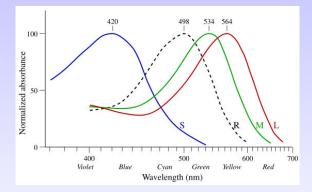
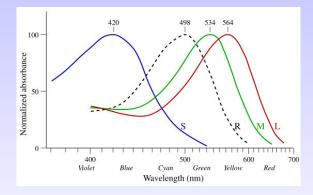


Mathematics and Colour


Professor Nick Higham Director of Research School of Mathematics The University of Manchester

nick.higham@manchester.ac.uk
http://www.manchester.ac.uk/~higham/


What is Colour?

Human retina has 3 types of cones.

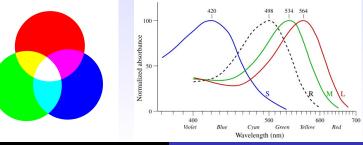
What is Colour?

Human retina has 3 types of cones.

Colour space is 3-dimensional ("trichromatic theory").Can mathematics help us understand colour?

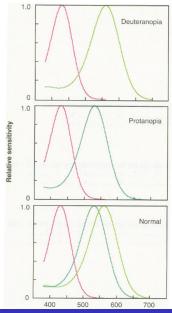
There's Something about Yellow

There's Something about Yellow


Why does yellow appear so bright?

There's Something about Yellow

Why does yellow appear so bright?


Colour Blindness

SCIENCE • VOL. 267 • 17 FEBRUARY 1995

The Chemistry of John Dalton's Color Blindness

David M. Hunt,* Kanwaljit S. Dulai, James K. Bowmaker, John D. Mollon

- John Dalton (1766–1844).
- Described his own c.b. in lecture to M/cr Lit & Phil Soc, 1794.
- He was a deuteranope.

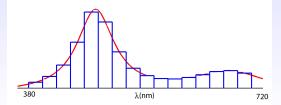
Vector Space Model of Colour (1)

Model responses of the 3 cones as

$$m{c}_i = \int_{\lambda_{\min}}^{\lambda_{\max}} m{s}_i(\lambda) f(\lambda) m{d} \lambda, \quad i=1:3,$$

where *f* = spectral distrib. of light, s_i = sensitivity of *i*th cone, $[\lambda_{\min}, \lambda_{\max}]$ = wavelengths of visible spectrum.

Vector Space Model of Colour (1)


Model responses of the 3 cones as

$$m{c}_i = \int_{\lambda_{\min}}^{\lambda_{\max}} m{s}_i(\lambda) f(\lambda) m{d} \lambda, \quad i=1:3,$$

where f = spectral distrib. of light, s_i = sensitivity of *i*th cone, $[\lambda_{\min}, \lambda_{\max}]$ = wavelengths of visible spectrum. **Discretizing** gives

$$oldsymbol{c} = oldsymbol{S}^T f, \qquad oldsymbol{c} \in \mathbb{R}^3, \quad oldsymbol{S} \in \mathbb{R}^{n imes 3}, \quad f \in \mathbb{R}^n.$$

For standardized *S*, *c* is the tristimulus vector.

Vector Space Model of Colour (2)

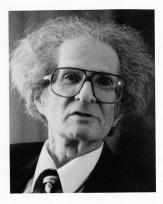
• Let columns of $P = \underbrace{[p_1 \ p_2 \ p_3]}_{n \times 3}$ be colour primaries.

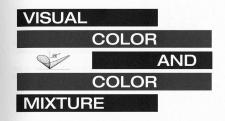
• Assuming $S^T P$ is nonsingular,

$$S^{T}f = \underbrace{S^{T}P}_{3\times 3} \cdot (S^{T}P)^{-1}S^{T}f \equiv S^{T} \cdot Pa(f),$$

where $a(f) = (S^T P)^{-1} S^T f$. Colour of any spectrum *f* can be matched by primaries.

Vector Space Model of Colour (2)


• Let columns of $P = [p_1 \ p_2 \ p_3] = p_1 \ p_2 \ p_3$ be colour primaries.


• Assuming $S^T P$ is nonsingular,

$$S^{T}f = \underbrace{S^{T}P}_{3\times 3} \cdot (S^{T}P)^{-1}S^{T}f \equiv S^{T} \cdot Pa(f),$$

where $a(f) = (S^T P)^{-1} S^T f$. Colour of any spectrum *f* can be matched by primaries.

