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The relationshipbetweenCartesiarncoordinatesand Euclideangeometryis well known. The theorems
from Euclideangeometrydon’t mentionanything aboutcoordinatesbut whenyou needto apply those
theoremgo a physicalproblem,you needto calculatdengthsanglesetceterapr to dogeometrigoroofs
usinganalyticgeometry

Homogeneousoordinategndprojectve geometrybearexactly thesamerelationship. Homogeneouso-
ordinategrovideamethodfor doingcalculationsandproving theoremsn projectve geometryespecially
whenit is usedin practicalapplications.

Although projective geometryis a perfectlygood areaof “pure mathematics”jt is alsoquite usefulin
certainreal-world applications.The onewith which theauthoris mostfamiliaris in the areaof computer
graphics.Sinceit is almostalwayseasierto understandnathematicsvhenthereare concreteexamples
available,we’ll usecomputergraphicsn this documentsa sourcefor almostall the examples.

The prerequisitedor the material containedhereininclude matrix algebra(how to multiply, add, and
invert matricesandhow to multiply vectorsby matricesto obtainothervectors),a bit of vectoralgebra,
sometrigonometry andanunderstandingf Euclideangeometry

1 Computer Graphics Problems

We'll beginthestudyof homogeneousoordinatedy describingasetof problemsrom three-dimensional
computergraphicsthat at first seemto have unrelatedsolutions. We will thenshaw that with certain
“tricks”, all of themcanbe solvedin the sameway. Finally, we will show thatthis “sameway” is in fact
justarecastingof theoriginal problemsin termsof projectve geometry

1.1 Overview

Much of computergraphicsconcernsitself with the problemof displayingthree-dimensionabbjects
realistically on a two-dimensionakcreen. We would like to be ableto rotate,translate,and scaleour
objects,to view themfrom arbitrarypointsof view, andfinally, to be ableto view themin perspectie.
We wouldlik e to beableto displayour objectsin coordinatesystemghatarecorvenientfor us,andto be
ableto reuseobjectdescriptionsvhennecessary

As a canonicalproblem,let’s imaginethat we wantto draw a sceneof a highway with a bunchof cars
onit. To simplify the situation,we’ll have all the carslook the same but they arein differentlocations,
moving at differentspeedset cetera.

We have the coordinatego describeatire, for example,in a convenientform wherethe axisof thetire is
alignedwith the z-axis of our coordinatesystem,andthe centerof thetire is at (0,0, 0). We would like
to usethe samedescriptionto draw all thetireson a car simply by translatingthemto the four locations
onthebody. Our carbody, of coursejs alsodefinedin a nice coordinatesystemcenteredat (0,0, 0) and
alignedwith thez, y, andz-axes.

Oncewe getthetires “attached”to the body, we'd like to make multiple copiesof the carin different
orientationson the road. The carsmay be pointing in differentdirections,may be moving uphill and
downhill, andthe onethatwasinvolvedin a crashmaybelying upside-devn.



Perhapsve wantto view theentirescendrom thepointof view of atraffic helicoptetthatcanbearnywhere
above the highway in three-dimensionapaceandtilted atary angle.

We’ll dealwith theviewing in perspecitie later, but thefirst threeproblemsto solve arehow to translate,
rotate,andscalethe coordinatesisedto describethe objectsin the scene.Of coursewe wantto be able
to performcombinationsof thoseoperation$.

We assumehateveryobjectis describedn termsof three-dimensionalartesiarcoordinatesik e (z, y, 2),
andwe will notworry how the actualdraving takesplace. (In otherwords,whetherthe coordinatesare
verticesof triangles,endsof lines, or control pointsfor splinesurfaces—its all the sameto us—wejust
transformthe coordinatesndassumehatthe draving will bedraggedaroundwith them.)

Finally, exceptin the casesof rotationand perspectie transformationjt is easierto visualizeand ex-

perimentwith two-dimensionatrawings andthe extensionto threedimensionds obvious andstraight-
forward.

1.2 Translation

Translations thesimplestof theoperations!f you have a setof pointsdescribedn cartesiarcoordinates,
andif you addthe sameamountto the z-coordinateof every one,all will move by the sameamountin
the z-direction, effectively moving the drawing by thatamount.Adding a positve amountmovesto the
right; anegative amountto theleft.

Similarly, additionsof a constantvalueto they or z-coordinatecauseuniform translationsn thosedirec-
tionsaswell. Thetranslationsareindependenandcanbe performedin ary order, includingall atonce.
If anobjectis movedoneunit to theright andoneunit up, that's the sameasmoving it oneunit up and
thenoneto theright. The netresultis amotion of length+/2 unitsto the uppetright.

We candefinea generakranslationoperator7 (z,y, z) asfollows:
Inmytyytz (1'.7 y,z) = (1'. +tz,y + tya z+ tz)7

wheret,, ¢,, andt, arethetranslationdistancesn the directionsof thethreecoordinateaxes. They may
bepositve, negative,or zero. 7z, ;, +, is afunctionmappingpointsof three-dimensionapacento itself.
This Tz, t,.t. hasaninverse,ﬁ;lty,tz = T_t,,—¢,,—t, Which simply translatesn the oppositedirections
alongeachcoordinateaxis. Clearly:

ﬁm,ty,tz (T—ta:,_tyy_tz (x,y,z)) =
($_tw+tway_ty +ty,2—t, +tz) = (x,y,z).

1.3 Rotation about an Axis

We'll begin by consideringa rotationin the z-y planeaboutthe origin by an angleé in the counter
clockwisedirection. Clearly, all of the z-coordinateswill remainthe sameafter the rotation. We will
denotethisrotationby R, 4. Thez subscripis becaus¢herotationis, in fact,arotationaboutthe z-axis.

