — p;)], a backface-culling test for clusters is

M = [max;(n]), max;(nY), max;(n

Comp,(N,M)-e—-d <0 (8)

with pre-computed quantities N, M, d as defined above. These quantities, two
3-vectors and a scalar, consume 28 bytes of storage space in single precision.

2.2. Interpretation and Examples

For any particular eye point e, the lefthand side of (8) merely presents a plane
equation with normal Comp, (N, M) and offset d. Therefore, the test may be

Johannsen and Carter: Clustered Backface Gulling

Qq

Figure 1. Cluster-backface test geometry (two-dimensional).

interpreted as defining eight culling planes, one associated with each octant
within which an eye point may lie.

All culling planes C; meet at coordinate axes, and therefore along octant
boundary planes. Consider, for example, the four octants with a positive
z-coordinate. The four corresponding culling planes have the same normal
vector z-coordinate M, so they all intersect the z-axis at zg = ‘Mi;- Thus,
the culling planes define a culling volume: if the eye point lies anywhere in the
culling volume, all polygons in the cluster are backfacing and may be culled.

As a two-dimensional example, consider two polygons Pg and P; as in Fig-
ure 1, rotated 30° and 60° versus the z-axis, respectively. Polygon normals are

0.5 V3
noz[ﬂ] and n1=[2}
; 0.5

yielding

0.5 VAl
N=[0.5] and M = Azﬁ

The minimum plane offset is the one for P, d; = ny - p;, which results in
culling planes C; for octants O;, as indicated in Figure 1.

Note that Cs lies outside of Oq, so the cluster {Pg, P;1} will be culled for
all eye points within Os. Generally, the culling planes Cy and Cz must share
a y-axis intersection. Likewise, culling planes C, and Cy must share an z-axis
intersection. In the example of Figure 1, both intersections are positive, so
Cs lies outside of O, and all of Oy lies within the culling volume.

As an important special case, consider N coplanar polygons. All plane
normals and offsets are the same,

n; = n, ni'pizta fOI].S’iﬂN,‘

6 journal of graphics tools
consequently, the precomputed data is N=M=mn, d = ¢, and all culling
planes C; coincide with the polygon plane. Therefore, the cluster-backface
test is sharp for coplanar polygons.

Another special case occurs for arbitrary clusters, when the eye point is
located at the coordinate system origin. Substituting e = 0 into (8), the
cluster-backface test is —min;(n; - p;) < 0, which is exactly the case when

there are only positive polygon plane offsets. Therefore, the cluster-backface
test is also sharp for e = 0.

2.3. Hierarchy

‘T'wo polygon clusters’ precomputed data can be merged in the following way:

Ny = [min(NT, N3}, min(N{, N3), min (N7, N3)]
M, = [min(T,Mg),min(MZ{,Mg),min(T,Mg)]
dy = min(dy,ds)

If backface-culling tests are arranged hierarchically, it makes sense to in-
clude frontface culling tests in order to create symmetric culling behavior.
Hierarchy traversal may be pruned at inner nodes for frontfacing as well as
backfacing clusters. The derivation of a frontface test proceeds as in section
2.1, only with all polygon normals reversed, and yields Comp,(—M, —N) e+

max;(n; - p;) < 0. Note that the only data that has to be stored in addition
to that of a backface test the scalar is max;(n; - p;). '

2.4. Local Test Coordinates

Examining equation (8), d becomes arbitrarily negative as the p; move away
from the world-coordinate origin in a direction opposite that of the normals
n;. In this way, the cluster-backface test may never be satisfied for reasonable
eye points. It will be more successful if the geometry being culled lies closer
to the origin,

In order to combat the effect of arbitrarily-positioned p;, a local coordinate
system may be chosen for each cluster-backface test, tailored to the polygons
in the cluster. This involves transforming polygon data to the local system
during preprocessing, in order to compute N, M, d. At rendering time, the
eye point needs to be transformed into the same local coordinates before
performing the cluster-culling test.

To minimize eye-point transformation overhead and memory requirements,
only origin translations are considered here, i.e., the local test-coordinate sys-
tem is world-coordinate axis-aligned, but has origin b. Since it is difficult to

Johannsen and Carter: Clustered Backface Culling 7

determine the optimal value for b, we try a variety of values including the eight
corners of the cluster’s bounding box and the cluster’s centroid. A method for
evaluating the appropriateness of a particular value of b is discussed below in
Section 3, in terms of near-field culling probabilities.

A point x in world coordinates is transformed into test coordinates by
x' = x — b. Of the precomputed data, only d is affected, d = min;[n;- (p; —~b)],
and the eye point to be used in (8) is =e — b. The cluster-backface test
variables are now N,M,d, and b , consurning 40 bytes in single precision.