- ► Need $a_i \ge 0 \Rightarrow$ not all visible spectra can be produced. Compensate $a_i < 0$ by adding $|a_i|p_i$ to f,
- ► There exist spectra $f, g, f \neq g$, such that $S^T = S^T g$: metamers. Both good and bad.

The Fundamental Color Space

Jozef B. Cohen

Jozef B. Cohen, 1921-1995 (Photo by Jerry Thompson)

UNIVERSITY OF ILLINOIS PRESS URBANA AND CHICAGO

R Matrix Theory of Cohen

Cohen (2001) stresses the importance of

$$R = S(S^TS)^{-1}S^T = SS^+,$$

the orthogonal projector on range(S).

- Independent of the choice of primaries used for colour matching (S ← SZ).
- *F* matrix defined as *Q* in the factorization S = QL($Q \in \mathbb{R}^{n \times 3}$, $Q^T Q = I$, $L \in \mathbb{R}^{3 \times 3}$ lower triangular).
- Proposes use of *tricolor coordinates* $F^T f$.

A Nonlinear, Imperfect World

Limitations on how far the mathematical model can take us.

- We all see colour slightly differently.
- Our eyes do not behave **linearly**.
- Brain processing of colour is complicated (colour temp, opponent-process theory) and leads to various illusions.
- Most colours we see are artificially generated: camera, screen, print, paints, ... all these devices have limitations.

CMYK

All printing is done using four colours: **cyan**, **yellow**, **magenta**, and **black**. C + M + Y = K =black.

One redundant coordinate. Why do we need K?

CMYK

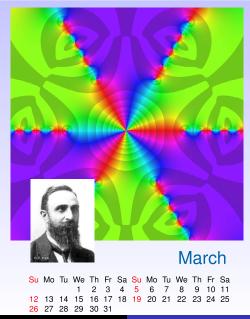
All printing is done using four colours: **cyan**, **yellow**, **magenta**, and **black**. C + M + Y = K =black.

One redundant coordinate. Why do we need K?

- Printing 3 layers makes the paper very wet.
- Black as 3 layers requires accurate registration.
- C + M + Y will not give a true, deep black due to ink imperfections.
- Coloured ink is more expensive.

CMYK

All printing is done using four colours: **cyan**, **yellow**, **magenta**, and **black**. C + M + Y = K =black.

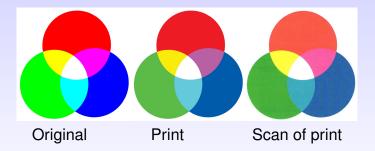

One redundant coordinate. Why do we need K?

- Printing 3 layers makes the paper very wet.
- Black as 3 layers requires accurate registration.
- C + M + Y will not give a true, deep black due to ink imperfections.
- Coloured ink is more expensive.

What order to lay down the inks? CMYK or KCMY are standard. Note that

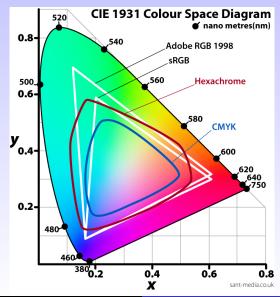
$$C+M+Y\neq M+C+Y.$$

Complex Beauties Calendar [link]

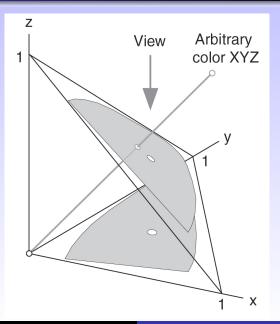


Nick Higham

Mathematics and Colour

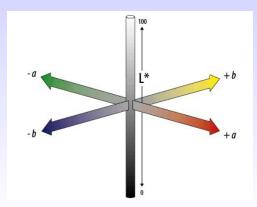

CMYK vs RGB

- CMYK produces a different range of colors than RGB. Cannot produce some of the brilliant blues.
- Whenever we print a document on a laser printer we view a CMYK representation of the colors.



CIE Chromacity Coordinates

Projective transformation of 3-dimensional colour space.