Figure 1 shavs how to obtainthe equationfor the rotation. We begin with a point P = (z,y) andwe
wishto find thecoordinate®f P’ = (z’,y’) whichresultfrom rotatingP by ananglef counterclockwise
aboutthez-axis. Theequationsaremosteasilyobtainedoy usingpolarcoordinateswherer = /22 + 32

is the distancefrom the origin to P (andto P’) , and¢ is the anglethe line connectingthe origin to P

malkeswith the z-axis.

As we canseein thefigure,z = r cos ¢ andy = r sin ¢, while 2’ = r cos(¢ + ) andy’ = rsin(¢ + 6).

1Thereis one other operationthat can easily be performedcalled “shearing”, but it is not particularly useful. The general
homogeneousansformationshatwe’ll discover alsohandleall the shearingoperationseamlessly



P =(x,y) = (r cos(@+8), r sin (+9))

LP=(xy)=(rcosgrsing

Figurel: Rotationaboutthe z-axis

Usingtheadditionformulasfor sineandcosine we obtain:

(z',y") = (rcos(¢+8),rsin(¢+8))
= (rcos¢cosf —rsingsinf,rcos@sinf + rsin ¢ cos )
= (zcosf —ysinh,zsinf + ycosb).

Thuswe obtain:
R.o(z,y,2) = (xcosd — ysinb, xsinf + ycosb, z). )

As was the casewith translation,rotationin the clockwisedirectionis the inverseof rotationin the
counterclockwisedirectionandvice versa:Rz_}, =R.,—s. It sagoodexerciseto checkthis by applying
equationl andits inverseto apoint (z, y).

Theequationdor rotationaboutthez andy axescanbeobtainedsimilarly, andfor referencehereareall
threeequationgogether:

Razo(x,y,2) = (z,ycos8 —zsind,ysinf + zcosb) 2)
Rye(z,y,2) = (xcosf+zsinb, y, —zsinb + 2 cosh) 3
R.o(z,y,2) = (xcosf—ysind, zsinf + ycosh,z). 4)

At first glance,it appearghat we have madean errorin the signsin equation3 for the rotation about
the y-axis, sincethey arereversedfrom thosefor rotationsaboutthe x and z-axes. But all are correct.
The apparenproblemhasto do with the fact that the standardhree-dimensionatoordinatesystemis
right-handed—ifthe z andy-axesaredrawn asusualon a pieceof paper we mustdecidewhetherthe
positive z-axisis above or below the paper We have choserto placepositive z valuesabove the paper

A left-handedsystemwherethe positive z-axisgoesdown, is perfectlyreasonablehut theusualconven-
tion is the otherway, andthe differenceis thatthe signsin someoperationsare switchedaround. The
normalorientationis calleda “right-handed”coordinatesystemandthe other, “left-handed”. Evenif we
haduseda left-handedsystem the signswould not be the samethroughouthe equation-4; a different
setof signswould beflipped.

Think of the orientationof a rotation asfollows: to visualizerotation aboutan axis, put your eye on
thataxisin the positive directionandlook toward the origin. Thena positive rotationcorrespondso a
counterclockwiserotation. We've donethis with rotationaboutthe z-axis—youreye is above the paper
looking down on a standarde-y coordinatesystem.But visualizethe situationlooking from the positive
y andpositive z directionsin aright-handecdcoordinatesystem.Looking from thez direction,they goes
to theright andthe z goesup, but looking from the positive y-axis, the z-axis goesto the left, while the
z-axisgoesup.



1.4 General Rotation

Whatif you wantto rotateaboutan axisthat doesnot happento be oneof the threeprincipal axes(the
z,y, andz axesarecalledthe “principal axes”)? Whatif youwantto rotateabouta point otherthanthe
origin? It turnsoutthatbothof theseproblemscanbe solvedin termsof operationghatwe alreadyknow
how to do. Let's begin by looking at rotationaboutnon-principalaxesthatdo passthroughthe origin.

The stratgyy is this: we will do one or two rotationsaboutthe principal axesto get the axis we want
alignedwith the z-axis. Thenwe’ll rotateaboutthe z-axis, andfinally, we'll undothe rotationswe did

to align your axis with the z-axis. To do this, assumehat the axis of rotationyou want pointsalong
the vector(z,y, z). We'd like to have it alonganothervectorwith its y and z-coordinatesero. If the

y-coordinatds non-zerodo arotationaboutthez-axisto make they-coordinatezero.If the z-coordinate
is still non-zerodo arotationaboutthey-axisto make the z-coordinatezero. Sincethe rotationis about
the y-axis, they-coordinate(which you previously rotatedto be zero)will not be affected. Thusat most
two rotationswill alignanarbitraryaxiswith the z-axis.

Soif the problemis to rotateaboutthe origin by anangled, but with anarbitraryaxis, whatwe needto
dois performtwo rotationsto do thealignment.For concretenesgssumehoserotationsareby ¢ about
the z-axisandthenby ¢ aboutthe y-axis. If P = (z,y, 2) is ary pointin spacethe new point P’ that
resultsfrom arotationof P aboutthis oddballaxisis:

P'=Ry,—3(Ry,—4(Ra,0(Ry,y(Ra,6 (P)))))- ®)

To interpretequation5 remembethatthe operationsare performedfrom the innermostparenthesesut-
ward. First, rotate P aboutthe z-axis by anangle¢. Rotatethe resultingpoint aboutthe y-axisby an
anglesy. At this point,the oddballaxisis alignedwith the z-axis, sotherotationyou wantedto do origi-
nally cannow be donewith theR, 4 operator Finally, thetwo outermosbperationseturnthe axisto its
original orientation.

Obviously, combiningfive levelsof calculationsrom equation2-4 will resultin a nightmarishsystemof
equationsput somethinghatis not difficult for acomputerto dealwith.