‘T'wo polygon clusters’ precomputed data can be merged as above, however
a new test-coordinate origin b, needs to be chosen, and d, recomputed as
dy = min(min;[n ; - (P1,; — by), min;[ng; - (Pa; — by)].

Notice that re-expanding with bias vector b, forces us to iterate over all
the polygons explicitly to compute the merged d.. There is no way to shift
the expansion to a new center vector b, without incurring this additional
work. Choosing a test-coordinate system in this fashion may be considered
analogous to shifting the center of expansion in a Taylor series. There are ways
of shifting the center of analytic expansions, such as the multi-pole expansion
[Greengard, Rokhlin 87], but the losses incurred by the max and min operators
preclude us from doing the same here.

3. Cluster Generation

Given a backface-culling test for clusters of polygons, we need an algorithm
to form these clusters efficiently from the original geometry. In order to drive
any algorithm, there has to be a measure of cluster appropriateness. In the
present context, it makes sense to speak in terms of the average probability
that a cluster will be culled.

Strictly speaking, the eye point may be viewing a cluster of polygons from
anywhere in three-dimensional space. For many applications, however, eye
points will tend to be located close to the geometry—within a few times the
size of the cluster’s bounding box. An axis-aligned box of size R x R x
R around the cluster defines a finite volume within which to calculate the
cluster’s culling probability. Here, we assume that R will be about 10 times
the size of the model’s bounding-box diagonal. Within this box, the cluster’s
culling probability is computed as the ratio of the volume encloged by the
culling volume (Section 2.2) to the box volume. We call this probability
the near-field culling probability, because eye points are restricted to being
relatively near the cluster.

The geometric size of the culling volume is the sum of eight sub-volumes,
one for each octant in which a culling plane is defined. In each octant, the
culling volume is the volume inside a cube of edge length R/2, and below the

8 journal of graphics tools

culling plane.

Near-field culling probabilities are heavily affected by different choices of
the local test-coordinate system. As described in Section 2.4, it makes sense
to place the test-coordinate system’s origin in the vicinity of the cluster poly-
gons. A few reasonable origin candidates may be examined, and the one with
maximum near-field probability accepted, for example, the eight corners of
the cluster’s bounding box, and the polygon points’ centroid.

For maximum rendering performance, models are typically not specified in
individual polygons, but in tristrips. Some tristrips may be quite long—long
enough, in fact, to have a culling probability of zero. In order to address
backface culling effectively, long tristrips must be broken into shorter ones,
thereby increasing the culling probability of each piece. The fragments must
not, however, become so short that the benefits of tristripping are totally lost.

Consider two clusters A and B. Is it faster to render them separately,
performing two cluster-backface tests, or to render them as a single merged
cluster, C, performing just one test? This is the driving condition used in the
cluster-forming algorithm.

Let T be the time it takes to perform one cluster-backface test, Px the
near-field culling probability of a cluster X, and Cx the time to render cluster
X. The average time to test and render cluster X is T + (1 - Px)Cx. For

two clusters A and B, a merged cluster C' makes sense only if the following
condition is satisfied:

T+ (1= Pg)Cg < 2T + (1—Py)Cs+ (1 — Pg)Cp.

Assuming the cost of rendering a single merged cluster equals the sum of the
costs of its constituent clusters,

(L= Fe)(Ca+CB) <T+ (1 =Pa)Ca+ (1 - Pp)Cp &
T+PACA —I—PBCB (9)
Ca+Cg '

FPo >

The rendering cost Cx can be determined by examining the tristrips contained
in the cluster. Assuming a transfer/transform bound rendering pipeline, Cx
may be approximated by the rendering cost R of one vertex times the number

of vertices in the cluster. Assuming N and M vertices in clusters A and B ,
respectively, substituting into (9) yields

S %+PAN-|-PBM

P
¢ N+ M (10)

There is only one unknown quantity in (10): T/R, the ratio of the time to
perform one cluster-backface test to the time to render one vertex. For a
given machine configuration and vertex complexity, this ratio should be a

Johannsen and Carter: Clustered Backface Culling 9

measurable constant and valid no matter what geometry is being rendered.
By vertex complexity, we mean to point out the difference between models
containing normals, textures, and/or colors. In each case, the time to render
a vertex will be different, but T/ R for that particular type of vertex will be
constant.

Relationship (10) may be used to drive the breaking of tristrips: individ-
ual triangles are added to the resultant tristrip until its culling probability
becomes too low.

Algorithm 1 presents a pseudo-code version of the cluster-forming algo-
rithm. The algorithm’s input is an unsorted list of tristrips. Its output is a
set of clusters to be used for rendering.