Projective Transformation

Excursion into LAB Space

Change from RGB space to CIE L*a*b* (LAB, 1976): L = lightness, A = green-magenta, B = blue-yellow.

- Separates luminosity from colour.
- More perceptually uniform.

Transformation $XYZ \rightarrow LAB$

Let X_n , Y_n , Z_n be tristimuli of white stimulus.

$$L = 116f(Y/Y_n) - 16,$$

$$A = 500 [f(X/X_n) - f(Y/Y_n)],$$

$$B = 200 [f(Y/Y_n) - f(Z/Z_n)].$$

where

$$f(x) = \begin{cases} x^{1/3}, & x \ge 0.008856, \\ 7.787x + \frac{16}{116}, & x \le 0.008856. \end{cases}$$

Range: $0 \le L \le 100$.

• $A = B = 0 \Rightarrow$ no colour.

Euclidean distance used as colour difference metric.

Dan Margulis on LAB (2006)

Photoshop LAB Color

The Canyon Conundrum and Other Adventures in the Most Powerful Colorspace

DAN MARGULIS

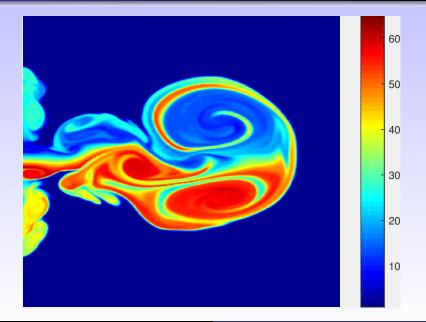
Editing in LAB

- LAB separates luminosity (L) from colour (A,B).
- Colour noise can be handled by blurring the A, B channels.
- Much bigger space than sRGB with many imaginary colours.
- Good for boosting contrast, enhancing colours, and sharpening.

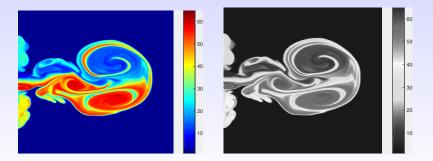
LAB Example: Original

LAB Example: Via LAB

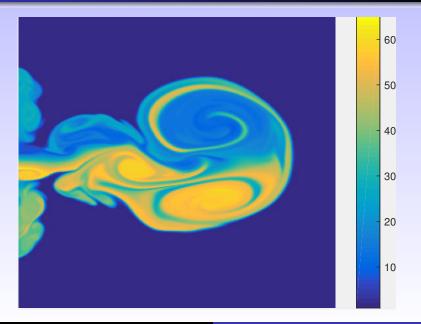
LAB Example: Explanation


- Convert from RGB to LAB.
- **2** Apply Image to itself in overlay mode: $L \leftarrow f(L), A \leftarrow f(A), B \leftarrow f(B)$, where

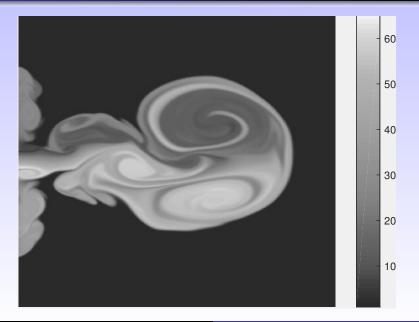
- Solution 3 States Apply Image: L ← 75% old L + 25% new L.
- Ourves adjustment on L channel:



Rainbow Colour Maps



Rainbow Considered Harmful


- Not perceptually uniform: colours change at different rates.
- Confusing: no natural ordering (ROYGBIV).
- Introduces artefacts: sharp transitions between hues.
- Loses information in grayscale.

MATLAB Parula Colour Map (2014)

MATLAB Parula Colour Map (2014)

Adobe Photoshop

- Photoshop 1.0 (Mac), 1990.
- Market leader for commercial bitmap/image manipulation.
- Supports RGB, LAB, CMYK.
- Excels in non-destructive editing (layers).
- "Adobe Photoshop software includes a counterfeit deterrence system (CDS) that prevents the use of the product to illegally duplicate banknotes."