Finally, whatif therotationis notaboutthe origin? This time thetranslationoperationfrom Sectionl.2
cometo the rescuetogetherwith a similar stratgy to whatwe usedabove for a non-standarawxis. We
simply needto translatehe centerof rotationto theorigin, performtherotation,andtranslateback. If we
denoteby R ary sortof rotationaboutany axisthroughthe origin (possiblyconstructechisa composition
of five standardotationsasillustratedin equation5 above), andwe wish to performthat rotationabout
the point (z, y, z), hereis the equatiorthatrelatesanarbitrarypoint P to its position P’ afterrotation:

P = E,y,z(R(T—w,—y,—z(P)))-

1.5 Scaling(Dilatation) and Reflection

Whatif we wantto make thingslargeror smaller?For example,if we have the coordinateghatdescribe
an automobile what arethe coordinateghat would describea scalemodel of an automobilethatis 10
timessmallerthanthe original?

It's fairly clearthatif we multiply all of our coordinatesy 1/10 we will geta modelthat’s 1/10 the
size,but noticethatif the original coordinateshaddescribeda car a mile from the origin, the resulting
miniaturecarwould be only aboutl /10 mile from the origin. Thusour stratey doesscaledown thesize
of thecar, but thescalingoccursabouttheorigin. If we wantedto scaleaboutthe original caramile from

theorigin, we could usethe sametrick we did with rotations—translatéhe carto the origin, multiply all

thecoordinatedy 1/10, andfinally translateheresultingcoordinatedackto the original position.

Non-uniformscalingis alsoeasyto do—if we wish to make an objecttwice aslargein the z-direction,
threetimes aslarge in the y-direction, andto leave the z size unchangedwe simply multiply all the
z-coordinatedy 2, all the y-coordinatesdy 3, andleave the z-coordinatesinchangedor equialently,
multiply themall by 1).



Thus,the mostgenerabkcalingoperatioraboutthe origin is givenin termsof the scalefactorss,;, s,, and
s, andthe formulafor suchafunctionis:

SSE,Sy,Sz (z,y,2) = (822, syy’szz)' (6)

In equation6, if the scalevaluesarelargerthan1, the objects sizeincreasesif they arelessthani, it
decreasesndif they areequalto one,thesizeis unchanged.

Negative scalevaluescorrespondo a combinationof a size changeand a reflectionacrossthe plane
perpendiculato the axisin questionpassinghroughtheorigin. If s, = —1, thereis no sizechangeput
theobjectis reflectedthroughthe planez = 0.

The sameideasusedpreviously canbe usedto producescalingfunctionsin directionsnot alignedwith
the principalaxes.If scalingis to occurabouta non-principalaxis,rotatethataxisto bethez-axis,scale
in the z-direction,andthenrotateback.

We've consideredpositive and negative scalings,but what happensf, say s, = 0? All z-valuesare
collapsedto zero,andit’s asif the entirethree-dimensionapaceis projectedto the planex = 0. We
aregoingto needthis operation(or somethingsimilar) whenwe draw our three-dimensionadpaceon a
two-dimensionatomputerscreen.

As long asall threevaluess,, s,, ands, arenon-zero,the scalefunction hasaninverse. It shouldbe
obviousthatS;{Sy,SZ = 81/s.,1/8,.1/s,» @andthe inverseonly makessensef all threescalevaluesare
non-zero.Fromaphysicalpointof view it's easyto seewhy. If thescalingoperationis really aprojection
to aplane,thereis noway to undoit. Any pointon the planecould have comefrom ary of the pointson
theline throughspacehatprojectedto thatpoint.

2 Combining Rotation, Translation, and Scaling

As we have seenabove, it is often advantageouso combinethe varioustransformationgo form a more
comple transformationthat doesexactly what we want. If we simply do the algebra,things can get
complicatedin a hurry. To illustrate the problem,considera relatively simple problem—wed like to
rotateclockwiseby ananglef aboutanaxisparallelto the z-axisbut passinghroughthepoint (1, ¥1, 0).

The combinedrransformatiorof the point (z,y, z) to (z’,y’, 2') is this:

(xl7yl7zl) = 7:01,?;1,0(7-\)’:0,9(T—wl,—yl,o(xayaz)))
= ((z—=z1)cos8 — (y —y1)sinb + x4,
(z —z1)sinb + (y — y1) cosb + y1, 2),

andthis oneis pretty straight-forward. Imaginewhatthe combinationof 5 rotationswould look like.

But thereis aneasymethod.andwe’ll begin by looking at how to combinerotations.It turnsoutthatall
of therotationsaboutthe origin canbe easilyexpressedn termsof matrix multiplication. If we consider
ourpointsP = (z,y, z) to bethree-dimensionatolumnvectorg, every rotationcorrespondsxactlyto a
multiplication by a certainmatrix. Hereis the matrix thatcorrespondso a counterclockwiserotationby
ananglefd aboutthe z axis:

x cosf —sinf 0 x zcosf —ysind
Rzo|ly| =|siné cosd 0 y| = | zsind +ycosb
z 0 0 1 z z

Theothertwo matricesareequallysimple:

2For technicalreasonsit is betterto representhe vectorsascolumnvectors.We could userow vectors but therearedisadwan-
tagesthataredifficult to explain at this point. However, to save spacein thetext, we will write the componentgsusual: (z, y, )
within paragraphsvith the understandinghatwhenthey areexpressedsvectorsin equationsthey will beturnedverticalto make
columnvectors. Whenwe talk aboutprojectize lines later on, we'll needto useactualrow vectors,andto indicatethis within a
paragraphwe’ll usethe someavhatsurprising(z,y, )T .



z cosf@ 0 siné z xcosf + zsinf
Ryely|l=] 0 1 0 y|= y )
z —sinf 0 cos6 z —zsind + zcos
T 1 0 0 T T
Rzoly| =10 cosf —sind y| = |ycosh —zsind
z 0 sinf cos# z ysinf + zcosd

The beautifulthing aboutthe matrix representatioiis that repeatedotationsaboutdifferentaxescorre-
spondgto matrix multiplication. Thusif you needto rotatea million verticesthatdescribethe skin of a
dinosauiin Jurassidark VI aboutsomeweird axis,youdon’t needto multiply eachpointby five different
matrices;you simply multiply the five matricestogetheronceand multiply eachdinosaurpoint by that
onematrix. It's a savings of almostfour million matrix multiplicationswhich cantake time, evenon a
fastcomputer

Thescalingmatrix is evensimpler:

T s, 0 O T Sz
Ssasys (U] =10 sy 0] |y| =[5y
z 0 0 s, z S,2

It canbe combinedin ary combinationwith the rotation matricesabove to make still more complex
transformationsAs with the rotationmatricesalone,the combinationof operationssimply corresponds
to matrix multiplication.