Algorithm 1. Cluster-forming.

Given a list of tristrips P :
Choose a "seed tristrip" S with highest culling probability
Start a new cluster C with 8
Do
Get the next tristrip T from P whose normals MN
point most in the direction of the normals of S
If the culling probability of the merged cluster
of C|T satisfies (10)
Append T to C
Remove T from P
Else
Break do
End If
While P is not empty
Output the final cluster C
Recur on remaining primitives in P

4. Experimental Results

This section presents data from experiments investigating the effect of clus-
tered backface culling on graphics performance. Three different models are
investigated, (Figures 2, 5, 7, and Table 1). “Average” values in the ta-
bles below were computed from 100 randomly-selected viewpoints lying on a
sphere about the model in question. The sphere radius was chosen so that
the model fills the screen. All data were collected on a Hewlett-Packard C200
workstation with an FX/6 graphics accelerator. The presence of an extremely

fast graphics accelerator represents the most challenging situation in which to
evaluate a backface-culling algorithm.

10

journal of graphics tools

Model Number of Number of Average %
Polygons Tristrips Triangles Backfacing
Spherical Dome 3726 438 55.7
Figshing Reel 3074 970 51.3
Locking Ring 2604 496 53.6

Table 1. Test models used.

Fach of the three models was tested with six values for the T/R ratio of
cluster-backface test time over vertex-rendering time. This ratio controls the
degree of clustering achieved by the algorithm described in Section 3. Lower
values of T/R tend to result in smaller and more numerous clusters. Higher
values of T/R tend to result in larger and less numerous clusters. The ratio
is varied in the experiments to illustrate that for a given hardware platform
and vertex complexity, the best performance of the backface-culling algorithm
occurs at the same value of T/ R regardless of the model being rendered.

Table 2 presents detailed performance and behavioral data for the spherical
dome. This is simply a sphere with a flat cut just below the equator. It
is highly tristripped, and has a regular topology (Figure 2). The uneven
decrease in the number of clusters is due to the large average number of
triangles per tristrip.

The fifth column in Table 2, Average Effectiveness, lists the average per-
centage of geometrically-backfacing triangles culled by cluster-backface tests.
Two primary factors conspire to reduce the algorithm's effectiveness below
100%. One is the approximate nature of the cluster-backface test upon mul-
tiple, non-coplanar tristrips. Another is the effect of clustering, making it
necessary to render a whole cluster, even if only one triangle is frontfacing.

The final column in Table 2, Average Speedup, lists the increase in rendering
speed seen from the original tristripped model to the backface-culled model.
Notice that this column contains a peak value of 31% at intermediate values
of T/R. Looking ahead at the results for the other models tested (Tables 3
and 4), we see in each case that there is a well-defined peak around T'/R = 1.0.

T/R Number Average Clusters Average Triangles Average % Average %

Ratio of Clusters Backfacing Backfacing Effectiveness Speedup
0.5 129 50.0% 30.9% 55.5% 16%
1.0 87 48.7% 30.1% 54.1% 14%
15 145 47.4% 46.8% 84.0% 31%
2.0 86 46.4% 45.1% 80.9% 31%
2.5 68 46.3% 43.7% '78.5% 26%
3.0 49 44.1% 41.9% 75.3% 18%

Table 2. Results on spherical dome.

Johannsen and Carter: Clustered Backface Culling 11

Figure 2. Dome Wifh co.l.ored tristripsr.

For lower values of T/R, the clustering algorithm forms more clusters. Each
of these clusters represents a backface test that must be performed while ren-
dering the model. As more cluster-backface tests are made, less time is spent
actually rendering. Moreover, graphics accelerators perform better when mul-

tiple primitives can be rendered at once, and more small clusters mean more
overhead in the rendering loop.

For larger values of T'/R, the clustering algorithm forms fewer clusters,
on more widely-varying normals, reducing the near-field culling probabilities.
This leads to fewer successful cluster-backface tests, and more actually back-
facing triangles sent to the graphics accelerator.

For the dome model, both effectiveness and speedup are at their peak values
for T/R = 1.5. Because this model is highly tristripped from the outset, it
represents a very disadvantageous situation for the clustering algorithm. Even
s0, it realizes a 31% increase in rendering speed. Figure 3 shows the spherical
dome processed with T/R = 1.5, and each cluster colored differently.

Figure 3. Dome with colored clusters, ~ Figure 4. Dome with colored lines.