Adobe Photoshop

- Photoshop 1.0 (Mac), 1990.
- Market leader for commercial bitmap/image manipulation.
- Supports RGB, LAB, CMYK.
- Excels in non-destructive editing (layers).
- "Adobe Photoshop software includes a counterfeit deterrence system (CDS) that prevents the use of the product to illegally duplicate banknotes."

Adobe Photoshop CS4 Extended	
1	This application does not support the editing of banknote images. For more information, select the information button below for Internet-based information on restrictions for copying and distributing banknote images or go to www.rulesforuse.org.
	Information Cancel

Adobe Photoshop

- Photoshop 1.0 (Mac), 1990.
- Market leader for commercial bitmap/image manipulation.
- Supports RGB, LAB, CMYK.
- Excels in non-destructive editing (layers).
- "Adobe Photoshop software includes a counterfeit deterrence system (CDS) that prevents the use of the product to illegally duplicate banknotes."

JPEG

JPEG (1992) stores RGB images in **compressed** form. It converts from RGB to YC_bC_r colour space where Y = luminance, $C_b =$ blue, $C_r =$ red by

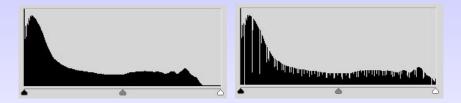
$$\begin{bmatrix} Y \\ C_b \\ C_r \end{bmatrix} = \begin{bmatrix} 0.299 & 0.587 & 0.114 \\ -0.1687 & -0.3313 & 0.5 \\ 0.5 & -0.4187 & -0.0813 \end{bmatrix} \begin{bmatrix} R \\ G \\ B \end{bmatrix}$$

- Transformation must be inverted to display a JPEG image.
- Human vision more sensitive to luminance than colour, so can more heavily compress C_b, C_r coordinates.

Fingerprints—FBI

- Digitized at 500dpi \Rightarrow 10Mb. Compression \ge 10:1 req'd.
- Standardized on wavelet compression (1993).
- Jpeg: resonance of 8-pixel tiling w/ 500dpi scans, many edges.
- Wavelets: gradual blurring as compression increased.

Adobe DNG


XYZtoCamera matrix is $n \times 3$, $n = \dim$ of camera colour space, usually 3 or 4.

Translating Camera Neutral Coordinates to White Balance xy Coordinates

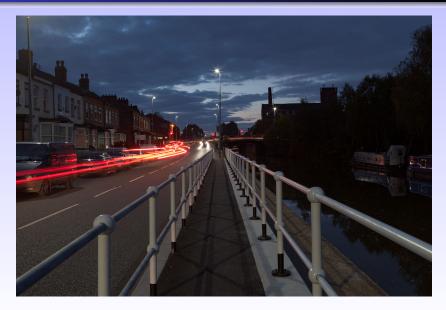
- Guess an xy value. Use that guess to find the interpolation weighting factor between the color calibration tags. Find the XYZtoCamera matrix as above.
- Find a new xy value by computing: XYZ = Inverse (XYZtoCamera) * CameraNeutral (If the XYZtoCamera matrix is not square, then use the pseudo inverse.)
- Sonvert the resulting XYZ to a new xy value.
- Iterate until the xy values converge to a solution.

Rounding Errors

Every editing operation executes p_{ij} = round(f_{ij}(p_{ij})).
 Rounding errors can potentially cause deterioration.

Controversy over 8-bit vs. 16-bit editing.

Controversy over colour space: choice & conversions.

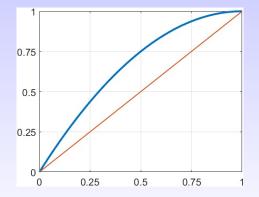

Arithmetic on Images: Brightening

Simple arithmetic on images (+,*,-,/) can be very effective! Let $R, G, B \in [0, 1]$ with

black = (0, 0, 0), white = (1, 1, 1).

To brighten an image we need to increase the coordinates.

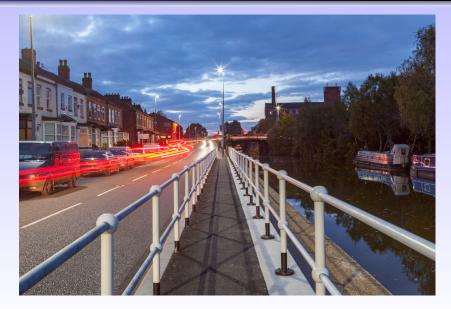
Original


Simple Brightening Transformation

Better Brightening Transformation

Map each coordinate

$$x \leftarrow 1 - (1 - x)^2$$



Photoshop: Apply Image with Screen Blending Mode

Pixel-Dependent Brightening

Final Image

Change Autumn into Summer

Looking at the Numbers

Sample colours from photo.