Unfortunatelywhenwetry to do the samething with the seeminglysimplertranslationoperationwe are
dead.lt justwill notandcannotwork this way. It's easyto seewhy. If you multiply the columnvector
(0,0, 0) by any 3 x 3 matrix, theresultwill be(0,0, 0). Theoriginis fixedby every matrix multiplication,
yetfor atranslationwe require thatthe origin move.

Fortunatelythereis atrick® to getthejob done.We will simply addanartificial fourth componento each
vectorandwe will alwayssetit to bel. In otherwords,the pointwe usedto referto as(z, y, z), we will
now referto as(z,y, z, 1). If you needto find the actualthree-dimensionatoordinatessimply look at
thefirst threecomponentsindignorethe 1 in thefourth positiorf.

Of coursenoneof the matricesabove will work either, until we adda fourth row andfourth columnwith
all theelementsequalto zeroexceptfor the bottomcorner For example:

x cosf —sind 0 O x zcosf —ysind

R y sinf cosf@ 0 O y| [=zsinf+ycosh
=0 2 0 0 1 o0f|=z|" z
1 0 0 01 1 1

But now, with this artificial fourth coordinateit is possibleto represenanarbitrarytranslatiorasa matrix
multiplication:

T 1 0 0 ¢, T T+ 1,
y| |0 1 0 ¢ y| _|y+iy

Tee z|l |0 0 1 ¢, z| |lz+t,
1 0 00 1 1

Usingthis schemegvery rotation,translation andscalingoperationcanbe representetdy a matrix mul-
tiplication,andany combinatiorof theoperationsabove correspondso the productsof thecorresponding
matrices.

SComputerscientistspf coursereferto a“trick” asa“hack”.
4Butif it is not 1, bevare.We’'ll handlethis caselater whenwe runinto the problemhead-on For naw, thingsarenice.



3 A Simple Perspectve Transformation

We know thatby settingoneof the scalefactorsto zero,we cancollapseall of the z-coordinatessay to
z = 0. If wethink of our computerscreerashaving z andy-coordinatesn the usualway, we wantto do
somethindik e thisto find the screercoordinategor our points.

But settingthe z scalefactorto zerosimply projectseachpointin spaceo thez-y planein aperpendicular
direction. To modelthe realworld, we'd like to imaginelooking at real three-dimensionabbjects,and
projectingthem, whereser they are,to a rectangulampieceof glass(the computerscreen)thatis a few
inchesin front of our eye. Theseraysarenot projectedperpendiculato thescreenthey areall projected

at the eye, andthey shouldbe drawvn on the screenwherever the ray from the objectto the eye hits the
screen.

P=(xY,2
P =Xz ylz 1)
6] 1

Figure2: A SimplePerspectie Projection

For definitenessimaginethat you are looking from the origin in the direction of the negative z-axis.
Remembethatif you look from the positive z-axis toward the negative, the z-y planelooks normalto
you, with the positive z-axisto theright andthe positive y-axis pointing up. Imaginethatwe would like
to projectall thepointsin front of you (they will bethepointswith negative z-coordinatespntotheplane
oneunitin front of you (it will have z-coordinateequalto —1). Most computergraphicsfolks don't like
working with thesenegative coordinatesso they now switchto a left-handedcoordinatesystemso that
the point z = 1 is in front of them,looking into the plane. We'll do thathere,just sowe don't needto
messwith —1 asthe z-coordinateof projection.

Figure2 shavs how we would lik e to projectanarbitrarypoint P = (x, y, z) to apoint P’ ontheplane.
Similartriangleswill shov youthatthe coordinate®f P’ are(z/z,y/z,1).

Thisis badnenvs—weVe gotto do adivision by the z-coordinateandtheonly operationsve canperform
with matrix multiplications are multiplicationsand additions. How canwe combinethis perspectie
transformwith the rotations,translations,and scalesthat work so well with a uniform type of matrix
representation?

But with onemore“trick” (onemore“hack”, if you're acomputerscientist) we canperformthedivision
aswell. It seemsa shamehatwe have to dragaroundthatfinal fourth coordinatevhenit’s alwaysgoing
to beequalto 1, but withoutit the matrix multiplicationsdon’t make senseHereis thebig trick: We will

considerntwo setsof coordinatego representhe samepointif oneis a non-zeromultiple of the other In
otherwords,the point (z, y, z, w) representshe samepointasdoes(az, ay, az, aw).

Normally, of course,w = 1, but this shavs how we cancorvertto our standardorm if we geta point
whosefourth coordinatedoesnothapperto be 1. As long asit is non-zerowejustlet o = 1/w, andwe
find thatthe points(z, y, z, w) and(z/w, y/w, z/w, 1) areequivalent.

This may seemweird at first, but you shouldnot feel at all uncomfortablewith it. After all, youdoit all
the time with fractions. Everybodyknows thatthe fraction 1/3 is normally written thatway, but certain
calculationggiveresultslike 2/6, 3/9, or even17/51. All areequivalentto 1/3.