12 journal of graphics tools

T/R. Number Average Clusters Average Triangles Average Average

Ratio of Clusters Backfacing Backfacing Effectiveness Speedup
0.5 368 45.4 39.7 77.4 45
1.0 248 41.5 41.3 80.5 50
1.5 164 38.6 38.6 75.3 41
2.0 121 36.6 36.7 71.5 3r
2.5 98 35.9 35.4 69.0 29
3.0 81 33.9 33.3 64.8 29

Table 3. Results on fishing reel.

Figure 4 shows the dome in line-rendering mode, to verify that backfacing
clusters are indeed not being rendered. Note that some clusters containing
backfacing polygons near the sithouette are rendered.

Table 3 shows data for the fishing reel. This model is more irregular in
construction, with shorter average tristrips than the dome. Consequently,
the clustering algorithm has more choices for forming clusters. The result is a
smoothly decreasing number of clusters as T/R increases. For the fishing reel,
peak effectiveness and speedup come at T/R = 1.0, with substantial values of
80% and 50%, respectively. Figures 5 and 6 show the fishing reel with colored
clusters and lines respectively.

Table 4 shows data for the locking ring—a roughly annular shape with
several cuts along its perimeter. The data are strikingly similar in character
to those found in Table 3. Again, peak effectiveness and speedup comes at
T/R = 1.0. Figures 7 and 8 show the locking ring with colored clusters and
lines respectively.

For the two mechanical parts, peak effectiveness and speedups coincide for
the same value of T/R = 1.0. This trend holds up well for other models
we have examined. The dome model hasg very long tristrips that must be
broken down in order to form clusters, and so behaves differently than the
two less-regular models.

Effectiveness is completely independent of machine hardware—it only de-
pends upon the value of T/R and the model geometry. Speedup, on the other
hand, is strongly dependent upon the host CPU performance, the graphics-
accelerator performance, and effectiveness. The fact that effectiveness and

T/R Number Average Glusters Average Triangles Average Average

Ratio of Clusters Backfacing Backfacing Effectiveness Speedup
0.5 156 477 26.0 48.5 35
1.0 211 42.4 41.5 77.5 47
1.5 157 40.6 40.8 75.8 43
2.0 115 38.5 38.7 72.2 36
2.5 93 36.6 35.8 66.8 31
3.0 76 34.4 34.5 64.4 29

Table 4. Results on locking ring.

Johannsen and Carter: Clustered Backface Culling 13

Figure b. Fishing reel with colored Figure 6. Fishing reel rendered with
clusters. lines.

Figure 7. Locking ring with colored Figure 8. Locking ring rendered with
clusters. lines.

speedup are in phase with one another implies that the clustering algorithm’s
output is well-suited to the hardware upon which it has been run.

5. Conclusion

This paper has demonstrated a backface-culling algorithm that achieves ag-
gregate speedups of up to 50% over the tristripped models, with a minimal
cost in additional storage. The scheme can cull entire clusters of polygons on

the host CPU, bypassing the need to send large amounts of geometric data
to the graphics accelerator.

14 journal of graphics tools

References
[Foley et al. 90] J. Foley, A. van Dam, 8. Feiner, and J. Hughes. Computer

Graphics—Principles and Practice. Second edition, Reading, MA: Addison
Wesley, 1990,

[Gigus et al. 91] Z. Gigus, J. Canny, and R. Seidel. “Efficiently Computing and
Representing Aspect Graphs of Polyhedral Objects.” IEEFE Transactions on
Pattern Analysis and Machine Intelligence, 13:542-551, (1991).

[Greengard, Rokhlin 87] L. Greengard and V. Rokhlin. “A Fast Algorithm for Par-
ticle Simulations.” Journal of Computational Physics, 73: 325-349 (1987),

[Kumar et al. 96] S. Kumar, D. Manocha, B. Garrett, and M. Lin. “Hierarchical
Back-Face Computation.” Furographics Workshop on Rendering (1996).

[Tanimoto 77] S. Tanimoto. “A Graph-theoretic Real-Time Visible Surface Editing
Technique.” Computer Graphics (Proc. SIGGRAPH 77), 223-228 (1977).

(Zhang, Koff 97} H. Zhang and K. Hoff III. “Fast Backface Culling Using Normal
Masks.” In Proe. Symposium on Interactive 8D Graphics, 103-106 (1997).

‘Web Information:

http://www.acm.org/jgt/papers/JohannsenCarter98
http://www.eal.com

Andreas Johannsen, Ehgineering Animation, Inc., 2321 North Loop Drive, Ames,
IA 50010-8618 (andreas@eai.com)

Michael B. Carter, Engineering Animation, Inc., 2323 North Loop Drive, Ames, IA
50010-8618 (carter@eai.com)

Received August 19, 1998; accepted in revised form November 17, 1998.