Typical RGB values for green tree leaves:

(R, G, B) = (110, 103, 53), (50, 55, 12), (135, 125, 81).

Looking at the Numbers

Sample colours from photo.

Typical RGB values for green tree leaves:

(R, G, B) = (110, 103, 53), (50, 55, 12), (135, 125, 81).

Typical RGB values for yellow tree leaves:

(R, G, B) = (250, 193, 73), (152, 88, 90), (194, 112, 18).

Looking at the Numbers

Sample colours from photo.

Typical RGB values for green tree leaves:

(R, G, B) = (110, 103, 53), (50, 55, 12), (135, 125, 81).

Typical RGB values for yellow tree leaves:

(R, G, B) = (250, 193, 73), (152, 88, 90), (194, 112, 18).

Solution

Make R = G by copying the green coordinates into the red.

It's Summer

Original

With Mask to Protect Sky

Repainting University Place

RePainted

Flip Sign of A Channel

- UoM turquoise is $(L, A, B) \approx (85, -12, -3)$.
- Convert to LAB then $A \leftarrow -A$.
- Now have $(L, A, B) \approx (85, 12, -3)$.

Mean

Median

Max

Min

Nick Higham

Variance

Nick Higham

Mathematics and Colour

Summary

- Maths intrinsic to modelling colour, and defining, analyzing and exploiting colour spaces.
- Can go a long way in manipulating the colour of images with elementary maths.
- All the maths needed to understand colour is covered in the Manchester honours degree maths programme.

Talk, including references, available at http://www.maths.manchester.ac.uk/~higham/talks/ digphot_long.pdf

Acknowledgements for Graphics

Wikipedia:

http://en.wikipedia.org/wiki/Image: CIE1931_XYZCMF.png http://upload.wikimedia.org/wikipedia/ commons/b/b0/CIExy1931.png http://en.wikipedia.org/wiki/Bayer_filter

http://www2.cmp.uea.ac.uk/Research/ compvis/ColourIntro/ColourIntro.htm

References I

J. B. Cohen.

Visual Color and Color Mixture: The Fundamental Color Space.

University of Illinois Press, Urbana and Chicago, USA, 2001.

B. Fraser.

Raw capture, linear gamma, and exposure.

www.adobe.com/products/photoshop/pdfs/ linear_gamma.pdf.

References II

N. J. Higham.

Color spaces and digital imaging.

In N. J. Higham, M. R. Dennis, P. Glendinning, P. A. Martin, F. Santosa, and J. Tanner, editors, *The Princeton Companion to Applied Mathematics*, pages 808–813. Princeton University Press, Princeton, NJ, USA, 2015.

🔒 A. R. Hill.

How we see colour.

In R. McDonald, editor, *Colour Physics for Industry*, pages 211–281. Society of Dyers and Colourists, Bradford, England, 1987.

References III

- D. M. Hunt, K. S. Dulai, J. K. Bowmaker, and J. D. Mollon. The chemistry of John Dalton's color blindness. *Science*, 267:984–988, 1995.
- JPEG file interchange format, version 1.02. http://www.w3.org/Graphics/JPEG/jfif3.pdf.
- D. Margulis. Photoshop LAB Color: The Canyon Conundrum and Other Adventures in the Most Powerful Colorspace. Peachpit Press, Berkeley, CA, USA, 2006.
- D. Margulis. Professional Photoshop. The Classic Guide to Color Correction.

Peachpit Press, Berkeley, CA, USA, fifth edition, 2007.

References IV

- C. Poynton. A guided tour of color space, 1997. www.poynton.com/PDFs/Guided_tour.pdf.
- G. Sharma and H. J. Trussell.
 Digital color imaging.
 IEEE Trans. Image Processing, 6(7):901–932, 1997.
- S. Westland and C. Ripamonti. Computational Colour Science Using MATLAB. Wiley, New York, 2004.