Whenwe represenpur three-dimensiongbointswith four coordinatesit’s sort of like having a funny
sortof fractionwherethethreenumeratorsharea commondenominatarAnd exactly asis the casewith



fractions,aslong asthe“denominator”(the fourth term)is notequalto zero,we’ll have notrouble.

Here is the matrix that performsthe perspectiie calculationshovn in Figure 2 that takes the three-
dimensionapoint(z,y, 2) to (z/z,y/z,1):

OO O -
OO -=O
- O
[en 2N e B en R an)
- N e s
I
NN e R

The resulting vector after the multiplication is (z,y, z, 2), but rememberthat we can multiply all the
componentdy the samenon-zeronumberandgetanequialentpoint, andsincewe’re looking at values
of z in the half-spaceawith negative z-coordinatesywe canmultiply all of thecoordinatedy 1/z to obtain
theequivalentrepresentation(z/z,y/z,1,1).

Thereis oneproblemwith this matrix: it is singular meaninghatit doesnothave aninverse.Thereason
is thatour calculationeffectively projectedevery pointontheline connecting? and P’ to the samepoint
ontheplanez = 1. Any function or transformatiorthat mapstwo pointsto the samepoint cannotbe
undonepr inverted.

At first, this seemdike a purely aesthetiqproblem. After all, arent we planningto mapall the points
alongthatline to the samepoint on the computerscreen?T'he problemis thatin computergraphicsyou
often want to find whereto draw themon the screenbut to avoid drawing themuntil you've found all
the pointsto be drawn there,andthento drawv only the point that's nearesthe eye of the viewer. That's
becausén therealworld, objectsneareryour eye block your vision of objectsbehindthem.

We cansolve the problemeasily andatthe sametime, createa non-singula invertable)matrix. We don't
really carethatthe z coordinatds 1 aftertransformation—allve careaboutarethe z andy coordinates
thattell uswhereto paintthe pointonthe screen Here's a betterperspeciie matrix:

1 0 00 T T
0100 vyl _ y
0011 z z+1]|° )
0010 1 z

Thistransformsourpoint(z,y, z,1) to (z/z,y/z,1+1/ 2, 1) (atleastafterwe multiply all thecoordinates
by 1/z). Thefinal z andy coordinatesrethe sameasbefore—eerythingonthatline from P to P’ goes
to pointswith thesamer andy coordinates—bt the z valuesareall different. The orderof the pointsis
inverted but at leastit's easyto seefrom thetransformectoordinatesvhich oneswerecloserto theeye®.

Thematrixin 7 is non-singularjts inverseis:

-1

1 0 00 1 00 O
0100 {0 1.0 0
0011 10 0 0 1
0010 001 -1

Note that sincewe are dealingwith transformationf three-dimensionaspace all the transformation
matricesare4 x 4. If we wereworking only with points on the plane (two-dimensionakpace),the
transformatiormatriceswould have been3 x 3. For aline, they would have been2 x 2, etcetera.

5In standarccomputergraphicspackagesa moresophisticatedersionof the perspectie matrixis generallyusedto controlthe
variousaspectratiosandto control the rangeof z valuesthatemepe afterthe calculation. If you're interested]ook ata book on
computergraphicsfor the exactforms, but the basicideais identicalto thatillustratedin transformatiorv.



4 Homogeneougoordinates

Homogeneousoordinateprovideamethodo performcertainstandareperation®npointsin Euclidean
spaceby meansof matrix multiplications. As we shall see they provide a greatdealmore,but let’s first
review whatwe know up to this point.

The usualcartesiarcoordinategor a point consistof a list of n points,wheren is the dimensionof the
space.Thehomogeneousoordinatesorrespondingo the samepointrequiren + 1 coordinates.

Normally, we adda coordinateto the endof thelist, andmale it equalto 1. Thusthe two-dimensional
point (z, y) becomegz, y, 1) in homogeneousoordinatesandthe three-dimensiongboint (z, y, z) be-

comesz,y, z, 1). Tolearnmore,it is oftenusefulto look atthe one-dimensionadpacegpointsonaline),

andit is alsousefulto remembethatthe samemethodcanbe appliedto higherdimensionaEuclidean
spacesHomogeneousoordinatesn a seven-dimensionaEuclideanspacehave eightcoordinates.

Thefinal coordinateneednotbe 1. Sincethe mostcommonuseof homogeneousoordinatess for one,
two, andthree-dimensionatuclideanspacesthefinal coordinates oftencalled“w” sincethatwill not
interferewith the usualz, y, and z-coordinates.In fact, two pointsare equivalentif oneis a non-zero
constanmultiple of theother Pointscorrespondingo standardeuclidearpointsall have non-zerovalues
in thefinal (w) coordinate.

5 Projective Geometry

What's really goingonis, in a sensefar simpler Homogeneousoordinatesare not Euclideancoordi-
natesthey arethenaturalcoordinate®f a differenttype of geometrycalledprojective geometry

Hereis the real definition of homogeneousoordinatesn projective geometry wherewe will consider
the two-dimensionalersion(with threecoordinatesjor concreteness.

Every vectorof threerealnumbers(z, y, w), whereatleastoneof thenumberds non-zerocorresponds
to apointin two-dimensionaprojective geometry The coordinategor a pointarenot unique;if « is ary
non-zeroreal number thenthe coordinategz, y, w) and (az, ay, aw) correspondo exactly the same
point.

If thew-coordinates non-zero,t will correspondo a Euclideanpoint, but if w = 0 (andatleastoneof
z or y is non-zero)jt will correspondo a“point atinfinity” (seeSection?).

Furthermoretheallowabletransformationn (two-dimensionalprojective geometrycorrespondo mul-
tiplication by arbitrarynon-singulaB x 3 matrices.Olviously, if two matricesarerelatedby thefactthat
oneis aconstannon-zeramultiple of the other, they representhe sametransformation.

The coordinatesare called “homogeneous’sincethey look the sameall over the space,and with the
completeflexibility of multiplication by an arbitrary non-singulammatrix we cancorvertary line to be
the line at infinity, or corvert pointsat infinity to pointsin normalspace et cetera. In fact, if you ever
took a perspectie drawing class,the “vanishingpoints” on the horizonarereally placeswhere,undera
perspectie transformationpointsat infinity wind up in normalspace.

Thereis moreto projective geometryof course.Thereareequationgor lines,for conicsectionsmethods
to find intersection®f lines or for finding the lines that passthorougha pair of points,et ceterabut we
will getto thoselater. Let us begin by describinga nice mentalmodelfor two-dimensionaprojectve
geometry

6 Euclideanand Projective Geometry

Projective geometryis not the sameasEuclideangeometrybut it is closelyrelated. The two have mary
thingsin common. Justaswe candiscusstEuclideangeometryin ary finite numberof dimensionswe
cando the samefor projectve geometry Of coursereal-world applicationsaretypically two andthree-



dimensionalin both geometriesput we’ll sometimedind it usefulto think aboutthe one-dimensional
versionof both.

A nice way to think aboutvarioustypesof geometryis in termsof the allowable operationsand the
propertieghatarepreseredunderthoseoperationsFor example,in Euclideangeometrywe canmove
figuresaroundon the plane,rotatethem,or flip themover, andif we do thesethings,theresultingtrans-
formedfiguresremaincongruento the originals. Two figuresarecongruenif all the measurementsre
thesame—Ilengthsf sides,anglesgtcetera.

In projective geometry we aregoingto allow projectionasthe fundamentabperation. It's easyto see
whatprojectionmeandn oneandtwo dimensionssowe’ll begin with those.

Supposeyou have a figure drawvn on a plane. You canprojectit to anothemplaneasfollows: pick some
point of projectionthatis on neitherof the planes.Draw straightlinesthroughevery point of the original
figure that passthroughthe point of projection. The imageof eachpoint is the intersectionof thatline
with the otherplane.

Note alsothat we can obtain projectionsperpendiculato the planeof projectionsimply by projecting
from a“point atinfinity"—see Section?.

Notice thatwe have saidnothingaboutthe orientationof the two planes—thg neednot be parallel,for
example.ln your mind’s eye, try to imaginesomeof thesetwo-dimensionaprojections.

7 Visualizing Projective Geometry

Herearetwo postulategrom two-dimensionaEuclideangeometry:

e Everytwo pointslie onaline.

e Everytwo lineslie onapoint, unlessthelinesareparallel,in which casethey don't.

In two-dimensionaprojectve geometrythesepostulatesarereplacedoy:

e Everytwo pointslie onaline.

e Everytwo lineslie onapoint.

That's basicallythe whole difference.How canwe visualizea modelfor sucha thing? The modelmust
describeall the points,all thelines,whatpointsareon whatlines,andsoon.

Theeasiestvay is to take the pointsandlinesfrom a standardwo-dimensionaEuclideanplaneandadd
stuff until the projective postulatesare satisfied. The first problemis thatthe parallellines don’'t meet.
Linesthatarealmostparallelmeetway out in the directionof thelines, sofor parallellines,adda single
pointfor eachpossibledirectionandaddit to all the parallellinesgoingthatway. You canthink of these
pointsasbeingpointsatinfinity—at the “ends” of thelines. Notethateachline includesa singlepoint at
infinity—the north-soutHine doesnt have both a northandsouthpointatinfinity. If you“go to infinity”
to the northandkeepgoing, you will find yourselflooping aroundfrom the south. Linesin projective
geometryform loops.

Now take all the new pointsatinfinity andadda singleline atinfinity goingthroughall of them. It, too,
formsaloop thatcanbeimaginedto wrap aroundthe whole original Euclideanplane. Thesepointsand
linesmalke up the projectie plane.

You might make a mentalpictureasfollows. For somesmall configurationof pointsandlinesthatyou
areconsideringjmagineareally large circle centerecaroundthem,solarge thatthe part of the figure of
interestis like adotin its center Now ary parallellinesthatgo throughthat“dot” will hit thelargecircle
very closetogetherat a point thatdependnly on their direction. Justimaginethatall parallellines hit
thecircle atthatpoint. Thislargecircularline surroundingeverythingis the “line atinfinity”.
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CheckthepostulatesTwo pointsin the Euclidearplanestill determineasingleprojectiveline. Onepoint
in the planeanda point atinfinity determinethe projective line throughthe point andgoingin the given
direction.Finally, theline atinfinity passeshroughany two pointsatinfinity.

How aboutlines? Two non-parallellinesin the Euclideanplanestill meetin a point (the standardeu-
clideanpoint), anddon’t meetarywhereelse.Parallellines have the samedirection,so meetat the point
atinfinity in thatdirection.Everyline ontheoriginal planemeetgheline atinfinity atthepointatinfinity
correspondingo theline’s direction.

Note: The projective postulatesio not distinguishbetweerpointsandlinesin the sensehatif you saw
themwritten in aforeignlanguage:

e Everytwo glorphslie onasmynkx,

e Everytwo smynxeslie onaglorph,

thereis nowayto figureoutwhetherasmynxis aline andaglorphis apointor vice-versa.lf youtakeary
theoremin two-dimensionaprojective geometryandreplace‘point” with “line” and“line” with “point”,
it makesanew theorenthatis alsotrue. Thisis called“duality”—seeary text on projectve geometry

8 Backto the HomogeneousCoordinates

Sowe've gota nice mentalpicture—hav do we assigncoordinate@ndcalculatewith them?Theanswer
is thateverytriple of realnumberdx, y, w) except(0, 0,0) correspond$o a projective point. If w is non-
zero, (z,y,w) correspondso the Euclideanpoint (z/w, y/w) in the original Euclideanplane;(z, y, 0)
correspondso the point at infinity correspondindo the directionof the line passinghrough(0, 0) and
(z,y). Generallyif « is ary non-zeronumberthehomogeneousoordinategz, y, w) and(az, ay, aw)
representhe samepoint.

Sinceprojective points andlines arein somesenseindistinguishablejt had betterbe possibleto give
line coordinatesassetsof threenumbergwith at leastonenon-zero).If the pointsare columnvectors,
the lines will be row vector$ (written with a “T” exponentthat representstranspose”),so (a, b, ¢)”
represents line. Thepoint P = (z,y,w) liesontheline L = (a,b,¢)” if az + by + cw = 0. In the
Euclideanplane,the point (x, y) canbe written in projective coordinatesas (x,y, 1), so the condition
becomesiz + by + ¢ = 0—high-schoolalgebras equationfor aline. Theline passinghroughall the
points at infinity hascoordinates(0,0,1)”. As with points, for any non-zeroa, the line coordinates
(a,b,c)” and(aa, ab,ac)” representhesameline. Also, aswith points,at leastoneof a, b, or ¢ must
benon-zerao have a setof valid line coordinates.

In matrix notation the point P liesontheline L if andonly if LP = 0. Thisis like thedot productof the
vectors.SinceL is arow vectorand P is a columnvectorof the samelength,the productis essentiallya
1 x 1 matrix, or basically ascalar If P = (z,y,w) andL = (a,b,c)”, thenLP = az + by + cw. If we
hadchoseno representines ascolumnvectorsandpointsasrow vectors,thatwould work fine, too. It
hasto work becausgointsandlinesaredualconcepts.

9 Projective Transformations

Projective transformationgransform(projective) pointsto pointsand(projective) linesto lines suchthat
incidenceis presered. In otherwords,if 7 is a projective transformatiorandpoints P and( lie online
L thenT (P) and T (Q) lie on T(L). (Warning: T (L)—the transformatiorof a line—doesnot simply
usethesamematrix asfor transformingpoints. Seelaterin this section.)Similarly, if lines L andM meet
atpoint P, thenthelines7 (L) and7 (M) meetatthe point 7 (P).

8Remembethatwe arewriting columnvectorsin thetext asrows, sowe’re goingto have to have a specialnotationto indicate
thatavectorin thetext is really arow vector That's whatthetransposavill beusedfor.
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The reasonprojective transformationsare so interestingis that if we usethe model of the projective
planedescribedn Section7 wherewe've simply addedsomestuff to the Euclideanplane,the projective
transformationsestrictedto the Euclideanplaneincludeall rotations,translationsnon-zeroscalesand
shearingoperations.This would be powerful enough but if we don'’t restrictthe transformationgo the
Euclideanplane,the projective transformationslsoincludethe standardorojections,ncluding the very
importantperspectie projection.

Rotation,translation,scaling,shearing(andall combinationsof them)mapthe line at infinity to itself,
althoughthe pointson thatline may be mappedo otherpointsat infinity. For example,a rotationof 5
degreesmapseachpointatinfinity correspondingo adirectionto thepointcorrespondingo thedirection
rotateds degrees.Puretranslationgresere thedirections soatranslationmapseachpoint atinfinity to
itself.

Thestandargerspectie transformatior{with a90° field of view, theeye attheorigin, andlooking down
the y-axis) mapsthe origin to the point at infinity in the y-direction. The viewing trapezoidmapsto a
square.

Everynon-singulaB x 3 matrix (non-singulameanghatthematrix hasaninverseyepresentaprojective
transformationandevery projective transformatioris representetdy a non-singula3 x 3 matrix. If M
is sucha transformatiommatrix and P is a projective point, then M P is thetransformedpoint. If L isa
line, LM™! representshetransformedine. It's easyto seewhy this works: if P lieson L, LP = 0, so
LM=ITMP =0, so(LM~1)(MP) = 0. Thematrix representatioiis not unique—aswith pointsand
lines,arny constanmultiple of a matrix representshe sameprojective transformation.

Combination®f transformationarerepresentetly productsof matricesarotationrepresentetly matrix
‘R followedby atranslation(matrix 7") is representetly thematrix 7R.

A (two-dimensional)projective transformationis completelydeterminedf you know the imagesof 4
independenpoints (or of 4 independentines). This is easyto see. A 3 x 3 matrix hasnine numbers
in it, but sinceary constanimultiple representshe sametransformationtherearebasically8 degreesof
freedom. Eachpoint transformatiorthatyou lock down eliminates2 degreesof freedom,sotheimages
of 4 pointscompletelydeterminehetransformation.

Let’slook at a simpleexampleof how this canbe usedby deriving from scratchthe rotationmatrix for a
45° counterclockwiserotationabouttheorigin. The origin mapsto itself, the pointsat infinity alongthe
x andy axesmapto pointsatinfinity rotated45°, andthe point (1, 1) mapsto (0, v/2).

If R is theunknovn matrix:

0 0 1 V2
R|O = k|0 RI|O = ko | V2
1 1 0 0
0 —v2 1 0
RI1| = ks| V2 RI1| = k|V2
0 0 1 1
Thek,..., ks canbeary constantsincearny multiple of a projective point’s coordinatesepresentshe

sameprojective point. Thematrix R hasbasically8 unknonvns,sothose8 plusthe4 k;’s make 12. Each
matrix equationrepresent8 equationssowe have a systemof 12 equationsand12 unknovnsthatcan
be solved. The computationsnay be ugly, but it's a straight-forvard brute-forcesolutionthat givesthe
rotationmatrix R asary multiple of:

Vv2/2 —v2/2 0
R=1v2/2 V2/2 0
0 0 1

Theres nothingspecialaboutrotation. Every projective transformatiormatrix canbe determinedn the
samebrute-forcemannerstartingfrom theimagesof 4 independenpoints.
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10 Three-DimensionalProjective Space

Three-dimensiongbrojective spacehasa similar model. Take three-dimensiondEuclideanspaceadd
pointsatinfinity in everythree-dimensionalirection,andadda planeatinfinity goingthroughthepoints.
In this casetherewill alsobeaninfinite numberof linesat infinity aswell. In threedimensionspoints
andplanesaredualobjects.

Projective transformationsn threedimensionsare exactly analogous.Pointsarerepresentethy 4-tuple
columnvectors:(z,y, z, w), andplanesby row vectors:(a, b, c,d)”. Any multiple of a point’s coordi-
nategepresentthesameprojective point. A point P liesonaplaneM if M P = 0. All threedimensional
projectivetransformationgsrerepresentetly 4 x 4 non-singulamatrices.

In threedimensionsthe imagesof 5 independenpoints (or planes)completelydeterminea projective
transformation.(A 4 x 4 matrix has16 numbersbut 15 degreesof freedombecauseny multiple rep-
resentghe sametransformation.Eachpoint transformatiorthat you nail down eliminates3 degreesof
freedom sotheimagesof 5 independenpointscompletelydeterminethetransformation.)

The brute-forcesolutionhas20 equationsand 20 unknawns (therewill be 5 k;’s in additionto the 15
unknowns),andalthoughthe solutionis time-consumingit is straight-forward.

The calculationcanbe simplified. Suppose/ou wanta transformatiorthattakes P; to ¢4, ..., and P; to
Q5. Let

I (1,0,0,0)
I, = (0,1,0,0)
I; = (0,0,1,0)
I, = (0,0,0,1)
I (1,1,1,1)

FindthetransformatiorP thattakesP; to I; andthetransformation@ thattakes@; to I;. Becausef all
the zeroesthesearemucheasierto work out. Thetransformatioryou wantis Q~1P.

10.1 Construction of an Arbitrary Transformation

Baseduponthe ideaabove, hereis a purely mechanicamethodto constructa transformatiorfrom arny
four independenpointsto ary otherfour pointsin two-dimensionaprojective geometry Themethodcan
obviously be extendedto any numberof dimensionswherethe imagesof n + 2 pointsarerequiredto
determinghetransformation.

Supposeave seeka matrix M thatperformsthefollowing map:

M (z,p,w1) — (X, Y, W)
M (22, y2,w2) —  (Xo, Yo, Ws)
M (z3,y3,w3) — (X3,Y3,Ws)
M (zg,y1,wa) — (X4, Yy, Wy)

We will constructthe matrix M asthe product@P—! where:

"Theconcepigeneralize$o n-dimensionakpace Transformationgredenotedy (n + 1) x (n + 1) matriceshaving (n + 1)2
entries,but an arbitraryconstanimultiple reduceghis to (n + 1)2 — 1 = n2 + 2n = n(n + 2) degreesof freedom.Eachtime
you nail down theimageof ann-dimensionapoint, you remove n. degreesof freedom,sotheimagesof n + 2 independenpoints
arerequiredto completelydeterminea projectve transformatiorin projective n-space.
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P:(1,0,00 = (z1,y1,w1) Q:(1,0,0) —» (X1,Y1,Wy)
P:(0,1,0) — (z2,y2,ws) and Q:(0,1,0) — (X2,Ys,Ws)
P (0707 1) - (963,1/3,1113) Q: (0707 1) - (X3,Y3,W3)
P:(1,1,1) = (z4,ys,ws) Q:(1,1,1) — (X4,Yy,Wy)

Theconstructiorof P and@ is obviouslyidentical,sowe will shav the constructiorof P only.

We will denotethe unknown entriesin thematrix P by p;;. As usualwe will alsousek; asthearbitrary
constantsn thatmultiply thehomogeneousoordinate®f our result. The matrix P mustsatisfy:

P11 P12 D13 1 001 kizr  kozo kazs kazy
P21 P2z P23 01 0 1)=|kuyr keys ksys kays|. (8)
P31 P32 D33 0011 kiwi  kowe kaws kaws

Therearethirteenvariablesncludingtheninep;; andthefour k;, of whichwe canfix ary one.We choose
tolet k4 = 1. We canactuallyperformthe matrix multiplicationon the left of equation8 andsetks = 1
to obtain:

P11 pi2 P13 P+ P12 +Pis kizy kozo kszs x4
P21 Po2 Doz Par+ P2 +pes | = | kun keye  ksys  wya | 9
P31 P32 D33 D31+ D32+ Dss kiwi kowy kaws ws

Fromequation9, we canimmediatelyconcludethatp,; = k;z;, p2; = k;y;, andthatps; = kjw;. We
don't yetknow thevaluesof k; exceptthatks = 1, but we cannow rewrite equation as:

k1$1 k2.’152 k3.’153 k1$1 + k2.’152 + k3.’153 kl.’lll k2.’152 k3.’153 T4
kiyi  keya  ksys  kiyi +koys +ksys | = | kiyn key2 ksys wa | . (10)
k1w1 k2’£U2 k3’LU3 k1w1 + k2w2 + k3’LU3 k1w1 k2w2 k3’LU3 wa

Thefirst threecolumnsof equationlO don'’t helpatall, but we canre-writethefourth columnasfollows:

1 Zo I3 k1 T4
Yy Y2 Y3 ke | =1wa]. (11)
w; Wy W3 ks 24
We cansolve equationl 1 for the k;:
-1
k1 r1 T2 X3 T4
kel =y w2 s Ya | - (12)
k3 w; W wWs Z4

Usingthevaluesof thek; obtainedrom equationl2 andsubstitutingthoseinto thefirst threecolumnsof
equation9 we canfind the unknavn matrix P:

P11 P12 D13 kizi  kezo  kszs
P=1|pa p2 pa|=|kyn ky ksys
D31 P32 D33 kiwy  kows ksws
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